地震勘探的基本方法

合集下载

利用地震仪器进行地质勘探的技巧

利用地震仪器进行地质勘探的技巧

利用地震仪器进行地质勘探的技巧地震仪器是一种重要的地质勘探工具,它能够帮助地质学家和地震学家了解地球内部的结构和性质。

利用地震仪器进行地质勘探需要一定的技巧和方法,下面将介绍几种常用的技巧。

首先,地震勘探中常用的一种技术是地震反射法。

这种方法利用地震仪器发射出的地震波在地下不同介质之间的反射和折射现象来推断地下结构。

地震仪器会记录下地震波在地下不同介质中传播的时间和强度,通过分析这些数据,地质学家可以推测地下岩层的厚度、形状和性质。

这种方法常用于油气勘探和地下水资源的调查,能够帮助寻找潜在的油气藏和水源。

其次,地震勘探中还常使用地震折射法。

这种方法利用地震波在地下不同介质中传播时的折射现象来推断地下结构。

地震仪器会记录下地震波在地下不同介质中传播的路径和速度,通过分析这些数据,地质学家可以推测地下岩层的分布和性质。

这种方法常用于地质灾害的预测和地下水资源的勘探,能够帮助预测地震、火山喷发等灾害的发生概率,并寻找地下水脉络。

除了地震反射法和地震折射法,地震勘探中还有一种常用的技术是地震震源定位。

这种方法利用地震仪器记录到的地震波传播时间和强度数据来确定地震的震源位置。

地震仪器会记录下地震波在不同地点的到达时间和振幅,通过分析这些数据,地震学家可以计算出地震的震源位置和震级。

这种方法常用于地震预警和地震研究,能够帮助预测地震的发生时间和地点,并研究地震活动的规律。

除了以上介绍的几种常用技巧,地震仪器还可以用于地震波速度的测量和地震波形分析。

地震波速度的测量可以帮助地质学家推断地下岩层的密度和弹性模量,从而了解地下岩石的物理性质。

地震波形分析可以帮助地震学家研究地震波传播的特点和规律,从而提高地震预警的准确性。

综上所述,利用地震仪器进行地质勘探的技巧有很多种,包括地震反射法、地震折射法、地震震源定位、地震波速度测量和地震波形分析等。

这些技巧可以帮助地质学家和地震学家了解地球内部的结构和性质,预测地质灾害的发生概率,寻找油气藏和水源,以及研究地震活动的规律。

地震勘探的基本方法

地震勘探的基本方法

t0=2h/V1,是炮点之 下垂直反射波的走
时。
连续介质情况下 反射波时距曲线
连续介质中波的射线和等时线方程
p sin (z)
v(z)
• 定义视速度的倒数为视慢度,它就是射线参数
p.
连续介质情况下 反射波时距曲线
•取连续介质中的一个微元, 记射线某一小段为ds,其垂 直长度为dz,水平长度为dx。 有
X V3
2h2 V2
c os 2
2h1 V1
c os1
X V3
t02
折射波方法的特点
探测能力(低速层、高速层) 断层的影响 梯度层的影响
倾斜折射界面的折射波理论时距曲线
t O1M PO2 MP
V1
V2
hu hd O1Q (hu hd )tgi
V1 cosi
V2
X cos hu hd cosi
V2
V1
sin i V1 V2
下倾接收的折射波时距曲线
tu
X
cos
V2
hu hd V1
cos i
X V1
sin(i
)
tou
tou
2hu V1
cos i
hd hu x sin
上倾接收的折射波时距曲线
td
X
cos
V2
hu hd V1
cos i
X V1
sin(i
)
tod
tod
2hd V1
cos i
V1 V2
cos ic
V22 V12 V2
•折射波的形成
穿透时间
t0
2H cos ic V1
穿透速度
U V1 V1V2
cos ic

地震勘探原理和方法

地震勘探原理和方法

地震勘探原理和方法地震勘探是一种通过地震波的传播和反射来探测地下结构的方法。

通过地震勘探,可以获取地下地质信息,如油气资源、地下水等。

其原理是通过地震波在地下的传播和反射,来获取地下结构的信息,从而进行地质勘探。

地震勘探的原理主要包括地震波的产生和传播,以及地震波在不同媒介中的传播速度和反射、折射等现象。

地震波可以通过不同的方法产生,例如在地面上布设震源装置,如地震仪或爆炸物等,通过地面振动产生地震波。

地震波的传播是通过地下介质的传导来实现的。

地震波的传播速度取决于介质的密度、弹性模量等特性。

当地震波遇到介质边界时,会发生反射、折射和透射等现象。

反射是地震波遇到界面时一部分能量反射回来的现象;折射是地震波遇到介质边界发生方向改变的现象;透射是地震波穿过介质边界后继续传播的现象。

地震勘探的方法主要包括地震勘探测井、地震勘探剖面和地震勘探阵列等。

地震勘探测井是通过在地下钻探井口并向井内注入震源来产生地震波,然后通过井中的测震仪记录地震波。

这种方法可以获取井内和井周围的地下结构信息,用于勘探油气资源等。

地震勘探剖面是通过在地表上布设震源和接收器,在不同位置上记录地震波的传播情况。

这些记录的数据可以通过地震处理和解释来获取地下结构的信息。

这种方法可以获取地质信息和油气资源等。

地震勘探阵列是将多个地面震源和接收器布设在一定区域内,同时记录地震波的传播信息。

通过对地震波的分析和解释,可以获取地下结构的信息。

这种方法可以用于地震监测和地震研究等。

地震勘探还可以通过数据处理和解释来获取更详细的地下结构信息。

数据处理包括地震波形记录的处理、去除噪声等。

数据解释包括地震波传播路径的解释、地震反射地震震相的解释等。

总之,地震勘探是通过地震波的传播和反射来获取地下结构信息的一种方法。

通过不同的方法和技术,可以获取地质信息和油气资源等。

地震勘探具有广泛的应用领域和重要的地质意义。

地震勘探方法原理

地震勘探方法原理

透射波的形成
透射定律:反射线、透射线位于法线的两侧,入射线、透射线、
法线在同一个射线平面内,反射角和入射角满足斯 奈尔定律。
sin sin ' sin V1 V1 V2 V1 sin V2 sin
斯奈尔定理:入射角的正弦和透射角的正弦之比等于入射波
当V1<V2 ,则<,透射波射线远离法线,向界面靠拢。实际地层
2.3
地震勘探方法原理
实质:以地壳中不同岩、矿石之间弹性差异为基
础,通过观测和研究地震波在地下的传播
特性,探查地质构造和矿产资源。 主要用途:探查油气田地质构造、煤田盆地,深 部构造和区域地壳构造,水、工、环 境地球物理调查。很少用于金属矿勘
探。
特点:高精确度、高分辨率、大穿透深度。 条件:具有规则的岩层分界面。 方法:激发地震波——测量震波从震源到检波器时间—— 由旅行时、速度重建地震波路径——构造分析、地 层分析、岩性分析。 折射波法:波的主要沿两个岩层的分界面传播,传播路径 近似水平。 反射波法:波先向下传播,后反射回地表,传播路径基本
变化之比)和切变模量μ(刚性模量:切应
力与切应变之比)。
P V V

P V V

切变模量( 刚性模量)μ 的表达式说明:
μ 越大,切应变越小。
对于液体, μ=0,即液体不产生切变,只有 体积变化。
拉梅系数:由胡克定律,应力与应变之间存在线 性关系,由线性方程组表示,出现36 个弹性系数。对于各向同性均匀介质, 这些系数大都对应相等,可归结为应力
可以通过此式,研究地下介质泊松比,作地 震岩性分析和预测油藏。
(3) 地震波的能量与吸收: 波的能量E:地震波的传播实际是能量的传播。频

地震勘探原理和方法

地震勘探原理和方法

地震勘探原理和方法地震勘探是一种地球物理勘探方法,通过研究地震波在地壳中的传播规律来推断地下岩层的性质和形态。

本文将介绍地震勘探的基本原理和方法,包括地震波传播原理、地震波探测方法、数据采集技术、数据处理技术、地质解释技术、地球物理测井技术和地震勘探仪器设备等方面。

1.地震波传播原理地震波是指地震发生时产生的波动,包括纵波和横波。

纵波是压缩波,在地壳中以波的形式传播,横波是剪切波,在地壳中以扭动的方式传播。

当地震波在地壳中传播时,遇到不同密度的岩层会发生反射、折射和透射等现象,这些现象是地震勘探的基础。

2.地震波探测方法地震波探测方法包括折射波法和反射波法。

折射波法是通过测量地震波在地壳中传播的速度和时间来推断地下岩层的性质和形态。

反射波法是通过测量地震波在地壳中反射回来的信号来推断地下岩层的性质和形态。

在实际应用中,通常采用折射波法和反射波法相结合的方式来提高地震勘探的精度和分辨率。

3.数据采集技术数据采集技术是地震勘探的关键之一,它包括野外数据采集和室内数据采集。

野外数据采集是在野外布置观测系统,通过激发地震波并记录地震信号来进行数据采集。

室内数据采集则是在室内通过计算机系统对野外采集的数据进行处理和分析。

4.数据处理技术数据处理技术是地震勘探的关键之一,它包括预处理、增益控制、滤波、叠加、偏移、反演等步骤。

预处理包括去除噪声、平滑处理等;增益控制包括调整信号的幅度和相位;滤波包括去除高频噪声和低频干扰;叠加是指将多个地震信号进行叠加,以提高信号的信噪比;偏移是指将反射回来的信号进行移动,以纠正地震信号的偏移;反演是指将地震信号转换为地下岩层的物理性质,如速度、密度等。

5.地质解释技术地质解释技术是地震勘探的关键之一,它包括构造解释、地层解释和储层解释等方面。

构造解释是指根据地震信号推断地下岩层的构造特征和形态;地层解释是指根据地震信号推断地下岩层的年代、沉积环境和地层组合;储层解释是指根据地震信号推断地下油气储层的性质和特征。

《地震勘探原理》§4-地震勘探野外工作方法3精选全文完整版

《地震勘探原理》§4-地震勘探野外工作方法3精选全文完整版
单井最大药量有一个限度。超过这个限度能量仍不足,可 采用小药量组合爆炸,这样还有利于激发高宽频信号,提 供分辨能力。 ⑷ 道间距(相邻两个中心道之间的距离)⊿x 通常不应该超过设计的水平分辨率的2倍。这样的目的是 使地下空间采样间隔满足设计要求,即满足空间采样定理
§4 地震勘探野外工作方法
(五)多次覆盖采集参数选择
室内处理方法:水平叠加
CMP R
对于水平层状介质,假如分别在点O1 ,O2 ,…,On激发,则 可分别在对应的S1 ,S2 ,…,Sn各点接收到来自地下反射界面 上同一反射点R的反射波(R为CRP或CDP)。若对n次激发得
到的R点的各道反射波进行动静校正,使其相位一致,然
后叠加起来,便获得了共反射点R的n次叠加记录。
❖ 4.3.2.2 综合平面法 D
O1 45
M
O2
R1
R2
O1单边放炮,offset = 0, O1O2之间布置检波器接收
1 R1R2 2 O1O2Leabharlann §4 地震勘探野外工作方法
❖ 4.3.2.2 综合平面法 D
O1 45
M
O2
R1
R2
R3
O1 、O2双边放炮,offset = 0, O1O2之间布置检波器接收
§4 地震勘探野外工作方法
shot1 shot2 shot3 shot4
offset = 2⊿x ⊿shot = 2⊿x
n =12
station
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 2 3 4 5 6 7 8 9 10 11 12
channel
1
5
9

地震勘探技术野外工作方法反射波法折射波法

地震勘探技术野外工作方法反射波法折射波法
(2) 有效波层次分明,波间关系清 楚,尤其是目的层反射应明显;
(3) 干扰波少,强度弱,并易于分辨。图5.9 大地衰减和检波器特性曲线
2.检波器的频率特性 高频检波器:高频响应好, 低频响应差。如图5.9所示。
① 大地滤波衰减曲线; ② 检波器频率响应曲线; ③ 检波器+大地特性。高、低频信号的输出基本均一。
1.单边观测系统 定义:在炮点一方接收的观测系统。适应折射界面较浅的情况。 折射波法规测系统
2.相遇观测系统
定义:两个单边时距曲线组成的 观测系统。时距曲线存在互换关系。 在讨论倾斜界面折射波时距曲线时已 提及过。
3.追逐观测系统 主要作用:界面弯曲,判断波有无 穿透;断层,判断是否绕射。在前面已地震波的激发
1.地震勘探对激发条件的基本要求
激发条件:影响地震记录好坏的第一因素,得到好的有效波的 基础条件。
(1) 有一定能量,保证获得勘探目的层的反射; (2) 有效波能量强,干扰波相对微弱,有较高的信噪比; (3) 频带较宽,尽可能接近δ脉冲(尖脉冲),以利提高分辩率; (4) 同点激发,地震记录重复性好。 2.震源类型
把激发点和排列向一个方向移动,重复以上工作,得一连续长反射 界面。图中,T=Tˊ(互换时间)。
观测系统图示
2. 如图(b)示。 O1激发,O1O2接收,用O1A表示,O1A在测线上投影O1A1对应 反射界面R1R2;
O2激发,O1O2接收,用O2A表示,相应反射界面为R2R3。 两次激发,得连续反射界面段R1R3。 折射法:多用时距平面图表示。
(2)相干干扰
定义:指外界产生的具有一定规律性的干扰。
特点:在地震记录上表现为有规律的振动,具有一定的 频率和视速度。
相干干扰产生:在 大型厂矿附近,机器有 规律地连续振动,江、 河波浪冲击岸坡等。如 图5.13所示。

001地震勘探原理及解释方法简介

001地震勘探原理及解释方法简介

为什么入射 角是直角?
信号太弱,信噪比太低
第三步:水平叠加
把同一点的反射信
S
MБайду номын сангаас
R
号经过处理以后,进
行相加,从而可以加
强信号去除噪声
•T0=2H/V
R
多次迭加的观测系统
• 如图所示,24道接收,炮点 位于第一个检波器位置上, 每放一炮,炮点随整个排列 一起向前移动三个道间距 (d=3delt(x)),这样就组成 了四次迭加的观测系统。O1 点放炮的第19道,及其它点 放炮的13道,7道,1道均来 自共反射点R1
?
常规动校正
四次项动校正
视各向异性动校正
接 收 方 式
一点激发
多点接收
返回
几个单炮实例
不同地表条件下的单炮记录
二 进 制 增 益 控 制 系 统 实 例
随机干扰波
折射1 折射2 有效波
面波1
面波2
沙漠地表
区域异常振幅压制前后单炮记录
TR. 1--120
TR. 361--480
单炮记录
地表 基准面
第二步: 静校正
• 沿地震观测线的地形是起伏不平的。表层介质不 均匀,厚度也沿横向变化。这样势必导致反射波 因表层异常产生时差,直接歪曲地下深层的构造
形态。为此,为了消除表层影响,选择一个统一
的基准面作表层校正,由于这种校正与反射波的 传播时间无关,每一个记录道只有一个校正值,
所以称为静校正
第一步:自接自收的地震勘探
• 在地表平坦的情况下, 接收到的地震记录与 实际的地层形态一致, 此时我们看到的地震 剖面就是对应的地下 结构 • T0=2H/V
T0
H,V T0

石油勘探中的地震勘探方法教程

石油勘探中的地震勘探方法教程

石油勘探中的地震勘探方法教程地震勘探是石油勘探中一种重要的地球物理勘探方法。

它通过利用地震波在地壳内的传播特性,以及地下地质构造对地震波传播产生的影响,来获取地下岩层的信息,进而推断出可能存在石油或天然气的区域。

下面将介绍地震勘探中的常用方法和技术。

一、地震波概述在地震勘探中,地震波是实施勘探的基础。

地震波通常包括水平振动的横波(S波)和纵波(P波)。

P波是沿着传播方向的压缩波,而S波是沿着传播方向的横波。

这些地震波在地下的传播速度和路径受到地下岩石的物理特性和地形的影响。

二、地震勘探常用方法1. 反射地震勘探反射地震勘探是目前应用最广泛的地质勘探方法之一。

在这种方法中,地震波首先通过震源产生,沿着地下岩层传播,一旦遇到不同密度或声阻抗的地层边界,部分地震波将会发生反射,并返回地面,被接收器记录下来。

通过分析这些反射波的特征,可以推断出地层的分布、地下构造的特征以及可能存在的石油或天然气的区域。

2. 折射地震勘探折射地震勘探是通过分析地震波在岩石中的折射和绕射特性,来推断地下岩层的情况和存在石油或天然气的可能性。

这种方法常用于地下岩石有复杂构造或存在倾斜的情况下。

3. 井下地震勘探井下地震勘探是将地震勘探的装置和设备安装在已经钻完的井中,通过在井中产生震源和接收地震信号,来获取地层的地震数据。

这种方法主要应用于已经钻井的油田或天然气田中,可以提高勘探的精度和准确性。

三、地震勘探的流程与技术1. 设计地震勘探的参数和布局在地震勘探中,需要首先根据勘探区域的地质构造和特点,确定合理的震源能量、接收器位置和工作频率等参数。

根据地下岩层的深度和目标层位,确定最佳的分辨率和有效侧向范围。

然后根据布局参数设计合理的勘探网格。

2. 数据采集与处理在地震勘探中,通过在地面或井下布设的接收器阵列,采集到的地震数据需要经过专业处理软件进行数据处理和分析。

在数据采集过程中,还需要注意噪声的剔除和数据质量的检测,以确保数据的准确性。

地震勘探基本概念

地震勘探基本概念

地震勘探基本概念一、概念地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x 方向的波形曲线.动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正.多次覆盖:对被追踪的界面进行多次观测.剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等.几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh.时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x 之间的关系剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差.绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波.三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征.水平切片:就是用一个水平面去切三维数据体得出某一时刻tk各道的信息,更便于了解地下构造形态个查明某些特殊地质现象. 同相轴:一串套合很好的波峰或波谷.相位:一个完整波形的第i个波峰或波谷. 纵波:传播方向与质点振动方向一致的波.转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波.反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同. 地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。

地震勘探的野外工作方法讲解

地震勘探的野外工作方法讲解

第二章地震勘探的野外工作方法(10学时)野外工作是整个地震勘探中重要的基础工作,它的基本任务是采集地震数据。

第一节野外工作方法是从地震队的组织形式来完成的,分试验工作和生产工作。

主要内容:激发地震波、接收地震波、以及地震测线,激发点、接收点的测定。

一、试验工作目的:了解本地区的地震地质情况,确定解决任务所需要的最佳野外方法。

1、干扰波的调查,调查干扰波的类型及其特点。

2、地震地质情况的调查。

⑴调查低降速带的厚度及速度V2>V1在潜水面具有很强的反射,则透射的就少,找油而不是找水,则希望在低降速带的底部爆处,潜水面的深度决定了打井深度。

⑵工区速度的分布规律,一般速度是深度的垂直,这个任务由地震测井来完成。

⑶调查有无标准层:标准层:大面积连续追踪的地下反射界面。

3、选择最佳的激发条件:炸药埋藏深度,药量、炸药组合方式。

4、选择合适的接收条件:确定检波器的组合方式,合适的观测系统。

比如:道间距的为多少最好,第一个检波器与炮点多远,选择合适的仪器因素。

二、生产工作根据试验得出的结论进行野外生产第二节干扰波一、地震波波场的特点:地震震源激发以后,在地质介质中产生的振动的总和就是波场L1(x,y,z,t),震源性质以及地质介质中的弹性参数分布情况决定了波场的特点。

在陆地震勘探时,广泛使用浅井、炸药包和它在井中安置的不对称性也会产生一定强度的横波和面波,当采用非炸药震源的激发的波场更加复杂,有的主要激发纵波,有的主要激发横波,但这些震源也不会是纯的,它们总是激发出两种体波以及面波。

各种震源之中,有些是脉冲型的,激发出很短的(约50ms)不超过3~4个周期的振动,有的产生变频正弦振动,其延续时间达若干秒震源激发的振动形状对波场的总形态有重大影响,它会改变不同类型和不同形式的波所引起的振动之间的关系,当波的震源传播到具有大量界面的地质介质时,产生多次生波(各种类型的一次波和多次波)波场是由数目不多的强一次波和部分二级波加上许多弱的一次波和多次波构成的,当存在折射界面时,则除了反射波外,还有折射波,除了地震震源引起的振动外,波场中还包括外部震源激发的振动→微震。

地震勘探方法

地震勘探方法

地震勘探方法地震勘探属于大地物理勘探的一种,其主要目的就是使用地震波的传播信息来研究地球内部的物理性质。

该方法适用于石油、天然气、地下水等资源勘探,也可以获得地质结构、构造特征和岩石类型等重要信息。

下面我们来了解一下地震勘探方法的主要步骤。

1. 设计调查方案在进行地震勘探前,必须按照区域、勘探目的、地形地貌、地质情况以及地震波源和接收器的条件制订出调查方案。

一个好的方案应该考虑到实际工作中会遇到的各种问题,比如设计地震波源的形式、录取器的分布以及测量参数等等。

2. 执行勘探工作地震勘探工作主要分为两个阶段:施工阶段和观测阶段。

在施工阶段,需要布设地震波源和接收器。

地震波源一般包括人工炸药、重锤、地震车和振荡器等,而接收器一般分放有线和无线两种类型。

在观测阶段,需要将地震信号进行分析处理,得出有关区域内地质信息的数据。

3. 数据分析处理数据分析处理是地震勘探工作中最为关键的环节。

经过数据处理,地震图像可以直观地反映出研究区域内地下介质的结构、厚度和岩性等重要特征。

在数据处理过程中,需要利用地震波的干涉、偏移、反演等多种手段进行分析处理。

4. 结果解释最后一步是对勘探获得的数据进行解释。

在勘探过程中,地震记录可以通过人工解释来确定地下构造,解释包括反射界、速度、复杂结构和特殊的地球物理响应。

同时还需要借助其他地理空间信息技术对分析结果进行可视化呈现,以便用于三维建模、岩石分类和裂隙分布等科学研究工作。

综上所述,地震勘探方法是一种比较全面、科学的地球勘探技术。

在研究地下构造、资源勘探等方面,地震勘探技术均能够起到至关重要的作用。

不过,在实践中,还需要综合考虑各种因素,根据不同勘探目的调整方案,提高勘探效果,取得更好的勘探结果。

石油勘探地震规范

石油勘探地震规范

石油勘探地震规范地震勘探是石油勘探领域中一项重要的工作,它通过对地下的地震波传播特征进行监测和分析,以获取地下构造与油气资源分布等信息。

在进行地震勘探工作时,需要遵循一系列的规范与标准,以确保勘探结果的准确性和可靠性。

本文将就石油勘探地震规范进行论述,主要包括地震勘探的原理与方法、数据采集与处理、质量控制、仪器设备标准等方面的内容。

1. 地震勘探的原理与方法地震勘探是利用地震波在地下介质中传播的特点,通过监测地震波的传播速度、反射、折射等现象,来获得地下构造与油气资源分布的信息。

在进行地震勘探工作时,需要遵循以下原则与方法:1.1 叠加全面的地震剖面:合理选择测线的布置,使得测线覆盖面积广,且各测点之间的距离均匀分布,以保证勘探结果全面而准确。

1.2 合理选择地震波源:根据勘探区域的地质特征和勘探目标,合理选择地震波源的类型和能量大小,以提高勘探效果。

1.3 适当选择接收器参数:根据地震波传播的深度和目标层位的特征,合理选择接收器参数,并进行维护和校准,以确保接收到准确的地震波信号。

2. 数据采集与处理地震勘探中的数据采集与处理是保证勘探结果准确性的重要环节。

在数据采集与处理过程中,需要遵循以下规范:2.1 合理的采样周期和采样率:根据地震波传播速度和目标层位的特征,合理选择采样周期和采样率,并确保采集到足够的数据量。

2.2 数据质量控制:对采集到的数据进行质量控制,包括数据的完整性、准确性等方面的监测与评估。

2.3 数据处理:通过采用适当的滤波、去噪等数据处理方法,提取出地震波的信号,剔除掉干扰和噪音,以获得清晰的勘探结果。

3. 规范的质量控制为了确保地震勘探结果的准确性和可靠性,需要进行规范的质量控制。

具体的质量控制措施包括:3.1 仪器设备标定与校准:对地震仪器设备进行定期的标定和校准,确保其测量结果的准确性与可靠性。

3.2 现场实时监测:在地震勘探工作进行过程中,进行现场实时监测,及时发现和解决可能影响勘探结果的问题,并进行相应的调整与改进。

地震勘探的主要方法

地震勘探的主要方法

地震勘探的主要方法嘿,咱今儿个就来讲讲地震勘探的主要方法哈!你说这地震勘探啊,就像是给地球做一次全面的身体检查。

那它主要有哪些方法呢?首先就是反射波法,这就好比是地球给我们发出的信号反射回来让我们去捕捉。

想象一下,地球内部就像一个神秘的大宝藏,反射波法就是我们寻找宝藏的重要线索呢!通过对反射回来的波进行分析,我们就能了解地下的结构啦。

还有折射波法呢,这就好像是光线在不同介质中折射一样。

地震波在地下传播时,遇到不同的地层也会产生折射现象,我们就可以根据这些折射的情况来推断地下的情况呀。

这是不是很神奇?另外呢,还有地震测井法。

这就像是给地球打个深井,直接去探测里面的情况。

通过在井中激发地震波,然后接收返回的信号,就能更准确地了解地层的特性啦。

你看哈,这些方法各有各的用处,就像我们生活中的各种工具一样。

反射波法能让我们大致了解地下的轮廓,折射波法能让我们知道地层的变化,地震测井法更是能让我们深入了解地下的细节。

那这些方法是怎么操作的呢?比如说反射波法,得先在地面上布置好多好多的检波器,就像一个个小耳朵在听地球的声音呢。

然后通过激发地震波,让这些小耳朵去接收反射回来的波,再经过复杂的处理和分析,才能得出有用的信息。

这可不是一件简单的事儿啊!折射波法呢,则需要我们仔细观察地震波的传播路径和折射情况,就像是侦探在寻找线索一样。

地震测井法就更不用说啦,得下到井里去操作,那可是很有技术含量的呢。

哎呀,说了这么多,你是不是对地震勘探的主要方法有了更清楚的认识啦?这可是地质勘探中非常重要的一部分呢!没有这些方法,我们怎么能了解地球内部的奥秘呢?怎么能找到那些隐藏的宝藏呢?所以啊,可别小看了这些方法,它们可是地质学家们的宝贝呢!总之呢,地震勘探的主要方法就像是一把钥匙,能打开地球内部奥秘的大门。

让我们一起好好利用这些方法,去探索地球更多的秘密吧!你说好不好呢?。

地震勘探方法简介

地震勘探方法简介

50年代末试用,测定岩土波速。60年代末我国生产多道光点式轻便地震仪, 光点示波、打纸记录,手工作图进行资料解释 80年代使用信号增强型浅震仪,磁带,计算机,自动成图。 在工程勘察中的应用:测定覆盖层厚度、基岩起伏情况,测定隐伏断层、破碎 带的位置,评价岩体质量和工程地质围岩分类等。 2.浅层反射法 折射法不足,发展浅反技术。 50~70年代,试验阶段,没有多少进展。 80年代发展迅速,地矿、铁道、水电、核工业各部门相继研究, 包括:震源研制、数据采集方法研究、资料处理方法研究以及处理软件的研制。 工作方法有:浅层纵波反射法,浅层横波反射法,反射—折射法联合应用 观测系统:共深度点水平叠加、共炮点接收、最佳窗口技术及最佳偏移距技术 3.透射波法 钻孔或坑道中进行,测定能量衰减规律 原位测定地层速度(纵波和横波速度) 圈定地层介质速度或能量异常带
浅 层


勘 探
研究地质构造体状态及特性
测定纵、横波传播速度
地层划分和风化层分带 测定弹性模量及应变指标 探测断层破碎带 测定坚硬岩石的抗压强度 探测地下洞穴(土洞、溶洞、墓穴) 估算岩石各向异性和程度 追索砂层及砂砾层中的潜水面 确定滑坡的厚度及结构 密实(辗实、夯实)度评价
研究地质构造勘探目的层面埋深及厚度地震小区划砂土液化判定调查地质资源矿产天然建材地下水源等地层划分和风化层分带探测断层破碎带探测地下洞穴土洞溶洞墓穴追索砂层及砂砾层中的潜水面确定滑坡的厚度及结构测定纵横波传播速度测定弹性模量及应变指标确定地基土动力学参数和密度测定坚硬岩石的抗压强度估算岩石各向异性和程度密实辗实夯实度评价定量算出孔隙度和裂隙度测定场地卓越周期桩基检测地基坝堤质量评价研究岩土体状态及特性浅层地震勘探应用范围三浅震的发展与展望起源于自然地震观测我国是世界上最早有地震记载的国家也是第一个设计成功观测地震仪器的国家

地震勘探技术在油田勘探中的应用研究

地震勘探技术在油田勘探中的应用研究

地震勘探技术在油田勘探中的应用研究地震勘探技术在油田勘探中起着重要的作用,它通过模拟大地震时地下地质体的一系列反应来定位地下目标物质,如油气等。

本文将从地震勘探技术的基本原理、勘探方法、技术难点等方面探讨其在油田勘探中的应用研究。

一、基本原理地震勘探技术是利用弹性波在地下介质中的传播特性确定地下介质中岩石层、构造、孔隙、流体等性质,从而探测目标区域的油气资源赋存情况,实现油气资源的开发利用。

二、勘探方法地震勘探方法分为浅部地震勘探和深部地震勘探两种。

浅部地震勘探主要用于寻找浅层地质构造和探测浅层油气资源,而深部地震勘探则是在较深的地层中寻找目标,如大型油气田开发。

地震勘探方法主要包括地震勘探测线布设、地震数据采集和处理、勘探剖面解释等几个步骤。

其中,地震测线的布设是非常关键的步骤,需要根据地质构造、地形、水系等因素来确定。

数据采集和处理是将反射波、折射波等弹性波信号通过数字信号处理技术转化为地震剖面图,以达到寻找油气资源的目的。

而地震勘探剖面解释则是对测线采集到的地震数据进行解释分析,以确定地层结构、油气藏发育状况、填充物及盖层情况等。

三、技术难点在地震勘探中,存在一些技术难点。

如在勘探剖面解释中,由于反射波、折射波等弹性波信号在地下的复杂反射和衍射,使地震剖面图显示的色彩异常复杂,需要借助地震学原理和图像处理技术进行解释。

此外,在数据采集和处理时,地震数据的质量直接影响到勘探剖面的准确性和可靠性。

四、应用研究地震勘探技术在油田勘探中得到广泛应用,在油气资源勘探、勘探剖面的处理和解释等方面发挥了重要作用。

一些经济条件落后、技术水平不高的油田,借助地震勘探技术的手段,成功找到了一些大型油气田,为我国油气资源开发做出了重要贡献。

另外,随着油气勘探的深入,地震勘探技术也不断地得到改进和完善。

电子、通讯、地球物理、计算机等技术的发展,为地震勘探提供了更加精确、快速、高效的数据采集、处理和解释手段,使地震勘探技术日趋成熟和完善。

地震勘探方法PPT课件

地震勘探方法PPT课件

i1
i 1
hivi p 1 p2vi2 1 2
应用二项式展开,并令ti 单程垂直传播时间,得
hi Vi
表示波在各层中的
t
2
n i 1
ti
1
1 2
p 2 vi2
1 2
3 4
p 4 vi4
同理,有
n
n
x 2 hitgi 2
i1
i 1
hivi p 1 p2vi2 1 2
2
n i 1
利用折射波的时距曲 线,能方便地得出界 面速度和截距,进而 可以求出折射界面的 深度值
(2)倾斜界面的折射波理论时距曲线 O1点激发,O1 O2点区间接收
t O1M PO2 MP
V1
V2
hu hd O1Q (hu hd )tgi
V1 cos i
V2
x cos hu hd cos i
V2
V1
下倾接收的折射波时距曲线:
tu
X
cos
V2
hu hd V1
cos i
X V1
sin(i
)
tou
tou
2hu V1
cos i
hd hu x sin
上倾接收的折射波时距曲线:
td
X
cos
V2
hu hd V1
cos i
X V1
sin(i
)
tod
tod
2hd V1
cos i
hu hd x sin
§1.2 地震勘探的基本方法
一、时距曲线 1、与地震勘探有关的各种波
➢地震反射波法 ➢地震折射波法
地震记录图、地震剖面、同相轴
2、时距曲线的概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V2
V1
sin i V1 V2
下倾接收的折射波时距曲线
tu
X
cos
V2
hu hd V1
cos i
X V1
sin(i
)
tou
tou
2hu V1
cos i
hd hu x sin
上倾接收的折射波时距曲线
td
X
cos
V2
hu hd V1
cos i
X V1
sin(i
)
tod
tod
2hd V1
cos i
取连续介质中的一个微元,记 射线某一小段为ds,其垂直长 度为dz,水平长度为dx。有
dx dztg (z) dz sin (z) dz pv(z)
1 sin2 (z)
1 p2v2(z)
ds
dz
dz
dt
v(z) v(z) cos (z) 1 p2v2 (z)
在早期,地震勘探采用光点和模拟磁带地震仪 采集数据,在地质构造相对简单的地区寻找构 造圈闭,仅用地震波的运动学特征就可以胜任。
近期的地震勘探技术
1970年代以后,石油勘探面临的任务是复杂地表和/或 复杂构造探区,以及各种复杂油气藏(如地层、岩性 油藏),运动学理论无法正确解释复杂地质条件下的 波场,更无法根据时间场预测地层岩性特征,这就需 要利用地震波的动力学特征,与此相适应,野外数字 记录和室内数字处理技术的推广也为地震波动力学信 息的应用提供了可能。
V1 V2
cos ic
V22 V12 V2
折射波的形成
穿透时间
t0
2H cos ic V1
穿透速度
U V1 V1V2
cos ic
V22 V12
多个水平折射界面的折射波理论时距曲线
对于有三层介质两个水平折射界面的地质模型
t OM ' P'S2 M ''P''
V1
V3
M 'M '' P''P' V2
室内数据处理;
地震地质解释;
‥ ‥等。
地震反射波勘探的基本原理
在地表附近激发的地震波向下传播,遇到不同介 质(地层)分界面产生向上的反射波,检测、记 录地下地层界面反射波引起的地面振动,可以解 释推断地下界面的埋藏深度,地层介质的地震波 传播速度、地层岩性、孔隙度、含油气性等。
最简单的是根据反射波到达地面的时间计算地下
水平两层介质折射波时距曲线
t OM MP PS
V1
V2
V1
2 OM MP
V1
V2
X 2htgic 2h
V2
V1 cos ic
X V2
2h V1 cos ic
(1 V1 V2
sin ic )
X V2
2h V1 cos ic
cos2
ic
X 2h cos ic
V2
V1
sin ic
这种必要性和可能性的结合,促使地震波动力学理论 的实际应用有了飞速的发展,这些进展中最有代表性 的是亮点技术、波动方程偏移、波阻抗反演、地震模 拟等。地震勘探因此从单纯的构造研究过渡到研究岩 性、岩相甚至直接找油的新阶段。
折射波的形成
sin ic
V1 V2
Ic为临界角
折射波的盲区
X M 2Htgic
X V3
2h2 V2
c os 2
2h1 V1
c os1
X V3
t02
折射波方法的特点
探测能力(低速层、高速层) 断层的影响 梯度层的影响
倾斜折射界面的折射波理论时距曲线
t O1M PO2 MP
V1
V2
hu hd O1Q (hu hd )tgi
V1 cosi
V2
X cos hu hd cosi
界面的深度,基本公式为:
H
1
vt
2
反射波法的主要优点是:在一定的条件下,可以
查明从地表到地下数千米的整个地层剖面内各个
构造层的起伏形态,甚至是地层岩性特征。
地震勘探原理示意图
早期的地震勘探技术
地震勘探的方法和技术是在运动学理论的基础 上建立和发展起来的,在很长的一段时间内, 动力学特征只被定性地利用,起辅助的作用, 这与地震勘探技术水平(包括野外资料采集仪 器和室内数据处理设备)和石油勘探对地震技 术的要求等因素有关。
海上地震船
岩石介质的波阻抗差异(近似为速度差 异,因为速度差异大于密度差异)是运 用地震波进行勘探的物质基础,研究地 震波的传播速度规律具有极其重要的理 论研究意义和实际应用价值。
地震勘探的分支方法:
折射波法; 反射波法; 面波法;
地震勘料采集;
下倾方向相比,斜率小视速度较大。
2. 倾斜界面上折射波的盲区和临界距离与界面的
深度有关,因此在上倾方向和下倾方向接收时, 初至折射波的接收范围也有差异。
时距曲线的特点
3. 倾斜界面倾角较大时,可能出现 i+φ>=90的情况,若
在下倾方向接收,折射波将无法返回地面,因为盲区为无 限大。如在上倾方向接收,入射角总是小于临界角,无法 形成折射波。野外工作中应改变测线方向使界面视倾角与 临界角之和小于 90 °。
应用地球物理学导论 第二章 地震勘探
什么是地震勘探
地震勘探:以不同岩(矿)石间的弹性差 异为基础,通过观测和研究地震波在地下 岩层中的传播规律,借以实现地质勘查找 矿目的的物探方法。
应用领域:主要用于油气田、煤田地质构 造的勘探,地壳测深,工程地质勘察等。
2008年在EAGE上展示的地震车
反射波时距曲线
t OR RS O*S
V1
V1
4h2 X 2
V1
当炮检距X=0时, t0=2h/V1,是炮点 之下垂直反射波的 走时。
连续介质情况下 反射波时距曲线
连续介质中波的射线和等时线方程
p sin (z)
v(z)
定义视速度的倒数为视慢度,它就是射线参数p.
连续介质情况下 反射波时距曲线
4. 倾斜界面情况下,在上倾方向接收,当i>φ 时, 为正; 当i=φ 时, 趋于无穷大,即时距曲线为水平状,其斜率为
零,这说明远路径的折射波和近路径的折射波同时到达;
i<φ 时,时距曲线斜率为负, V *为负,这说明较远路径
的折射波先于近路径的折射波到达,这是因为界面速度高 于覆盖层的速度,远接收点处的折射波的传播时间小于近 接收点。
hu hd x sin
时距曲线的特点
1. 倾斜界面上的时距曲线仍然是直线,但直线斜
率的倒数不等于 V
t ,称之为 视速度
。2 ,在斜倾率斜的界倒面数情为况V下*,=在△上x倾/ △、
下倾方向接收到的两支时距曲线斜率不等,下倾
方向斜率为sin(i+φ),与上倾方向相比,斜率
大视速度较小;上倾方向斜率为 sin(i-φ),与
相关文档
最新文档