平面与平面平行的判定(教学设计)
教案平面与平面平行的判定和性质
教案平面与平面平行的判定和性质一、教学目标1. 知识与技能:(1)理解平面与平面平行的定义及其判定方法;(2)掌握平面与平面平行的性质;(3)能够运用平面与平面平行的知识解决实际问题。
2. 过程与方法:通过观察、思考、交流、归纳等方法,引导学生掌握平面与平面平行的判定和性质。
3. 情感态度与价值观:培养学生的空间想象力,提高对几何图形的认识,激发学生学习几何的兴趣。
二、教学重点与难点1. 教学重点:(1)平面与平面平行的定义及其判定方法;(2)平面与平面平行的性质。
2. 教学难点:(1)平面与平面平行的判定方法的运用;(2)平面与平面平行的性质在实际问题中的应用。
三、教学过程1. 导入:通过复习已学过的平面几何知识,如点、线、面的基本概念,引导学生进入本节课的学习。
2. 新课讲解:(1)平面与平面平行的定义:两个平面在空间中不存在公共点,则称这两个平面平行。
(2)平面与平面平行的判定方法:①如果一个平面过另一个平面的垂线,则这两个平面平行;②如果两个平面分别过第三条交线,且这两条交线互相平行,则这两个平面平行。
(3)平面与平面平行的性质:①平行平面之间的距离相等;②平行平面上的线段在另一个平面上的投影互相平行;③平行平面上的角相等。
3. 案例分析:通过展示一些实际问题,引导学生运用平面与平面平行的知识解决问题。
4. 课堂练习:布置一些有关平面与平面平行的练习题,让学生独立完成,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,并提出一些拓展问题,激发学生进一步学习平面几何的兴趣。
四、课后作业1. 完成教材上的相关练习题;2. 查找一些有关平面与平面平行的实际问题,加以解决。
五、教学评价1. 知识与技能:学生能熟练掌握平面与平面平行的定义、判定方法和性质;2. 过程与方法:学生能够运用所学知识解决实际问题,提高空间想象力;六、教学策略与方法1. 采用问题驱动法,引导学生主动探究平面与平面平行的判定和性质;2. 利用多媒体课件,展示平面与平面平行的图形,增强学生的空间想象力;3. 结合实例,让学生直观地理解平面与平面平行的判定和性质;4. 组织小组讨论,培养学生的合作意识和团队精神;5. 运用归纳总结法,引导学生自主总结平面与平面平行的判定和性质。
21-22版:2.2.1 直线与平面平行的判定~2.2.2 平面与平面平行的判定(创新设计)
20
课前预习
课堂互动
@《创新设计》 课堂反馈
@《创新设计》
【迁移】 若将例3中的三棱柱改为正方体ABCD-A1B1C1D1, O为BD的中点,P是DD1的中点,设Q是CC1上的点,问: 当点Q在什么位置时,平面D1BQ∥平面PAO?
解 当Q为C1C的中点时,平面D1BQ∥平面PAO. 证明如下:
在△DBD1中,P是DD1中点,O为DB中点,
8
课前预习
课堂互动
课堂反馈
@《创新设计》
对B,当α∩β=a,且在平面α内同侧有两点,另一侧有一个点,三点到平面β的距离相 等时,不能推出α∥β; 对C,当l∥m时,不能推出α∥β;对D,∵l,m是两条异面直线,且l∥α,m∥α,l∥β, m∥β, ∴α内存在两条相交直线与平面β平行,故可得α∥β. 答案 (1)D (2)D
∴PO∥D1B,
又∵PO⊂平面PAO,D1B⊄平面PAO,
∴D1B∥平面PAO.
21
课前预习
课堂互动
课堂反馈
@《创新设计》
在正方体中,BQ∥AP,BQ⊄平面PAO, PA⊂平面PAO, ∴BQ∥平面PAO, 又∵D1B∩BQ=B,D1B⊂平面D1BQ,BQ⊂平面D1BQ, ∴平面D1BQ∥平面PAO,即当点Q为C1C的中点时,平面D1BQ∥平面PAO.
23
课前预习
课堂互动
课堂反馈
@《创新设计》
【训练 3】 如图,正四棱台 ABCD-A1B1C1D1 中,A1B1=a,AB=2a,AA1= 2a, E,F 分别是 AD,AB 的中点.证明:平面 EFB1D1∥平面 BDC1
24
课前预习
课堂互动
课堂反馈
证明 连接 A1C1,AC,分别交 B1D1,EF, BD 于 M,N,P,连接 MN,C1P.由题意, BD∥B1D1. ∵BD⊄平面 EFB1D1,B1D1⊂平面 EFB1D1, ∴BD∥平面 EFB1D1, 又∵A1B1=a,AB=2a,
《平面与平面平行的判定》教学设计
《平面与平面平行的判定》教学设计整体把握:《普通高中数学课程标准》中《平面与平面平行的判定》的相对位置为:通过直观感知、操作确认,归纳出以下判定定理:◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。
◆一个平面过另一个平面的垂线,则两个平面垂直。
通过直观感知、操作确认,归纳出以下性质定理,并加以证明:◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。
◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。
◆垂直于同一个平面的两条直线平行。
◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
人教版普通高中课程标准试验教科书A版必修二第二章第二节编排顺序为:2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质其编排思路应该是:先判定定理、后性质定理,在判定定理内部先平行后垂直,在平行内部先线线、后线面。
我们在课堂设计时应该注意这一点。
教学过程:一、引入。
学生前面学过两个不同平面的位置关系有“平行和相交”两种情况,此时我们可以举实例或以模型为依据(教室、粉笔盒等实物,幻灯片展示国家游泳中心“水立方”的等)让学生去发现其中包含的平面之间的关系,并指明今天我们要研究的问题是:如何判定平面与平面平行。
二、学生活动这时可以让学生回忆上节课所学的《直线与平面平行的判定方法》,思考如何判断两个平面平行。
课程标准要求学生“通过直观感知、操作确认,归纳出判定定理”,所以一定要给学生留足够的时间去直观感知,让他用书本桌面作为学具,去主动体会。
此时可以提两个小题推波助澜:1.将书本、桌面看成平面,若书本的一条边与桌面平行,书本与桌面平行吗?(答案:不一定。
本问题可用多媒体展示其具体情况。
(完整word版)平面与平面平行的判定说课稿
《平面与平面平行的判定》的教学设计一、教材分析1.《课标》要求几何学是研究现实世界中物体的形状,大小和位置关系的数学学科。
本教材强调“直观感知,操作确认,思辨论证,度量计算”是探索和认识空间图形及其性质的主要方法。
高一阶段立体几何的学习更注重“直观感知,操作确认”并适度进行“思辨论证”。
本节要求通过直观感知,操作确认,归纳出平面与平面平行的判定定理。
借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理;直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行的性质与判定,并对某些结论进行论证,通过直观感知、操作确认,归纳出判定定理。
2.地位和作用本课是在学生学习了平面的性质、线线关系、线面关系之后,且已具备一定数学能力和方法的基础上进行的。
两个平面平行的判定定理是立体几何中的一个重要定理。
它揭示了线线平行、线面平行、面面平行的内在联系,体现了转化的思想。
通过本课的学习,不仅能进一步培养学生的空间想象能力、逻辑推理能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后继的知识学习中去,为以后学习面面垂直打下基础。
所以,本课既是前期知识的发展,又是后继课程有关图形研究的前驱,在教材当中起到一个承上启下的作用。
二、教学内容分析:本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,类比直线与平面平行的判定定理探究过程,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出平面与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用。
三、学情分析:学生已有一些平面几何基础,在学习了线线、线面关系后,已具备了本节课所需的预备知识,具有一定的分析问题、解决问题的能力,并且空间想象能力,逻辑推理能力已初步形成。
《4.4.1两平面平行》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一上册
《两平面平行》教学设计方案(第一课时)一、教学目标1. 掌握两平面平行的定义和性质。
2. 能够运用性质解决一些简单的空间几何问题。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学重难点1. 教学重点:理解两平面平行的概念,掌握其性质。
2. 教学难点:运用两平面平行的性质解决实际几何问题。
三、教学准备1. 准备教学用具:黑板、白板、几何模型、尺规等。
2. 准备教学内容:设计一些典型例题和练习题,以帮助学生巩固知识。
3. 提前向学生说明课程的学习目标和难点,以便学生做好准备。
四、教学过程:(一)导入新课1. 复习已学知识:请学生回忆一下,什么是平行线?两平面平行又是什么意思?2. 提出新问题:那么,在我们的生活中,哪些地方可以见到两平面平行的情况呢?(二)探究新知1. 引导学生观察模型:拿出一张纸和一个三角板,请学生观察纸和三角板的位置关系。
告诉学生这便是两平面平行的实例。
2. 引导学生自主探索:通过观察,你们发现了什么?是否可以举出更多两平面平行的例子?尝试用自己的话总结一下两平面平行的定义。
3. 小组讨论:小组内讨论,两平面平行与两直线平行的区别和联系。
4. 分享交流:请学生代表分享小组的讨论结果,教师进行点评和补充。
(三)教学举例1. 教师举出一些两平面平行的实例,请学生判断并解释原因。
2. 学生尝试举出一些两平面平行的例子。
(四)课堂小结1. 引导学生回顾本节课的主要内容:什么是两平面平行?有哪些实例?2. 强调两平面平行与两直线平行的区别和联系。
3. 提醒学生注意两平面平行的判断方法。
(五)作业布置1. 请学生通过观察、思考和探究,得出两平面平行的其他性质和定理。
2. 寻找一些实际生活中的两平面平行的情况,并尝试解释。
教学设计方案(第二课时)一、教学目标1. 学生能够理解两平面平行的定义和性质,掌握平行线的特征。
2. 学生能够准确判断两平面是否平行,并应用相关知识解决实际问题。
3. 培养学生的逻辑思考和问题解决能力,提高数学素养。
教案平面与平面平行的判定和性质
平面与平面平行的判定和性质第一章:教案简介本章将介绍教案平面与平面平行的判定和性质。
通过本章的学习,学生将能够理解并应用平面与平面平行的判定条件,掌握平面与平面平行的性质,并能够运用这些知识解决实际问题。
第二章:平面与平面平行的判定1. 判定条件一:如果两个平面的法向量互相平行,则这两个平面平行。
2. 判定条件二:如果一个平面经过另一个平面的法向量,则这两个平面平行。
3. 判定条件三:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。
第三章:平面与平面平行的性质1. 性质一:平面与平面平行时,它们的法向量互相平行。
2. 性质二:平面与平面平行时,它们的法向量垂直于它们的交线。
3. 性质三:平面与平面平行时,它们的交线平行于它们的法向量。
第四章:应用举例1. 例一:给定两个平面,如何判断它们是否平行?2. 例二:给定一个平面和一条直线,如何判断这条直线是否与平面平行?3. 例三:给定两个平面和它们的交线,如何判断这两个平面是否平行?第五章:练习题1. 判断题:如果两个平面的法向量互相垂直,则这两个平面平行。
(对/错)2. 判断题:如果一个平面经过另一个平面的法向量,则这两个平面平行。
(对/错)3. 判断题:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。
(对/错)4. 应用题:给定两个平面,它们的法向量分别为向量A和向量B。
判断这两个平面是否平行,并说明理由。
5. 应用题:给定一个平面P和一条直线L。
已知平面P的法向量为向量A,直线L的方向向量为向量B。
判断直线L是否与平面P平行,并说明理由。
第六章:教案平面与平面平行的判定和性质的综合应用1. 综合应用一:如何判断一个平面是否平行于另一个平面的交线?2. 综合应用二:如何判断一条直线是否与另一个平面平行?3. 综合应用三:如何判断两个平面是否平行,并确定它们的交线?第七章:教案平面与平面平行的判定和性质的证明题1. 证明题一:已知平面P和Q,证明平面P与平面Q平行的条件是它们的法向量互相平行。
统编人教A版高中必修第二册数学《8.5 空间直线、平面的平行》平面与平面平行的判定 教案教学设计
8.5.3 平面与平面平行第1课时平面与平面平行的判定本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第八章《立体几何初步》,本节课主要学习平面与平面平行的判定定理及其应用。
本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
空间中平面与平面之间的位置关系中,平行是一种非常重要的位置关系,它不仅应用较多。
而且是空间问题平面化的典范空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法。
本节课是在前面已经学习空间点、线、面位置关系的基础作为学习的出发点,类比直线与平面平行的判定定理探究过程,结合有关的实物模型,通过直观感知操作确认(合情推理),归纳出平面与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用。
1.教学重点:空间平面与平面平行的判定定理;2.教学难点:应用平面与平面平行的判定定理解决问题。
多媒体一、复习回顾,温故知新1. 到现在为止,我们一共学习过几种判断直线与平面平行的方法呢? 【答案】(1)定义法;(2)直线与平面平行的判定定理2. 平面与平面有几种位置关系?分别是什么? 【答案】相交、平行3.怎样判断两平面平行? 二、探索新知1.思考:若平面α∥β,则α中所有直线都平行β吗?反之,若α中所有直线都平行β ,则α∥β吗? 【答案】平行,平行探究:如图8.5-11(1),a 和b 分别是矩形硬纸片的两条对边所在直线,它们都和桌面平行,那么都和桌面平行,那么硬纸片和桌面平行吗?如图8.5-11(2),c 和d 分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺和桌面平行吗? 【答案】硬纸片与桌面可能相交,如图,三角尺与桌面平行,如图,平面与平面平行的判定定理:如果一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 .符号表示:βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂b a P b a b a通过复习以前所学,引入本节新课。
平面与平面平行的判定(公开课课件)
•1、平面β内有一条直线与平面α平行,平面α, β一定平行吗? (不一定) •2、平面β内有两条直线与平面α平行,平面α, β一定平行吗?
两平行直线 (不一定) 两相交直线 ( ?)
探索
一平面内两条相交直线都平行于 另一平面
两平面位置关系?
师生协助 探索新知
判定方法2:平面与平面平行的判定定理:
转化
面面平行
空间问题
线面平行
转化
转化
线线平行
平面问题
与 平×行;
(3)、一个平面内两条不平行的直线都平行于 平面,则与 平行。 √
(4)、如果一个平面内的任何一条直线都平行于另
一个平面,那么这两个平面平行。 √
(5)如果一个平面内的一条直线平行于另一个平
面,那么这两个平面平行 ×
直线的条数 不是关键
直线相交才是关键
定理的理解:
练习.(课本练习第1题)1判断下列命题是否正确,正确
收获
1.平面与平面平行的判定:
1、定义法: 平面和平面没有公共点 2、面面平行的判定定理: 一个平面内的两条相交直线与另一个平面
平行,则这两个平面平行。
2.应用判定定理判定面面平行时应注意: 证明的书写三个条件“内”、“交”、“平行”,缺一不可。 3.应用判定定理判定面面平行的关键是找平行线
4.数学思想方法:转化的思想
复习回顾
复习1:平面几何中证明两直线平行有 些什么方 法?
复习2:直线与平面平行的判定方法? 复习3:两个平面的位置关系?
复习回顾:
1. 到现在为止,我们一共学习过几种判断直线与平面平行的方法呢?
(1)定义法;直线与平面没有交点 (2)直线与平面平行的判定定理:
(教案)平面与平面平行
平面与平面平行【教学目标】1.通过学习空间两平面的位置关系,培养直观想象的数学核心素养。
2.借助两平面平行的判定与性质的学习,提升逻辑推理、数学抽象的核心素养。
【教学重难点】1.掌握空间两个平面的位置关系,并会判断。
2.掌握空间平面与平面平行的判定定理和性质定理,并能应用这两个定理解决问题。
3.平面与平面平行的判定定理和性质定理的应用。
【教学过程】一、问题导入我们知道,如果平面α与平面β没有公共点,则α∥β。
同直线与平面平行类似,用定义来判定平面与平面平行并不容易,那么平面与平面平行有什么更好的判定方法呢?二、新知探究1.平面与平面间的位置关系【例1】已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交。
其中正确的是________(将你认为正确的序号都填上)。
③④[①错。
a与b也可能异面;②错。
a与b也可能平行;③对。
∵α∥β,∵α与β无公共点。
又∵a⊂α,b⊂β,∵a与b无公共点;④对。
由已知及③知:a与b无公共点,那么a∥b或a与b异面;⑤错。
a与β也可能平行。
]【教师小结】两个平面的位置关系有两种:平行和相交,没有公共点则平行,有公共点则相交。
2.平面与平面平行的判定【例2】如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG。
[解](1)因为G,H分别是A1B1,A1C1的中点,所以GH是∵A1B1C1的中位线,所以GH∥B1C1.又因为B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面。
(2)因为E,F分别是AB,AC的中点,所以EF∥BC.因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG。
平面与平面平行(教学课件)高一数学同步备课系列(人教A版2019 必修第二册)
线线平行
线面平行
面面平行
证明两个平面平行一般步骤
一:在一个平面内找出两条相交直线
二:证明两条相交直线分别平行于另一个平面
三:利用判定定理得结论
平面与平面平行的性质
下面我们研究平面与平面平行的性质,也就是以平面与平面平行为条件,
探究可以推出哪些结论.
D'
C'
如图示,平面A'C'//平面AC, B'D'⊂平面A'C', 显然,A'
B.如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行
√
C.平行于同一直线的两个平面一定相互平行
D.如果一个平面内的无数多条直线都平行于另一平面,那么这两个平面平行
解析
如果一个平面内任何一条直线都平行于另一个平面,
即两个平面没有公共点,
则两平面平行.
3.已知长方体ABCD-A′B′C′D′,平面α∩平面ABCD=EF,平面α∩平面
两个平面不一定平行. 但若把两条平行直线改成相交直线,则两个平面
就会平行. 下面我们借助长方体来说明这个问题.
如图, 在平面ADD'A'内画一条与AA'平行的直线EF, 显然AA'与EF都平
行于平面DCC'D', 但这两条平行直线所在的平面ADD'A'与平面DCC'D'不平
D'
C'
行. 若平面ABCD内两条相交直线AC, BD分别与平
证明:连接MF,则有MF // A1 D1 // AD,
四边形MFDA为平行四边形,
AM / / DF .
教学设计2:1.2.2 第3课时 平面与平面平行
1.2.2 第3课时 平面与平面平行三维目标 1.知识与技能(1)理解并掌握平面与平面平行的判定定理与性质定理. (2)进一步培养学生观察、发现的能力和空间想象能力. 重点、难点重点:平面与平面平行的判定定理和性质定理.难点:平面与平面平行判定定理、性质定理的理解及应用.重难点突破:以生活中的实例(如门扇、书的封面边缘与所在桌面的位置关系)为切入点,通过创设情境,让学生经历观察、想象、思考和应用的过程建构新的知识,再通过类比、联想,使建构的知识得以完善,从而突出重点,然后通过分组讨论、设计练习等教学手段来化解难点. 教学建议本节知识是上节知识的拓展和延伸,由于判定与性质是相辅相成相互统一的.故教学时,可采用引导发现法,采用以思导学的方式,从判定定理出发,把探索性质定理的问题转移到线与线及线与面位置关系的问题上,然后教师要引导学生经历从现实的生活空间中抽象出空间图形的过程,注重引导学生通过观察、操作、有条理的思考和推理等活动,引导学生借助图形直观,通过归纳、类比等合情推理来探索平面平行的性质及其证明,最后通过典例训练使学生体会线与面之间的互化关系,提高学生的空间想象能力和逻辑推理能力. 知识梳理1.两平面α与β有且仅有α∥β和α∩β=l 两种位置关系.2.下面的命题在“________”处缺少一个条件,补上这个条件,使其构成真命题(m ,n 为直线,α,β为平面),则此条件应为______________.⎭⎪⎬⎪⎫m ⊂αn ⊂αm ∥βn ∥β⇒α∥β 3.平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,________________________.符号表示为:⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b . 4.面面平行的其他性质:(1)两平面平行,其中一个平面内的任一直线平行于另一个平面,即⎭⎪⎬⎪⎫α∥βa ⊂α⇒a ∥β,可用来证明线面平行;(2)夹在两个平行平面间的平行线段________; (3)平行于同一平面的两个平面________.(4)两条直线被三个平行平面所截,截得的对应线段__________. 【提示】2.m ,n 相交 3.那么它们的交线平行 4.(2)相等 (3)平行 (4)成比例 知识点1 两个平面的位置关系 【问题导思】观察前面问题中的长方体,平面A 1C 1与长方体的其余各个面,两两之间有几种位置关系?【提示】两种位置关系:两个平面相交或两个平面平行. 空间中两个平面的位置关系例1 已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的是________(将你认为正确的序号都填上).【思路探究】由平面间的位置关系逐一判断.【自主解答】①错.a与b也可能异面;②错.a与b也可能平行;③对.∵α∥β,∴α与β无公共点.又∵a⊂α,b⊂β,∴a与b无公共点;④对.由已知及③知:a与b无公共点,那么a∥b或a与b异面;⑤错.a与β也可能平行.【答案】③④规律方法总结两个平面的位置关系有两种:平行和相交,没有公共点则平行,有公共点则相交.熟练掌握这两种位置关系,并借助图形来说明,是解决本题的关键.变式训练1 如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系一定是()A.平行B.相交C.平行或相交D.不能确定【解析】如图所示,由图可知C正确.【答案】C知识点2 平面与平面平行的判定【问题导思】1.三角板的一条边所在平面与平面α平行,这个三角板所在平面与α平行吗?【提示】不一定.2.三角板的两条边所在直线分别与平面α平行,这个三角板所在平面与α平行吗?【提示】平行.平面与平面平行的判定(1)文字语言:如果一个平面内有两条直线平行于另一个平面,那么这两个平面平行.(2)符号语言:a⊂β,b⊂β,,a∥α,b∥α⇒β∥α.(3)图形语言:如图所示.图1-2-15【提示】(1)相交(2)例2 在正方体ABCD-A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP∥平面A1BD.【思路探究】由于M、N、P都为中点,故添加B1C、B1D1作为联系的桥梁.【自主解答】如图所示,连结B1D1、B1C.∵P、N分别是D1C1、B1C1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN⊄面A1BD,∴PN∥平面A1BD.同理MN∥平面A1BD,又PN∩MN=N,∴平面PMN∥平面A1BD.规律方法总结本例的证明体现了证明面面平行的常用方法,解决此类问题的关键是选择或添加适当的辅助线(或辅助面),使问题转化为证线面平行或线线平行.变式训练2如图1-2-17,三棱锥P-ABC中,E,F,G分别是AB,AC,AP的中点.证明平面GFE∥平面PCB.图1-2-17【证明】因为E,F,G分别是AB,AC,AP的中点,所以EF∥BC,GF∥CP.因为EF,GF⊄平面PCB,所以EF∥平面PCB,GF∥平面PCB.又EF∩GF=F,所以平面GFE∥平面PCB.知识点3 平面与平面平行的性质【问题导思】观察长方体ABCD-A1B1C1D1的两个面:平面ABCD及平面A1B1C1D1.1.平面A1B1C1D1中的所有线都平行于平面ABCD吗?【提示】是的.2.若m⊂平面ABCD,n⊂平面A1B1C1D1,则m∥n吗?【提示】不一定.3.过BC的平面交面A1B1C1D1于EF,EF与BC什么关系?【提示】平行.1.平面与平面平行的性质定理(1)文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线.(2)符号语言:α∥β,α∩γ=a,⇒a∥b.(3)图形语言:如图所示.图1-2-16(4)作用:证明两直线.【提示】(1)平行(2)(4)平行2.三个平面平行的性质两条直线被三个平行平面所截,截得的.【提示】对于线段成比例例3 如图1-2-18,平面四边形ABCD的四个顶点A、B、C、D均在平行四边形A′B′C′D′所确定一个平面α外,且AA′、BB′、CC′、DD′互相平行.图1-2-18求证:四边形ABCD是平行四边形.【思路探究】先证平面AA′B′B∥平面DD′C′C,再证AB∥CD,同理证明BC∥AD,进而证明ABCD为平行四边形.【自主解答】在▱A′B′C′D′中,A′B′∥C′D′,∵A′B′⊄平面C′D′DC,C′D′⊂平面C′D′DC,∴A′B′∥平面C′D′DC.同理A′A∥平面C′D′DC.又A′A∩A′B′=A′,∴平面A′B′BA∥平面C′D′DC.∵平面ABCD∩平面A′B′BA=AB,平面ABCD∩平面C′D′DC=CD,∴AB∥CD.同理AD∥BC.∴四边形ABCD是平行四边形.规律方法总结1.利用面面平行的性质定理证明线线平行的关键是把要证明的直线看作是平面的交线,往往需要有三个平面,即有两平面平行,再构造第三个面与两平行平面都相交.2.面面平行⇒线线平行,体现了转化思想与判定定理的交替使用,可实现线线、线面及面面平行的相互转化.变式训练3 如图1-2-19,已知α∥β,点P是平面α、β外的一点(不在α与β之间),直线PB、PD分别与α、β相交于点A、B和C、D.图1-2-19(1)求证:AC ∥BD ;(2)已知P A =4 cm ,AB =5 cm ,PC =3 cm ,求PD 的长. 【解】 (1)∵PB ∩PD =P ,∴直线PB 和PD 确定一个平面γ, 则α∩γ=AC ,β∩γ=BD . 又α∥β,∴AC ∥BD . (2)由(1)得AC ∥BD , ∴P A AB =PC CD ,∴45=3CD ,∴CD =154, ∴PD =PC +CD =274.课堂小结1. 常见的面面平行的判定方法: (1)利用定义:两个平面没有公共点. (2)归纳为线面平行.①平面α内的所有直线(任一直线)都平行于β,则α∥β;②判定定理:平面α内的两条相交直线a ,b 都平行于β.⎭⎪⎬⎪⎫a ⊂αb ⊂αa ∩b =P a ∥βb ∥β⇒α∥β,五个条件缺一不可. 应用时的关键是在α内找到与β平行的相交直线a ,b .(3)化归为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β(证明后可用).(4)利用平行平面的传递性:两个平面同时和第三个平面平行,则这两个平面平行.当堂检测1.下列命题正确的为()A.若平面α内的两条直线分别与平面β平行,则α与β平行B.若平面α内有无数条直线与平面β平行,则α与β平行C.过已知平面外一点,有且只有一个平面与已知平面平行D.过已知平面外一条直线,必能作出与已知平面平行的平面【答案】C2.α和β是两个不重合的平面,在下列条件中,可判定α∥β的是()A.α内有无数条直线平行于βB.α内不共线三点到β的距离相等C.l、m是平面α内的直线,且l∥β,m∥β,m∥βD.l、m是异面直线且l∥α,m∥α,l∥β,m∥β【答案】D3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一个平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个【答案】B4.三棱柱ABC-A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点.求证:平面A1BD1∥平面AC1D.证明连接A1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED.∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,A1D1∥AD,∴BD1∥平面AC1D,A1D1∥平面AC1D.又A1D1∩BD1=D1,∴平面A1BD1∥平面AC1D.反思感悟判定或证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行;(3)两个平面同时平行于第三个平面,那么这两个平面平行.。
面面平行的判定教案
平面与平面平行的判定(教案)一教材分析本节课是平面与平面位置关系的第一课时,主要内容是两个平面平行的判定定理及其应用,它是在学生学习了空间两直线位置关系、空间直线和平面位置关系之后,又一种图形直角的位置关系的研究,为后面学习两个平面平行的性质以及将来研究多面体奠定了基础。
本节把面面位置关系与线面位置关系类比,把面面平行的判定与线面平行的判定类比,渗透类比的数学方法。
定理的证明和应用体现了线线平行、线面平行到面面平行的转化,体现了转化的数学思想。
二教学目标1、知识与技能:理解平面与平面平行的判定定理,并会初步运用。
转化与化归思想在解决问题中的运用。
通过问题解决,进一步培养学生观察、发现的能力和空间想像能力。
2、过程与方法启发式。
以实际情景(三角板实验),启发、引导学生逐步经历定理的直观感知过程。
指导学生进行合情推理。
对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题、教师予以指导,帮助学生合情推理、澄清概念、加深认识、正确运用。
3、情感态度与价值观让学生在发现中学习,增强学习的积极性;培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣,从而培养学生勤于动手、勤于思考的良好习惯。
三学生分析立体几何的学习,学生已初步入门,上一届线面平行的判定为学生学习本节的内容打下良好的基础。
高一学生已经有了自己的判断,合作,交流的能力,但是课堂的活动性不强,基于此现象,老师应充分利用自己的教学智慧和课堂组织能力积极调动学生的积极性,让学生积极参与到课堂的教学中来。
基于以上情况,本人选择了自主探究,合作交流,让学生通过自己的实践和思考去发现问题,解决问题。
四教学重难点【教学重点】平面与平面平行的判定定理及应用【教学难点】平面与平面平行的判定定理的探究发现及其应用五教学过程【教学过程】一、知识回顾1、判定直线与平面平行的方法有哪些?①根据定义,即直线与平面没有公共点。
②根据判定定理,即:若线线平行,则线面平行。
2.2.2 平面与平面平行的判定 公开课一等奖课件
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
面 ,但平面 DCC1D1AA1D1D与平面
E
DCC ,EF∥平 1D 1
DCC 不平行 .1D1
C1
D1 B1 D
A1
C B
A
结论 如果一个平面内的两条平行直线与一个平面 平行,这两个平面不一定平行.
a b
β
课堂探究4 平面β 内有两条相交直线与平面平行,这 两个平面平行吗?
D
1
C
1
平行
A
5.已知 D,E,F 分别是三棱锥 P-ABC 的棱 PA,PB, PC 的中点,求证:平面 DEF∥平面 ABC.
【证明】因为 D,E 分别为 PA,PB 的中点,所以 DE∥AB. 因为 DE ⊄平面 ABC,AB⊂平面 ABC, 所以 DE∥平面 ABC. 同理可证 EF∥平面 ABC. 因为 DE⊂平面 DEF,EF⊂平面 DEF,且 DE∩EF=E, 所以平面 DEF∥平面 ABC.
判定定理
平面与平面平行 的判定
注意 三个 条件
线线平行线面平行面面平行
不能自助的人也难以受到别人的帮助。
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法
前
言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
面面平行的判定教案
平面与平面平行的判定一、教材分析1.1教材所处地位与作用本节课是人教版数学必修(2)第二章第二节第2课内容——平面与平面平行的判定。
本节课是在学生学习了线线、线面关系后,已具有一定的空间几何知识和一定的数学能力和方法的基础上进行的。
两个平面平行的判定定理是立体几何中的一个重要定理。
它揭示了线线平行,线面平行,面面平行的内在联系,体现了转化的思想。
通过本课的学习不仅能进一步培养学生的空间想象能力,逻辑推理能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后继的知识学习中去,为以后学习平面与平面的垂直打下基础。
1.2教学重点、难点1.2.1教学重点平面与平面平行的判定定理的理解1.2.2教学难点平面与平面平行的判定定理的应用(新教材将线面平行的性质安排在面面平行的判定之后,使得定理无法用理论推理来完成。
因此,我采用观察感知,操作发现的研究方法来解决这一难点。
通过讨论加深印象,设计更多的例子练习直线与直线的平行。
)根据上述教材内容分析,并结合学生的认知水平和思维特点,我将教学目标分为三部分进行说明:1.3目标分析1.3.1知识技能目标1、了解面面平行判定定理的发现过程。
2、理解证明过程必须的三个条件。
3、运用定理进行证明和解决生活中有关的实际问题。
1.3.2过程与方法1、学生通过观察、探究、思考,得出两平面平行的判定定理,体验如何把语言文字描述为数学符号。
2、通过问题的提出与解决,培养学生探究问题、解决问题的能力。
通过对例题的推证,培养学生观察、归纳、猜想、论证的能力。
进一步增强学生空间想象能力、空间问题平面化的思想。
1.3.3情感态度价值观1、通过主动参与探究活动,体验在科学发现中获得成功的喜悦,体验生活中的数学美,激发学习兴趣,养成勇于开拓和创新的科学态度。
2、在师生对图形分析的过程中,培养学生积极进行教学交流,乐于探索创新的科学精神。
3、通过同学之间讨论、互动,培养互帮互助的合作精神。
直线与平面平行的判定定理教学设计(教案)
章节一:直线与平面平行的概念引入教学目标:使学生了解直线与平面平行的基本概念,理解直线与平面平行的直观含义。
教学内容:1. 直线与平面的基本概念复习2. 直线与平面平行的定义3. 直线与平面平行的实例解析教学方法:采用直观演示法,结合实例进行讲解。
教学活动:1. 复习直线与平面的基本概念2. 引入直线与平面平行的定义3. 通过实例解析直线与平面平行的特征章节二:直线与平面平行的判定定理教学目标:使学生理解直线与平面平行的判定定理,能够运用判定定理判断直线与平面的平行关系。
教学内容:1. 直线与平面平行的判定定理的表述2. 直线与平面平行的判定定理的证明3. 直线与平面平行的判定定理的应用教学方法:采用讲解法,结合图形进行说明。
教学活动:2. 讲解直线与平面平行的判定定理的证明3. 通过例题演示直线与平面平行的判定定理的应用章节三:直线与平面平行的判定定理的运用教学目标:使学生能够运用直线与平面平行的判定定理解决实际问题。
教学内容:1. 直线与平面平行的判定定理在实际问题中的应用2. 直线与平面平行关系的判断与证明教学方法:采用案例教学法,引导学生运用判定定理解决实际问题。
教学活动:1. 分析直线与平面平行的判定定理在实际问题中的应用2. 提供练习题,让学生运用判定定理判断直线与平面的平行关系章节四:直线与平面平行的判定定理的综合训练教学目标:使学生能够综合运用直线与平面平行的判定定理解决复杂问题。
教学内容:1. 直线与平面平行关系的复杂问题解析2. 综合运用直线与平面平行的判定定理进行判断与证明教学方法:采用问题解决法,引导学生进行综合训练。
教学活动:1. 提供直线与平面平行关系的复杂问题,让学生进行分析2. 引导学生综合运用判定定理进行判断与证明章节五:直线与平面平行的判定定理的复习与总结教学目标:使学生巩固直线与平面平行的判定定理,总结学习过程中的重点与难点。
教学内容:1. 直线与平面平行的判定定理的复习2. 学习过程中的重点与难点总结教学方法:采用问答法,引导学生进行复习与总结。
最新中职数学(高教版)基础模块教学设计:直线与直线、直线与平面、平面与平面平行的判定与性质
【课题】9.2 直线与直线、直线与平面、平面与平面平行的判定与性质【教学目标】知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与直线、直线与平面、平面与平面平行的判定与性质.【教学难点】异面直线的想象与理解.【教学设计】本节结合正方体模型,通过观察实验,发现两条直线的位置关系除了相交与平行外,在空间还有既不相交也不平行,不同在任何一个平面内的位置关系.由此引出了异面直线的概念.通过画两条异面直线培养学生的画图、识图能力,逐步建立空间的立体观念.空间两条直线的位置关系既是研究直线与直线、直线与平面、平面与平面的位置关系的开始,又是学习后两种位置关系的基础.因此,要让学生树立考虑问题要着眼于空间,克服只在一个平面内考虑问题的习惯.通过观察教室里面墙与墙的交线,引出平行直线的性质,在此基础上,提出问题“空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.”这样安排知识的顺序,有利于学生理解和掌握所学知识.要防止学生误认为“一条直线平行于一个平面,就平行于这个平面内的所有的直线”,教学时可通过观察正方体模型和课件的演示来纠正学生的这个错误认识.平面与平面的位置关系是通过观察教室中的墙壁与地面、天花板与地面而引入的.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题9.2 直线与直线、直线与平面、平面与平面平行的判定与性质*创设情境 兴趣导入观察图9−13所示的正方体,可以发现:棱11A B 与AD 所在的直线,既不相交又不平行,它们不同在任何一个平面内.图9−13观察教室中的物体,你能否抽象出这种位置关系的两条直线?介绍质疑引导 分析了解 思考启发 学生思考0 2 *动脑思考 探索新知在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线11A B 与直线AD 就是两条异面直线.这样,空间两条直线就有三种位置关系:平行、相交、异面.将两支铅笔平放到桌面上(如图9−14),抬起一支铅笔的一端(如D 端),发现此时两支铅笔所在的直线异面.图9 −14(请画出实物图)受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 −15).讲解 说明 引领 分析思考 理解带领 学生 分析桌子 BA C D两支铅笔(1) (2) 图9−15 利用铅笔和书本,演示图9−15(2)的异面直线位置关系.仔细 分析关键语句 记忆5*创设情境 兴趣导入我们知道,平面内平行于同一条直线的两条直线一定平行.那么空间中平行于同一条直线的两条直线是否一定平行呢? 观察教室内相邻两面墙的交线(如图9−16).发现:1AA ∥1BB ,1CC ∥1BB ,并且有1AA ∥1CC .质疑引导 分析思考启发 学生思考7*动脑思考 探索新知由上述观察及大量类似的事实中,归纳出平行线的性质:平行于同一条直线的两条直线平行.我们经常利用这个性质来判断两条直线平行. 【想一想】空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 10 *创设情境 兴趣导入将平面 内的四边形ABCD 的两条边AD 与DC ,沿着对角线AC 向上折起,将点D 折叠到1D 的位置(如图9−17).此时A 、B 、C 、1D 四个点不在同一个平面内.图9−17质疑 引领 分析思考带领 学生 分析13图9−16图9−18*运用知识强化练习1.结合教室及室内的物品,举出空间两条直线平行的例子.2.把一张矩形的纸对折两次,然后打开(如第2题图),说明为什么这些折痕是互相平行的?1为了叙述简便起见,将线段1DD 所在的直线,直接写作直线1DD ,本章教材中都采用这种表述方法.图9−211111ABCD A B C D -中,因为四边形CC 1,又因为CC 1在平面图9−28(请画出实物图)*动脑思考 探索新知由大量的观察和实验得到两个平面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行.如图9−29所示,如果αβ∥,平面γ与α、β都相交,交线分别为m 、n ,那么m ∥n .讲解 说明 引领 分析思考 理解 带领 学生 分析75 *运用知识 强化练习1.画出下列各图形:(1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.2.如图所示,//αβ,M 在α与β同侧,过M 作直线a 与b ,a 分别与α、β相交于A 、B ,b 分别与、β相交于C 、D .⑴ 判断直线AC 与直线BD 是否平行;⑵ 如果 4M A =cm ,5AB =cm ,3MC =cm ,求MD 的长.提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况80 *理论升华 整体建构 思考并回答下面的问题:异面直线的定义?质疑回答及时了解学生ba第2题图βαMACD B 桌子 书图9−29【教师教学后记】图9-28你处理一下页脚没了内容太多了时间没分我觉得你得分两个教案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
第二章 点、直线、平面平行的判定及其性质
§2.2.2 平面与平面平行的判定
1.知识与技能:理解平面与平面平行的判定定理,并会初步运用;
2.过程与方法:以实物为媒体,启发、引导学生逐步经历定理的直观感知过程, 对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题、教师予以指导,帮助学生合情推理、澄清概念、加深认识、正确运用;
3.情感、态度与价值观:通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识;
理解平面与平面平行的判定定理的含义;
能应用直线、平面平行的判定定理判断或证明线面、面面平行;
一、目标展示
二、复习回顾
1.直线与平面平行的判定定理
2.证明直线与平面平行的关键是什么?具体方法有哪些?
三、自主学习
请同学们自主学习课本第56—57页内容,交流解决下列问题:
1. 平面与平面平行的判定定理是什么?如何分别用文字语言、图形语言、符号语言来描述?
2. 平面与平面平行的判定定理的作用有哪些?
一、文字语言描述:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.
二、图形语言描述:
三、符号语言描述:,,,,a b a b P a b ββαααβ⊂⊂⋂=////⇒//
四、作用:证明两个平面平行
四、合作探究
问题 1.(1)若一个平面内有两条直线平行于另一个平面,那么这两个平面平行吗?
答:不一定,这两个平面平行或者异面.
. (2)若一个平面内有无数条直线平行于另一个平面,那么这两个平面平行吗?
答:不一定,这两个平面平行或者异面.(注:同一平面内的这两条直线必须是相交的直线) 问题 2.设直线l, m,平面α,β,下列条件能得出α∥β的有( A )
①l ⊂α,m ⊂α,且l ∥β,m ∥β;
②l ⊂α,m ⊂α,且l ∥m ,l ∥β,m ∥β;
③l ∥α,m ∥β,且l ∥m ;
④ l ∩m =P, l ⊂α,m ⊂α,且l ∥β, m ∥β.
A.1个
B.2个
C.3个
D.0个
五、精讲点拨
例1.如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:
(1)B ,C ,H ,G 四点共面;
[解答](1)因为G ,H 分别是A 1B 1,A 1C 1的中点,所以GH 是△A 1B 1C 1的中位线,所以GH ∥B 1C 1.又因为B 1C 1∥BC ,所以GH ∥BC ,所以B ,C ,H ,G 四点共面.
(2)平面EFA 1∥平面BCHG .
[解答] (2)因为E ,F 分别是AB ,AC 的中点,所以EF ∥BC .因为EF ⊄平面BCHG ,BC ⊂平面BCHG ,所以EF ∥平面BCHG .因为A 1G ∥EB ,A 1G =EB ,所以四边形A 1EBG 是平行四边形,所以A 1E ∥GB . 因为A 1E ⊄平面BCHG ,GB ⊂平面BCHG ,所以A 1E ∥平面BCHG .因为A 1E ∩EF =E ,所以平面EFA 1∥平面BCHG .
练习:如图所示,在正方体ABCD —A 1B 1C 1D 1中, M ,N ,P 分别是C 1C ,B 1C 1,D 1C 1的中点.求证:平面MNP ∥平面A 1BD .
例2.如图所示,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,G 为DD 1上一点,且D 1G ∶GD
=1∶2,AC ∩BD =O ,
求证:平面AGO ∥平面D 1EF .
. 证明:设EF ∩BD =H ,连接D 1H ,在△DD 1H 中,因为DO DH =23=DG DD 1
,所以GO ∥D 1H ,又GO ⊄平面D 1EF ,D 1H ⊂平面D 1EF ,所以GO ∥平面D 1EF .在△BAO 中,因为BE =EA ,BH =HO ,所以EH ∥AO ,又AO ⊄平面D 1EF ,EH ⊂平面D 1EF ,所以AO ∥平面D 1EF ,又GO ∩AO =O ,所以平面AGO ∥平面D 1EF .
六、达标检测
1.一个平面内有无数条直线平行于另一个平面,那么这两个平面( C )
A .一定平行
B .一定相交
C .平行或相交
D .一定重合
2.直线a ,b 是不同的直线,平面α,β是不同的平面,下列命题正确的是( C )
A .直线a ∥平面α,直线b ⊂平面α,则直线a ∥b
B .直线a ∥平面α,直线b ∥平面α,则直线a ∥b
C .直线a ∥直线b ,直线a ⊄平面α,直线b ⊂平面α,则直线a ∥平面α
D .直线a ∥直线b ,且直线a ⊂平面α,直线b ⊂平面β,则平面α∥平面β
七、课堂小结
1.平面与平面平行的判定定理的三个关注点
(1)条件:定理的五个条件缺一不可.
(2)作用:判定或证明面面平行.
(3)关键:一个平面内的两条相交直线都与另一个平面平行.
2.判定面面平行的常用方法 :
(1)利用定义:证两个平面没有公共点;(不易操作)
(2)利用面面平行的判定定理:一个平面内的两条相交直线分别平行于另一个平面;
(3)利用判定定理的推论:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β;
(4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.
八、课后作业
1.如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:
(1)直线EG ∥平面BDD 1B 1;(2)平面EFG ∥平面BDD 1B 1.
2. 已知四棱锥P -ABCD 中,底面ABCD 为平行四边形.点M 、N 、Q 分别在PA 、BD 、PD 上,且PM ∶MA =BN ∶ND =PQ ∶QD .
求证:平面MNQ ∥平面PBC .
本节课学习的是平面与平面平行的判定定理,是对于上节课所学知识的延续和拓展,要证明面面平行还是要首先通过证明线面平行来证明,是层层递进的关系,培养了学生的空间思维能力和想象能力,进而来逐步理解空间立体几何的真正内涵所在。
本节课的学习目标基本完成,学生们掌握的也不错,但在学生们自主书写证明过程中还是有很多小问题,需要在后续的学习中慢慢改进和升华。
.。