500kV变电站配电装置选型及总平面布置优化讲解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算工况为:
工况1 — 外过电压和10m/s风速;
工况2 — 内过电压和15m/s风速(50%最大风速);
工况3 — 最大工作电压和30m/s风速(最大风速)或最大工作电压、短路和10m/s风速。
3.1.2500kV出线间隔宽度的优化
对于GIS配电装置,出线间隔宽度由串内的设备、出线相间距离和跳线、引下线对边柱距离等来确定。本次结合不同工况下的电气距离计算,对间隔的宽度进行优化。
3.1.2.1 间隔宽度优化原始数据
根据配电装置布置形式,出线梁高度26m,地线挂点34m,构架边柱宽度480mm。采用2×JLHN58K-1600耐热铝合金导线,分裂间距400mm。跳线设置中间悬垂绝缘子串33(XWP2-160)。在以下的校验中,以校验条件较苛刻的无中间悬垂绝缘子串为代表。
图2.2-1变电站500kV出线规划
220kV变电站220kV远景主变进线4回,出线16回,其中:至容城2回、张丰2回、雄州2回、孙村1回、傅村2回、定兴南2回、西北方向备用2回、西南方向备用3回。
3
3
3.1.1500kV电气接线
本工程500kV采用3/2断路器接线,500kV本期出线2回,主变进线2回,组成1个完整串、2个不完整串。远景出线8回,主变进线4回,组成6个完整串。
b)参照通用设计,对500kV高抗区域纵向尺寸进行优化,同时压缩母线高抗区域纵向尺寸;
c)优化500kV配电装置尺寸,优化后500kV GIS配电装置区纵向尺寸为48.5m(道路中心线),配电装置区宽度为224m(道路中心线)。
优化后500kV配电装置区总面积1.086hm2,较可研1.218hm2减少0.132hm2,占地面积为可研方案89.16%。
500kV变电站配电装置选型及总平面布置优化
摘要
wenku.baidu.com主要研究内容:
(1)根据本站系统规模、电气接线、结合进出线方向,用地指标,对各电压等级配电装置进行优化。
(2)通过对不同设备布置方案技术经济比较,确定本站的总平面方案。
研究方法:
根据DL/T 5218-2012《220kV~750kV变电站设计技术规程》,结合其他500kV变电站工程的设计经验及运行情况,对电气总平面布置方案进行优化研究。
(4)220kV配电装置做了如下优化:
a)经与设备厂家调研,结合平面布置,220kV GIS设备进出线套管之间距离为11m;
b)经计算,220kV配电装置高层出线跨线相间距离要求最小值为3.268m,对于本工程相间距离可取3.5m,出线跨线相地距离要求最小值为2.231m,对于本工程相间距离可取2.5m,考虑出线设备带点距离及检修等问题,间隔宽度最终推荐为12m;
2
2.1
根据国家电网公司招标文件,500kV变电站建设规模见下表(表2.1-1):
表2.1-1500kV变电站建设规模一览表
序号
名称
本期新建
远期
1
主变压器容量及数量
2×1000MVA
4×1000MVA
2
500kV出线回路数
2回
8回
其中:
至保沧
2回
2回
至北京西
2回
备用
4回
3
220kV出线回路数
6回
16回
输入条件:
电气主接线、各级电压线路出线方向、各电压等级配电装置布置型式,用地指标。
主要结论及建议:
(1)变电站500kV配电装置采用GIS。500kV进出线避雷器、CVT采用AIS。220kV配电装置采用GIS,进出线避雷器、出线CVT采用AIS。35kV配电装置采用“AIS+组合框架式电容器组+干式空心电抗器组”布置方案。
优化电气总平面布置,可以压缩占地面积,提高围墙内的用地系数,减少土建投资和占地面积,节约宝贵国土资源;也可以有效缩短设备连线、电缆、电缆沟、所内管道、道路等长度,提高全寿命周期经济效益。
本专题在以往500kV变电站工程建设和科研成果的基础上,结合“三通一标”、“两型一化”的要求,强化全寿命周期管理理念,通过多方案甄选,确定配电装置及电气总平面布置的最优方案,使工程设计符合安全可靠、先进适用、经济合理、资源节约、环境友好的技术原则。
(5)对主变及无功补偿区域进行如下优化:
a)每两组主变构架组成六连跨,以压缩主变区域横向尺寸;
b)220kV避雷器安装在220kVGIS主变进线侧,在满足电气距离校验要求的前提下,压缩主变汇流母线与主变防火墙、主变汇流母线与35kV配电装置母线的距离;
优化后,主变无功补偿区域占地面积1.299hm2,较可研1.341hm2压缩0.55hm2,占地面积为可研方案96.88%。
(2)变电站形成了由东向西依次为500kV配电装置、主变压器及无功补偿装置、220kV配电装置的三列式布置格局。
(3)500kV配电装置做了如下优化:
a)参考通用设计,并作出相应优化,出线间隔宽度由26m优化为25m,构架高度24m,将母线高抗由配电装置南端移至#2、#3主变进线套管之间,降低配电装置横向占地面积;
(6)结合出线方向、电气接线配串、用地指标及各级电压的配电装置型式,最终确定全站总平面方案。该方案全站总面积为3.14hm2,较可研的3.41hm2减少了0.27hm2,占地面积为可研方案92.08%。
1
土地资源属于不可再生资源,随着社会经济的快速持续发展,变电站的选址与城乡规划、国土资源部门的矛盾日益突出。根据可研报告,500kV变电站推荐站址所在地土地为一般农田,本着节约用地的原则,优化电气总平面布置,尽量减少占地是500kV变电站面临的一个重要课题。
c)取消220kV配电装置主变进线架构,减小配电装置区域纵向尺寸,将220kV避雷器由主变侧移至220kVGIS主变进线侧,220kV配电装置区域纵向尺寸为25m,小于通用设计26m纵向尺寸。
优化后,220kV配电装置区域占地面积0.485hm2,较可研0.504hm2压缩0.019hm2,占地面积为可研方案96.15%。
其中:
雄州
1回
1回
容城
2回
2回
张丰
2回
2回
孙村
1回
1回
备用
10回
4
无功补偿装置
其中:
35kV并联电抗器
2×1×60MVar
4×2×60MVar
35kV并联电容器
2×2×60MVar
4×2×60MVar
2.2
变电站远期规划500kV出线8回,其中:保沧2回、备用(北京西)2回、备用4回,图2.2-1为远期变电站500kV出线总体规划示意图。本期500kV出线2回,即保沧I、II回。
工况1 — 外过电压和10m/s风速;
工况2 — 内过电压和15m/s风速(50%最大风速);
工况3 — 最大工作电压和30m/s风速(最大风速)或最大工作电压、短路和10m/s风速。
3.1.2500kV出线间隔宽度的优化
对于GIS配电装置,出线间隔宽度由串内的设备、出线相间距离和跳线、引下线对边柱距离等来确定。本次结合不同工况下的电气距离计算,对间隔的宽度进行优化。
3.1.2.1 间隔宽度优化原始数据
根据配电装置布置形式,出线梁高度26m,地线挂点34m,构架边柱宽度480mm。采用2×JLHN58K-1600耐热铝合金导线,分裂间距400mm。跳线设置中间悬垂绝缘子串33(XWP2-160)。在以下的校验中,以校验条件较苛刻的无中间悬垂绝缘子串为代表。
图2.2-1变电站500kV出线规划
220kV变电站220kV远景主变进线4回,出线16回,其中:至容城2回、张丰2回、雄州2回、孙村1回、傅村2回、定兴南2回、西北方向备用2回、西南方向备用3回。
3
3
3.1.1500kV电气接线
本工程500kV采用3/2断路器接线,500kV本期出线2回,主变进线2回,组成1个完整串、2个不完整串。远景出线8回,主变进线4回,组成6个完整串。
b)参照通用设计,对500kV高抗区域纵向尺寸进行优化,同时压缩母线高抗区域纵向尺寸;
c)优化500kV配电装置尺寸,优化后500kV GIS配电装置区纵向尺寸为48.5m(道路中心线),配电装置区宽度为224m(道路中心线)。
优化后500kV配电装置区总面积1.086hm2,较可研1.218hm2减少0.132hm2,占地面积为可研方案89.16%。
500kV变电站配电装置选型及总平面布置优化
摘要
wenku.baidu.com主要研究内容:
(1)根据本站系统规模、电气接线、结合进出线方向,用地指标,对各电压等级配电装置进行优化。
(2)通过对不同设备布置方案技术经济比较,确定本站的总平面方案。
研究方法:
根据DL/T 5218-2012《220kV~750kV变电站设计技术规程》,结合其他500kV变电站工程的设计经验及运行情况,对电气总平面布置方案进行优化研究。
(4)220kV配电装置做了如下优化:
a)经与设备厂家调研,结合平面布置,220kV GIS设备进出线套管之间距离为11m;
b)经计算,220kV配电装置高层出线跨线相间距离要求最小值为3.268m,对于本工程相间距离可取3.5m,出线跨线相地距离要求最小值为2.231m,对于本工程相间距离可取2.5m,考虑出线设备带点距离及检修等问题,间隔宽度最终推荐为12m;
2
2.1
根据国家电网公司招标文件,500kV变电站建设规模见下表(表2.1-1):
表2.1-1500kV变电站建设规模一览表
序号
名称
本期新建
远期
1
主变压器容量及数量
2×1000MVA
4×1000MVA
2
500kV出线回路数
2回
8回
其中:
至保沧
2回
2回
至北京西
2回
备用
4回
3
220kV出线回路数
6回
16回
输入条件:
电气主接线、各级电压线路出线方向、各电压等级配电装置布置型式,用地指标。
主要结论及建议:
(1)变电站500kV配电装置采用GIS。500kV进出线避雷器、CVT采用AIS。220kV配电装置采用GIS,进出线避雷器、出线CVT采用AIS。35kV配电装置采用“AIS+组合框架式电容器组+干式空心电抗器组”布置方案。
优化电气总平面布置,可以压缩占地面积,提高围墙内的用地系数,减少土建投资和占地面积,节约宝贵国土资源;也可以有效缩短设备连线、电缆、电缆沟、所内管道、道路等长度,提高全寿命周期经济效益。
本专题在以往500kV变电站工程建设和科研成果的基础上,结合“三通一标”、“两型一化”的要求,强化全寿命周期管理理念,通过多方案甄选,确定配电装置及电气总平面布置的最优方案,使工程设计符合安全可靠、先进适用、经济合理、资源节约、环境友好的技术原则。
(5)对主变及无功补偿区域进行如下优化:
a)每两组主变构架组成六连跨,以压缩主变区域横向尺寸;
b)220kV避雷器安装在220kVGIS主变进线侧,在满足电气距离校验要求的前提下,压缩主变汇流母线与主变防火墙、主变汇流母线与35kV配电装置母线的距离;
优化后,主变无功补偿区域占地面积1.299hm2,较可研1.341hm2压缩0.55hm2,占地面积为可研方案96.88%。
(2)变电站形成了由东向西依次为500kV配电装置、主变压器及无功补偿装置、220kV配电装置的三列式布置格局。
(3)500kV配电装置做了如下优化:
a)参考通用设计,并作出相应优化,出线间隔宽度由26m优化为25m,构架高度24m,将母线高抗由配电装置南端移至#2、#3主变进线套管之间,降低配电装置横向占地面积;
(6)结合出线方向、电气接线配串、用地指标及各级电压的配电装置型式,最终确定全站总平面方案。该方案全站总面积为3.14hm2,较可研的3.41hm2减少了0.27hm2,占地面积为可研方案92.08%。
1
土地资源属于不可再生资源,随着社会经济的快速持续发展,变电站的选址与城乡规划、国土资源部门的矛盾日益突出。根据可研报告,500kV变电站推荐站址所在地土地为一般农田,本着节约用地的原则,优化电气总平面布置,尽量减少占地是500kV变电站面临的一个重要课题。
c)取消220kV配电装置主变进线架构,减小配电装置区域纵向尺寸,将220kV避雷器由主变侧移至220kVGIS主变进线侧,220kV配电装置区域纵向尺寸为25m,小于通用设计26m纵向尺寸。
优化后,220kV配电装置区域占地面积0.485hm2,较可研0.504hm2压缩0.019hm2,占地面积为可研方案96.15%。
其中:
雄州
1回
1回
容城
2回
2回
张丰
2回
2回
孙村
1回
1回
备用
10回
4
无功补偿装置
其中:
35kV并联电抗器
2×1×60MVar
4×2×60MVar
35kV并联电容器
2×2×60MVar
4×2×60MVar
2.2
变电站远期规划500kV出线8回,其中:保沧2回、备用(北京西)2回、备用4回,图2.2-1为远期变电站500kV出线总体规划示意图。本期500kV出线2回,即保沧I、II回。