纳米材料的特性和应用
纳米材料的用途
纳米材料的用途
纳米材料是一种具有特殊结构和性能的材料,其尺寸在纳米级范围内。
由于其
独特的物理、化学和生物学特性,纳米材料在各个领域都有着广泛的应用。
首先,纳米材料在材料科学领域具有重要意义。
由于其特殊的物理性质,纳米
材料在制备新型材料方面具有巨大潜力。
比如,纳米材料可以用于制备高强度、高韧性的复合材料,用于制备高导电性、高热传导性的功能材料,用于制备高吸附性、高催化活性的吸附剂和催化剂等。
这些新型纳米材料的应用,将极大地推动材料科学领域的发展。
其次,纳米材料在能源领域也有着重要的应用价值。
纳米材料可以用于制备高
效的太阳能电池、储能材料和光催化剂,可以用于制备高效的燃料电池和催化剂,可以用于制备高效的光催化水解制氢催化剂等。
这些应用将有助于提高能源利用效率,减少能源消耗,推动能源领域的可持续发展。
此外,纳米材料在生物医学领域也有着广泛的应用。
纳米材料可以用于制备生
物传感器、生物成像剂和药物载体,可以用于制备生物医学材料和医用纳米器件,可以用于制备生物医学诊断试剂和治疗药物等。
这些应用将有助于提高医疗诊断和治疗的精准度和效果,推动生物医学领域的发展。
总的来说,纳米材料具有广泛的应用前景,其在材料科学、能源领域和生物医
学领域都有着重要的应用价值。
随着纳米材料研究的不断深入,相信纳米材料的应用领域会越来越广泛,对人类社会的发展会产生越来越大的影响。
纳米科技与材料纳米材料的特性与应用
纳米科技与材料纳米材料的特性与应用纳米科技与材料:纳米材料的特性与应用纳米科技是指在纳米尺度下研究和应用材料,其中纳米材料是纳米科技的核心之一。
纳米材料具有特殊的结构和属性,因此在各个领域都具有广泛的应用前景。
本文将重点探讨纳米材料的特性及其应用领域。
一、纳米材料的特性纳米材料具有以下几个主要特性:1. 尺寸效应:当材料的尺寸缩小到纳米级别时,其性能表现会与宏观尺寸的材料有显著差异。
例如,纳米材料的比表面积相对更大,导致更多的原子或分子暴露在表面上,因此纳米材料具有更高的反应活性。
2. 量子效应:在纳米尺度下,由于粒子的量子行为显著影响了材料的电、磁、光等性能,从而产生新的特性。
例如,纳米材料的电导率、光学性质和磁性可能与宏观尺寸材料截然不同。
3. 界面效应:界面是纳米材料中不可忽视的因素之一。
纳米材料的界面与周围环境之间的相互作用对其性能具有重要影响。
界面性质的调控可以改变纳米材料的导电性、磁性和光学性能等。
4. 热力学效应:纳米材料由于其特殊的表面性质,可能造成不稳定的热力学状态,导致一系列与热力学平衡相关的现象发生,如相变温度的变化、熔点降低等。
二、纳米材料的应用领域1. 电子领域:纳米材料在电子器件中的应用正日益重要。
例如,纳米颗粒可以用于制备高效的太阳能电池;纳米线可以用于制作柔性电子器件;纳米薄膜能够改善电子器件的导电性能。
2. 光学领域:纳米材料具有特殊的光学性质,广泛应用于光学器件制备和光学传感器等领域。
例如,纳米粒子的表面等离子共振效应使其具有优异的荧光性能,可用于生物分析和生物成像。
3. 医学领域:纳米材料在医学领域有着广泛的应用前景。
纳米载体可以用于药物的传输和靶向给药;纳米生物传感器能够检测和监测生物分子;纳米材料也可以用于修复组织和组织工程等。
4. 能源领域:纳米材料在能源转换和储存领域有着重要应用。
纳米材料的高比表面积、导电性和导热性能使其成为高效能源器件的理想选择。
浅论纳米材料的特性及应用
浅论纳米材料的特性及应用纳米材料(Nanomaterials)是指至少有一条尺寸小于100纳米的尺度,无论是从纵向、横向和表面上来看,都表现出特殊性质的材料。
纳米材料具有巨大的比表面积、高的表面活性和优异的物理、化学和生物性能,这些与其微观结构、形态、成分等相关。
因此,纳米材料是当前研究的热点之一,也是各个领域中需要重点关注的关键材料之一。
本文将就纳米材料的特性及应用进行浅析。
纳米材料的特性1. 比表面积大:纳米材料具有巨大的比表面积,这是由于纳米尺度下,物质表面与体积比不断增大,因此比表面积增加。
跟传统的微米材料相比,纳米材料表面积增加了数倍或数十倍。
这也是纳米材料在催化、传感、吸附等应用中常常被用到的原因。
2. 物理、化学性质优异:在纳米材料表面存在的大量表面活性位点,使其物理、化学性质得到了显著提高。
纳米材料表面活性位点的数量增加,强度加强,表面性质集中,因此性能更稳定,催化效率更高,电化学活性更强等等。
3. 尺寸效应、量子效应:由于纳米材料尺寸在纳米以下,材料某些性质与材料本身的大小呈现出非线性关系,如吸收光波长的变化、激发能量的变化、输运特性的变化等。
这就是所谓的尺寸效应。
同时,当纳米材料具有能量量子化效应时,控制其尺寸、形态、组成等因素能够使其能带结构、光学响应和磁学等性质发生改变,进而调节其电学、光学、磁学性能。
纳米材料的应用1. 催化剂:纳米材料的高比表面积、表面活性位点及在某些纳米材料上出现的空间初始化的结构使得它们表现出高度优异的催化活性。
以Pt纳米材料为例,由于其高的催化活性,广泛应用于汽车尾气净化、电化学电极、燃料电池等领域。
2. 生物传感器:纳米材料特有的表面活性,催化作用以及生物兼容性等特性,可用于生物传感器的制备和应用。
纳米材料实现了对生物分子、细胞的高灵敏度、高特异性识别和检测。
著名的纳米生物传感器如Au纳米颗粒、石墨烯等。
3. 纳米药物:临床上长期以来一直致力于研究如何制备高质量、优异性能的新型药物,纳米材料作为药物载体在药物的输送过程中提高了药物的效应和减少了副作用。
纳米材料的奇妙特性
纳米材料的奇妙特性纳米材料是指具有几十到几百纳米尺寸的材料,其尺寸小于光的波长,因此具备了许多令人惊叹的奇妙特性。
这些特性包括独特的力学、光学、电子和化学性质,使得纳米材料在许多领域具有广泛的应用潜力。
首先,纳米材料具有出色的力学特性。
由于其粒径远小于常规材料,纳米材料具备高比表面积和较高的表面能。
这导致纳米材料具有强度和硬度的显著增加,从而改善了其力学性能。
例如,纳米金属具有出色的塑性,不仅可以在高温和高压下保持稳定的形态,还能够通过表面的形变来实现出色的耐磨性。
这些优异的力学特性使得纳米材料成为制备轻量、高强度结构材料的理想选择。
其次,纳米材料展现了独特的光学性质。
由于纳米颗粒的尺寸接近光的波长,它们能够与光强烈的相互作用。
纳米颗粒可以通过表面等离子体共振来增强吸收和散射光线,因此呈现出令人叹为观止的颜色效应。
这种颜色效应可以应用于纳米材料在传感器、显示器和太阳能电池等领域的应用中。
此外,纳米材料还具备可调控的光学性质,例如纳米线和纳米带的量子尺寸效应,使得它们能够发出特定波长的光,有望在光电子学和激光技术中发挥重要作用。
除了力学和光学特性,纳米材料的电子性质也具备了惊人的变化。
一方面,纳米结构可以改变电子结构和能隙大小,使得纳米材料呈现出独特的电子传输特性。
例如,纳米线和纳米颗粒能够显示出量子限制效应,电子在其中受限于三维空间,导致电荷输运出现新的物理现象。
另一方面,纳米颗粒的大比表面积使得其在催化、传感和电子器件等领域具有广阔的应用前景。
纳米材料的电子性质可通过控制形状、尺寸和结构来调节,因此具备了很大的设计潜力。
纳米材料的化学性质也受到尺寸效应的显著影响。
相比于宏观和微米级材料,纳米材料的化学反应速率更快,其表面原子数目远大于内部原子数目,因此表面活性极高。
这使得纳米材料成为催化剂、传感器和吸附剂等应用领域的理想选择。
纳米结构不仅能够增加反应速率,还可以调节反应的选择性和有效性。
例如,通过调控纳米颗粒的形状和组成,可以实现对催化反应选择性的精确控制,提高反应的效率。
纳米材料的物理性质和应用
纳米材料的物理性质和应用纳米材料指的是具有纳米级尺寸(一纳米等于十亿分之一米)的材料,它们具有独特的物理性质和广泛的应用前景。
本文将探讨纳米材料的物理性质及其在各个领域中的应用。
一、纳米材料的物理性质1. 表面效应纳米材料的比表面积远大于其体积,这使得纳米材料具有显著的表面效应。
例如,纳米颗粒在化学反应中的活性比宏观颗粒高出数倍,这是因为更多的原子或分子位于表面,使其更易于与其他物质接触和反应。
2. 尺寸效应纳米材料的尺寸与宏观材料相比更小,因此纳米材料的电子、光学和磁学性质发生了显著变化。
例如,金属纳米颗粒的表面等离子体共振现象使其具有优异的光学性能,可以应用于传感器、光学器件等领域。
3. 量子尺寸效应当纳米材料的尺寸接近或小于其波长或布洛赫波长时,量子效应开始显现。
例如,纳米晶体在光谱吸收和发射方面表现出离散的能级,这对于光电器件的设计和制造具有重要意义。
4. 界面效应纳米材料中存在着大量的界面和晶界,这些界面对材料的性能有重要影响。
例如,纳米材料的晶界可以增强材料的强度和硬度,提高材料的韧性和塑性。
二、纳米材料的应用1. 催化剂纳米材料由于其高比表面积和特殊物理化学性质,被广泛应用于催化剂领域。
纳米催化剂具有高活性、高选择性和高稳定性等特点,在化学反应和能源转换中发挥着重要作用。
例如,纳米金属颗粒作为催化剂可以提高化学反应的反应速率和产物收率。
2. 电子器件纳米材料在电子器件中具有广泛的应用,如纳米晶体管、纳米传感器和纳米电池等。
纳米晶体管具有高电子迁移率和低功耗特性,对于半导体行业的发展具有重要意义。
纳米传感器可以实现对微小生物分子和环境变化的高灵敏检测。
纳米电池具有高能量密度和长循环寿命等优势,在可穿戴设备和电动汽车等领域具有广阔的应用前景。
3. 医疗领域纳米材料在医疗领域的应用涉及到药物传递、诊断和治疗等方面。
纳米药物传递系统可以将药物精确释放到病变组织或细胞,提高疗效和减少副作用。
纳米材料的特性及应用
纳米材料的特性及应用摘要系统阐述了纳米材料的特性,并重点介绍了纳米材料在陶瓷领域,医学上,皮革制品上,环境保护等方面的应用。
并对纳米材料未来的应用前景进行了展望。
关键词:纳米材料特性应用前言纳米,是一个物理学上的度量单位,1纳米是1米的十亿分之一,相当于万分之一头发丝粗细。
当物质到纳米尺度以后,大约是在1-100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。
这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料即为纳米材料[1]。
纳米材料处在原子簇和宏观物体交界的过渡区域,既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,即接近于分子或原子的临界状态。
在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。
纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。
纳米相材料跟普通的金属、陶瓷,和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。
由于纳米材料从根本上改变了材料的结构,使得它成为当今新材料研究领域最富有活力、对未来经济和社会发展有着十分重要影响的研究对象[2]。
近年来,纳米材料取得了引人注目的成就。
例如,存储密度达到每平方厘米400G的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世[3]。
充分显示了纳米材料在高技术领域应用的巨大应用潜力。
纳米材料诞生多年来所取得的成就及对各个领域的影响和渗透一直引人注目。
进入90年代后,纳米材料研究的内涵不断扩大,领域逐渐拓宽。
一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。
纳米材料的物理特性及其应用
纳米材料的物理特性及其应用随着科技的不断发展,人们对物质的研究越来越深入,而纳米材料成为越来越热门的研究领域。
纳米材料是指晶体结构中至少有一个维度小于100纳米的材料,具有诸多奇特的物理特性,这些特性使得纳米材料具有广泛的应用前景。
1. 纳米材料的物理特性1.1 纳米材料的尺寸效应纳米材料的尺寸与其它材料相比较小,因而具有尺寸效应。
节点的电子密度与材料的尺寸相关,当尺寸小到一定范围内时,电子能量与材料表面的势场作用相比,发生量子效应而产生物理化学性质的变化。
1.2 纳米材料的表面效应正常情况下,材料的表面体积较小,表面原子与体内原子的物理化学性质较为相似,但是纳米材料的表面积远大于其体积,而且表面的极性、结构和化学反应性会因为表面的原子重新排列和化学键的断裂而发生变化,从而形成了表面效应。
1.3 纳米材料的量子效应量子效应是微观世界的表现,是指当一个粒子的尺度缩到与其波到长度相等或更小的极点后,借由其波动特性而不再适应于经典物理定律的一种物理现象。
纳米颗粒的平均直径在1~10纳米时,电子的态密度增大,电子发生了全新的量子机制。
由于纳米颗粒大小与电子波长接近,电子呈非连续色散,具有大量的能级,电子效应不同于体材料中的电子效应,呈现出全新的纳米效应。
2. 纳米材料的应用2.1 纳米材料在生物医药领域中的应用纳米医药材料是基于纳米科技的新型医药材料,随着生物医学研究的深入,纳米医药材料成为了可以治愈多种疾病的新型药物。
纳米药物可以加入到体内微小细胞中以促进药物的溶解,提高药物的稳定性,增强药物的吸收能力和生物利用度,并缩短药物的作用时间。
2.2 纳米材料在电子领域中的应用纳米材料在电子领域中的应用范围非常广泛,可以用于研究新一代的纳米电子元件,如纳米电路、纳米领域效应晶体管、量子小间隙器件、纳米光电子元件等,这些元件具有高性能、小尺寸、高灵敏度和低功耗等优势。
2.3 纳米材料在环境保护领域中的应用现代社会的环境问题越来越严重,而纳米材料的应用可以成为一种有利的解决方案。
纳米材料在催化反应中的应用
纳米材料在催化反应中的应用随着科学技术的飞速发展,纳米材料作为一种新型材料,其在催化反应中的应用引起了广泛关注。
纳米材料具有独特的物理化学性质和表面活性,使其在催化领域展现出巨大的应用潜力。
本文将介绍纳米材料在催化反应中的应用,并探讨其相关的机制。
1.纳米材料的催化特性纳米材料由于其特殊的粒径效应和表面效应,具有独特的化学活性和催化特性。
首先,纳米材料的表面积相对于体积非常大,有较高的比表面积。
这样的化学反应活性增强了纳米材料作为催化剂的效果。
其次,纳米材料具有尺寸效应,即当纳米粒子的尺寸逐渐减小到纳米级别时,物质的性质可能会发生显著变化,如能带结构和电子结构等。
这意味着纳米材料在催化反应中更容易发生电子转移和物质传递,从而提高催化活性。
此外,纳米材料还具有较高的表面能,导致反应物在纳米粒子表面的吸附和解离更加容易,从而促进反应的进行。
2.纳米材料在有机合成催化中的应用纳米材料在有机合成催化中具有广泛的应用。
例如,纳米金属催化剂在还原、氧化和氢化等反应中具有高效催化性能。
纳米催化剂能够提供更多的活性位点和较高的比表面积,提高催化反应的效率。
此外,纳米金属材料还具有较高的电子传输性能和选择性催化性能,使其能够高效催化有机合成反应,如氢化反应、烷基化反应以及环化反应等。
而纳米粒子也被广泛应用于催化剂的载体中,可以提高催化剂的稳定性和选择性,从而提高有机反应的产率和选择性。
3.纳米材料在环境污染物降解中的应用纳米材料还被广泛应用于环境污染物降解中。
由于其独特的特性,纳米材料能够在环境污染物的降解中发挥重要作用。
例如,纳米二氧化钛在光催化反应中能够有效降解有机污染物,其高比表面积和光催化性能使其能够充分吸收和利用光能,从而促进环境污染物的降解和分解。
此外,纳米铁材料作为一种强氧化剂,也被广泛应用于地下水和土壤中有机物的降解。
4.纳米催化剂的制备和表征纳米催化剂的制备技术对纳米催化剂的性能起到决定性的影响。
纳米材料的特性及应用
纳米材料的特性及应用(齐齐哈尔大学材料科学与工程学院高分子专业)摘要:纳米材料是当今及未来最有发展潜力的材料,由于其独特的表面效应、体积效应以及量子尺寸效应 ,使得材料的电学、力学、磁学、光学等性能产生了惊人的变化。
本文分别从纳米材料的定义,发展,分类,特性,应用及未来发展方面进行了详细的论述。
引言很多人都听说过"纳米材料"这个词,但什么是纳米材料级简称为纳米材料,是指其的尺寸介于1纳米~100纳米范围之间,广义上是中至少有一维处于纳米尺度范围超精细颗粒材料的总称。
由于它的尺寸已经接近电子的,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的,加上其具有大表面的特殊效应。
因此它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。
纳米材料的应用前景十分广阔。
近年来,它在化工、催化、涂料等领域也得到了一定的应用,并显示出它的独特魅力关键词:?纳米材料纳米材料分类特性应用一.什么是纳米材料纳米级简称为纳米材料(nanometermaterial)。
从尺寸大小来说,通常产生显着变化的细小的尺寸在0.1以下(注1米=100,1=10000微米,1微米=1000,1=10),即100以下。
因此,颗粒尺寸在1~100的微粒称为超微粒材料,也是一种材料。
其中,纳米是20世纪80年代中期研制成功的,后来相继问世的有纳米薄膜、纳米、纳米瓷性材料和材料等。
二.纳米材料发展简史纳米材料的应用实际上很早就有了,只是没有上升成纳米材料的概念。
早在1000多年前,我国古代利用燃烧蜡烛来收集的碳黑作为墨的原料及染料。
这是应用最早的纳米材料。
我国古代的铜镜表面长久不发生锈钝。
经检验发现其表面有一层纳米氧化锡颗粒构成的薄膜。
十八世纪中叶,胶体化学建立,科学家们开始研究直径为1-10nm的粒子系统。
即所谓的胶体溶液。
事实上这种液态的胶体体系就是我们现在所说的纳米溶胶,只是当时的化学家们并没有意识到,这样一个尺寸范围是人们认识世界的一个新的层次。
纳米材料的特性
块体半导体与半导体 纳米晶的能带示意图
2) 表面效应:纳米颗粒大 的表面张力使晶格畸变, 晶格常数变小。对纳米氧 化物和氮化物的研究表明, 第一近邻和第二近邻的距 离变短,键长的缩短导致 纳米颗粒的键本征振动频 率增大,结果使红外吸收 带移向高波数。
CdSe纳米颗粒的吸收光谱蓝移现象 A.P.Alivisatos, J. Phys. Chem. 100, 13227 (1996)
h
纳米氮化硅、碳化硅以及三氧化二铝粉等对红外有一个 宽频带强吸收谱。
不同温度退火下纳米三氧化二铝材料的红外吸收谱 1-4分别对应873,1073,1273和1473K退火4小时的样品
纳米材料的红外吸收谱宽化的主要原因
1) 尺寸分布效应:通常纳米材料的粒径有一定分布,不同颗粒的表面张 力有差异,引起晶格畸变程度也不同。这就导致纳米材料键长有一个分 布,造成带隙的分布,这是引起红外吸收宽化的原因之一。 2) 界面效应:界面原子的比例非常高,导致不饱和键、悬挂键以及缺陷 非常多。界面原子除与体原子能级不同外,互相之间也可能不同,从而 导致能级分布的展宽。与常规大块材料不同,没有一个单一的、择优的 键振动模,而存在一个较宽的键振动模的分布,在红外光作用下对红外 光吸收的频率也就存在一个较宽的分布。
5nm
>10nm
激子带的吸收系数随粒径的减小而增 加,即出现激子的增强吸收并蓝移。
CdSexS1-x玻璃的吸收光谱
曲线1所代表的粒径大于10nm 曲线2所代表的粒径为5nm
5、纳米微粒发光现象
当纳米微粒的尺寸小到一定值时可在 一定波长的光激发下发光。所谓光致发光 (photoluminescence)是指在一定波长光照射 下被激发到高能级激发态的电子重新跃回到 低能级被空穴俘获而发射出光子大块材料相比,纳米微粒的吸收带普遍存在“蓝移” 现象,即吸收带移向短波长方向。 例如,纳米 SiC 颗粒和大块 SiC 固体的红外吸收频率峰值 分别为814cm-1和794cm-1。纳米SiC颗粒的红外吸收频率较大 块固体蓝移了20cm-1。
纳米材料的特性与其在化学化工的应用
纳米材料的特性与其在化学化工的应用关键词:纳米材料;特殊性质;化学化工;应用摘要:纳米科技的发展,将促进人类对客观世界认知的革命。
人类在宏观和微观理论充分完善之后,在介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头。
纳米科技也将促进传统科技“旧貌换新颜”。
它的巨大影响还在于使纳米尺度上的多学科交叉展现了巨大的生命力,迅速形成一个具有广泛学科内容和潜在应用前景的研究领域。
该领域可大致包括纳米材料学、纳米化学、纳米计量学、纳米电子学、纳米生物学、纳米机械学、纳米力学等7个新生学科,这里主要介绍纳米材料的特性与其在化工领域中的几种应用。
正文纳米材料(又称超细微粒材料、超细粉末)是指三维空间中至少有一维处于1~100nm或由它们作为基体单元构成的材料,纳米材料处在原子簇和宏观物体交界过渡区域,其结构既不同于体块材料,也不同于单个的原子,显示出许多奇异的特性。
一.纳米材料的特性纳米材料晶粒极小,表面积特大,在晶粒表面无序排列的原子百分数远远大于晶态材料表面原子所占的百分数,晶界原子达15%~50%,导致了纳米材料具有传统固体所不具备的许多特殊性质。
所有的纳米材料具有三个共同的结构特点:即纳米尺度结构单元、大量的界面或自由表面以及纳米单元之间存在着强或弱的交互作用。
●表面效应表面效应是指纳米微粒的表面原子与总原子之比随着纳米微粒尺寸的减小而大幅度增加,粒子表面结合能随之增加,从而引起纳米微粒性质变化的现象。
●小尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及- 1 - / 8超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等物性呈现新的效应,称为小尺寸效应。
●量子尺寸效应当粒子尺寸下降到接近或小于某一值时,金属费米能级附近的电子能级由准连续态变为离散能级态的现象和纳米半导体微粒存在能隙变宽现象均称为量子尺寸效应。
纳米材料的特性及其在化工生产中的应用
纳米材料的特性及其在化工生产中的应用论文导读:纳米材料(又称超细微粒、超细粉未)由表面(界面)结构组元构成,是处在原子簇和宏观物体交界过渡区域的一种典型系统,粒径介于原子团簇与常规粉体之间,一般不超过100nm,而且界面组元中含有相当量的不饱和配位键、端键及悬键。
其特殊的结构层次使它在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。
近年来,纳米材料在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
关键词:纳米材料,化工,应用1前言纳米材料(又称超细微粒、超细粉未)由表面(界面)结构组元构成,是处在原子簇和宏观物体交界过渡区域的一种典型系统,粒径介于原子团簇与常规粉体之间,一般不超过100nm,而且界面组元中含有相当量的不饱和配位键、端键及悬键。
其结构既不同于体块材料,也不同于单个的原子。
其特殊的结构层次使它在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。
近年来,纳米材料在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
2纳米材料特性2.1具有很强的表面活性纳米超微颗粒很高的“比表面积”决定了其表面具有很高的活性。
免费论文参考网。
在空气中,纳米金属颗粒会迅速氧化而燃烧。
利用表面活性,金属超微颗粒可望成为新一代的高效催化剂、贮气材料和低熔点材料。
将纳米微粒用做催化剂,将使纳米材料大显身手。
如超细硼粉、高铬酸铵粉可以作为炸药的有效催化剂;超细银粉可以成为乙烯氧化的催化剂;超细的镍粉、银粉的轻烧结效率,超细微颗粒的轻烧结体可以生成微孔过滤器,作为吸咐氢气等气体的储藏材料,还可作为陶瓷的着色剂,用于工艺品的美术图案中。
免费论文参考网。
2.2具有特殊的光学性质所有的金属在超微颗粒状态时都呈现为黑色。
尺寸越小,颜色越黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。
由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米厚度的膜就能起到完全消光的作用。
利用这个特性可以制造高效率的光热、光电转换材料,以很高的效率将太阳能转变为热能、电能。
纳米材料的特点和用途
纳米是一种很小的单位,纳米技术则是一种非常具有市场潜力的新兴科学技术。
关于纳米技术的研究,是很多国家研究的一个重要方向,2011年,欧盟通过了纳米材料的定义,纳米材料,即一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。
这标志着科学史上又一个里程碑。
那么,纳米材料的特点和用途有哪些呢?一、纳米材料的特点当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。
比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。
按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。
我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。
也就是说,通过纳米技术获得了全新的材料。
纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。
对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。
“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体积,使其更轻盈。
如现在小型化了的计算机。
“更高”是指纳米材料可望有着更高的光、电、磁、热性能。
“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。
二、纳米材料的用途纳米材料应用在信息产业、环境产业、能源环保、生物医药等领域,帮助着产品的进步与发展,为人们的社会发展、科研进步、医药发展带去了很好的辅助。
1、纳米磁性材料在实际中应用的纳米材料大多数都是人工制造的。
材料工程中的纳米材料应用资料
材料工程中的纳米材料应用资料纳米材料是指具有特定结构和性质的材料,其尺寸在纳米级别(1-100纳米)。
在材料工程领域,纳米材料正逐渐成为研究的热点,拓宽了材料的应用范围,并为各行各业带来了许多潜在的机会和挑战。
本文将探讨纳米材料在材料工程中的应用,并介绍一些相关的资料。
一、纳米材料的应用领域1. 光电器件纳米材料在光电器件领域的应用已成为研究的热点。
通过控制纳米材料的尺寸和形状,可以调节其光学性质,获得更优异的光电性能。
例如,纳米颗粒可以用于制备高效的太阳能电池,纳米线可以用于制备高性能的显示器件。
2. 催化剂纳米材料的巨大比表面积和特殊的表面结构使其成为理想的催化剂。
纳米催化剂具有较高的催化活性和选择性,可用于加速化学反应、净化废水和废气等环境保护领域。
3. 传感器由于其特殊的物理和化学性质,纳米材料可用于制备高灵敏度的传感器。
例如,纳米金颗粒可以用于制备生物传感器,实现对生物分子的高灵敏检测;纳米氧化锌可以用于制备气体传感器,实现对环境中有害气体的快速检测。
4. 高强度材料纳米材料的特殊结构可以提高材料的强度和硬度。
纳米增强材料可以用于制备高强度的金属、陶瓷和复合材料,拓展了材料工程的应用领域。
5. 医学领域纳米材料在医学领域的应用也备受关注。
通过控制纳米材料的大小和表面性质,可以实现对药物的高效传输和靶向释放。
此外,纳米材料还可用于制备生物成像和治疗领域的新型材料。
二、相关资料介绍1. 《纳米材料在材料工程中的应用》该资料详细介绍了纳米材料在材料工程中的各个应用领域,并提供了相关的研究进展和案例分析。
通过阅读该资料,可以深入了解纳米材料的应用潜力和发展趋势。
2. 《纳米材料合成与表征技术》该资料介绍了纳米材料的合成方法和表征技术。
了解纳米材料的制备原理和表征方法对于推动其应用具有重要意义。
该资料包含了纳米材料合成的常见方法,如溶胶-凝胶法、热分解法等,以及纳米材料表征的技术,如透射电镜、扫描电镜等。
纳米材料的定义,特点和应用前景
纳米材料的定义、特点和应用前景中国科学院上海硅酸盐研究所作者:张青红图1图2图3什么是纳米材料?纳米(nm)和米、微米等单位一样,是一种长度单位,一纳米等于十的负九次方米,约比化学键长大一个数量级。
纳米科技是研究由尺寸在0.1至100纳米之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
可衍生出纳米电子学、机械学、生物学、材料学加工学等。
纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。
由于其组成单元的尺度小,界面占用相当大的成分。
因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。
纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域,实际上由纳米粒子组成的材料向宏观体系演变过程中,在结构上有序度的变化,在状态上的非平衡性质,使体系的性质产生很大的差别,对纳米材料的研究将使人们从微观到宏观的过渡有更深入的认识。
纳米材料的特点?当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。
比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。
按照这一原理,可以通过控制晶粒尺寸来得到不同能隙的硫化镉,这将大大丰富材料的研究内容和可望得到新的用途。
我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以得到带隙和发光性质不同的材料。
也就是说,通过纳米技术得到了全新的材料。
纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千平方米,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。
对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。
纳米材料的特点
纳米材料的特点纳米材料是指至少在一个尺寸尺度上具有结构、形态或性质的特征的材料。
与传统材料相比,纳米材料具有许多独特的特点。
首先,纳米材料具有更大的比表面积。
由于纳米材料的尺寸非常小,因此其比表面积较大。
这意味着纳米材料可以与环境更充分地接触,从而具有更高的表面活性。
纳米材料的高比表面积有助于提高化学反应速率、改善催化性能,并有利于吸附和储存能量等应用。
其次,纳米材料具有独特的量子效应。
当材料尺寸降至纳米尺度时,量子效应开始显现。
这些效应包括量子大小效应、量子限制效应和量子尺寸效应等。
这些效应导致纳米材料的光学、电子、磁性和力学性质与宏观材料有所不同。
纳米材料的量子效应使其具有优异的光学、电子学和磁学性能,并可在生物医学、能源存储和传感器等领域应用。
第三,纳米材料具有优异的力学性能。
纳米材料的尺寸通常在100纳米以下,因此其晶体结构相对来说较为完美。
纳米材料的结晶度高、晶界少、缺陷少,从而使其力学性能优于宏观材料。
纳米材料具有高强度、高刚度和高韧性的特点,使其在强度和硬度要求高的领域具有广泛的应用前景。
此外,纳米材料还具有特殊的热学性能。
由于其粒子尺寸小和表面积大,纳米材料在能量传输和热扩散方面表现出独特的特性。
纳米材料具有高能量储存密度、低热传导性和优异的散热能力。
这些特性使纳米材料在热管理、热传感器和热电转换等领域具有潜在的应用价值。
最后,纳米材料具有可调控性和可定制性。
通过控制纳米材料的组成、尺寸、形貌和结构等参数,可以调节其性质和功能。
纳米材料的可调控性使其能够满足不同应用的需求,例如通过调控纳米粒子的尺寸和分布来改善材料的光学特性,或者通过合成多组分纳米材料来实现特定的电化学反应。
综上所述,纳米材料具有比表面积大、量子效应、优异的力学性能、特殊的热学性能和可调控性等特点。
这些独特的特点使纳米材料成为了许多领域中的前沿材料,并具有广泛的应用潜力。
纳米材料的几种特殊效应及其特点
纳米材料的几种特殊效应及其特点纳米材料是一种具有尺寸在纳米级别的材料,其特殊的尺寸效应和表面效应赋予了它们许多独特的特点和应用。
下面将介绍几种常见的纳米材料的特殊效应及其特点。
1. 纳米尺寸效应纳米材料的尺寸通常在1到100纳米之间,当材料的尺寸缩小到纳米级别时,其物理、化学和光学等性质会发生显著变化。
其中最常见的是纳米颗粒的量子尺寸效应。
在纳米颗粒中,电子和空穴的波函数会受到限制,形成能级的离散分布,因此纳米颗粒的能带结构和能级间距会发生变化。
这使得纳米材料具有与其体相材料不同的电子结构和光学性质。
例如,金属纳米颗粒的表面电子密度增加,使其具有优异的催化性能和独特的光学吸收特性。
2. 纳米表面效应纳米材料的表面积与体积之比相比传统材料更大,这使得纳米材料的表面效应变得非常显著。
纳米材料的表面原子或分子与周围环境的相互作用更加密切,表面活性更高。
这导致纳米材料在催化、吸附、传感、储能等方面具有独特的特点。
例如,纳米颗粒的催化活性通常比体相材料高,这是因为纳米颗粒的表面原子数目更多,催化反应发生在颗粒表面,因此具有更高的反应活性。
3. 纳米量子效应纳米材料的量子效应是指由于尺寸和结构的约束,纳米材料中的电子表现出量子行为。
量子效应使得纳米材料具有许多独特的性质和应用。
例如,纳米颗粒的荧光性质受到量子尺寸效应的影响,荧光颜色可以通过调控颗粒的尺寸和组成来实现。
此外,纳米量子点还具有窄的荧光带宽、高荧光量子产率和长寿命等优点,因此在生物成像、显示技术和光电器件等方面有着广泛的应用。
4. 纳米磁性效应纳米材料在磁性方面也具有特殊的效应。
纳米尺寸的磁性材料在外界磁场的作用下表现出与体相材料不同的磁性行为。
纳米材料的超顺磁性和铁磁性表现出尺寸效应,纳米颗粒的磁矩和磁矩矢量的分布会受到尺寸的限制,从而改变了磁性行为。
此外,纳米材料还可以通过调控尺寸、形状和组成来实现不同的磁性特性,如单分散性、高矫顽力和超顺磁性等,这些特性在磁存储、磁共振成像和磁性纳米粒子的生物应用等方面具有重要的应用价值。
纳米材料的特性和应用
纳米材料的特性和应用摘要本文简要介绍了纳米材料的分类及特性,并对纳米材料在化工、生物医学、环境、食品等领域的应用进行了综述,最后对纳米材料的发展趋势进行了展望。
关键词纳米材料;分类;特性;应用;发展1 引言有科学家预言, 在21 世纪纳米材料将是“最有前途的材料”, 纳米技术甚至会超过计算机和基因学, 成为“决定性技术”。
国际纳米结构材料会议于1992 年开始召开(两年一届) , 并且目前已有数种与纳米材料密切相关的国际期刊。
德国科学技术部预测到2010 年纳米技术市场为14 400 亿美元, 美国政府自2000 年克林顿总统启动国家纳米计划以来, 已经为纳米技术投资了大约20 亿美元。
同时, 欧盟在2002~2006 年期间将向纳米技术投资10 多亿美元。
日本2002 年的纳米技术开支已经从1997 年的1. 20 亿美元提高到7. 50 亿美元。
2 纳米材料及其分类纳米材料(nano- material)又称为超微颗粒材料,由纳米粒子组成。
粒子尺寸范围在1-100 nm 之间,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。
根据三维空间中未被纳米尺度约束的自由度计,将纳米材料大致可分成四种类型,即零维的纳米粉末(颗粒和原子团簇)、一维的纳米纤维(管)、二维的纳米膜、三维的纳米块体。
3 纳米材料的特性13.1 小尺寸效应当纳米晶粒的尺寸与传导电子的德布罗意波长相当或更小时, 周期性的边界条件将被破坏, 使其磁性、内压、光吸收、热阻、化学活性、催化性及熔点等与普通粒子相比都有很大变化。
如银的熔点约为900℃, 而纳米银粉熔点仅为100℃, 一般纳米材料的熔点为其原来块体材料的30%~50%。
3.2 表面效应纳米晶粒表面原子数和总原子数之比随粒径变小而急剧增大后所引起的性质变化。
纳米晶粒的减小, 导致其表面热、表面能及表面结合能都迅速增大, 致使它表现出很高的活性,如日本帝国化工公司生产的T iO2平均粒径为15 nm , 比表面积高达80~110 m2/g 2。
纳米材料的特点及应用实例
纳米材料的特点及应用实例纳米材料是一种具有特殊结构和尺寸的材料,其尺寸通常在1到100纳米之间。
由于其特殊的结构和尺寸,纳米材料具有许多独特的性质和特点。
下面将详细介绍纳米材料的主要特点以及一些应用实例。
1.尺寸效应:由于纳米材料的尺寸处于纳米级别,与宏观材料相比具有较高的比表面积和更丰富的表面能量。
这使得纳米材料具有更高的反应活性和吸附能力,使其在催化剂、传感器和储能设备等方面具有广泛的应用。
2.量子效应:纳米材料的电子和光学性质受到量子效应的影响,如量子限制、量子隧道效应和量子尺寸效应。
这些效应使纳米材料在光电器件、光催化和光学传感器等领域有着重要的应用。
3.机械性能:纳米材料通常具有高硬度、高强度和良好韧性等优异的机械性能,这使得它们在增强材料、涂层材料和生物材料等领域具有广泛的应用。
4.热稳定性:纳米材料具有较高的表面能量,使其在热稳定性方面表现出优于宏观材料的性能。
这使得纳米材料在高温环境下的应用具有重要意义,例如高温催化剂和高温润滑剂等领域。
5.光学性能:纳米材料在可见光和红外光谱范围内具有特殊的吸收、散射和发射性质。
这使得纳米材料在太阳能电池、光催化和光学传感器等领域有着广泛的应用。
下面是一些常见的纳米材料及其应用实例:1.纳米金:纳米金具有良好的导电性和抗氧化性能,在电子器件、传感器和催化剂等领域有着广泛的应用。
2.纳米二氧化硅:纳米二氧化硅具有较高的比表面积和孔体积,广泛应用于催化剂、吸附剂和药物传递系统等领域。
3.纳米碳管:纳米碳管具有优异的电导性和力学性能,在电子器件、增强材料和储能设备等领域有着重要的应用。
4.纳米氧化锌:纳米氧化锌具有良好的光催化性能和抗菌性能,在太阳能电池、光催化和生物医学领域有广泛的应用。
5.纳米银:纳米银具有良好的导电性和抗菌性能,在电子器件、抗菌材料和生物传感器等领域有重要的应用。
综上所述,纳米材料具有许多独特的特点和性质,并在诸多领域中具有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米材料的特性和应用摘要本文简要介绍了纳米材料的分类及特性,并对纳米材料在化工、生物医学、环境、食品等领域的应用进行了综述,最后对纳米材料的发展趋势进行了展望。
关键词纳米材料;分类;特性;应用;发展1 引言有科学家预言, 在21 世纪纳米材料将是“最有前途的材料”, 纳米技术甚至会超过计算机和基因学, 成为“决定性技术”。
国际纳米结构材料会议于1992 年开始召开(两年一届) , 并且目前已有数种与纳米材料密切相关的国际期刊。
德国科学技术部预测到2010 年纳米技术市场为14 400 亿美元, 美国政府自2000 年克林顿总统启动国家纳米计划以来, 已经为纳米技术投资了大约20 亿美元。
同时, 欧盟在2002~2006 年期间将向纳米技术投资10 多亿美元。
日本2002 年的纳米技术开支已经从1997 年的1. 20 亿美元提高到7. 50 亿美元。
2 纳米材料及其分类纳米材料(nano- material)又称为超微颗粒材料,由纳米粒子组成。
粒子尺寸范围在1-100 nm 之间,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。
根据三维空间中未被纳米尺度约束的自由度计,将纳米材料大致可分成四种类型,即零维的纳米粉末(颗粒和原子团簇)、一维的纳米纤维(管)、二维的纳米膜、三维的纳米块体。
3 纳米材料的特性13.1 小尺寸效应当纳米晶粒的尺寸与传导电子的德布罗意波长相当或更小时, 周期性的边界条件将被破坏, 使其磁性、内压、光吸收、热阻、化学活性、催化性及熔点等与普通粒子相比都有很大变化。
如银的熔点约为900℃, 而纳米银粉熔点仅为100℃, 一般纳米材料的熔点为其原来块体材料的30%~50%。
3.2 表面效应纳米晶粒表面原子数和总原子数之比随粒径变小而急剧增大后所引起的性质变化。
纳米晶粒的减小, 导致其表面热、表面能及表面结合能都迅速增大, 致使它表现出很高的活性,如日本帝国化工公司生产的T iO2平均粒径为15 nm , 比表面积高达80~110 m2/g 2。
3.3 量子尺寸效应纳米材料颗粒尺寸小到一定值时, 费米能级附近的电子能级由准连续能级变为分立能级, 吸收光谱阈值向短波方向移动。
其结果使纳米材料具有高度光学非线性、特异性催化和光催化性质、强氧化性和还原性。
3.4 宏观量子隧道效应和介电限域效应纳米材料能在低温下继续保持超顺磁性,对光有强烈的吸收能力, 能大量吸收紫外线, 对红外线亦有强吸收特性, 在高温下, 仍具有高强、高韧、优良稳定性等, 其应用前景十分广阔, 故纳米材料被誉为跨世纪的高科技新材料。
4 纳米材料的应用4.1 在化工领域的应用3纳米材料应用在化学工业领域中的许多方面,如催化剂与催化反应[3]、高分子材料改良[4]和化学传感器[5]等等。
4.1.1 在催化方面的应用在许多化学化工领域中催化剂起着举足轻重的作用,它可以控制反应时间,提高反应效率和反应速度。
但是,大多数的传统催化剂催化效率低,制备过程并不严谨。
所以它的生产使得原料在很大程度上的浪费,而且对环境也造成污染。
所以,在催化剂上,纳米材料有极强的优势,纳米材料的比表面积大,表面活性中心多,这为做催化剂提供了必要条件。
同时纳米材料的表面效应和体积效应决定了它具有良好的催化活性和催化反应选择性.它可大大提高反应效率,控制反应速度,对比一般的催化剂,用纳米微粒作催化剂的话,可以将反应速度提高10~15 倍。
4.1.2 在高分子材料方面的应用纳米材料可以作为高分子材料的改进剂和增强剂,如粘土纳米粒子、纳米SiO2、纳米CaCO3 等。
它们对聚合物的物理、化学性能产生特殊的作用,可以提高高分子材料的延展性、韧性、刚性、强度、阻隔性、耐热性及尺寸稳定性的特点。
4.1.3 在化学传感器方面的应用近年来,基于纳米材料的化学传感器的研究成为大家关注的焦点,通过利用金属纳米粒子(如金溶胶、乙二胺/Au溶胶/I-)、纳米氧化物(如Ce-PbO2、Ag2O2-PbO2)和纳米管(如碳纳米管)来修饰化学传感器,进一步提高检测的灵敏度和选择性.4.2 纳米材料在生物医学中的应用4纳米粒子比红血球(6~9μm) 小得多, 可以在血液中自由运动, 利用纳米粒子研制成机器人, 注入人体血管内, 可以对人体进行全身健康检查和治疗, 疏通脑血管中的血栓, 清除心脏动脉脂肪沉积物等, 还可吞噬病毒, 杀死癌细胞。
在医药方面, 可在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品, 纳米材料粒子将使药物在人体内的传输更为方便。
4.3 纳米材料在环境中的应用5环境一直以来是人们十分关注的焦点话题。
新型纳米材料开发对环境保护起到了巨大的推动作用。
有报道称,纳米TiO2能处理多种有机废水的污染物,它可以将水中的烃类、卤代烃、酸、表面活性剂、有机染料、含氮有机物、有机磷(溴)杀虫剂、木材防腐剂和燃料油、杂环芳烃、取代苯胺等很快的氧化成为CO2、H2O 等。
纳米TiO2 光催化剂能很好降解甲醛、甲苯等污染物,效率几乎达100%;用于石油和化工等工业废气处理中能改善厂区周围空气质量。
利用纳米TiO2光催化性能可杀死环境中的细菌,同时降解由细菌释放出来的有毒复合物;在医院病房、手术室及生活空间安放纳米TiO2光催化剂还有除臭作用。
目前工业上利用纳米二氧化钛-三氧化二铁作为光催化剂,用于废水处理(含SO32-或Cr2O72-体系)并取得很好效果。
含超细TiO2和超细ZnO 等微粉抗菌除臭纤维不仅用于医疗,还可制成抑菌防臭的高级纺织品、衣服、围裙及鞋袜等。
利用纳米光催化技术与其他技术相结合而研制出新型空气净化器,对氮氧化物、一氧化碳和甲醛等有害气体有明显降解作用,使空气中的有害气体从10μL/L 降到0.1μL/L,该设备现已进入实用化生产阶段。
纳米汽车尾气净化器:利用纳米材料可制备汽车尾气净化器,如超细Fe、Ni 与γ-Fe2O3 混合烧结体代替贵金属作为汽车尾气净化器,可降低成本、提高效率。
以活性炭为载体、纳米Zr0.5Ce0.5O2 粉体为催化活性体的汽车尾气净化催化剂,在氧化一氧化碳的同时还原氮氧化物,转化为对人体和环境无害的气体——二氧化碳和氮气。
4.4 在食品方面的应用随着纳米技术的发展,纳米食品生产也取得了很大的成就。
纳米技术可以赋予食品许多特殊的性能,如提高某些成分吸收率,减少生物活性和风味的丧失,并可以将食品输送到特定部位,提供给人类有效、准确、适宜的营养。
目前,纳米胶囊技术、纳滤技术和超微粉碎技术已应用于食品加工中。
纳米技术在食品上的研究和应用主要包括纳米食品加工、纳米包装材料和纳米检测技术等方面。
然而,纳米材料在食物链中是否还存在潜在的风险及其对生物的安全性问题尚存在争议,这是人们自思索转基因食品安全性问题之后面临的另一个话题值得深入研究。
4.5 纳米材料在磁性材料方面的应用6近年来随着信息量飞速增加,要求记录介质材料高性能化,特别是记录高密度化。
高记录密度的记录介质材料与超微粒有密切的关系。
若以超微粒作记录单元,可使记录密度大大提高。
纳米磁性微粒由于尺寸小,具有单磁畴结构,矫顽力很高的特性,用它制作磁记录材料可以提高信噪比,改善图像质量。
此外,在电子计算机中为防止尘埃进入硬盘中损坏磁头与磁盘,在转轴处也已普遍采用磁性液体(磁性液体:它是由超顺磁性的纳米微粒包覆了表面活性剂,然后弥漫在基液中而构成)的防尘密封。
纳米粒子对红外和电磁波有吸收隐身作用。
由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大减少波的反射率,使得红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4 个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标,起到了隐身作用。
4.6 纳米材料在涂料中的应用7纳米涂料利用其独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。
对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。
经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果;纳米改性内墙涂料,实际上是高级的卫生型涂料,在卫生用品上应用可起到杀菌保洁作用,适合于家庭、医院、宾馆和学校的涂装;纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。
耐洗性大于15000 次,具有良好的保光保色性能,抗紫外线能力极强。
使用寿命达15 年以上。
纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。
4.7 纳米材料在陶瓷上的应用8纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料。
它具有的高硬度、高韧性、低温超塑性、易加工等传统陶瓷无与伦比的优点。
其晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。
英国著名材料专家Gleiter 指出,如果多晶陶瓷是由大小为几个纳米的晶粒组成,则能够在低温下变为延性的,能够发生100%的塑性形变。
并且发现,纳米TiO2陶瓷材料在室温下具有优良的韧性,在180℃经受弯曲而不产生裂纹。
4.8 在电子工业方面的应用4.8.1 用作导电浆料导电浆料是电子工业重要的原材料, 由于纳米材料可使块体材料的熔点大大降低, 因此用超细银粉制成的导电浆料可以在低温下烧结, 此时基片可以不用耐高温陶瓷, 甚至可采用塑料等低温材料。
4.8.2 用作敏感元件利用纳米材料巨大的比表面积, 可以制成温敏、光敏、气敏、湿敏等多种传感器。
仅需微量纳米颗粒其功能就能得到充分发挥, 由它构成的集成化纳米颗粒多功能传感器具有高灵敏度、高响应速度、高精度、低功耗等优点。
4.9 纳米材料在纺织领域中的应用9纳米功能纤维我国辽宁光达公司开发的亚纳米氧化锌改性丙纶纤维及织物,对200-400 nm 紫外线吸收率达99.7%,辐射屏蔽率80%。
日本仑螺公司将氧化锌微粉掺入聚酯中,开发出防紫外线涤纶纤维。
日本帝人公司利用纳米ZnO 和纳米SiO2混合微粉开发抗菌除臭尼龙纤维。
抗菌纤维除用于手术服和手术护士服外,还研制出高级纺织品,如内衣、外装、鞋袜、帽、睡衣、床单、浴巾和雨伞面料等。
纳米功能涂层织物日本住友Cement 公司开发出5-15 nm 氧化锌分散在丙烯酸系树脂中制备织物涂层剂,经此涂层剂整理的夏季织物有抗菌、防臭、防紫外线等多种功能,可耐10 万次洗涤,其开发的产品主要用于衫类。
纳米后整理织物青岛大学应化所利用50-60 nm氧化锌制备纳米功能棉、涤棉和毛织物,有显著抗菌功能。