取代环己烷的构象
有机化学综合复习题及解答
有机化学综合复习题及解答1.写出下列反应的主要产物:(1).(CH 3)3CCH 2OH(2).(CH 3)2CC(CH 3)OH OH+(3).OH(4).NaBr,H SO (5).OH(6).OH22(7).CH 3C 2H 5HOH PBr (8).OCHCH2CH3(9).33H SO A()O (2)Zn,H 2OB(10).33125(2)H 3O 33H IO (11).解答:(CH 3)2CCHCH 3(1).(2).(3).CH 3CC(CH 3)3O (4).CH 3(CH 2)3CH 2BrBr(5).(6).CH 3(CH 2)5CHOHBr CH 3C 2H 5(7).(8)5.3+antiomerCH 3H 3C OHCHCH CH 2CH3(9).(10).CH 3C(CH 2)4CCH 3OO(11).33AB332.解释下列现象:(1)为什么乙二醇及其甲醚的沸点随分子量的增加而降低?CH2OH CH2OHCH2OCH3CH2OCH3 CH2OCH3CH2OHb.p.C C (2)下列醇的氧化(A)比(B)快?OHOH 2OO(A)(B)(3)在化合物(A)和(B)的椅式构象中,化合物(A)中的-OH在e键上,而化合物(B)中的-OH却处在a键上,为什么?(A)OH(B)OOOH解答:2.(1)醇分子中的羟基是高度极化的,能在分子间形成氢键,这样的羟基越多,形成的氢键越多,分子间的作用力越强,沸点越高。
甲醚的形成导致形成氢键的能力减弱,从而沸点降低。
(2)从产物看,反应(A)得到的是共轭体系的脂芳酮,而(B)没有这样的共轭体系。
另外,新制的MnO2特别适用于烯丙醇或苄醇氧化为醛酮,这可能与其机理和产物的稳定性有关。
(3)分子(A)不能形成氢键,羟基处于平伏键最稳定。
分子(B)由于含氧原子,羟基可以采用形成氢键的构象使分子稳定,只有羟基在直立键上,羟基才可能与氧原子形成氢键。
大学有机化学总结
大学有机化学总结————————————————————————————————作者:————————————————————————————————日期:有机化学复习总结一、试剂的分类与试剂的酸碱性1、自由(游离)基引发剂在自由基反应中能够产生自由基的试剂叫自由基引发剂(free radical initiator),产生自由基的过程叫链引发。
如:Cl2、Br2是自由基引发剂,此外,过氧化氢、过氧化苯甲酰、偶氮二异丁氰、过硫酸铵等也是常用的自由基引发剂。
少量的自由基引发剂就可引发反应,使反应进行下去。
2、亲电试剂简单地说,对电子具有亲合力的试剂就叫亲电试剂(electrophilic reagent)。
亲电试剂一般都是带正电荷的试剂或具有空的p轨道或d轨道,能够接受电子对的中性分子,如:H+、Cl+、Br+、RCH2+、CH3CO+、NO2+、+SO3H、SO3、BF3、AlCl3等,都是亲电试剂。
在反应过程中,能够接受电子对试剂,就是路易斯酸(Lewis acid),因此,路易斯酸就是亲电试剂或亲电试剂的催化剂。
3、亲核试剂对电子没有亲合力,但对带正电荷或部分正电荷的碳原子具有亲合力的试剂叫亲核试剂(nucleophilic reagent)。
亲核试剂一般是带负电荷的试剂或是带有未共用电子对的中性分子,如:OH-、HS-、CN-、NH2-、RCH2-、RO-、RS-、PhO-、RCOO-、X-、H2O、ROH、ROR、NH3、RNH2等,都是亲核试剂。
在反应过程中,能够给出电子对试剂,就是路易斯碱(Lewis base),因此,路易斯碱也是亲核试剂。
4、试剂的分类标准在离子型反应中,亲电试剂和亲核试剂是一对对立的矛盾。
如:CH3ONa+ CH3Br→CH3O CH3 + NaBr的反应中,Na+和+CH3是亲电试剂,而CH3O-和Br-是亲核试剂。
这个反应究竟是亲反应还是亲核反应呢?一般规定,是以在反应是最先与碳原子形成共价键的试剂为判断标准。
大学有机化学知识点总结
有机化学一.有机化合物的命名1. 能够用系统命名法命名各种类型化合物:包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。
2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。
立体结构的表示方法:1)伞形式:CCOOHOHH 3CH2)锯架式:CH 3OHHHOH C 2H 53) 纽曼投影式:HHH H H HHH H HHH 4)菲舍尔投影式:COOHCH 3OH H5)构象(conformation)(1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。
(2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。
(3) 环己烷构象:最稳定构象是椅式构象。
一取代环己烷最稳定构象是e 取代的椅 式构象。
多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。
立体结构的标记方法1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型,在相反侧,为E 构型。
CH 3C C H Cl C 2H 5CH 3C CH C 2H 5Cl(Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。
CH 3CCH CH 3HCH 3CC H HCH 3顺-2-丁烯反-2-丁烯CH 3H CH 3HCH 3H HCH 3顺-1,4-二甲基环己烷反-1,4-二甲基环己烷3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。
大学《有机化学》期末考试题与总结
《有机化学》(上)复习总结一.有机化合物的命名1. 能够用系统命名法命名各种类型化合物:包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。
2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。
立体结构的表示方法:1)透视式(伞形式):CCOOHOH3 2)锯架式:CH 3OHHHOH C 2H 53)纽曼投影式:4)费歇尔投影式:COOHCH 3OH H5)构象(conformation)(1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。
(2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。
(3) 环己烷构象:最稳定构象是椅式构象。
一取代环己烷最稳定构象是e 取代的椅 式构象。
多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。
立体结构的标记方法:1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型,在相反侧,为E 构型。
CH 3CC HC 2H 5CH 3CC H2H 5Cl(Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。
CH 3C CHCH 3HCH 3CH HCH 3顺-2-丁烯反-2-丁烯333顺-1,4-二甲基环己烷反-1,4-二甲基环己烷3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。
大学有机化学总结习题及答案讲解
有机化学总结一.有机化合物的命名1. 能够用系统命名法命名各种类型化合物:包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。
2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。
立体结构的表示方法:1)伞形式:COOHOH3 2)锯架式:CH 3OHHHOH 2H 53)纽曼投影式: 4)菲舍尔投影式:COOH CH 3OHH5)构象(conformation)(1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。
(2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。
(3) 环己烷构象:最稳定构象是椅式构象。
一取代环己烷最稳定构象是e 取代的椅 式构象。
多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。
立体结构的标记方法1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型,在相反侧,为E 构型。
CH 3C HC 2H 5CH 3CC H2H 5Cl(Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。
CH 3CCH CH 3HCH 3CC H HCH 3顺-2-丁烯反-2-丁烯333顺-1,4-二甲基环己烷反-1,4-二甲基环己烷3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。
环烷烃(环丙烷环丁烷环戊烷环己烷)的构象
环烷烃的构象链状化合物的构象是由基团绕C—Cσ键旋转产生的;而环状化合物的构象至少涉及到两个C—Cσ键和其键角的转动和变化,有时还涉及到键长和键角的变化,比较复杂,常称环的翻转。
一、环丙烷的构象环丙烷是三个碳的环,只能是平面构象,即它的构型。
尽管只有一种构象,但这个环极不稳定,主要因为:1、所有C-H键都是重叠构象,扭转张力大。
2、C原子是不等性杂化或弯曲键,有“角张力”存在。
二、环丁烷的构象环丁烷有两种极限构象:动画演示:平面式构象:象环丙烷一样,不稳定,存在扭转张力和“角张力”。
蝶式构象:能缓解扭转张力和角张力,呈蝶式构象。
通过平面式构象,由一种蝶式翻转成为另一种蝶式构象,处于动态平衡。
蝶式是优势构象。
也有扭转能力和角张力存在。
三、环戊烷的构象环戊烷的构象主要是信封式和半椅式构象。
两者处于平衡。
因为平面构象能量较大,一般认为环戊烷采取这种构象可能性很少。
E相对=19kJ/mol 信封式半椅式四、环己烷的构象环己烷的构象经过近百年的努力才建立起来。
Baeyer 1885年提出张力学说,认为环状化合物是平面构型Sachse 1889年质疑张力学说只适合小环,提出环已烷有船式、椅式两种构象。
Hassel 1930年利用偶极矩测定法和电子衍射法研究环已烷构象,∠CCC=109.5°,气相、液相中环已烷几乎全是椅式构象。
Barton 1950年发展了构象理论,以甾族化合物为对象提出构象分析,把构象分析明确地引入有机化学中。
Hassel 和Barton获1969年Nobel化学奖1、椅式和船式构象环已烷保持碳原子的109.5°键角,提出了椅式和船式构象.1)椅式构象:C1、C2、C4、C5在一个平面上,C6和C3分别在平面的下面和平面的上面,很象椅脚和椅背,故称“椅式”。
2)船式构象:C1、C2、C4、C5在一个平面上,C3和C6在平面上面。
形状象只船,C3和C6相当船头和船尾,故称“船式”。
取代环己烷的构象
取代基的电子效应
总结词
详细描述
给电子取代基可以降低环己烷的能垒,使 其更稳定。
给电子取代基如羟基、氨基等具有较高的 电负性,能够诱导环己烷环产生极化,降 低其能垒,使其构象更稳定。
总结词
详细描述
吸电子取代基则会增加环己烷的能垒,使 其不稳定。
吸电子取代基如卤素、硝基等具有较低的 电负性,能够使环己烷环产生去极化,增 加其能垒,使其构象不稳定。
总结词
取代基的电子效应是指取代基的电子性质对环己烷构象的 影响。
详细描述
取代基的电子效应可以通过诱导和共轭两种方式影响环己 烷的构象。诱导效应取决于取代基的电负性,而共轭效应 则与取代基能否与其他不饱和体系形成共轭有关。
总结词
取代基的空间效应是指取代基的空间大小和形状对环己烷 构象的影响。
详细描述
空间效应主要表现在取代基的大小和形状是否与环己烷环 匹配,以及取代基之间的相互位置关系。如果取代基太大 或形状不匹配,可能会引起环己烷构象的变化。
总结词
扭船型构象是一种不稳定的构象,其中取代基难以稳定地占据扭船型位置,导致 分子结构不稳定。
详细描述
在扭船型构象中,环己烷的六个碳原子大致呈扭曲的船的形状排列,其中两个碳 原子位于扭曲船的底部,形成扭船型位置。由于这种构象中取代基难以稳定地占 据扭船型位置,因此扭船型构象是一种不稳定的构象。
02
非极性取代基的位置也会影响其构象稳定性。例如,当非极 性取代基处于直立键位置时,它们与环己烷的碳原子之间的 相互作用更弱,导致更低的构象稳定性。
体积较大的取代基
体积较大的取代基可以与环己烷的碳原子形成更强烈的空间排斥相互作用,这通常会导致较低的构象稳定性。这种相互作用 可以通过计算取代基和环己烷之间的空间排斥力来预测。
《取代环己烷的构象》课件
未来研究的方向和展望
深入研究取代基对环己烷构象的影响:未来研究 可以进一步探讨不同取代基对环己烷构象的影响 ,以及取代基与环己烷构象之间的相互作用机制 。
发展新的理论和方法:随着计算化学的不断发展 ,未来可以发展更精确的理论和方法来研究取代 环己烷的构象,提高预测的准确性和可靠性。
探索取代环己烷在生物体内的构象变化:环己烷 在生物体内可能存在构象变化,未来研究可以关 注取代环己烷在生物体内的代谢过程和构象变化 ,为药物设计和生物活性分子的研究提供帮助。
核磁共振波谱法是通过分析原子核的磁性和化学环境来推断分子的构象。在取代环己烷中,可以通过分析氢核磁共振(1H NMR)和碳核磁共振(13C NMR)数据,确定取代基的取向和构象。
核磁共振波谱法具有较高的灵敏度和分辨率,可以提供较为准确的信息。但是,对于一些复杂的分子,可能需要结合其他谱 学方法进行分析。
02
取代环己烷的构象类型
椅型构象
总结词
最常见的构象类型
详细描述
椅型构象是取代环己烷中最常见的构象类 型,其中取代基在环平面的上方或下方, 整个分子呈现出椅子的形状。
空间位阻
稳定性
在椅型构象中,取代基之间的空间位阻较 小,有利于取代基之间的相互作用。
椅型构象相对稳定,因为其具有较低的能 量状态。
船型构象
05
取代环己烷的构象在化 学工业中的应用
作为溶剂和反应介质
取代环己烷的构象具有稳定的化学性 质和良好的溶解性能,使其成为一种 理想的溶剂和反应介质。在化学工业 中,取代环己烷可以用于溶解和提取 各种有机化合物,促进化学反应的进 行。
VS
取代环己烷的构象具有较低的蒸气压 和较高的沸点,使其在高温和低压力 条件下仍能保持较高的溶解能力,有 利于提高化学反应的效率和产率。
第五章脂环烃答案解析
第五章脂环烃一.目的要求了解环烷烃通式、分类、命名和异构、环烷烃的物理性质。
理解环的结构和稳定性,掌握环烷烃的化学性质。
二.本章内容小结1. 脂环烃的定义由碳原子连接成环,性质与脂肪烃相似的烃类化合物总成为脂环烃。
按照成环特点,一般可将脂环烃分为单环脂环烃和多环脂环烃。
2. 脂环烃的命名单环脂环烃命名与脂肪烃类似,只是在相应的脂肪烃前加一“环”字。
如:CN环戊烷,CN甲基环丁烷桥环化合物的命名一般采用固定格式:双环[a.b.c]某烃(a≥b≥c)。
先找桥头碳(两环共用的碳原子),从桥头碳开始编号。
沿大环编到另一个桥头碳,再从该桥头碳沿着次大环继续编号。
分子中含有双键或取代基时,用阿拉伯数字表示其位次。
如:CN7, 7-二甲基二环[2, 2, 1]庚烷螺环化合物命名的固定格式为:螺[a.b]某烃(a≤b)。
命名时先找螺原子,编号从与螺原子相连的碳开始,沿小环编到大环。
如:CN螺[4.4]壬烷3.环烷烃的结构与稳定性环烷烃的成环碳原子均为sp3型杂化。
除环丙烷的成环碳原子在同一个平面上以外,其它环烷烃成环碳原子均不在同一个平面上。
在环丙烷分子中由于成环碳原子间成键时sp3型杂化轨道不能沿键轴方向重叠,而是以弯曲方向部分重叠成键,导致环丙烷张力较大,分子能量较高,很不稳定,容易发生开环反应。
所以在环烷烃中三元环最不稳定,四元环比三元环稍稳定一点,五元环较稳定,六元环及六元以上的环都较稳定。
注意桥头碳原子不稳定。
4. 环己烷以及取代环己烷的稳定构象环己烷在空间上可以形成多种构象,其中椅式和船式构象为两种极限构象,前者比后者更加稳定。
一般说来,取代环己烷的取代基处于椅式构象的平伏键时较为稳定。
因此多取代环己烷的最稳定的构象为平伏键取代基最多的构象。
如果环上有不同取代基,较大的取代基在平伏键上的构象最稳定。
5. 环烷烃的化学性质环丙烷和环丁烷的化学性质和烯烃相似,能开环进行加成反应。
并且与氢卤酸加成符合马氏规则。
环烷烃(环丙烷、环丁烷、环戊烷、环己烷)的构象
环烷烃的构象链状化合物的构象是由基团绕C—Cσ键旋转产生的;而环状化合物的构象至少涉及到两个C—Cσ键和其键角的转动和变化,有时还涉及到键长和键角的变化,比较复杂,常称环的翻转。
一、环丙烷的构象环丙烷是三个碳的环,只能是平面构象,即它的构型。
尽管只有一种构象,但这个环极不稳定,主要因为:1、所有C-H键都是重叠构象,扭转张力大。
2、C原子是不等性杂化或弯曲键,有“角张力”存在。
二、环丁烷的构象环丁烷有两种极限构象:动画演示:平面式构象:象环丙烷一样,不稳定,存在扭转张力和“角张力”。
蝶式构象:能缓解扭转张力和角张力,呈蝶式构象。
通过平面式构象,由一种蝶式翻转成为另一种蝶式构象,处于动态平衡。
蝶式是优势构象。
也有扭转能力和角张力存在。
三、环戊烷的构象环戊烷的构象主要是信封式和半椅式构象。
两者处于平衡。
因为平面构象能量较大,一般认为环戊烷采取这种构象可能性很少。
E相对=19kJ/mol 信封式半椅式四、环己烷的构象环己烷的构象经过近百年的努力才建立起来。
Baeyer 1885年提出张力学说,认为环状化合物是平面构型Sachse 1889年质疑张力学说只适合小环,提出环已烷有船式、椅式两种构象。
Hassel 1930年利用偶极矩测定法和电子衍射法研究环已烷构象,∠CCC=109.5°,气相、液相中环已烷几乎全是椅式构象。
Barton 1950年发展了构象理论,以甾族化合物为对象提出构象分析,把构象分析明确地引入有机化学中。
Hassel 和Barton获1969年Nobel化学奖1、椅式和船式构象环已烷保持碳原子的109.5°键角,提出了椅式和船式构象.1)椅式构象:C1、C2、C4、C5在一个平面上,C6和C3分别在平面的下面和平面的上面,很象椅脚和椅背,故称“椅式”。
2)船式构象:C1、C2、C4、C5在一个平面上,C3和C6在平面上面。
形状象只船,C3和C6相当船头和船尾,故称“船式”。
环己烷及其衍生物的构象五
9 7 6
H H H H H H
4 5
3
既然大环化合物稳定,为什么难于合成呢?
一个化合物难于合成并不意味着它是不稳定的。开链化合物 闭合成环要求链的两端彼此接近到足以成键。环越大,合成 它的链必须越长,链两端的基团碰在一起的几率就越小,往 往得到分子间结合的产物。设想溶液浓度越低,分子间成键 的机会越少,因此,人们往往在高度稀释的溶液中可成功合 成大环化合物。
燃烧热指一摩尔化合物完全燃烧生成CO2和 H2O时所 放出的热量,它的大小反映出分子内能的高低。 环烷烃的燃烧热和环张力数据见表5.1
由燃烧热数据可以看出,三元环、四元环的燃烧热 远大于开链化合物的燃烧热,所以它们的内能较高, 不稳定。
表5.1
环烷烃的燃烧热和环张力
名称
环丙烷
环大小
3
环丁烷 环戊烷 环己烷 环庚烷 环辛烷 环壬烷 环葵烷 环十四烷 环十五烷 正烷烃
联环
螺环
稠环
桥环
联环: 无共用的环上原子。
螺环: 两个环共用一个环上原子。 稠环: 两个环共用二个相邻环上原子,也称骈环。 桥环: 两个环共用二个以上的环上原子。
①联环烃命名:类似于单环烷烃。 环己基环己烷
②桥环烃命名 名称书写顺序:
共用两个以上碳原子的双环烃
取代基+母体(二环[*,*,*]某烷(烯、炔)
三环[2, 2, 1,Байду номын сангаас02, 6]庚烷
选择主环:主环应尽可能含较多的碳,且必须有两个碳作为
主桥的桥头;
选择主桥:主桥应尽可能含较多的碳,且尽可能把主环对称 地分开;
环状化合物
1 8 9 7 10 5 4 3 2
环烷烃
H H H H H H H H H H H H
偏离109.5o
C-H 重叠
环己烷碳架是折叠的
H H
3
H
2
H
1
H H
H H
3
4 2
H H
1
H H
6
H H
4
5 H
6
H H
5
H
H H
H
C2, C3, C5, C6 共平面
H
H
椅式构象 (chair form)
船式构象 (boat form)
(打开一根 C-C 键)
H 2 / Pt, 50 o C
3 1
CH 3
3
CH 2 CH 3
or N i, 80 o C
C H 3 C HC H 2 C H 3
1
支链多 较稳定
主要产物
H 2 / Pt, 120 o C or N i, 200 C
o
CH 3 CH 2 CH 2 C H 3
小环化合物与卤素的反应
3-甲基-4-环丁基庚烷 4-cyclobutyl-3-methylheptane
2 1 1'
2'
环可作为取代基
3'
(称环基) 相同环连结时,可
3
联环丙烷 bicyclopropane
用词头“联”开头。
桥环烃(Bridged hydrocarbon)的命名
桥头间的碳原子数
2 1 3 4 5
小 环
C3 C4 C5 C7
环丙烷 环丁烷
697.1 686.1
中 环 大 环
C8 C11 C12
环己烷构象
环己烷构象本文由南通润丰石油化工整理椅型环己烷分子。
红色为直键氢原子,蓝色为平键氢原子。
历史背景很早就有人提出环己烷可能不是平面型结构。
1890年,德国人赫尔曼·萨克森(Hermann Sachse)提出通过折纸来构建环己烷“对称”和“非对称”结构(即现椅型和船型结构)的方法,从他的文章可以感受出,他已经知晓这些构象有两种不同的氢原子(即现直键氢和平键氢)以及两种椅型结构可能会相互转化,甚至还意识到两种椅型结构的分布可能受环上某些取代基的影响。
不过他的文章没有获得化学家的足够重视,一方面是文章的数学成分太多,难以理解,另一方面则是他的文章没有发表到主要的期刊上。
1893年仅31岁的萨克森去世,他的研究也就此结束。
直到1918年恩斯特·摩尔(Ernst Mohr)用新问世的X射线晶体学技术测定金刚石结构时,才发现所得结构中的基础结构单元正是萨克森预测过的椅型结构,才使环己烷构象研究重新进入焦点之中。
椅型构象sp3杂化的碳原子是四价的,键间角度为109.5°,所以环己烷不是平面的键角120°的正六边形结构,而是采取多种三维的构象。
椅型构象描述的是普通状态环己烷最稳定的构象,25度时99.99%的环己烷分子都是这种构象。
德里克·巴顿和奥德·哈塞尔因对环己烷和其他分子构象的研究而获得诺贝尔化学奖。
能量最低的椅型构象中,12个氢原子中有6个处于竖直方向(红色)——这些碳-氢键互相平行,呈轴向排列,分列环上下,称为直键。
另6个氢处于近似水平方向(蓝色)——这些碳-氢键大致平伏,分别稍向下和向上翘起,称为平键。
对于同一碳原子来说,若与它相连的直键氢是向上的,则平键氢稍向下,反之亦然。
观察可知,对于连有向上直键、稍向下平键的碳原子,与其相邻的两个碳原子必然连有向下直键和稍向上平键。
而且环中相对碳原子所连平键和直键的方向也必然是分别相反的(如H1和H4)。
大学有机化学知识点总结
有机化学复习总结一.有机化合物的命名1. 能够用系统命名法命名各种类型化合物:包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。
2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。
立体结构的表示方法:1)伞形式:COOHOHH 3 2)锯架式:CH 3OHHHOH 2H 53)纽曼投影式:H H 4)菲舍尔投影式:COOH3OH H5)构象(conformation)(1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。
(2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。
(3) 环己烷构象:最稳定构象是椅式构象。
一取代环己烷最稳定构象是e 取代的椅 式构象。
多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。
立体结构的标记方法1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型,在相反侧,为E 构型。
CH 3C H C 2H 5CH 3C CH 2H 5Cl(Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。
CH 3C CHCH 3HCH 3CCH HCH 3顺-2-丁烯反-2-丁烯333顺-1,4-二甲基环己烷反-1,4-二甲基环己烷3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。
大学有机化学期末复习知识点总结
⼤学有机化学期末复习知识点总结有机化学复习总结⼀.有机化合物的命名1. 能够⽤系统命名法命名各种类型化合物:包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍⽣物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。
2. 根据化合物的系统命名,写出相应的结构式或⽴体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。
⽴体结构的表⽰⽅法:1)伞形式:COOHOH3 2)锯架式:CH 3HHOH 2H 53)纽曼投影式:4)菲舍尔投影式:COOH3OH H5)构象(conformation) (1)⼄烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。
(2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。
(3)环⼰烷构象:最稳定构象是椅式构象。
⼀取代环⼰烷最稳定构象是e 取代的椅式构象。
多取代环⼰烷最稳定构象是e 取代最多或⼤基团处于e 键上的椅式构象⽴体结构的标记⽅法1. Z/E 标记法:在表⽰烯烃的构型时,如果在次序规则中两个优先的基团在同⼀侧,为Z 构型,在相反侧,为E 构型。
2、顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同⼀侧,则为顺式;在相反侧,则为反式。
3、 R/S 标记法:在标记⼿性分⼦时,先把与⼿性碳相连的四个基团按次序规则排序。
然后将最不优先的基团放在远离观察者,再以次观察其它三个基团,如果优先顺序是顺时针,则为R 构型,如果是逆时针,则为S 构型。
注:将伞状透视式与菲舍尔投影式互换的⽅法是:先按要求书写其透视式或投影式,然后分别标出其R/S 构型,如果两者构型相同,则为同⼀化合物,否则为其对映体。
取代环己烷的构象
全部占据e键最稳定
05-05 取代环己烷的构象
一、一取代环己烷的构象
取代基占据e键
更稳定
取代基占据a键
05-05 取代环己烷的构象
一、一取代环己烷的构象
05-05 取代环己烷的构象
二、二取代环己烷的构象
1、 1-2-取代环己烷
05-05 取代环己烷的构象
二、二取代环己烷的构象
1、 1-2-取代环己烷
最稳定构象
05-05 取代环己烷的构象
二、二取代环己烷的构象
1、 1-3-取代环己烷
05-05 取代环己烷的构象
二、二取代环己烷的构象
1、 1-3-取代环己烷
最ห้องสมุดไป่ตู้定构象
05-05 取代环己烷的构象
二、二取代环己烷的构象
1、 1-4-取代环己烷
05-05 取代环己烷的构象
二、二取代环己烷的构象
1、 1-4-取代环己烷
最稳定构象
05-05 取代环己烷的构象
环烷烃的构象和拜尔张力学说
环烷烃的构象和拜尔张力学说环烷烃的构象1.环己烷的构象早在1890年,沙赫斯(Sachse,H.)通过研究以为,依照正四面体的模型,六个碳原子的环能够不在同一平面上,同时还维持着正四面体的正常角度,但由于表达得不清楚,图又画得不行,因此没有引发那时化学家们的注意。
莫尔(Mohr,E.,1918)从头研究了那个问题,正式提出了非平面无张力环的学说,并画出模型。
他以为碳原子能够维持正常的键角,环己烷的六个碳原子不在同一平面上,能够形成两种折叠着的环系,如图2-19所示。
图2-19(i)的两个叫作椅型,它是一个超级对称的分子,借助于模型能够看得很清楚。
第一,在那个模型中的碳原子是处在一上一下的位置。
第二,那个模型是僵硬的,只要一个键角改变,其它键角也同时改变。
第三,还能够看到,环中相邻两个碳原子的构象都是邻交叉型的,如用纽曼式表示,成为以下的形式:最后,还能够看出,椅型的环己烷的氢原子能够分为两组:一组是六个C——H键与分子的对称轴大致是垂直的,都伸出环外,这叫作平键(或称平伏键)或e键(e是equatorial的字首,赤道的意思),三个e键略往上伸,三个e键略向下伸;另六个氢的键都是与轴平行的,这叫作直键(或称直立键)或a键(a是axial的字首,轴的意思),三个伸在环的下面,三个伸在环的上面。
图2-19(i)中带点的白球都在环的上面,不带点的白球都在环的下面。
这种关系在斯陶特模型图2-20中能够表示得更清楚一些:在图2-20中,a键的氢原子都用带黑点的球表示,e键的氢原子用白球表示。
由于成环的碳链是封锁的,因此沿着碳碳键不管如何旋转,在环上面的不可能转到环的下面来,老是维持着原先各个氢原子的空间关系。
这种构象,既无角张力,也无扭转张力,代表一个最稳固的形式,是优势构象。
另一种维持正常键角的环己烷模型如图2-19(ii)的两个,叫作船型,可用纽曼式表示如下:第一可看到,2、3和5、6两对碳原子的构象是重叠型的,这种构象虽无角张力,但有扭转张力,相当于能量高的构象。
取代环己烷的构象
取代基的电子效应
电负性取代基
电负性较强的取代基倾向于占据 环己烷的平伏位置,因为它们可 以与环己烷的其余部分形成更强
的相互作用。
供电子取代基
供电子取代基可以占据环己烷的直 立或平伏位置,具体取决于取代基 的性质和环己烷的构象。
吸电子取代基
吸电子取代基通常倾向于占据环己 烷的直立位置,因为它们可以与环 己烷的其余部分形成更弱的相互作 用。
取代基对环己烷构象的影响
取代基是指环己烷分子中的氢原子被其他基团所取代的产物。取代基的存在会影响环己烷的构象,使 其稳定性发生变化。
取代基对环己烷构象的影响主要表现在两个方面:一是取代基的体积大小和形状,体积较大的基团倾 向于占据较大的空间,使环己烷的构象发生扭曲;二是取代基之间的相互作用,如静电作用、共价键 合等,也会影响环己烷的构象稳定性。
一个重要方向。
深入研究构象与性质关系
03
进一步深入研究取代环己烷的构象与其物理、化学性质之间的
关系,有助于更好地应用取代环己烷。
THANKS
感谢观看
取代环己烷的构象
• 引言 • 取代基类型与构象变化 • 取代环己烷的构象稳定性 • 取代环己烷的应用与展望
01
引言
环己烷的构象简介
环己烷的构象是指环己烷分子中的碳原子在空间中的相对位置。由于碳原子之间 的键长和键角是固定的,因此环己烷的构象受到限制,只能存在于特定的空间结 构中。
环己烷的常见构象有椅式和船式两种。椅式构象中,碳原子呈六角形排列,其中 两个碳原子位于平面上,四个碳原子位于平面下;船式构象中,四个碳原子位于 平面上,两个碳原子位于平面下。
不同取代基的组合效应
当环己烷中存在多种不同类型的取代基时,它们之间的相互 作用会影响环己烷的构象。例如,当邻位和对位取代基共存 时,它们之间的相互作用可能导致环己烷的构象发生变化。