高考数学线性规划题型总结
线性规划知识总结
线性规划知识总结1. 二元一次不等式(组)表示的平面区域(1)直线0:=++C By Ax l 把平面内不在直线上的点分成两部分,对于同一侧所有点的坐标代入Ax +By +C 中所得的值的符号都相同,异侧所有点的坐标代入Ax +By +C 所得的值的符号都相反。
(2)对于直线:l Ax +By +C =0,当B ≠0时,可化为:y =kx +b 的形式。
对于二元一次不等式b kx y +≥表示的平面区域在直线y =kx +b 的上方(包括直线y =kx +b )。
对于二元一次不等式b kx y +≤表示的平面区域在直线y =kx +b 的下方(包括直线y =kx +b )。
注意:二元一次不等式)0(0<>++或C By Ax 与二元一次不等式)0(0≤≥++C By Ax 所表示的平面区域不同,前者不包括直线Ax +By +C =0,后者包括直线Ax +By +C =0。
2. 线性规划我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。
解决这类问题的基本步骤是:(1)确定好线性约束条件,准确画出可行域。
(2)对目标函数z =ax +by ,若b >0,则bz取得最大值(或最小值)时,z 也取得最大值(或最小值);若b <0,则反之。
(3)一般地,可行域的边缘点有可能是最值点,有些问题可直接代入边缘点找最值。
(4)注意实际问题中的特殊要求。
说明:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得;2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。
知识点一:二元一次不等式(组)表示的平面区域 例1:基础题1. 不等式组201202y x x y -->⎧⎪⎨-+≤⎪⎩表示的平面区域是( )A B C D2. 如图,不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域面积是________________。
高中数学线性规划知识点汇总
高中数学线性规划知识点汇总高中数学线性规划知识点汇总一、知识梳理1.目标函数:包含两个变量x和y的函数P=2x+y被称为目标函数。
2.可行域:由约束条件表示的平面区域被称为可行域。
3.整点:坐标为整数的点称为整点。
4.线性规划问题:在线性约束条件下,求解线性目标函数的最大值或最小值的问题被称为线性规划问题。
对于只包含两个变量的简单线性规划问题,可以使用图解法来解决。
5.整数线性规划:要求变量取整数值的线性规划问题被称为整数线性规划。
线性规划是一门研究如何使用最少的资源去最优地完成科学研究、工业设计、经济管理等实际问题的专门学科。
主要应用于以下两类问题:一是在资源有限的情况下,如何最大化任务的完成量;二是如何合理地安排和规划任务,以最小化资源的使用。
1.对于不含边界的区域,需要将边界画成虚线。
2.确定二元一次不等式所表示的平面区域的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3.平移直线y=-kx+P时,直线必须经过可行域。
4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域。
此时,变动直线的最佳位置一般通过这个凸多边形的顶点来确定。
5.简单线性规划问题就是求解在线性约束条件下线性目标函数的最优解。
无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:1)寻找线性约束条件和线性目标函数;2)由二元一次不等式表示的平面区域做出可行域;3)在可行域内求解目标函数的最优解。
积累知识:1.如果点P(x0,y0)在直线Ax+By+C=0上,则点P的坐标满足方程Ax0+y0+C=0.2.如果点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+y0+C>0;当B<0时,Ax0+y0+C<0.3.如果点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),则当B>0时,Ax0+y0+C0.注意:在直线Ax+By+C=0同一侧的所有点,将它们的坐标(x,y)代入Ax+By+C=0,所得实数的符号都相同。
八种经典线性规划例题(超实用)
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选 C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
线性规划常见题型及解法例析
品有直接限 制 因 素 的 是 资 金 和 劳 动 力,通 过 调 查,得
到这两种产品的有关数据如表 2.
资金
成本
劳动力(工资)
单位利润
单位产品所需资金/百元
月资金供应
电子琴(架) 洗衣机(台)
量/百元
30
20
6
8
5
10
300
110
试问:怎 样 确 定 这 两 种 产 品 的 月 供 应 量,才 能 使
故选:
B.
思路与方法:本 题 运 用 数 形 结 合 思 想,采 用 了 图
组作 出 可 行 域,如 图 3 所 示 .
由
图 3 可 知,△ABC 的 面 积 即 为
所求 .
易得
S梯 形OMBC =
1
×(
2+3)×2=5,
2
图3
1
S梯 形OMAC = × (
1+3)×2=4.
2
所以 S△ABC =S梯 形OMBC -S梯 形OMAC =5-4=1.
思路与方法:本 题 中 的 可 行 域 是 三 角 形,而 这 个
不规则的三角形面积很 难 直 接 求 解,于 是 将 它 看 作 梯
解法求最值,先 在 平 面 直 角 坐 标 系 中 画 出 可 行 域,然
形 OMBC 的一部 分,利 用 梯 形 OMBC 与 梯 形 OMAC
后平行移动直线 z=3x+4y 即可求出最大值 .
ï
,
且当
b≥0
b为
íy≥0, 时,恒有ax+by≤1,求以a,
ï
îx+y≤1
坐标的点 P (
a,
b)所构成的平面区域的面积 .
解析:设 z=ax +by,根 据 题 意 可 知,想 要 ax +
高考数学线性规划题型总结
高考数学线性规划题型总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]线性规划常见题型及解法 一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .22x y +解析:如图2,只要画出满足约束条件的可行域,而表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25图2x y O22 x=2y =2 x + y =2BA2x + y - 2= 0x – 2y + 4 = 0 3x – y – 3 = 0OyxA解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________. 2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。
高考数学中的线性规划算法解题技巧
高考数学中的线性规划算法解题技巧高考数学中的线性规划是一种非常重要的问题类型,在考试中经常被考查,对于学生来说是必须掌握的一项技能。
而在线性规划中,解题的算法是关键,正确运用算法不仅能够提高解题效率,还能避免不必要的错误。
本文将介绍一些线性规划解题的算法和技巧,帮助学生在考试中取得更好的成绩。
一、线性规划的基本概念在解题之前,我们需要熟悉线性规划的一些基本概念。
线性规划是指在一定的限制条件下,求解一个线性函数的最大或最小值。
在这个过程中,我们需要确定目标函数、约束条件以及变量的取值范围。
通常情况下,我们可以将线性规划问题表示为标准型或非标准型。
标准型的形式如下:$$\max(z)=c_1x_1+c_2x_2+...+c_nx_n$$$$s.t.\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\le b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\le b_2\\...\\a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n\le b_m\\\end{cases}$$变量取值范围为$x_i\ge0(i=1,2,...,n)$而非标准型的形式则可以被转化为标准型。
二、单纯形法的原理和步骤单纯形法是解决线性规划问题的一种经典算法,其基本原理是通过不断地构造可行解和寻找可行解中的最优解来达到最终的优化目标。
其具体步骤如下:1、将标准型问题中的目标函数系数、约束条件系数和右端项系数分别组成一个矩阵。
2、选择其中一个非基变量(即取值为0的变量)作为入基变量,计算出使目标函数增大的最大步长。
3、选择其中一个基变量(即取值不为0的变量)作为出基变量,计算出使目标函数增大的最小步长。
4、通过第2步和第3步计算出的步长来更新目标函数和约束条件,得到一个新的可行解。
5、使用新的可行解重复进行第2-4步的计算,直到找到最优解。
需要注意的是,单纯形法有两种可能的结果:一是存在最优解,二是存在无穷多个最优解。
【备战】高考数学 高频考点归类分析 应用线性规划求最值(真题为例)
应用线性规划求最值典型例题:例1. (2012年天津市理5分)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 ▲ .【答案】(0,1)(1,4)。
【考点】函数的图像及其性质,利用函数图像确定两函数的交点。
【分析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y , 综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,。
作出函数的图象,要使函数y 与kx y =有两个不同的交点,则直线kx y =必须在蓝色或黄色区域内,如图,此时当直线经过黄色区域时)2,1(B ,k 满足21<<k ,当经过蓝色区域时,k 满足10<<k ,综上实数k 的取值范围是(0,1)(1,4)。
例2. (2012年陕西省理5分)设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 ▲ . 【答案】2。
【考点】利用导数研究曲线上某点切线方程,简单线性规划。
【解析】先求出曲线在点(1,0)处的切线,然后画出区域D ,利用线性规划的方法求出目标函数z 的最大值即可:∵1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,∴曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-。
∴由x 轴和曲线()y f x =及1y x =-围成的封闭区域为三角形。
2z x y =-在点(0,1)-处取得最大值2。
高考线性规划必考题型非常全)
线性规划专题一、命题规律讲解1、 求线性(非线性)目标函数最值题2、 求可行域的面积题3、 求目标函数中参数取值范围题4、 求约束条件中参数取值范围题5、 利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。
例1 已知4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,2z x y =+,求z 的最大值和最小值例2已知,x y 满足124126x y x y x y +=⎧⎪+≥⎨⎪-≥-⎩,求z=5x y -的最大值和最小值二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。
它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。
例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值例4 求函数4y x x=+[]()1,5x ∈的最大值和最小值。
三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。
它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。
例5 已知实数,x y 满足不等式组10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,求22448x y x y +--+的最小值。
2022年新高考数学总复习:简单的线性规划
2022年新高考数学总复习:简单的线性规划Ax+By+C__=0__上,另两类分居直线Ax+By+C=0的两侧,其中一侧半平面的点的坐标满足Ax+By+C__>0__,另一侧半平面的点的坐标满足Ax+By+C__<0__.(2)二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的平面区域且不含边界,作图时边界直线画成__虚线__,当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包知识点一二元一次不等式表示的平面区域(1)在平面直角坐标系中,直线Ax+By+C=0将平面内的所有点分成三类:一类在直线括边界直线,此时边界直线画成__实线__.知识点二二元一次不等式(组)表示的平面区域的确定确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.(1)直线定界,即若不等式不含__等号__,则应把直线画成虚线;若不等式含有__等号__,把直线画成实线.(2)特殊点定域,由于在直线Ax+By+C=0同侧的点,实数Ax+By+C的值的符号都__相同__,故为确定Ax+By+C的值的符号,可采用__特殊点法__,如取(0,0)、(0,1)、(1,0)等点.由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的__公共部分__.知识点三线性规划中的基本概念名称意义约束条件由变量x,y组成的__不等式(组)__线性约束条件由x,y的__一次__不等式(或方程)组成的不等式(组)目标函数关于x,y的函数__解析式__,如z=2x+3y等线性目标函数关于x,y的__一次__解析式可行解满足约束条件的解__(x,y)__可行域所有可行解组成的__集合__最优解使目标函数取得__最大值__或__最小值__的可行解线性规划问题在线性约束条件下求线性目标函数的__最大值__或__最小值__问题归纳拓展1.判断二元一次不等式表示的平面区域的常用结论把Ax+By+C>0或Ax+By+C<0化为y>kx+b或y<kx+b的形式.(1)若y>kx+b,则区域为直线Ax+By+C=0上方.(2)若y<kx+b,则区域为直线Ax+By+C=0下方.2.最优解与可行解的关系最优解必定是可行解,但可行解不一定是最优解,最优解不一定存在,存在时不一定唯一.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.(√)(2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)(3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.(√)(4)第二、四象限表示的平面区域可以用不等式xy <0表示.(√)(5)最优解指的是使目标函数取得最大值或最小值的可行解.(√)(6)目标函数z =ax +by (a ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.(×)题组二走进教材2.(必修5P 86T3改编)-3y +6<0,-y +2≥0表示的平面区域是(C)[解析]x -3y +6<0表示直线x -3y +6=0左上方部分,x -y +2≥0表示直线x -y +2=0及其右下方部分.故不等式组表示的平面区域为选项C 所示部分.3.(必修5P 91练习T1(1)改编)已知x ,y ≤x ,+y ≤1,≥-1,则z =2x +y +1的最大值、最小值分别是(C)A .3,-3B .2,-4C .4,-2D .4,-4[解析]作出可行域如图中阴影部分所示.A (2,-1),B (-1,-1),显然当直线l :z =2x +y +1经过A 时z 取得最大值,且z max =4,当直线l 过点B 时,z 取得最小值,且z min =-2,故选C .题组三走向高考4.(2020·浙江,3,4分)若实数x ,y x -3y +1≤0,x +y -3≥0,则z =x +2y 的取值范围是(B)A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)[解析]由约束条件画出可行域如图.易知z =x +2y 在点A (2,1)处取得最小值4,无最大值,所以z =x +2y 的取值范围是[4,+∞).故选B .5.(2019·北京)若x ,y x ≤2,y ≥-1,4x -3y +1≥0,则y -x 的最小值为__-3__,最大值为__1__.[解析]由线性约束条件画出可行域,为图中的△ABC 及其内部.易知A (-1,-1),B (2,-1),C (2,3).设z =y -x ,平移直线y -x =0,当直线过点C 时,z max =3-2=1,当直线过点B 时,z min =-1-2=-3.考点突破·互动探究考点一二元一次不等式(组)表示的平面区域——自主练透例1(1)(2021·郑州模拟)在平面直角坐标系xOy ||≤|y |,||<1的点(x ,y )的集合用阴影表示为下列图中的(C)(2)(2021·四川江油中学月考)已知实数x ,y x +y -3≤0x -2y -3≤0,0≤x ≤4则其表示的平面区域的面积为(D)A .94B .272C .9D .274(3)x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是(D)A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43[解析](1)|x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域;|x |<1表示x =±1所夹含y 轴的区域.故选C .(2)线性约束条件所表示的平面区域如图中阴影部分所示,其中A (0,3)B0,-32,C (3,0),∴S =12|AB |·|OC |=12×92×3=274,故选D .(3)x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分(含边界)所示.且作l 1:x +y =0,l 2:x +y =1,l 3:x +y =43.由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1,l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3).即a 的取值范围是0<a ≤1或a ≥43.名师点拨(1)画平面区域的步骤:①画线:画出不等式所对应的方程表示的直线.②定侧:将某个区域内的特殊点的坐标代入不等式,根据“同侧同号、异侧异号”的规律确定不等式所表示的平面区域在直线的哪一侧,常用的特殊点为(0,0),(±1,0),(0,±1).③求“交”:如果平面区域是由不等式组决定的,则在确定了各个不等式所表示的区域后,再求这些区域的公共部分,这个公共部分就是不等式组所表示的平面区域,这种方法俗称“直线定界,特殊点定域”.(2)计算平面区域的面积时,通常是先画出不等式组所对应的平面区域,然后观察区域的形状,求出有关的交点坐标、线段长度,最后根据相关图形的面积公式进行计算,如果是不规则图形,则可通过割补法计算面积.(3)判断不等式表示的平面区域和一般采用“代点验证法”.考点二简单的线性规划问题——多维探究角度1求线性目标函数的最值例2(2018·课标全国Ⅰ,13)若x ,y -2y -2≤0,-y +1≥0,≤0.则z =3x +2y 的最大值为__6__.[解析]本题主要考查线性规划.由x ,y 满足的约束条件画出对应的可行域(如图中阴影部分所示).由图知当直线3x +2y -z =0经过点A (2,0)时,z 取得最大值,z max =2×3=6.[引申1]本例条件下z =3x +2y 的最小值为__-18__.[解析]由例2-y +1=0-2y -2=0,∴B (-4,-3),当直线y =-32x +12z ,过点B 时,z最小,即z min =-18.[引申2]本例条件下,z =3x -2y 的范围为__[-6,6]__.[解析]z =3x -2y 变形为y =32x -12z ,由本例可行域知直线y =32x -12z ,过A 点时截距取得最小值,而z 恰好取得最大值,即z =6.过B 点时截距取得最大值而z 恰好取得最小值,即z =-6,∴z =3x -2y 的范围为[-6,6].[引申3]本例条件下,z =|3x -2y +1|的最大值为__7__,此时的最优解为__(2,0)__.[解析]由引申2得-6≤3x -2y ≤6,∴-5≤3x -2y +1≤7,∴0≤z ≤7,z 最大值为7,此时最优解为(2,0).名师点拨利用线性规划求目标函数最值的方法:方法1:①作图——画出线性约束条件所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l .(注意表示目标函数的直线l 的斜率与可行域边界所在直线的斜率的大小关系).②平移——将l 平行移动,以确定最优解所对应的点的位置.③求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.方法2:解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.角度2由目标函数的最值求参数例3(1)(2021·东北三省三校模拟)已知实数x,y x-y-1≤0,-x+2y-2≤0,2x+y-2≥0,若目标函数z=ax+y(a>0)最大值为5,取到最大值时的最优解是唯一的,则a的取值是(C)A.14B.13C.12D.1(2)变量x,y x+y≥0,x-2y+2≥0,mx-y≤0,若z=2x-y的最大值为2,则实数m等于(C)A.-2B.-1 C.1D.2[解析](1)x-y-1≤0,x-2y+2≥0,2x+y-2≥0,作可行域如图所示.目标函数z=ax+y可化为y=-ax+z,因为y=-ax+z表示斜率为-a的直线,且-a<0,由图形可知当y=-ax+z经过点C时,z取到最大值,这时点C坐标满足x-2y+2=0,x-y-1=0,解得x=4,y=3,C点坐标为(4,3),代入z=ax+y得到a=12.故选C.(2)解法一:当m≤0时,可行域(示意图m<-1)如图中阴影部分所示,z=2x-y⇔y=2x-z,显然直线的纵截距不存在最小值,从而z不存在最大值,不合题意,当m>0时,可行域(示意图)如图中阴影部分所示.若m ≥2,则当直线z =2x -y 过原点时,z 最大,此时z =0,不合题意(故选C .)若0<m <2,则当直线z =2x -y 过点A 时z 取最大值2,mx -y =0,x -2y +2=0,x =22m -1,y =2m2m -1,即22m -1,2m2m -1.∴42m -1-2m 2m -1=2,解得m =1.故选C .解法二:画出约束条件x +y ≥0,x -2y +2≥0的可行域,如图,作直线2x -y =2,与直线x -2y +2=0交于可行域内一点A (2,2),由题知直线mx -y =0必过点A (2,2),即2m -2=0,得m =1.故选C .[引申]在本例(1)的条件下,若z =ax +y 的最大值为4a +3,则a 的取值范围是-12,+∞__.名师点拨求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.也可以直接求出线性目标函数经过各顶点时对应参数的值,然后进行检验,找出符合题意的参数值.角度3线性规划中无穷多个最优解问题例4x ,y x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值一定为(C)A .1B .12C .-1或2D .2或12[分析]利用目标函数取得最大值的最优解有无数个,即目标函数对应的直线与可行域的边界重合.[解析]作出可行域(如图),为△ABC 内部(含边界).由题设z =y -ax 取得最大值的最优解不唯一可知:线性目标函数对应直线与可行域某一边界重合.由k AB =-1,k AC =2,k BC =12可得a =-1或a =2或a =12,验证:a =-1或a =2时,成立;a =12时,不成立.故选C .[引申]若z =y -ax 取得最小值的最优解不唯一,则实数a 的值为__12__.〔变式训练1〕(1)(角度1)(2020·课标Ⅰ,5分)若x ,y 2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为__1__.(2)(角度2)(2021·福建莆田模拟)若实数x ,y y ≥02x -y -1≥0x +y -m ≤0,且目标函数z =x -y 的最大值为2,则实数m =__2__.(3)(角度3)已知实数x ,y x -y +1≥0x +2y -8≤0x ≤3,若使得ax -y 取得最小值的可行解有无数个,则实数a 的值为__1或-12__.[解析](1)作出可行域如图,由z =x +7y 得y =-x 7+z 7,易知当直线y =-x 7+z7经过点A (1,0)时,z 取得最大值,z max =1+7×0=1.(2)由线性约束条件画出可行域(如图所示),∵目标函数z =x -y 的最大值为2,由图形知z =x -y 经过平面区域的A 时目标函数取得最大值2,-y =2=0,解得A (2,0),∴2-m =0,则m =2,故答案为2.(3)作出可行域如图中阴影部分所示,记z =ax -y ⇒y =ax -z .当直线y =ax -z 纵截距最大时,z 最小,此时a =1或-12.考点三线性规划的实际应用——师生共研例5(2020·试题调研)某研究所计划利用“神舟十一号”飞船进行新产品搭载试验,计划搭载若干件新产品A ,B ,要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查,搭载每件产品有关数据如表:因素产品A 产品B 备注研制成本、搭载试验费用之和(万元)2030计划最大投资金额300万元产品重量(千克)105最大搭载质量110千克预计收益(万元)8060——则使总预计收益达到最大时,A ,B 两种产品的搭载件数分别为(A )A .9,4B .8,5C .9,5D .8,4[解析]设“神舟十一号”飞船搭载新产品A ,B 的件数分别为x ,y ,最大收益为z 万元,则目标函数为z =80x+60y .根据题意可知,约束条件为x +30y ≤300,x +5y ≤110,≥0,≥0,,y ∈N ,x +3y ≤30,x +y ≤22,≥0,≥0,,y ∈N ,不等式组所表示的可行域为图中阴影部分(包含边界)内的整数点,作出目标函数对应直线l ,显然直线l 过点M 时,z 取得最大值.x +3y =30,x +y =22,=9,=4,故M (9,4).所以目标函数的最大值为z max =80×9+60×4=960,此时搭载产品A 有9件,产品B 有4件.故选A .名师点拨利用线性规划解决实际问题的一般步骤(1)审题:仔细阅读,明确题意,借助表格或图形理清变量之间的关系.(2)设元:设问题中要求其最值的量为z ,起关键作用的(或关联较多的)量为未知量x ,y ,并列出约束条件,写出目标函数.(3)作图:准确作出可行域,确定最优解.(4)求解:代入目标函数求解(最大值或最小值).(5)检验:根据结果,检验反馈.〔变式训练2〕(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为__216000__元.[解析]设生产产品A x件,产品B y≥0,y≥0,x+0.5y≤150,+0.3y≤90,x+3y≤600,设生产产品A,产品B的利润之和为z元,则z=2100x+900y.画出可行域(如图),易知=60,=100,则z max=216000.名师讲坛·素养提升非线性目标函数的最值问题例6(1)(2016·江苏高考)已知实数x,y-2y+4≥0,x+y-2≥0,x-y-3≤0,则x2+y2的取值范围是__45,13__.(2)(2021·河南中原名校质量考评)若方程x2+ax+2b=0的一个根在区间(0,1)内,另一根在区间(1,2)内,则b-3a-2的取值范围是(D)A.25,1B.1,52CD[分析](1)本题中x2+y2的几何意义是点(x,y)到原点的距离的平方,不能遗漏平方.(2)b-3a-2表示点(a,b)与(2,3)连线的斜率k,根据题意列出a、b应满足的约束条件,在此约束条件下求k的取值范围即可.[解析](1)不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示.因为原点到直线2x +y -2=0的距离为25,所以(x 2+y 2)min =45,又当(x ,y )取点(2,3)时,x 2+y 2取得最大值13,故x 2+y 2的取值范围是45,13.(2)记f (x )=x 2+ax +2b ,0)>0,1)<0,2)>0.>0,+2b +1<0,+b +2>0.作出可行域如图中阴影部分所示.+2b +1=0+b +2=0=-3=1,∴C (-3,1),显然A (-1,0),B (-2,0)b -3a -2表示点(a ,b )与点(2,3)连线的斜率,由图可知当(a ,b )取(-1,0)时,b -3a -2=1;当(a ,b )取(-3,1)时,b -3a -2=25,∴b -3a -2的取值范围是D .[引申]在本例(1)条件下:①x 2+(y +1)2的最小值为__2__;②y +1x +1的取值范围是__12,3__;③x +2y +1x +3的取值范围是__12,95__.[解析]①由图可知当(x ,y )取点(1,0)时,x 2+(y +1)2取最小值2;②y +1x +1表示点(x ,y )与点(-1,-1)连线的斜率.由图可知当(x ,y )取点(1,0)时,y +1x +1取最小值12,当(x ,y )取点(0,2)时,y +1x +1取最大值3,∴y +1x +1的取值范围是12,3.③x +2y +1x +3=1+2·y -1x +3,y -1x +3表示(x ,y )与点(-3,1)连线的斜率,-2y +4=0,x -y -3=0,得=2,=3,∴B (2,3).由图可知(x ,y )取(1,0)时y -1x +3,取最小值-14,(x ,y )取点(2,3)时,y -1x +3取最大值25.∴x +2y +1x +3的取值范围是12,95.名师点拨非线性目标函数最值的求解(1)对形如z =(x -a )2+(y -b )2型的目标函数均可化为可行域内的点(x ,y )与点(a ,b )间距离的平方的最值问题.(2)对形如z =ay +bcx +d(ac ≠0)型的目标函数,可先变形为z =ac ·x为求可行域内的点(x,y)-dc,-连线的斜率的ac倍的取值范围、最值等.(3)对形如z=|Ax+By+C|型的目标函数,可先求z1=Ax+By的取值范围,进而确定z=|Ax+By+C|的取值范围,也可变形为z=A2+B2·|Ax+By+C|A2+B2的形式,将问题化为求可行域内的点(x,y)到直线Ax+By+C=0的距离的A2+B2倍的最值,或先求z1=Ax+Bx+C的取值范围,进而确定z=|Ax+By+C|的取值范围.〔变式训练3〕(1)(2021·百校联盟尖子生联考)已知x,y +y≤2≤2x+2,≥0则(x-2)2+(y-1)2的取值范围为__12,10__.(2)(2021·河南省八市重点高中联考)若x,y满足2y≤x≤y-1,则y-2x的取值范围是(B)A∪32,+∞B,32C-∞,12∪32,+∞D.12,32[解析](1)可行域如图阴影部分,M=(x-2)2+(y-1)2的几何意义是点(2,1)与可行域中点的距离,最小值为点(2,1)到x+y-2=0的距离|2+1-2|2=22,最大值为点(2,1)与点(-1,0)的距离10,所求M2的取值范围是12,10.(2)由x,y满足2y≤x≤y-1,作可行域如图,2y =x x =y -1,解得A (-2,-1).∵y -2x 的几何意义为可行域内的动点与Q (0,2),连线的斜率,∴动点位于A 时,y -2x max =32,直线2y =x 的斜率为12,则y -2x的取值范围12,32.故选B .。
高中数学线性规划练习题及讲解
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
高中数学线性规划知识点汇总
高中数学线性规划知识点汇总一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。
2 可行域:约束条件表示的平面区域称为可行域。
3 整点:坐标为整数的点叫做整点。
4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。
只含有两个变量的简单线性规划问题可用图解法来解决。
5 整数线性规划:要求量整数的线性规划称为整数线性规划。
线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。
1 对于不含边界的区域,要将边界画成虚线。
2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3 平移直线y=-kx+P时,直线必须经过可行域。
4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。
积储知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<03.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。
高考数学复习考点题型专题讲解 题型24 线性规划(解析版)
高考数学复习考点题型专题讲解题型:线性规划【高考题型一】:线性规划求最值。
『解题策略』:确定线性区域:二元一次不等式0(0)Ax By C ++><区域的确定只与系数B 有关,当B 与后面的符号一致在直线上方,不一致在直线下方,或简记为“同上异下”,或通过移项等方式把B 变为正值,若0>,则在直线上方;若0<,则在直线下方。
另注意实虚线(有等号为实线)。
【题型1】:构造截距求最值。
『解题策略』:对于线性目标函数:a z z ax by y x b b=+⇒=-+,可看作直线平行移动穿过可行域时截距的范围。
注意:①可行域边界的斜率与平行直线系斜率的大小比较,然后确定直线平移规律;②b 的符号,当0b >时,当直线过可行域且在y 轴上截距最大时,z 最大;反之,z 最小。
当0b <时,与上面正好相反,且0b <是考生最容易出错的一个知识点。
1.(2009年新课标全国卷6)设y x ,满足:⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则y x z += ( ) A.有最小值2,最大值3 B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值【解析】:如图画出区域,选B。
2.(2012年新课标全国卷14)设,x y满足约束条件,013x yx yx y≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y=-的取值范围为。
【解析】:画出区域可得取值范围为[]3,3-。
3.(2013年新课标全国卷II9)已知0>a,yx,满足约束条件()133xx yy a x⎧≥⎪+≤⎨⎪≥-⎩,若yxz+=2的最小值为1,则a= ( )A.14B.12C.1D.2【解析】:画出区域,选B。
4.(2016年新课标全国卷III13)若y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤-≥+-0220201y x y x y x ,则y x z +=的最大值为 。
新高中数学_线性规划知识总结复习
精心整理高中必修5线性规划最快的方法简单的线性规划问题一、知识梳理1.目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3.整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5.1.2.3.4.5.2)由即B>0当B>0(x,y)(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的两侧,则有(Ax1+By1+C)(Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.不.包括边界;精心整理②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验;“直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)上),下)1.3+=x y .可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y .ABC ∆的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图).所以已知三角形内部的平面区域可由不等式组⎪⎩⎪⎨⎧<+->++>+-022,062,03y x y x y x 表示.说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线.2画出332≤<-y x 表示的区域,并求所有的正整数解),(y x .解:原不等式等价于⎩⎨⎧≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制依照二元一次不等式表示的平面区域,知2易求)1,1(.3设,x q =示z 是线性关系. ),q p 的范围.),由x 式组所示平面区域如图所示.说明:题目的条件隐蔽,应考虑到已有的x ,y ,z 的取值范围.借助于三元一次方程组分别求出x ,y ,z ,从而求出p ,q 所满足的不等式组找出),(q p 的范围.4、已知x,y,a,b 满足条件:0,0,0,0≥≥≥≥b a y x ,2x+y+a=6,x+2y+b=6 (1)试画出(y x ,)的存在的范围;(2)求y x 32+的最大值。
线性规划题型整理与例题(含答案)
积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
八种 经典线性规划例题(超实用)
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将【l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选B'三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D~五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2 .C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()"A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩,故0<m <3,选C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
高三数学线性规划知识点
高三数学线性规划知识点线性规划是数学中的一个重要分支,广泛应用于经济、管理、工程等领域。
它通过建立数学模型,寻找一组最佳决策方案,以实现特定的目标。
在高三数学学习中,线性规划是一个重要的知识点,本文将介绍线性规划的基本概念、常见问题类型以及解题方法。
一、线性规划的基本概念1. 目标函数:线性规划的目标是在一组约束条件下,最大化或最小化一个线性函数,这个线性函数就是目标函数。
通常用Z表示目标函数的值。
2. 变量:目标函数中的每个变量都代表一个决策变量,这些变量的取值将影响目标函数的计算结果。
3. 约束条件:线性规划的一个重要特点是存在一组约束条件,这些约束条件限制了决策变量的取值范围。
约束条件通常是由一组线性不等式或等式表示。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使得目标函数达到最大值或最小值的解称为最优解。
二、线性规划的问题类型1. 单纯形法:单纯形法是一种常用的线性规划求解方法。
它通过不断优化目标函数的值,逐步接近最优解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
2. 对偶性定理:线性规划中的对偶性定理是指对于一个标准型的线性规划问题,它与其对偶问题具有相同的最优解。
3. 整数线性规划:当决策变量要求为整数时,这就是一个整数线性规划问题。
整数线性规划的求解更加困难,常常需要借助于分支定界等特殊算法。
4. 网络流线性规划:网络流线性规划是线性规划与图论相结合的一种问题类型。
它通常用于解决最小费用流、最大流等网络优化问题。
三、线性规划的解题方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制出约束条件所构成的区域,然后绘制目标函数的等高线,并找到最优解所在的点。
2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
3. 对偶问题:通过建立原始问题与对偶问题之间的关系,可以将原始问题的求解转化为对偶问题的求解。
线性规划的常见题型及其解法学生版题型全面归纳好
课题 线性规划旳常见题型及其解法题目线性规划问题是高考旳重点,而线性规划问题具有代数和几何旳双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题旳解答变得愈加新奇别致.归纳起来常见旳命题探究角度有: 1.求线性目旳函数旳最值. 2.求非线性目旳函数旳最值. 3.求线性规划中旳参数. 4.线性规划旳实际应用.本节重要讲解线性规划旳常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目旳函数z =2x +3y 旳取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 旳最小值;(2)设z =x 2+y 2,求z 旳取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 旳取值范围.角度一:求线性目旳函数旳最值1.(·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 旳最大值为( )A .10B .8C .3D .22.(·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目旳函数z =x +6y 旳最大值为( )A .3B .4C .18D .403.(·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成旳封闭区域,则2x -y 旳最小值为( ) A .-6 B .-2 C .0D .2角度二:求非线性目旳旳最值4.(·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所示旳区域上一动点,则直线OM 斜率旳最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1旳取值范围 . 6.(·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2旳取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.(·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所示旳平面区域,区域D 上旳点与点(1,0)之间旳距离旳最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所示旳平面区域是Ω1,平面区域Ω2与Ω1有关直线3x -4y -9=0对称.对于Ω1中旳任意点A 与Ω2中旳任意点B ,|AB |旳最小值等于( )A .285B .4C .125D .2角度三:求线性规划中旳参数 9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所示旳平面区域被直线y =kx +43分为面积相等旳两部分,则k 旳值是( )A .73B .37C .43D .3410.(·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 旳最小值为-4,则k 旳值为( )A .2B .-2C .12D .-1211.(·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 获得最大值旳最优解不唯一,则实数a 旳值为( )A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目旳函数z =3x +2y 旳最大值旳取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8] 13.(·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1旳最小值为32,则a 旳值为________.角度四:线性规划旳实际应用14.A ,B 两种规格旳产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一种工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一种工作日内发明旳最大利润是________元.15.某玩具生产企业每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一种卫兵需5分钟,生产一种骑兵需7分钟,生产一种伞兵需4分钟,已知总生产时间不超过10小时.若生产一种卫兵可获利润5元,生产一种骑兵可获利润6元,生产一种伞兵可获利润3元.(1)试用每天生产旳卫兵个数x与骑兵个数y表达每天旳利润w(元);(2)怎样分派生产任务才能使每天旳利润最大,最大利润是多少?一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0旳两侧,则a 旳取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.(·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 旳最小值是( )A .-3B .0C .32D .33.(·泉州质检)已知O 为坐标原点,A (1,2),点P 旳坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP→旳最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1旳取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5 D .⎣⎡⎭⎫-53,5 5.假如点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取旳整数值为( )A .2B .1C .3D .06.(·郑州模拟)已知正三角形ABC 旳顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 旳取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.(·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所示旳平面区域上一动点,则直线OP 斜率旳最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }旳面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目旳函数z =ax +by (a >0,b >0)旳最大值为4,则ab旳取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω旳公共部分为线段AB ,则以AB 为直径旳圆旳面积旳最大值为( )A .πB .2πC .3πD .4π11.(·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 获得最大值旳最优解有无穷多种,则实数a 旳取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.(·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 旳最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定旳平面区域旳面积是( )A .12B .π4C .1D .π214.(·高考北京卷)设有关x ,y 旳不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表达旳平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 旳取值范围是( )A .⎝⎛⎭⎫-∞,43 B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表达旳平面区域为D .若指数函数y =a x 旳图象上存在区域D 上旳点,则a 旳取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.(·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2旳最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表达一种三角形区域,则实数k 旳取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.(·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 旳最大值为( )A .4B .6C .8D .1019.(·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 旳最大值为8,则实数m 旳值是( )A .-4B .-3C .-2D .-120.(·湖州质检)已知O 为坐标原点,A ,B 两点旳坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB旳最大值等于( )A .94B .47二、填空题21.(·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表达旳平面区域旳面积为________.23.(·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目旳函数z =3x -y 旳最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8旳最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所示旳区域上一动点,则|OM |旳最小值是________.26.(·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一种生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得旳最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜旳产量、成本和售价如下表:________亩.28.(·日照调研)若A 为不等式组⎩⎪⎨⎪⎧ x ≤0,y ≥0,y -x ≤2表达旳平面区域,则当a 从-2持续变化到1时,动直线x +y =a 扫过A 中旳那部分区域旳面积为________.29.(·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧ x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 旳取值范围是________.30.(·石家庄二检)已知动点P (x ,y )在正六边形旳阴影部分(含边界)内运动,如图,正六边形旳边长为2,若使目旳函数z =kx +y (k >0)获得最大值旳最优解有无穷多种,则k 旳值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧ y ≥x ,y ≤mx ,x +y ≤1下,目旳函数z =x +my 旳最大值不不小于2,则m 旳取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧ y ≥1,y ≤2x -1,x +y ≤m ,若目旳函数z =x -y 旳最小值旳取值范围是[-2,-1],则目旳函数旳最大值旳取值范围是________.33.(·高考广东卷)给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y在D 上获得最大值或最小值旳点},则T 中旳点共确定________条不一样旳直线.34.(·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 旳取值范围为__________.35.(·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多种点(x ,y )使目旳函数z=x+my获得最小值,则m=________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年高考线性规划归类解析
线性规划问题是解析几何的重点,每年高考必有一道小题。
一、已知线性约束条件,探求线性目标关系最值问题
例1、设变量x 、y 满足约束条件⎪⎩
⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1
的交点A(3,4)处,目标函数z 最大值为18
点评:本题主要考查线性规划问题,由线性约束条件画出可
行域,然后求出目标函数的最大值.,是一道较为简单的送分
题。
数形结合是数学思想的重要手段之一。
二、已知线性约束条件,探求非线性目标关系最值问题
例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩
则22x y +的最小值是 .
解析:如图2,只要画出满足约束条件的可行域,而22x y +表示
可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条
件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关
系几何意义的前提下,作出可行域,寻求最优解。
三、约束条件设计参数形式,考查目标函数最值范围问题。
例3、在约束条件0
024x y y x s
y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是()
A.[6,15]
B. [7,15]
C. [6,8]
D. [7,8]
解析:画出可行域如图3所示,当34s ≤<时, 目标函数
32z x y =+在(4,24)B s s --处取得最大值, 即
max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数
32z x y =+在点(0,4)E 处取得最大值,即max 30248z =⨯+⨯=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。
四、已知平面区域,逆向考查约束条件。
例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形
区域,表示该区域的不等式组是()
(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩
(C)
0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩ 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围
图2
图1
C
成一个三角形区域(如图4所示)时有00
03x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩。
点评:本题考查双曲线的渐近线方程以及线性规划问题。
验证法或排除法是最效的方法。
五、已知最优解成立条件,探求目标函数参数范围问题。
例5已知变量x ,y 满足约束条件1422
x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数
z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。
解析:如图5作出可行域,由z ax y y ax z =+⇒=-+其表示为
斜率为a -,纵截距为z的平行直线系, 要使目标函数z ax y
=+(其中0a >)仅在点(3,1)处取得最大值。
则直线y ax z =-+过
A点且在直线4,3x y x +==(不含界线)之间。
即1 1.
a a -<-⇒>则a 的取值范围为(1,)+∞。
点评:本题通过作出可行域,在挖掘a z -与的几何意义的条件下,借助用数形结合利用各直线间的斜率变化关系,建立满足题设条件的a 的不等式组即可求解。
求解本题需要较强的基本功,同时对几何动态问题的能力要求较高。
六、设计线性规划,探求平面区域的面积问题
例6在平面直角坐标系中,不等式组20
200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩
表示的平面
区域的面积是()(A)42 (B)4 (C) 22 (D)2
解析:如图6,作出可行域,易知不等式组20
200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩
表示
的平面区域是一个三角形。
容易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为:11||||42 4.22
S BC AO =⋅=⨯⨯=从而选B。
点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。
七、研究线性规划中的整点最优解问题
例7、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩
⎪⎨⎧≤≥+-≥-.112,
932,22115x y x y x 则1010z x y =+的最大值是(A)80 (B) 85 (C) 90 (D)95
解析:如图7,作出可行域,由101010z z x y y x =+⇒=-+
,它表示为斜率为1-,纵截距为
10z 的平行直线系,要使1010z x y =+最得最大值。
当直线1010z x y =+通过119(,)22
A z 取得最大值。
因为,x y N ∈,故A点不是最优整数解。
于是考虑可行域内A点附近整点B(5,4),C(4,4),经检验直线经过B点时,max 90.Z =
点评:在解决简单线性规划中的最优整数解时,可在去掉限制条件求得的最优解的基础上,调整优解法,通过分类讨论获得最优整数解。