新人教版九年级数学第二十二章二次函数知识点总结(1)
人教版九年级上册第22章二次函数图像与性质知识点题型总结
二次函数图像及性质【二次函数的定义】一般地,形如y = ax2+bx + c Wc为常数,“工0)的函数称为兀的二次函数,其中兀为自变量,为因变量,J b、c分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数“工0,而b、c可以为零.二次函数的自变量的取值范朗是全体实数.【二次函数的图象】1.二次函数图象与系数的关系(1)“决左抛物线的开口方向当“>0时,抛物线开口向上;当“<0时,抛物线开口向下.反之亦然.同决过抛物线的开口大小:同越大,抛物线开口越小;同越小,抛物线开口越大.温馨提示:几条抛物线的解析式中,若问相等,则其形状相同,即若"相等,则开口及形状相同,若a互为相反数,则形状相同、开口相反.(2)〃和"共同决左抛物线对称轴的位置(抛物线的对称轴:S2a当b=o时,抛物线的对称轴为y轴;当方同号时,对称轴在轴的左侧;当〃异号时,对称轴在y轴的右侧・(3)“的大小决泄抛物线与y轴交点的位置(抛物线与y轴的交点坐标为(o,C)当c=o时,抛物线与y轴的交点为原点:当c>o时,交点在轴的正半轴:当c<0时,交点在y轴的负半轴.2•二次函数图象的画法五点绘图法:利用配方法将二次函数y = ax2 +bx + c化为顶点式y = a(x-h)2 +k,确泄其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0, c)、以及(0, c)关于对称轴对称的点(2力,c)、与x轴的交点(占,0) , (x2 , 0)(若与x 轴没有交点,则取两组关于对称轴对称的点)・画草图时应抓住以下几点:开口方向,对称轴,顶点,与X轴的交点,与y轴的交点.3•点的坐标设法(1)一次函数y = ax + h图像上的任意点可设为(“与+“)•其中再=0时.该点为直线与y轴交点.(2)二次函数y = ax2+bx + c(心0)图像上的任意一点可设为(石,妙?+站+可.再=0时,该点为抛物线与y轴交点,当x=-A时,该点为抛物线顶点.2a⑶ 点(召,yj关于(兀2,x2)的对称点为(2兀-若,2比-)・4•二次函数的图象信息(1)根据抛物线的开口方向判断a的正负性.(2)根据抛物线的对称轴判断-仝的大小.2a(3)根据抛物线与y轴的交点,判断。
九年级数学上册第22章二次函数小结与复习课件新版新人教版
针对训练
11.一家电脑公司推出一款新型电脑,投放市场以来3个月的 利润情况如图所示,该图可以近似看作为抛物线的一部分,请 结合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式; (2)该公司在经营此款电脑过程中,第 几月的利润最大?最大利润是多少? (3)若照此经营下去,请你结合所学的 知识,对公司在此款电脑的经营状况 (是否亏损?何时亏损?)作预测分析.
【解析】
方法一:配方,得y=x2-2x+3=(x-1)2+2,则
顶点坐标为(1,2).
方法二代入公式
x2ba2211,y4ac4ab2
41322
41
2,
则顶点坐标为(1,2).
方法归纳解决此类题目可以先把二次函数y=ax2+bx +c配方为顶点式y=a(x-h)2+k的形式,得到:对称 轴是直线x=h,最值为y=k,顶点坐标为(h,k);也 可以直接利用公式求解.
解得, a=2,b=-3,c=5.
待定系数法
∴ 所求的二次函数为y=2x2-3x+5.
针对训练 5.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7
的形状相同,顶点在直线x=1上,且顶点到x轴的距离
为5,请写出满足此条件的抛物线的表达式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状
+2bx+c的对称轴应在直线x=1的左侧而抛物线y=-x2
+2bx+c的对称轴
x b b 2(1)
,即b≤1,故选择D .
考点四 抛物线的几何变换
例4 将抛物线y=x2-6x+5向上平移 2个单位长 度,再向右平移1个单位长度后,得到的抛物线 解析式是( )
九年级数学上册第二十二章二次函数全部重要知识点(带答案)
九年级数学上册第二十二章二次函数全部重要知识点单选题1、已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=−1,且经过点(−3,0),则下列结论正确的是()A.b>0B.c<0C.a+b+c>0D.3a+c=0答案:D=−1,得b=2a,则b<0,图象经过(−3,0),根据对分析:图象开口向下,得a<0,对称轴为直线x=−b2a称性可知,图象经过点(1,0),故c>0,当x=1时,a+b+c=0,将b=2a代入,可知3a+c=0.解:∵图象开口向下,∴a<0,∵对称轴为直线x=−b=−1,2a∴b=2a,∴b<0,故A不符合题意;根据对称性可知,图象经过(−3,0),∴图象经过点(1,0),当x=1时,a+b+c=0,故C不符合题意;∴c=-a-b,∴c>0,故B不符合题意;将b=2a代入,可知3a+c=0,故D符合题意.故选:D.小提示:本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.2、在平面直角坐标系中,将二次函数y=x2的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x+2)2−1D.y=(x−2)2−1答案:B分析:先求出平移后抛物线的顶点坐标,进而即可得到答案.解:∵y=x2的顶点坐标为(0,0)∴将二次函数y=x2的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),∴所得抛物线对应的函数表达式为y=(x+2)2+1,故选B小提示:本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.3、如图,抛物线y=ax2+bx+c与x轴相交于点A(−2,0),B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2−4ac>0;②4a+b=0;③当y>0时,−2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.1答案:B分析:根据二次函数的图像与性质,逐一判断即可.解:∵抛物线y=ax2+bx+c与x轴交于点A(−2,0)、B(6,0),∴抛物线对应的一元二次方程ax2+bx+c=0有两个不相等的实数根,即△=b2−4ac>0,故①正确;对称轴为x=−b2a =6−22,整理得4a+b=0,故②正确;由图像可知,当y>0时,即图像在x轴上方时,x<-2或x>6,故③错误,由图像可知,当x=1时,y=a+b+c<0,故④正确.∴正确的有①②④,故选:B.小提示:本题考查二次函数的性质与一元二次方程的关系,熟练掌握相关知识是解题的关键.4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4√3cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以√3cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN,设运动时间为t s,△MND的面积为S cm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.答案:B分析:分别求出M在AD和在BD上时△MND的面积为S关于t的解析式即可判断.解:∵∠ACB=90°,∠A=30°,AB=4√3,∴∠B=60°,BC=1AB=2√3,AC=√3BC=6,2∵CD⊥AB,∴CD=12AC=3,AD=√3CD=3√3,BD=12BC=√3,∴当M在AD上时,0≤t≤3,MD=AM−AD=3√3−√3t,DN=DC+CN=3+t,∴S=12MD·DN=12(3√3−√3t)(3+t)=−√32t2+9√32,当M在BD上时,3<t≤4,MD=AD−AM=√3t−3√3,∴S=12MD·DN=12(√3t−3√3)(3+t)=√32t2−9√32,故选:B.小提示:本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.5、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4√3米B.5√2米C.2√13米D.7米答案:B分析:根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y =ax 2+32, ∵BC =10,∴点B (﹣5,0),∴0=a ×(﹣5)2+32, ∴a =-350, ∴大孔所在抛物线解析式为y =-350x 2+32,设点A (b ,0),则设顶点为A 的小孔所在抛物线的解析式为y =m (x ﹣b )2,∵EF =14,∴点E 的横坐标为-7,∴点E 坐标为(-7,-3625), ∴-3625=m (x ﹣b )2, ∴x 1=65√−1m +b ,x 2=-65√−1m +b ,∴MN =4,∴|65√−1m +b -(-65√−1m +b )|=4 ∴m =-925, ∴顶点为A 的小孔所在抛物线的解析式为y =-925(x ﹣b )2, ∵大孔水面宽度为20米,∴当x =-10时,y =-92, ∴-92=-925(x ﹣b )2, ∴x 1=52√2+b ,x 2=-5√22+b , ∴单个小孔的水面宽度=|(52√2+b )-(-52√2+b )|=5√2(米),故选:B .小提示:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6、如图,顶点为(−3,−6)的抛物线y =ax 2+bx +c 经过点(−1,−4),则下列结论中正确的是( )A .b 2−4ac ≥0B .若点(−2,m),(−4,n)都在抛物线上,则m >nC .当x <−3时,y 随x 的增大而减小D .关于x 的一元二次方程ax 2+bx +c =−7有两个不等的实数根答案:C分析:由抛物线与x 轴有两个交点则可对A 进行判断;根据抛物线上的点离对称轴的远近,则可对B 进行判断;由抛物线的增减性可直接判断C 选项;根据二次函数的最值可对D 进行判断.解:A 、图像与x 轴有两个交点,方程ax 2+bx +c =0有两个不相等的实数根,b 2-4ac >0,故A 选项不符合题意;B、抛物线的对称轴为直线x=-3,因为-2离对称轴的距离等于-4离对称轴的距离,所以m=n,故B选项不符合题意;C、顶点为(-3,-6),则对称轴为直线x=-3,抛物线开口向上,则当x<-3时,y随x的增大而减小,故C 选项符合题意;D、由抛物线开口向上及顶点为(-3,-6)可知,此函数的最小值为-6,则ax2+bx+c=-7(a≠0)没有实数根,故D选项不符合题意.故选:C.小提示:本题综合考查了二次函数的性质,属于基础题,且难度适中;考查了根的判别式、最值与顶点坐标的关系,及一元二次方程与二次函数的关系等方面的内容,掌握相关基础知识是解题关键.7、已知实数x,y满足x+y=12,则xy−2的最大值为()A.10B.22C.34D.142答案:C分析:利用二次函数的性质求解即可.解:∵x+y=12,∴y=12-x,∴xy-2=x(12-x)-2=-x2+12x-2=-(x-6)2+34,∵-1<0,∴当x=6时,xy-2有最大值,最大值为34,故选:C.小提示:本题考查二次函数的性质,会利用二次函数的性质求最值是解答的关键.8、已知二次函数y=ax2+2ax+a−1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为-1答案:C分析:二次函数y=ax2+2ax+a−1的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.∵二次函数y =ax 2+2ax +a −1的图象只经过三个象限,∴a -1≥0,∴a ≥1.故选C .小提示:本题考查了二次函数y =ax 2+2ax +a −1的图象只经过三个象限,运用函数图象与x 轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.9、抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表:下列结论不正确的是( )A .抛物线的开口向下B .抛物线的对称轴为直线x =12C .抛物线与x 轴的一个交点坐标为(2,0)D .函数y =ax 2+bx +c 的最大值为254 答案:C 分析:利用待定系数法求出抛物线解析式,由此逐一判断各选项即可解:由题意得{4a −2b +c =0a −b +c =4c =6,解得{a =−1b =1c =6,∴抛物线解析式为y =−x 2+x +6=−(x −12)2+254, ∴抛物线开口向下,抛物线对称轴为直线x =12,该函数的最大值为254,故A 、B 、D 说法正确,不符合题意;令y =0,则−x 2+x +6=0,解得x =3或x =−2,∴抛物线与x 轴的交点坐标为(-2,0),(3,0),故C 说法错误,符合题意;故选C .小提示:本题主要考查了二次函数的性质,正确求出二次函数解析式是解题的关键.10、如图,某公司准备在一个等腰直角三角形ABC 的绿地上建造一个矩形的休闲书吧PMBN ,其中点P 在AC 上,点NM 分别在BC ,AB 上,记PM=x ,PN=y ,图中阴影部分的面积为S ,若NP 在一定范围内变化,则y 与x ,S与x 满足的函数关系分别是( )A .反比例函数关系,一次函数关系B .二次函数关系,一次函数关系C .一次函数关系,反比例函数关系D .一次函数关系,二次函数关系答案:D分析:先求出AM =PM ,利用矩形的性质得出y =﹣x +m ,最后利用S =S △ABC -S 矩形PMBN 得出结论. 设AB =m (m 为常数).在△AMP 中,∠A =45°,AM ⊥PM ,∴△AMP 为等腰直角三角形,∴AM =PM ,又∵在矩形PMBN 中,PN =BM ,∴x +y =PM +PN =AM +BM =AB =m ,即y =﹣x +m ,∴y 与x 成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.填空题11、在平面直角坐标系中,已知抛物线y =mx -2mx +m -2(m >0).(1)抛物线的顶点坐标为_________;(2)点M(x1,y1)、N(x2,y2)(x1<x2≤3)是拋物线上的两点,若y1<y2,x2-x1=2,则y2的取值范围为_________(用含m的式子表示)答案:(1,-2)m−2<y2≤4m−2分析:(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2<x2≤3时,y1<y2,再将x=2、x=3代入函数关系式进行求解即可.(1)∵y=mx2-2mx+m-2=m(x−1)2−2,∴抛物线顶点坐标为(1,-2),故答案为(1,-2).(2)∵抛物线的对称轴为直线x=1,∴当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,∴当2<x2≤3时,y1<y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,∴m−2<y2≤4m−2.小提示:本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系.12、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(−1,0)和点(2,0),以下结论:①abc<0;②4a−2b+c<0;③a+b=0;④当x<1时,y随x的增大而减小.其中正确的结论有2___________.(填写代表正确结论的序号)答案:①②##②①分析:根据二次函数的对称轴位置和抛物线开口方向确定①③,根据x=-2时判定②,由抛物线图像性质判定④.解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故正确;②x=-2时,函数值小于0,则4a-2b+c<0,故正确;③与x轴交于点(−1,0)和点(2,0),则对称轴x=−b2a =−1+22=−12,故a=b,故③错误;④当x<12时,图像位于对称轴左边,y随x的增大而减大.故④错误;综上所述,正确的为①②.所以答案是:①②.小提示:本题考查了二次函数的图像和性质,要求熟悉掌握函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.13、阳光超市里销售的一种水果,每千克的进价为10元,销售过程中发现,每天销量y(kg)与销售单价x (元)之间满足一次函数y=−x+50的关系.若不计其他成本(利润=售价-进价),则该超市销售这种水果每天能够获得的最大利润是_________元.答案:400分析:设超市销售这种水果每天能够获得的利润是w元,由题意得w=-(x-30)2+400,再根据二次函数的性质可得答案.解:设超市销售这种水果每天能够获得的利润是w元,由题意得,w=(x−10)(−x+50)=−x2+60x−500=−(x−30)2+400,∵a=-1<0,∴当x=30时,w最大为400元,所以答案是:400.小提示:本题考查二次函数的实际应用,根据题意得到二次函数的关系式是解题关键.14、某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).答案:121分析:利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.解:当10≤x ≤20时,设y =kx +b ,,把(10,20),(20,10)代入可得:{10k +b =2020k +b =10, 解得{k =−1b =30, ∴每天的销售量y (个)与销售价格x (元/个)的函数解析式为y =−x +30,设该食品零售店每天销售这款冷饮产品的利润为w 元,w =(x −8)y =(x −8)(−x +30)=−x 2+38x −240=−(x −19)2+121,∵−1<0,∴当x =19时,w 有最大值为121,所以答案是:121.小提示:本题考查二次函数的应用,理解题意,掌握“利润=单价商品利润×销售量”的等量关系及二次函数的性质是解题关键.15、已知点(3,a )在抛物线y =-2x 2+2x 上,则a =______.答案:-12分析:把点(3,a )代入解析式即可求得a 的值.解:∵点(3,a )在抛物线y =-2x 2+2x 上,∴a =-2×32+2×3=-18+6=-12,所以答案是:-12.小提示:本题考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题的关键.解答题16、已知y=(k+2)x k2+k−4是二次函数,且当x<0时,y随x的增大而增大.(1)求k的值;(2)直接写出顶点坐标和对称轴.答案:(1)k=-3;(2)顶点坐标是(0,0),对称轴是y轴.分析:(1)根据二次函数的次数是二,可得方程,根据二次函数的性质,可得k+2<0,可得答案;(2)根据二次函数的解析式,可得顶点坐标,对称轴.解:(1)由y=(k+2)x k2+k−4是二次函数,且当x<0时,y随x的增大而增大,得{k 2+k−4=2k+2<0,解得k=-3;(2)由(1)得二次函数的解析式为y=-x2,y=-x2的顶点坐标是(0,0),对称轴是y轴.小提示:本题考查了二次函数的定义以及二次函数的性质,利用二次函数的定义得出方程是解题关键.17、如图,抛物线y=−x2+bx+c与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(-1 ,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点M ,使得MA +MC 的值最小,求此点M 的坐标;(3)在抛物线的对称轴上是否存在P 点,使△PCD 是等腰三角形,如果存在,求出点P 的坐标,如果不存在,请说明理由.答案:(1)y =−x 2+2x +3(2)点M 坐标(1,2)(3)存在,点P 坐标为(1,6),(1,√10),(1,−√10),(1,53) 分析:(1)把A 、C 两点的坐标代入y =-x 2+bx +c ,利用待定系数法即可求出二次函数的解析式;(2)由抛物线的对称性可知点A 与点B 关于对称轴对称,所以BC 与抛物线对称轴的交点为M ,此时MA+MC 最小,即MA+MC 最小值等于线段BC 长,求出直线BC 与抛物线对称轴交点M 坐标即可;(3)分两种情况讨论:i )当△PCD 是以CD 为腰的等腰三角形时,又可分两种情况讨论:①PC =CD ;②PD =CD .设出点P 的坐标,利用两点间的距离公式列出方程求解即可; ii )当△PCD 是以CD 为底的等腰三角形时,点P 在CD 的垂直平分线上,PC=PD ,利用两点间的距离公式列出方程求解即可.(1)解:把A (-1,0),C (0,3)代入y =-x 2+bx +c ,得:{−1−b +c =0c =3 ,解得:{b =2c =3, ∴抛物线的解析式为:y =-x 2+2x +3; (2)解:由抛物线的对称性可知点A 与点B 关于抛物线的对称轴对称,所以设BC 与抛物线对称轴的交点为M ,此时MA+MC 最小,即MA+MC 最小值=BC ,如图,∵y =-x 2+2x +3=-(x -1)2+4;∴抛物线的对称轴为直线x =1,∵A (-1,0),点A 与点B 关于抛物线的对称轴对称,∴B (3,0),设直线BC 解析式为y =kx +m ,则{−k +m =0m =3 ,解得{k =−1m =3, ∴直线BC 解析式为y =-x +3,当x =1时,y =2,∴M (1,2).(3)解:∵y =-x 2+2x +3=-(x -1)2+4,∴对称轴为直线x =1,∴D (1,0).设点P 的坐标为(1,t ),∵C (0,3),∴CD 2=12+32=10. 分两种情况讨论:i )当△PCD 是以CD 为腰的等腰三角形时,又可分两种情况讨论:①若PC =CD ,则12+(t -3)2=10,解得t =0(舍弃)或6,所以点P 的坐标为(1,6);②若PD =CD ,则t 2=10,解得t=±√10,所以点P 的坐标为(1,√10)或(1,-√10); ii )当△PCD 是以CD 为底的等腰三角形时,PC =PD ,则1+(t -3)2=t 2,解得:t =53, 所以点P 的坐标为(1,53);综上所述,点P 的坐标有三个,分别是(1,6)或(1,√10))或(1,-√10)或(1,53).小提示:本题是二次函数的综合题,考查了利用待定系数法求二次函数和一次函数的解析式、二次函数的性质、利用轴对称求最短距离;难度适中,在考虑构建等腰三角形时,采用了分类讨论的思想.18、园林部门计划在某公园建一个长方形苗圃ABCD .苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃ABCD 的一边CD 长为x 米.(1)BC 长为________米(包含门宽,用含x 的代数式表示);(2)若苗圃ABCD 的面积为96m 2,求x 的值;(3)当x 为何值时,苗圃ABCD 的面积最大,最大面积为多少?答案:(1)(36-3x )(2)8(3)当x 为223米时,苗圃ABCD 的最大面积为3083平方米分析:(1)根据木栏总长32米,两处各留2米宽的门,设苗圃ABCD 的一边CD 长为x 米,即得BC 的长为(36-3x )米;(2)根据题意得,x ·(36−3x )=96,即可解得x 的值;(3)设苗圃ABCD 的面积为w ,w =x ·(36−3x )=−3(x −6)2+108,由二次函数的性质可得答案.(1)∵木栏总长32米,两处各留2米宽的门,设苗圃ABCD 的一边CD 长为x 米,BC 的长为32-3x +4=(36-3x )米,所以答案是:(36-3x );(2)根据题意得,x ·(36−3x )=96,解得,x =4或x =8,∵当x =4时,36-3x =24>14,∴x =4舍去,∴x 的值为8;(3)设苗圃ABCD 的面积为w ,w =x ·(36−3x )=−3(x −6)2+108,∵4<36-3x ≤14,∴223≤x <323,∵-3<0,图象开口向下,∴当x =223时,w 取得最大值,w 最大为3083; 答:当x 为223米时,苗圃ABCD 的最大面积为3083平方米.小提示:本题考查了二次函数的应用,解题的关键是读懂题意,根据已知列方程和函数关系式.。
人教版初中数学第二十二章二次函数知识点
第二十二章二次函数22.1 二次函数的图象和性质二次函数1.二次函数的概念:一般地,形如2y ax bx c =++〔a b c ,,是常数,0a ≠〕的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的构造特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二次函数2y ax =的图象和性质1. 二次函数根本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小.例1.假设抛物线y=ax 2经过P 〔1,﹣2〕,那么它也经过 ( )A .〔2,1〕B .〔﹣1,2〕C .〔1,2〕D .〔﹣1,﹣2〕 【答案】 【解析】试题解析:∵抛物线y=ax 2经过点P 〔1,-2〕, ∴x=-1时的函数值也是-2, 即它也经过点〔-1,-2〕. 应选D .考点:二次函数图象上点的坐标特征.例2.假设点(2,-1)在抛物线上,那么,当x=2时,y=_________ 【答案】-1 【解析】试题分析:先把(2,-1)直接代入即可得到解析式,再把x=2代入即可.由题意得14-=a ,41-=a ,那么241x y -=, 当2=x 时,.1441-=⨯-=y考点:此题考察的是二次函数点评:解答此题的关键是掌握二次函数图象上的点适合这个二次函数的关系式. 2. 2y ax c =+的性质: 上加下减.例1.假设抛物线y=ax 2+c 经过点P 〔l ,-2〕,那么它也经过〔〕A .P 1〔-1,-2 〕B .P 2〔-l , 2 〕C .P 3〔 l , 2〕D .P 4〔2, 1〕【答案】A 【解析】试题分析:因为抛物线y=ax 2+c 经过点P 〔l ,-2〕,且对称轴是y 轴,所以点P 〔l ,-2〕的对称点是〔-1,-2〕,所以P 1〔-1,-2〕在抛物线上,应选:A. 考点:抛物线的性质.例2.函数y=ax+b 经过〔1,3〕,〔0,﹣2〕,那么a ﹣b=〔〕 A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】试题分析:∵函数y=ax+b 经过〔1,3〕,〔0,﹣2〕,2y ax =2y ax =∴,解得.∴a ﹣b=5+2=7. 应选D .考点:1.直线上点的坐标与方程的关系;2.求代数式的值.例3.两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图象可能是以下图中的 ( )【答案】无正确答案【解析】分析:首先根据两个一次函数的图象,分别考虑a ,b 的值,看看是否矛盾即可. 解:A 、由y 1的图象可知,a <0,b <0;由y 2的图象可知,a>0,b<0,两结论矛盾,故错误; B 、由y 1的图象可知,a >0,b >0;由y 2的图象可知,a >0,b<0,两结论相矛盾,故错误; C 、由y 1的图象可知,a>0,b<0;由y 2的图象可知,a <0,b <0,两结论相矛盾,故错误; D 、由y 1的图象可知,a >0,b >0;由y 2的图象可知,a<0,b<0,两结论相矛盾,故错误. 故无正确答案.点评:此题主要考察了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b 的图象有四种情况: ①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限; ②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限; ③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限; ④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.二次函数()2y a x h k =-+的图象和性质左加右减.()2y a x h k =-+的性质:a b 3b 2+=⎧⎨=-⎩a 5b 2=⎧⎨=-⎩a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0h ,X=hx h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值0.0a < 向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质例1.将二次函数y=x 2﹣2x ﹣3化成y=〔x ﹣h 〕2+k 形式,那么h+k 结果为〔 〕 A .﹣5 B .5 C .3 D .﹣3 【答案】D . 【解析】试题分析:y=x 2-2x-3=〔x 2-2x+1〕-1-3=〔x-1〕 2-4. 那么h=1,k=-4, ∴h+k=-3. 应选D .考点: 二次函数的三种形式.例2.把二次函数y=x 2+6x+4配方成y=a 〔x-h 〕2+k 的形式,得y=___,它的顶点坐标是___. 【答案】〔x+3〕2-5,〔-3,-5〕 【解析】试题分析:y=2x +6x+4=2(3)5x ,那么顶点坐标为〔-3,-5〕.考点:二次函数的顶点式. 例3.把二次函数y =a 〔x -k 〕2+h 的形式,并写出它的图象的顶点坐标、对称轴. 【答案】y=顶点坐标〔3,-〕,对称轴方程x =3【解析】试题分析:y=x 2﹣3x+4=〔x ﹣3〕2﹣, 那么顶点坐标〔3,﹣〕,对称轴方程x=3, 考点:二次函数的图像及性质1、二次函数图象的平移〔1〕平移步骤:方法一:〔1〕将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; 43212+-=x x y 0a > 向上()h k , X=hx h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值k .0a < 向下 ()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值k .〔2〕保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:〔2〕平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞. 概括成八个字“左加右减,上加下减〞. 方法二:〔1〕c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕〔2〕c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕例1.将二次函数y =x 2的图象向下平移一个单位,那么平移以后的二次函数的解析式为() A .y =x 2-1 B .y =x 2+1 C .y =(x -1)2 D .y =(x +1)2 【答案】A【解析】直接根据上加下减的原那么进展解答即可,将二次函数y =x 2的图象向下平移一个单位,那么平移以后的二次函数的解析式为:y =x 2-1.应选A.例2.将二次函数y=x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 A .y=(x–1)2+2 B .y=(x+1)2+2 C .y=(x–1)2–2 D .y=(x+1)2–2 【答案】A . 【解析】试题分析:原抛物线的顶点为〔0,0〕,向右平移1个单位,再向上平移2个单位,那么新抛物线的顶点为〔1,2〕.可设新抛物线的解析式为y=〔x ﹣h 〕2+k ,代入得y=〔x ﹣1〕2+2. 应选A .【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位考点:二次函数图象与几何变换.例3.将二次函数的图象如何平移可得到的图象〔〕 A .向右平移2个单位,向上平移一个单位 B .向右平移2个单位,向下平移一个单位 C .向左平移2个单位,向下平移一个单位 D .向左平移2个单位,向上平移一个单位 【答案】C【解析】2243(2)1y x x x =++=+-,根据二次函数的平移性质得:向左平移2个单位,向下平移一个单位.应选C.例4.点P 〔﹣1,m 〕在二次函数y=x 2﹣1的图象上,那么m 的值为;平移此二次函数的图象,使点P 与坐标原点重合,那么平移后的函数图象所对应的解析式为. 【答案】0,y=x 2﹣2x . 【解析】∵点P 〔﹣1,m 〕在二次函数y=x 2﹣1的图象上, ∴〔﹣1〕2﹣1=m , 解得m=0,平移方法为向右平移1个单位,平移后的抛物线的二次函数的顶点坐标为〔1,﹣1〕,平移后的函数图象所对应的解析式为y=〔x ﹣1〕2﹣1=x 2﹣2x , 即y=x 2﹣2x .故答案为:0,y=x 2﹣2x .2、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 3、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以2x y =342++=x x y及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.4、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.例1.当a < 0 时,方程ax 2+bx+c=0无实数根,那么二次函数y=ax 2+bx+c 的图像一定在〔〕 A 、x 轴上方 B 、x 轴下方 C 、y 轴右侧 D 、y 轴左侧 【答案】B 【解析】试题分析:∵方程ax 2+bx+c=0无实数根,∴b 2+4ac<0,即函数图形与x 轴没有交点 又∵a < 0,∴二次函数y=ax 2+bx+c 的图像一定在x 轴下方 应选B .考点:二次函数的性质例2.二次函数y=ax 2+bx+c 的图象如图,那么a 、b 、c 满足〔〕A 、a <0,b <0,c >0B 、a <0,b <0,c <0C 、a <0,b >0,c >0D 、a >0,b <0,c >0 【答案】A 【解析】试题分析:由于开口向下可以判断a <0,由与y 轴交于正半轴得到c >0,又由于对称轴x=-2ba<0,可以得到b <0,所以可以找到结果.试题解析:根据二次函数图象的性质, ∵开口向下, ∴a <0,∵与y 轴交于正半轴, ∴c >0, 又∵对称轴x=-2ba<0, ∴b <0, 所以A 正确.考点:二次函数图象与系数的关系.例3.二次函数y=ax 2+bx+c 的图象如图,其对称轴x=﹣1,给出以下结果: ①b 2>4ac ;②abc >0;③2a+b=0;④a+b+c >0;⑤a ﹣b+c <0, 那么正确的结论是〔〕A.①②③④B.②④⑤C.②③④D.①④⑤ 【答案】D 【解析】试题分析:根据抛物线与x 轴有两个交点,可得△=b 2﹣4ac >0,即b 2>4ac ,故①正确;根据抛物线对称轴为x=﹣2ba <0,与y 轴交于负半轴,因此可知ab >0,c <0,abc <0,故②错误; 根据抛物线对称轴为x=﹣2ba=﹣1,∴2a ﹣b=0,故③错误;当x=1时,y >0,即a+b+c >0,故④正确; 当x=﹣1时,y <0,即a ﹣b+c <0,故⑤正确; 正确的选项是①④⑤. 应选D .考点:二次函数图象与系数的关系例4.如果二次函数y =ax 2+bx+c 〔a≠0〕的图象如下图,那么〔〕A .a <0,b >0,c >0B .a >0,b <0,c >0C .a >0,b >0,c <0D .a >0,b <0,c <0 【答案】D 【解析】试题分析:因为抛物线开口向上,所以a >0,又对称轴在y 轴右侧,所以2ba->0,所以b <0,又因为抛物线与y 轴的交点在x 轴下方,所以c <0,所以a >0,b <0,c <0,应选:D . 考点:抛物线的性质.例5.抛物线y=ax 2+bx+c 与x 轴的公共点是〔﹣4,0〕,〔2,0〕,那么这条抛物线的对称轴是直线. 【答案】x=-1. 【解析】试题分析:因为点〔-4,0〕和〔2,0〕的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=122x x +求解即可. 试题解析:∵抛物线与x 轴的交点为〔-4,0〕,〔2,0〕, ∴两交点关于抛物线的对称轴对称, 那么此抛物线的对称轴是直线x=4212-+=-,即x=-1. 考点:抛物线与x 轴的交点.5、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.6、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞 总结: 3. 常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.7、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.22.2二次函数与一元二次方程1. 二次函数与一元二次方程的关系〔二次函数与x 轴交点情况〕:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. ②当0∆=时,图象与x 轴只有一个交点;③当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大〔小〕值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,提醒二次函数、二次三项式和一元二次方程之间的内在联系:例1.函数k x x y +-=632〔k 为常数〕的图象经过点A 〔0.8,1y 〕,B 〔1.1,2y 〕,C 〔2,3y 〕,那么有〔〕A .1y <2y <3yB .1y >2y >3yC .3y >1y >2yD .1y >3y >2y【答案】C【解析】试题分析:因为函数k x x y +-=632的对称轴是6126b x a -=-=-=,且抛物线开口向上,所以可以画出函数图象的草图,观察图象可得:3y >1y >2y ,应选:C .考点:二次函数的性质、二次函数图象上点的坐标特点.例2.二次函数y=x 2+2mx +2,当x >2时,y 的值随x 的增大而增大,那么实数m 的取值X 围是.【答案】m≥-2.【解析】试题分析:根据二次函数的性质,利用二次函数的对称轴不大于2列式计算即可得解.试题解析:抛物线的对称轴为直线x=-221m ⨯=-m , ∵当x >2时,y 的值随x 值的增大而增大,∴-m≤2,解得m≥-2.考点:二次函数的性质.例3.函数c bx x y -+=2的图象经过点〔1,2〕,那么b-c 的值为.【答案】1【解析】试题分析:把点〔1,2〕代入c bx x y -+=2,得:12b c +-=,所以1b c -=.考点:函数图象上的点.例4.抛物线y=ax 2+bx+3的对称轴是直线x=1.〔1〕求证:2a+b=0;〔2〕假设关于x 的方程ax 2+bx ﹣8=0的一个根为4,求方程的另一个根.【答案】〔1〕见解析;〔2〕x=-2【解析】试题分析:直接利用对称轴公式代入求出即可;根据〔1〕中所求,再将x=4代入方程求出a ,b 的值,进而解方程得出即可.试题解析:〔1〕证明:∵对称轴是直线x=1=﹣2b a,∴b=-2a ∴2a+b=0; 〔2〕∵ax 2+bx ﹣8=0的一个根为4,∴16a+4b ﹣8=0,∵b=﹣2a ,∴16a ﹣8a ﹣8=0,解得:a=1,那么b=﹣2,∴a 2x +bx ﹣8=0为:2x ﹣2x ﹣8=0,那么〔x ﹣4〕〔x+2〕=0,解得:1x =4,2x =﹣2,故方程的另一个根为:﹣2.考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x 轴的交点例5.函数21y x bx =+-的图象经过点〔3,2〕.〔1〕求这个函数的解析式;〔2〕当0x >时,求使2y ≥的x 的取值X 围.【答案】〔1〕221y x x =--;〔2〕3x ≥.【解析】试题分析:〔1〕把〔3,2〕代入函数解析式求出b 的值,即可确定出解析式;〔2〕利用二次函数的性质求出满足题意x 的X 围即可.试题解析:〔1〕∵函数21y x bx =+-的图象经过点〔3,2〕,∴9312b +-=,解得:2b =-,那么函数解析式为:221y x x =--;〔2〕当3x =时,2y =,根据二次函数性质当3x ≥时,2y ≥,那么当0x >时,使2y ≥的x 的取值X 围是3x ≥. 考点:待定系数法求二次函数解析式.22.3 实际问题与二次函数例1.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是〔〕【答案】C【解析】试题分析:A、对于一次函数a<0,对于二次函数a>0,那么不正确;B、对于一次函数b<0,对于二次函数b>0,那么不正确;C、正确;D、对于一次函数b<0,对于二次函数b>0,那么不正确.考点:函数图象例2.学生校服原来每套的售价是100元,后经连续两次降价,现在的售价是81元,那么平均每次降价的百分数是〔〕A.9% B.8.5% C.9.5% D.10%【答案】D.【解析】试题分析:设平均每次降价的百分数是x,根据等量关系“校服原来每套的售价是100元×〔1-下降率〕2=每套校服现在的售价是81元〞,列出方程100〔1-x〕2= 81元,解得x即可,故答案选D.考点:一元二次方程的应用.。
九年级数学上册第二十二章二次函数考点总结(带答案)
九年级数学上册第二十二章二次函数考点总结单选题1、若y=(m+1)x m2−6m−5是二次函数,则m= ()A.-1B.7C.-1或7D.以上都不对答案:B分析:令x的指数为2,系数不为0,列出方程与不等式解答即可.由题意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,∴m=7,故选:B.小提示:利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.2、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.3、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.4、如图,已知开口向下的抛物线y =ax 2+bx +c 与x 轴交于点(−1,0)对称轴为直线x =1.则下列结论:①abc >0;②2a +b =0;③函数y =ax 2+bx +c 的最大值为−4a ;④若关于x 的方数ax 2+bx +c =a +1无实数根,则−15<a <0.正确的有( )A .1个B .2个C .3个D .4个答案:C分析:由图象可知,图像开口向下,a <0,对称轴为x =1,故−b 2a =1,故b >0,且b =−2a ,则2a +b =0 图象与y 轴的交点为正半轴,则c >0,由此可知abc <0,故①错误,由图象可知当x =1时,函数取最大值,将x =1,代入y =ax 2+bx +c ,中得:y =a +b +c ,计算出函数图象与x 轴的另一交点为(3,0)设函数解析式为:y =a(x −x 1)(x −x 2),将交点坐标代入得化简得:y =ax 2−2ax −3a ,将x =1,代入可得:y =a −2a −3a =−4a ,故函数的最大值为-4a ,、ax 2+bx +c =a +1变形为:ax 2+bx +c −a −1=0要使方程无实数根,则b 2−4a(c −a −1)<0,将c =-3a ,b =−2a ,代入得:20a 2+4a <0,因为a <0,则20a +4>0,则a >−15,综上所述−15<a <0,结合以上结论可判断正确的项. 解:由图象可知,图像开口向下,a <0,对称轴为x =1,故−b 2a =1,故b >0,且b =−2a ,则2a +b =0故②正确,∵图象与y 轴的交点为正半轴,∴c >0,则abc <0,故①错误,由图象可知当x =1时,函数取最大值,将x =1,代入y =ax 2+bx +c ,中得:y =a +b +c ,由图象可知函数与x 轴交点为(﹣1,0),对称轴为将x =1,故函数图象与x 轴的另一交点为(3,0),设函数解析式为:y =a(x −x 1)(x −x 2),将交点坐标代入得:y =a(x +1)(x −3),故化简得:y =ax 2−2ax −3a ,将x =1,代入可得:y =a −2a −3a =−4a ,故函数的最大值为-4a ,故③正确,ax 2+bx +c =a +1变形为:ax 2+bx +c −a −1=0要使方程无实数根,则b 2−4a(c −a −1)<0,将c =-3a ,b =−2a ,代入得:20a 2+4a <0,因为a <0,则20a +4>0,则a >−15,综上所述−15<a <0,故④正确,则②③④正确,故选C .小提示:本题考查二次函数的一般式,二次函数的交点式,二次函数的最值,对称轴,以及交点坐标掌握数形结合思想是解决本题的关键.5、若y =(a ﹣2)x 2﹣3x +2是二次函数,则a 的取值范围是( )A .a ≠2B .a >0C .a >2D .a ≠0答案:A分析:根据二次函数的二次项系数不为0可得关于a 的不等式,解不等式即得答案.解:由题意得: a −2≠0,则a ≠2.故选:A .小提示:本题考查了二次函数的定义,属于基础题型,掌握二次函数的概念是关键.6、如图,一抛物线型拱桥,当拱顶到水面的距离为2m 时,水面宽度为4m .那么水位下降1m 时,水面的宽度为( )A .√6mB .2√6mC .(√6−4)mD .(2√6−4)m答案:B分析:结合已知条件先建立适当的坐标系,然后设出解析式,利用点的坐标求得解析式,再将y=−3代入解析式求得相应的x的值,进而求得答案.解:以拱顶为坐标原点建立坐标系,如图:∴设抛物线解析式为:y=ax2,∵观察图形可知抛物线经过点B(2,−2),∴−2=a⋅22,∴a=−1,2∴抛物线解析式为:y=−1x2,2∴当水位下降1米后,即当y=−2−1=−3时,有−1x2=−3,2∴x1=√6,x2=−√6,∴水面的宽度为:2√6m.故选:B.小提示:本题考查了二次函数的应用,根据已知条件建立坐标系从而求得二次函数解析式是解决问题的关键.7、某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元B.400元C.800元D.1250元答案:D分析:将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.小提示:此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.8、已知a<−1,点(a−1,y1),(a,y2),(a+1,y3)都在函数y=3x2−2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1答案:D分析:先求出抛物线的对称轴,抛物线y=3x2-2的对称轴为y轴,即直线x=0,图象开口向上,当a<-1时,a-1<a<a+1<0,在对称轴左边,y随x的增大而减小,由此可判断y1,y2,y3的大小关系.解:∵当a<-1时,a-1<a<a+1<0,而抛物线y=3x2-2的对称轴为直线x=0,开口向上,∴三点都在对称轴的左边,y随x的增大而减小,∴y1>y2>y3.故选:D.小提示:本题考查的是二次函数图象上点的坐标特点,当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小.9、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w ,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.解:设每月总利润为w ,依题意得:w =y(x −50)=(−5x +550)(x −50)=−5x 2+800x −27500=−5(x −80)2+4500∵−5<0,此图象开口向下,又x ≥50,∴当x =80时,w 有最大值,最大值为4500元.故选:B .小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.10、下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当x >1时,y 的值随x 值的增大而增大答案:C分析:利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断. 解:设二次函数的解析式为y =ax 2+bx +c ,依题意得:{4a −2b +c =6c =−4a +b +c =−6 ,解得:{a =1b =−3c =−4, ∴二次函数的解析式为y =x 2−3x −4=(x −32)2−254,∵a =1>0,∴这个函数的图象开口向上,故A 选项不符合题意;∵△=b 2−4ac =(−3)2−4×1×(−4)=25>0,∴这个函数的图象与x 轴有两个不同的交点,故B 选项不符合题意;∵a =1>0,∴当x =32时,这个函数有最小值−254<−6,故C 选项符合题意;∵这个函数的图象的顶点坐标为(32,−254), ∴当x >32时,y 的值随x 值的增大而增大,故D 选项不符合题意;故选:C .小提示:本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.填空题11、如图,抛物线y =ax 2+bx +c(a ≠0)与x 轴交于点(−1,0)和点(2,0),以下结论:①abc <0;②4a −2b +c <0;③a +b =0;④当x <12时,y 随x 的增大而减小.其中正确的结论有___________.(填写代表正确结论的序号)答案:①②##②①分析:根据二次函数的对称轴位置和抛物线开口方向确定①③,根据x =-2时判定②,由抛物线图像性质判定④.解:①抛物线的对称轴在y 轴右侧,则ab <0,而c >0,故abc <0,故正确;②x =-2时,函数值小于0,则4a -2b +c <0,故正确;③与x 轴交于点(−1,0)和点(2,0),则对称轴x =−b 2a =−1+22=−12,故a =b ,故③错误; ④当x <12时,图像位于对称轴左边,y 随x 的增大而减大.故④错误;综上所述,正确的为①②.所以答案是:①②.小提示:本题考查了二次函数的图像和性质,要求熟悉掌握函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.12、如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,6),B(1,3),则方程ax2﹣bx﹣c=0的解是_________.答案:x1=﹣3,x2=1分析:根据抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,6),B(1,3),可得方程ax2=bx+c的解为x1=﹣3,x2=1,即可求解.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,6),B(1,3),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,所以答案是:x1=﹣3,x2=1.小提示:本题考查了一次函数与抛物线交点问题,理解交点的横坐标即为方程的解是解题的关键.13、已知抛物线y=(x−1)(x−5)与x轴的公共点坐标是A(x1,0),B(x2,0),则x1+x2=_______.答案:6分析:令y=0,可得(x−1)(x−5)=0,解出即可求解.解:∵抛物线y=(x−1)(x−5)与x轴的公共点坐标是A(x1,0),B(x2,0),令y=0,则(x−1)(x−5)=0,解得:x1=1,x2=5,∴x1+x2=1+5=6.所以答案是:6.小提示:本题主要考查了二次函数的图象与x轴的交点问题,熟练掌握二次函数的图象和性质是解题的关键.14、如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB间间隔0.2米的7根立柱)进行加固,若立柱EF的长为0.28米,则拱高OC为_____米答案:0.64分析:根据抛物线,建立直角坐标系,求出抛物线解析式,即可求得OC的长.解:如图,以点C为坐标系原点,OC所在直线为y轴,建立直角坐标系.设抛物线的解析式为y=ax2(a≠0),由题意可知:点A的横坐标为-0.8,点F的横坐标为-0.6,代入y=ax2(a≠0),有y F=(−0.6)2a=0.36a,y A=(−0.8)2a=0.64a,点A的纵坐标即为OC的长,∴0.36a+0.28=0.64a,解得a=1,∴抛物线解析式为y=x2,y A=(−0.8)2=0.64,故OC的长为:0.64m.小提示:本题考查根据抛物线构建直角坐标系,解决实际问题,熟练掌握二次函数相关知识点是解题的关键.15、已知函数y=mx2+2mx+1在−3⩽x⩽2上有最大值4,则常数m的值为 __.答案:3或−38分析:分两种情况:m>0和m<0分别求y的最大值即可.解:y=mx2+2mx+1=m(x+1)2+1−m.当m>0时,当x=2时,y有最大值,∴4m+4m+1=4,∴m=3;8当m<0时,当x=−1时,y有最大值,∴m−2m+1=4,∴m=−3,或−3.综上所述:m的值为38或−3.故答案是:38小提示:本题考查了二次函数的最值,熟练掌握二次函数的图象及性质,解题时,注意要分类讨论,以防漏解.解答题16、单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x−ℎ)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:y=a(x−ℎ)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=−0.04(x−9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1______d2(填“>”“=”或“<”).答案:(1)23.20 m;y=−0.05(x−8)2+23.20(2)<分析:(1)先根据表格中的数据找到顶点坐标,即可得出h、k的值,运动员竖直高度的最大值;将表格中除顶点坐标之外的一组数据代入函数关系式即可求出a的值,得出函数解析式;(2)着陆点的纵坐标为t,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标,用t表示出d1和d2,然后进行比较即可.(1)解:根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴ℎ=8,k=23.20,即该运动员竖直高度的最大值为23.20 m,根据表格中的数据可知,当x=0时,y=20.00,代入y=a(x−8)2+23.20得:20.00=a(0−8)2+23.20,解得:a=−0.05,∴函数关系关系式为:y=−0.05(x−8)2+23.20.(2)设着陆点的纵坐标为t,则第一次训练时,t=−0.05(x−8)2+23.20,解得:x =8+√20(23.20−t )或x =8−√20(23.20−t ),∴根据图象可知,第一次训练时着陆点的水平距离d 1=8+√20(23.20−t ),第二次训练时,t =−0.04(x −9)2+23.24,解得:x =9+√25(23.24−t )或x =9−√25(23.24−t ),∴根据图象可知,第二次训练时着陆点的水平距离d 2=9+√25(23.24−t ),∵20(23.20−t )<25(23.24−t ),∴√20(23.20−t )<√25(23.24−t ),∴d 1<d 2.所以答案是:<.小提示:本题主要考查了二次函数的应用,待定系数法求函数关系式,设着陆点的纵坐标为t ,用t 表示出d 1和d 2是解题的关键.17、如图,抛物线y =−x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于C 点,直线BC 方程为y =x −3.(1)求抛物线的解析式;(2)点P 为抛物线上一点,若S △PBC =12S △ABC ,请直接写出点P 的坐标;(3)点Q 是抛物线上一点,若∠ACQ =45°,求点Q 的坐标.答案:(1)y =-x 2+4x -3(2)(3+√52,−1+√52)或(3−√52,−1−√52)或(3+√132,−5+√132)或(3−√132,−5−√132) (3)(72,−54)分析:(1)先根据一次函数解析式求出点B 、C 坐标;再代入y =−x 2+bx +c ,求出b 、c 即可求解;(2)过点A作AN⊥BC于N,过点P作PM⊥BC于M,过点P作PE∥BC,交y轴于E,交抛物线于p1,p2,过点E作EF⊥BC于F,先求出AN=√2,再根据两三角形面积关系,求得PM=√22,从而求得CE=1,则点P是将直线BC向上或向下平移1个单位与抛物线的交点,联立解析式即可求出交点坐标;(3)过点Q作AD⊥CQ于D,过点D作DF⊥x轴于F财富点C作CE⊥DF于E,证△CDE≌△DAD(AAS),得DE=AF,CE=DF,再证四边形OCEF是矩形,得OF=CE,EF=OC=3,然后设DE=AF=n,则CE=DF=OF=n+1,DF=3-n,则n+1=3-n,解得:n=1,即可求出D(2,-2),用待定系数法求直线CQ解析式为y=12x-3,最后联立直线与抛物线解析式,求出交点坐标即可求解.(1)解:对于直线BC解析式y=x-3,令x=0时,y=-3,则C(0,-3),令y=0时,x=3,则B(3,0),把B(3,0),C(0,-3),分别代入y=−x2+bx+c,得{-9+3b+c=0c=−3,解得:{b=4c=−3,∴求抛物线的解析式为:y=-x2+4x-3;(2)解:对于抛物线y=-x2+4x-3,令y=0,则-x2+4x-3=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),∴OA=1,OB=3,AB=2,过点A作AN⊥BC于N,过点P作PM⊥BC于M,如图,∵A (1,0),B (3,0),C (0,-3),∴OB =OC =3,AB =2,∴∠ABC =∠OCB =45°,∴AN =√2,∵S △PBC =12S △ABC , ∴PM =√22,过点P 作PE ∥BC ,交y 轴于E ,过点E 作EF ⊥BC 于F ,则EF = PM =√22,∴CE =1∴点P 是将直线BC 向上或向下平移1个单位,与抛物线的交点,如图P 1,P 2,P 3,P 4,∵B (3,0),C (0,-3),∴直线BC 解析式为:y =x -3,∴平移后的解析式为y =x -2或y =x -4,联立直线与抛物线解析式,得{y =−x 2+4x −3y =x −2 或{y =−x 2+4x −3y =x −4, 解得:{x 1=3+√52y =−1+√52 ,{x 1=3−√52y =−1−√52 ,{x 1=3+√132y =−5+√132 ,{x 1=3−√132y =−5−√132 ,∴P 点的坐标为(3+√52,−1+√52)或(3−√52,−1−√52)或(3+√132,−5+√132)或(3−√132,−5−√132).(3) 解:如图,点Q 在抛物线上,且∠ACQ =45°,过点Q 作AD ⊥CQ 于D ,过点D 作DF ⊥x 轴于F ,过点C 作CE ⊥DF 于E ,∵∠ADC =90°,∴∠ACD =∠CAD =45°,∴CD =AD ,∵∠E =∠AFD =90°,∴∠ADF =90°-∠CDE =∠DCE ,∴△CDE ≌△DAD (AAS ),∴DE =AF ,CE =DF ,∵∠COF =∠E =∠AFD =90°,∴四边形OCEF 是矩形,∴OF =CE ,EF =OC =3,设DE =AF =n ,∵OA =1,∴CE =DF =OF =n +1∴DF =3-n ,∴n +1=3-n解得:n =1,∴DE =AF =1,∴CE =DF =OF =2,∴D (2,-2),设直线CQ 解析式为y =px -3,把D (2,-2)代入,得p =12,∴直线CQ 解析式为y =12x -3,联立直线与抛物线解析式,得{y =12x −3y =−x 2+4x −3解得:{x 1=72y 1=−54 ,{x 2=0y 2=−3 (不符合题意,舍去), ∴点Q 坐标为(72,−54). 小提示:本题属二次函数与一次函数综合题目,考查了用待定系数法求函数解析式,一次函数图象平行,全等三角形的判定与性质,矩形的判定与性质,熟练掌握一次函数与二次函数的图象性质是解题的关键.18、跳绳是一项很好的健身活动,如图是小明跳绳运动时的示意图,建立平面直角坐标系如图所示,甩绳近似抛物线形状,脚底B 、C 相距20cm ,头顶A 离地175cm ,相距60cm 的双手D 、E 离地均为80cm .点A 、B 、C 、D 、E 在同一平面内,脚离地面的高度忽略不计.小明调节绳子,使跳动时绳子刚好经过脚底B 、C 两点,且甩绳形状始终保持不变.(1)求经过脚底B、C时绳子所在抛物线的解析式.(2)判断小明此次跳绳能否成功,并说明理由.答案:(1)y=110x2−90.(2)不成功,理由见解析分析:(1)建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),由双手D、E离地均为80cm,可得C 点坐标为:(10,−80),再利用待定系数法求解解析式即可;(2)由175−80=95>80,可得跳绳不过头顶A,从而可得答案.(1)解:建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),∵双手D、E离地均为80cm.∴C点坐标为:(10,−80),设抛物线为:y=ax2−80,{0=900a+b−80=100a+b,解得:{a=110b=−90,所以抛物线为y=110x2−90.(2)解:∵y=0.1x²-90,∴顶点为(0,-90).即跳绳顶点到手的距离是90cm,∵175−90=85>80,∴跳绳不过头顶A,∴小明此次跳绳能不成功.小提示:本题考查的是二次函数的实际应用,理解题意,建立合适的坐标系是解本题的关键.。
九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)
九年级数学上册第二十二章二次函数知识点总结归纳完整版单选题1、已知实数a ,b 满足b −a =1,则代数式a 2+2b −6a +7的最小值等于( )A .5B .4C .3D .2答案:A分析:由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解. 解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .小提示:本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.2、点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2答案:B分析:根据y 1<y 2列出关于m 的不等式即可解得答案.解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>3,2故选:B.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.3、抛物线y=x2−x−1经过点(m,3),则代数式m2−m−1的值为()A.0B.1C.2D.3答案:D分析:将点(m,3)代入代数式中即可得到结果.解:将点(m,3)代入m2−m−1中得,m2−m−1=3,故代数式m2−m−1的值为3,故选:D.小提示:本题考查代数式的值,根据函数图象经过的点求函数解析式,能够掌握属性结合思想是解决本题的关键.4、小明在研究抛物线y=−(x−ℎ)2−ℎ+1(h为常数)时,得到如下结论,其中正确的是()A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x−1上C.当−1<x<2时,y随x的增大而增大,则ℎ≥2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,则y1>y2答案:C分析:根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可.解:A.∵y=−(x−ℎ)2−ℎ+1,∴当x=ℎ时,y max=−ℎ+1,当ℎ<1时,y max=−ℎ+1>0,故错误;B.∵抛物线y=−(x−ℎ)2−ℎ+1的顶点坐标为(ℎ,−ℎ+1),当x=ℎ时,y=−ℎ−1≠−ℎ+1,故错误;C.∵抛物线开口向下,当−1<x<2时,y随x的增大而增大,∴ℎ≥2,故正确;D.∵抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,∴x1+x2<ℎ,∴点A到对称轴的距离大2于点B到对称轴的距离,∴y1<y2,故错误.故选C.小提示:本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.5、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x 的范围是()C.1<x<1.5D.1.5<x<2答案:B分析:利用二次函数和一元二次方程的性质.解:观察表格可知:当x=0.5时,y=-0.5;当x=1时,y=1,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是0.5<x<1.故选:B.小提示:本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.6、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果用相同的工时生产,总获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.8C.9D.10答案:C分析:第k档次产品比最低档次产品提高了(k−1)个档次,则数量在60的基础上减少了3(k−1),每件产品利润在8的基础上增加2(k−1),据此可求出总利润关系,求出最值即可.解:设总利润为y元,∵第k档次产品比最低档次产品提高了(k−1)个档次,∴每天利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,∴当k=9时,产品利润最大,每天获利864元,故选C.小提示:本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.7、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.8、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.9、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则关于x的一元二次方程ax2+bx+c=0的根的情况描述正确的是()A.有两个相等的实数根B.有两个异号的实数根C.有两个同号的实数根D.有两个无法确定符号的实数根答案:B分析:根据二次函数的图像判断与x轴有两个交点,且在原点两侧,故关于x的一元二次方程ax2+bx+c= 0有两个异号的实数根.解:∵二次函数的图像与x轴有两个交点,且在原点两侧,∴关于x的一元二次方程ax2+bx+c=0有两个异号的实数根,故选:B.小提示:本题考查二次函数图像与一元二次方程根的关系,掌握二次函数y=ax2+bx+c(a≠0)的图像与x 轴有交点的横坐标即为关一元二次方程ax2+bx+c=0的根是解答本题的关键.10、已知抛物线y=2(x−3)2−5,其对称轴是()A.直线x=−3B.直线x=3C.直线x=−5D.直线x=5答案:B分析:直接根据抛物线的顶点式进行解答即可.解:∵y=2(x−3)2−5,∴抛物线对称轴为直线x=3.故选:B.小提示:本题考查二次函数的性质,解题关键是掌握二次函数图像与系数的关系.填空题11、已知二次函数y=(x−1)2+3,当x=_______时,y取得最小值.答案:1分析:根据抛物线的顶点坐标和开口方向即可得出答案.解:∵y=(x−1)2+3,∴该抛物线的顶点坐标为(1,3),且开口方向向上,∴当x=1时,y取得最小值,所以答案是:1.小提示:本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.12、如图,过点D(1,3)的抛物线y=-x2+k的顶点为A,与x轴交于B、C两点,若点P是y轴上一点,则PC+PD的最小值为____.答案:3√2分析:由两点之间线段最短可知,当D、P、B在同一直线上时就可使PC+PD的值最小,解答即可.解:连接PB,对于抛物线y=-x2+k,对称轴是y轴,∴PC=PB,∴当D、P、B在同一直线上时,PC+PD的值最小,最小值为BD的长,∵抛物线y=-x2+k过点D(1,3),∴把x=1,y=3代入y=-x2+k,解得:k=4,把y=0代入y=-x2+4,解得:x=2或x=-2,所以点B的坐标为(-2,0),所以BD=√(−2−1)2+32=3√2,所以答案是:3√2.小提示:本题考查了抛物线与x轴的交点,轴对称-最短路线问题,找到P点是本题的关键.13、已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.答案:6分析:根据a-b2=4得出b2=a−4,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴b2=a−4将b2=a−4代入a2-3b2+a-14中得:a2-3b2+a-14=a2−3(a−4)+a−14=a2−2a−2a2−2a−2=a2−2a+1−3=(a−1)2−3∵b2=a−4≥0∴a≥4当a=4时,(a−1)2−3取得最小值为6∴a2−2a−2的最小值为6∵a2-3b2+a-14=a2−2a−2∴a2-3b2+a-14的最小值6所以答案是:6.小提示:本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.14、已知二次函数y =−x 2−2x +3,当a ⩽x ⩽12时,函数值y 的最小值为1,则a 的值为_______. 答案:−1−√3##−√3−1分析:先把函数解析式化为顶点式可得当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,然后分两种情况讨论:若a ≥−1;若a <−1,即可求解.解:y =−x 2−2x +3=−(x +1)2+4,∴当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,若a ≥−1,当a ⩽x ⩽12时,y 随x 的增大而减小, 此时当x =12时,函数值y 最小,最小值为74,不合题意,若a <−1,当x =a 时,函数值y 最小,最小值为1,∴−a 2−2a +3=1,解得:a =−1−√3或−1+√3(舍去);综上所述,a 的值为−1−√3.所以答案是:−1−√3小提示:本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.15、已知二次函数y =ax 2+bx +c(a ≠0)的图像的顶点为(2,−2),与x 轴交于点(1,0)、(3,0),根据图像回答下列问题:当x _______时,y 随x 的增大而减小:方程ax 2+bx +c =0的两个根是___________.答案: x <2 x 1=1,x 2=3分析:利用开口向上和对称轴以及二次函数与一元二次方程的联系即可得到答案.解(1)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴二次函数的对称轴为直线x=2,∵抛物线的开口向上,∴当x<2时,y随x的增大而减小;(2)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴方程ax2+bx+c=0的两个根是x1=1,x2=3.小提示:本题考查了二次函数的图像与性质以及二次函数与一元二次方程的联系,属于常考题型.解答题16、在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.答案:(1)v=−12t+10,y=−14t2+10t(2)6cm/s(3)黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球分析:(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入两组数值求解即可;根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm时,代入(1)式中y关于t的函数解析式求出时间t,再将t代入v关于t的函数解析式,求得速度v即可;(3)设黑白两球的距离为w cm,得到w=70+2t−y=14t2−8t+70,化简即可求出最小值,于是得到结论.(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入(0,10),(1,9.5)得,{10=b 9.5=k+b ,解得{k=−12b=10,∴v=−12t+10,根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入(0,0),(1,9.75),(2,19)得{0=c9.75=a+b19=4a+2b,解得{a=−14b=10c=0,∴y=−14t2+10t;(2)依题意,得−14t2+10t=64,∴t2−40t+256=0,解得,t1=8,t2=32;当t1=8时,v=6;当t2=32时,v=−6(舍);答:黑球减速后运动64cm时的速度为6cm/s.(3)设黑白两球的距离为w cm,w=70+2t−y=14t2−8t+70=14(t−16)2+6,∵14>0,∴当t=16时,w的值最小为6,∴黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球.小提示:本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.17、已知抛物线y=ax2−4ax+3(a≠0)的图象经过点A(−2,0),过点A作直线l交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.答案:(1)y=−14x2+x+3;(2,4)(2)3;2分析:(1)把点A(−2,0)代入y=ax2−4ax+3(a≠0),求出a的值即可;再运用顶点坐标公式求出顶点坐标即可;(2)把C(4,m)代入y=−14x2+x+3可求出m的值;再运用待定系数法求出直线AB的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将A(−2,0)代入y=ax2−4ax+3得:0=4a+8a+3,解得a=−14,∴抛物线的函数表达式为y=−14x2+x+3,∵−b2a =−12×(−14)=2,4ac−b24a=4×(−14)×3−124×(−14)=4,∴顶点坐标为(2,4);(2)把C(4,m)代入y=−14x2+x+3得,m =−4+4+3=3,设直线AB 的解析式为y =kx +b ,将A (−2,0),B (4,3)代入y =kx +b 得{0=−2k +b 3=4k +b, 解得{k =12b =1, ∴直线AB 的解析式为y =12x +1, ∵顶点的横坐标为2,∴把x =2代入y =12x +1得:y =2,∴n =4−2=2.小提示:本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.18、戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x 元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.答案:(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元分析:(1)根据题意列出代数式即可;(2)设每盒售价x 元,则每件的销售利润为(x −50)元,日销售量为[20+2(70−x )]件,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合商家想尽快销售完该款商品,即可求解;(3)设日利润为y ,由(2)列出函数关系式,根据二次函数的性质即可求解.(1)设每盒售价降低x 元,则日销量可表示为(20+2x )盒,每盒口罩的利润为70−50−x =20−x (元)所以答案是:(20+2x);(20−x)(2)设每盒售价x元,则每件的销售利润为(x−50)元,日销售量为[20+2(70−x)]件,根据题意得,(x−50)[20+2(70−x)]=(70−50)×20解得x1=70,x2=60又∵商家想尽快销售完该款商品,∴x=60.答:每件售价应定为60元;(3)设日利润为y,则y=(x−50)[20+2(70−x)]=−2x2+260x−8000=−2(x−65)2+450∴x=65时,y的最大值为450,即每盒售价应定为65元时,最大日利润是450元.小提示:本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.。
九年级数学上册第二十二章二次函数知识点总结(新版)新人教版
九年级数学上册:第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(2017天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A )A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(2017四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(2017内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是 m<2 .4.(2017内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B ,D 的点Q ,使△BDQ 中BD 边上的高为2,若存在求出点Q 的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a (x-1)2+4.∵点B (3,0)在该二次函数的图象上, ∴0=a (3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x 2+2x+3.∵点D 在y 轴上,所以可令x=0,解得:y=3. ∴点D 的坐标为(0,3).设直线BD 的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1. ∴直线BD 的解析式为y=-x+3.(2)设点P 的横坐标为m (m>0), 则P (m ,-m+3), M (m ,-m 2+2m+3),PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM最大值为(3)如图,过点Q作QG∥y轴交BD于点G,作QH⊥BD于点H,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。
2024九年级数学上册“第二十二章 二次函数”必背知识点
2024九年级数学上册“第二十二章二次函数”必背知识点一、二次函数的定义与表达式定义:一般地,自变量x和因变量y之间存在如下关系:y = ax² + bx + c(a, b, c为常数,a ≠ 0)。
这样的函数称为二次函数,其中a决定函数的开口方向,b和a共同决定对称轴的位置,c决定抛物线与y轴的交点。
三种表达式:1. 一般式:y = ax² + bx + c (a, b, c为常数,a ≠ 0)。
2. 顶点式:y = a(x - h)² + k,其中(h, k)为抛物线的顶点坐标。
3. 交点式:y = a(x - x₁)(x - x₂),仅限于与x轴有交点A(x₁, 0)和B(x₂, 0)的抛物线。
二、二次函数的图像与性质图像:二次函数的图像是一条抛物线。
开口方向与大小:由二次项系数a决定。
当a > 0时,开口向上;当a < 0时,开口向下。
|a|越大,开口越小;|a|越小,开口越大。
对称轴:1. 一般式:对称轴为直线x = -b/2a。
2. 顶点式:对称轴为直线x = h。
3. 交点式:对称轴为直线x = (x₁ + x₂)/2。
顶点坐标:1. 顶点式直接给出为(h, k)。
2. 一般式可通过公式计算得到(-b/2a, (4ac - b²)/4a)。
最值:1. 当a > 0时,函数有最小值,最小值为(4ac - b²)/4a,此时x = -b/2a。
2. 当a < 0时,函数有最大值,最大值为(4ac - b²)/4a,此时x = -b/2a。
三、二次函数与一元二次方程当二次函数y = ax² + bx + c中y = 0时,即转化为一元二次方程ax² + bx + c = 0。
函数图像与x轴的交点即为该方程的根。
根据判别式Δ = b² - 4ac的值,可以判断抛物线与x轴的交点个数:1. Δ > 0时,抛物线与x轴有两个交点。
九年级数学上册第二十二章二次函数知识点梳理(带答案)
九年级数学上册第二十二章二次函数知识点梳理单选题1、已知点A(-2,y1),B(1,y2),C(3,y3)在二次函数y=−2x2图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2答案:D分析:分别计算出自变量为-2、-1和3的函数值,然后比较函数值的大小.解:∵点A(-2,y1),B(1,y2),C(3,y3)在二次函数y=-2x2图象上,∴y1=-2×4=-8;y2=-2×1=-2;y3=-2×9=-18,∴y3<y1<y2.故选:D.小提示:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.2、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.3、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.4、在平面直角坐标系中,若抛物线y=2(x+5)(x−3)经一次变换后得到抛物线y=2(x+3)(x−5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向上平移8个单位D.向下平移8个单位答案:B分析:先将两解析式化成顶点式,然后根据平移前后的两抛物线的顶点坐标即可解答.解:y=2(x+5)(x-3)=2x2+4x-30=2(x+1)2-32,顶点坐标是(-1,-32).y=2(x+3)(x-5)=2x2-4x-30=2(x-1)2-32,顶点坐标是(1,-32).所以将抛物线y=2(x+5)(x-3)向右平移2个单位长度得到抛物线y=2(x+3)(x-5).故选:B.小提示:本题主要考查了二次函数图像与平移变换,掌握平移的规律“左加右减,上加下减”是解答本题的关键.5、如图,已知抛物线y=ax2+bx−2的对称轴是x=−1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误..的是()A.b2>−8a B.若实数m≠−1,则a−b<am2+bmC.3a−2>0D.当y>−2时,x1⋅x2<0答案:C分析:先根据抛物线对称轴求出b=2a,再由抛物线开口向上,得到a>0,则b2+8a=4a2+8a>0由此即可判断A;根据抛物线开口向上在对称轴处取得最小值即可判断B;根据当x=1时,y=a+b−2<0,即可判断C;根据y>−2时,直线l与抛物线的两个交点分别在y轴的两侧,即可判断D.解:∵抛物线y=ax2+bx−2的对称轴是x=−1,∴−b=−1,2a∴b=2a,∵抛物线开口向上,∴a>0,∴b2+8a=4a2+8a>0,∴b2>−8a,故A说法正确,不符合题意;∵抛物线开口向下,抛物线对称轴为直线x=-1,∴当x=-1时,y=a−b−2,最小值∴当实数m≠−1,则a−b−2<am2+bm−2,∴当实数m≠−1时,a−b<am2+bm,故B说法正确,不符合题意;∵当x=1时,y=a+b−2<0,∴a+2a-2<0,即3a-2<0,故C说法错误,符合题意;∵y>−2,∴直线l与抛物线的两个交点分别在y轴的两侧,∴x1⋅x2<0,故D说法正确,不符合题意;故选C.小提示:本题主要考查了根据二次函数的图象去判断式子符号,二次函数的系数与图象之间的关系等等,熟知二次函数的相关知识是解题的关键.6、二次函数y=x2+2x+2的图象的对称轴是()A.x=−1B.x=−2C.x=1D.x=2答案:A分析:将二次函数y=x2+2x+2写成顶点式,进而可得对称轴.解:∵y=x2+2x+2=(x+1)2+1.∴二次函数y=x2+2x+2的图象的对称轴是x=−1.故选A.小提示:本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.7、某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元B.400元C.800元D.1250元答案:D分析:将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.小提示:此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.8、抛物线y=ax2+bx+c经过点(−1,0)、(3,0),且与y轴交于点(0,−5),则当x=2时,y的值为()A.−5B.−3C.−1D.5答案:A分析:先利用待定系数法求出抛物线解析式,再求函数值即可.解:∵抛物线y=ax2+bx+c经过点(−1,0)、(3,0),且与y轴交于点(0,−5),∴{c=−5a−b+c=09a+3b+c=0,解方程组得{c=−5 a=53b=−103,∴抛物线解析式为y=53x2−103x−5,当x=2时,y=53×4−103×2−5=−5.故选择A.小提示:本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键.9、如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.答案:B分析:根据平移过程,可分三种情况,当0≤x<1时,当1≤x<3时,当3≤x≤4时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.过点C作CM⊥AB于N,DG=3,在等腰Rt△ABC中,AB=2,∴CN=1,①当0≤x<1时,如图,CM=x,∴PQ=2x,∴y=12⋅PQ⋅CM=12×2x⋅x=x2,∴0≤x<1,y随x的增大而增大;②当1≤x<3时,如图,∴y=S△ABC=12×2×1=1,∴当1≤x<3时,y是一个定值为1;③当3≤x≤4时,如图,CM=x−3,∴PQ=2(x−3),∴y=12AB⋅CN−12PQ⋅CM=12×2×1−12×2×(x−3)2=1−(x−3)2,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.小提示:本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.10、如图,在正方形ABCD中,AB=4,点P从点A出发沿路径A→B→C向终点C运动,连接DP,作DP的垂直平分线MN与正方形ABCD的边交于M,N两点,设点P的运动路程为x,△PMN的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.答案:A分析:分点P在AB和BC上两种情况,分别求出MN和PF长,利用面积公式求解.解:(1)如图,当0≤x≤4时,点P在AB上,过点N作NE⊥AD于点E,设MN与PD交于点F,∴NE=DC=AD,则PD=√PA2+AD2=√x2+42=√x2+16,又∵MN垂直平分PD,∴PF=12PD=12√x2+16,∴∠MDF+∠FMD=∠MNE+∠FME=90°,∴∠MNE=∠PDA,在△MNE和△PDA中,{∠A=∠NEMAD=EN∠PDA=∠MNE∴△APD≌△EMN,∴PD=MN=√x2+16,∴y=12MN⋅PF=12√x2+16⋅12√x2+16=14x2+4 ,(2)如图,当4<x≤8时,点P在BC上,过点N作NE⊥CD于点E,设MN交PD于点F,则PD=√PC2+CD2=√(8−x)2+16 ,∴PF=12√(8−x)2+16用(1)的方法得MN=√(8−x)2+16,y=12√(8−x)2+16⋅12√(8−x)2+16=14(x−8)2+4,故y={14x2+4(0≤x≤4)14(x−8)2+4(4<x≤8)故选择A.小提示:本题考查分段函数,解决问题的关键是根据点P的位置确定自变量的取值范围得出函数解析式.填空题11、抛物线y=3−x2位于y轴左侧的部分是______的.(填“上升”或“下降”)答案:上升分析:根据二次函数图象的性质解答即可.解:∵二次项系数-1<0,∴抛物线开口向下,∵对称轴是直线y=0,∴抛物线y=3−x2位于y轴左侧的部分是上升的.所以答案是:上升.小提示:本题考查了二次函数图象的性质,熟练掌握二次函数y=ax2+k的性质是解答本题的关键.对于二次函数y=ax2+k (a,k为常数,a≠0),当a>0时,抛物线开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.12、如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线经过x轴上的点A,B,则此抛物线的解析式为__________________.答案:y=−2x2+16x−24分析:根据平行四边形的性质得到CD=AB=4,即C点坐标为(4,8),进而得到A点坐标为(2,0),B点坐标为(6,0),利用待定系数法即可求得函数解析式.∵四边形ABCD为平行四边形∴CD=AB=4∴C点坐标为(4,8)∴A点坐标为(2,0),B点坐标为(6,0)设函数解析式为y=a(x−2)(x−6),代入C点坐标有8=a(4−2)(4−6)解得a=−2∴函数解析式为y=−2(x−2)(x−6),即y=−2x2+16x−24故答案为y=−2x2+16x−24.小提示:本题考查了平行四边形的性质,和待定系数法求二次函数解析式,问题的关键是求出A点或B点的坐标.13、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).答案:①②④分析:由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断①;由抛物线的对称轴为直线x=1,即可判断②;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断④,由抛物线开口向下,得到a<0,再由当x=-1时,a−b+c<0,即可判断③.解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴−b=1,即2a+b=0,故②正确;2a∵抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,∴抛物线与x轴的另一个交点在2到3之间,故④正确;∵抛物线开口向下,∴a<0,∵当x=-1时,a−b+c<0,∴a−b+c+7a<0即8a−b+c<0,故③错误,所以答案是:①②④.小提示:本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质.14、如图,一位篮球运动员投篮,球沿抛物线y=−0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是_________m.答案:4分析:将y=3.05代入y=−0.2x2+x+2.25中可求出x,结合图形可知x=4,即可求出OH.解:当y=3.05时,−0.2x2+x+2.25=3.05,解得:x=1或x=4,结合图形可知:OH=4m,所以答案是:4小提示:本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.15、如图,一次足球训练中,一球员从球门正前方将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米,当足球下落到离地面53米时,足球飞行的水平距离为__________米.答案:10分析:设抛物线的解析式为y=a(x−6)2+3,代入原点,确定解析式为y=−112x2+x,当y=53米时,求得x的值即可.设抛物线的解析式为y=a(x−6)2+3,代入原点,得:0=a(0−6)2+3,解得a=−112,∴抛物线的解析式为y=−112x2+x,当y=53米时,−112x2+x=53,解得x=10,x=2(舍去),足球飞行的水平距离为10米,所以答案是:10.小提示:本题考查了抛物线的解析式,已知函数值求自变量值,熟练掌握待定系数法是解题的关键.解答题16、李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?答案:(1)y=−0.2x+8.4(1≤x≤10且x为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.分析:(1)根据题意列出y=8.2−0.2(x−1),得到结果.(2)根据销售利润=销售量×(售价-进价),利用(1)结果,列出销售利润w与x的函数关系式,即可求出最大利润.(1)解:由题意得y=8.2−0.2(x−1)=−0.2x+8.4∴批发价y与购进数量x之间的函数关系式是y=−0.2x+8.4(1≤x≤10,且x为整数).(2)解:设李大爷销售这种水果每天获得的利润为w元则w=[12−0.5(x−1)−y]⋅10x=[12−0.5(x−1)−(−0.2x+8.4)]⋅10x=−3x2+41x∵a=−3<0∴抛物线开口向下∵对称轴是直线x=416∴当1≤x≤41时,w的值随x值的增大而增大6∵x为正整数,∴此时,当x=6时,w=138最大当41≤x≤10时,w的值随x值的增大而减小6∵x为正整数,∴此时,当x=7时,w=140最大∵140>138∴李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.小提示:本题考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利用二次函数的增减性来解答,解题关键是理解题意,确定变量,建立函数模型,然后结合实际选择最优方案进行解决.17、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?答案:(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元分析:(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的x的值,从而得到答案.(1)由题意列方程得:(x+40-30)(300-10x)=3360解得:x1=2,x2=18∵要尽可能减少库存,∴x2=18不合题意,故舍去∴T恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=−10(x −10)2+4000 ∴当x =10时,M 最大值=4000元 ∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.小提示:本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.18、在平面直角坐标系中,设二次函数y =−12(x −2m )2+3−m (m 是实数). (1)当m =2时,若点A (8,n )在该函数图象上,求n 的值.(2)小明说二次函数图象的顶点在直线y =−12x +3上,你认为他的说法对吗?为什么?(3)已知点P(a +1,c),Q(4m −5+a,c)都在该二次函数图象上,求证:c ≤138.答案:(1)-7 (2)对,理由见解析 (3)见解析分析:(1)把m =2,点A (8,n )代入解析式即可求解;(2)由抛物线解析式,得顶点是(2m ,3-m ),把x =2m 代入y =−12x +3,求出y 值与3-m 比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P (a +1,c ),Q (4m -5+a ,c )的纵坐标相同,即可求得对称轴为直线x =a+1+4m−5+a2=a +2m -2,即可得出a +2m -2=2m ,求得a =2,得到P (3,c ),代入解析式即可得到 c =-12(3-2m )2+3-m =-2m 2+5m -32=-2(m -54)2+138,根据二次函数的性质即可证得结论.(1)解:当m =2时,y =-12(x -4)2+1 ∵A (8,n )在函数图象上, ∴n =-12(8-4)2+1=-7(2)解:由题意得,顶点是(2m,3-m)当x=2m时,y=-12×2m+3=-m+3∴顶点(2m,3-m)在直线y=-12x+3上(3)证明:∵P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上∴对称轴是直线x=a+1+4m-5+a2=a+2m-2∴a+2m-2=2m,∴a=2,∴P(3,c),把P(3,c)代入抛物线解析式,得∴c=-12(3-2m)2+3-m=-2m2+5m-32=-2(m-54)2+138,∵-2<0,∴c有最大值为138,∴c≤138.小提示:本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.。
人教版初中九年级数学上册第二十二章《二次函数》知识点总结(含答案解析)(1)
一、选择题1.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示:) A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .3x y =⎧⎨=⎩D .43x y =⎧⎨=⎩A 解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键. 2.如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x ax x++=--有正整数解,则所有符合条件的a 的值之和为( ). A .9 B .8C .4D .3C解析:C 【分析】由二次函数的性质可先确定出a 的范围,再由二次函数的性质可确定出a 的范围,解分式方程确定出a 的取值范围,从而可确定出a 的取值,可求得答案. 【详解】 解:∵二次函数2112y x ax =-+, ∴抛物线开口向上,对称轴为x =a , ∴当x <a 时,y 随x 的增大而减小,∵当x≤1时,y 随x 的增大而减小, ∴a≥1, 解分式方程4311x ax x ++=--可得x =72a -, ∵关于x 的分式方程4311x ax x++=--有正整数解, ∵x≠1,∴满足条件的a 的值为1,3,∴所有满足条件的整数a 的值之和是1+3=4, 故选:C . 【点睛】本题考查了二次函数的性质、分式方程的解,通过解分式方程以及二次函数的性质,找出a 的值是解题的关键.3.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个B解析:B 【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确. 【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2ba=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误; ∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误; 综上,正确的有①②④. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键. 4.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)一个根x 的范围是( ) A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x << D .2.00 2.01x <<D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根. 其中正确的结论个数是( )A .3B .2C .1D .0A解析:A 【分析】根据函数解析式画出函数图象,结合函数图象进行判断. 【详解】 解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意. ②如图所示,函数没有最大值,有最小值,故②不符合题意. ③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个. 故选:A . 【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.6.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>C解析:C 【分析】根据函数解析式的特点为顶点式,其对称轴为x=-3,图象开口向下;根据二次函数图象的对称性,利用在对称轴的左侧,y 随x 的增大而增大,可判断y 2>y 1>y 3. 【详解】由二次函数y =a (x +3)2+k 可知对称轴为x =−3,根据二次函数图象的对称性可知,()22,B y -与2(4,)D y -对称,∵点()15,A y -,()36.5,C y -, 2(4,)D y -)在对称轴的左侧,y 随x 的增大而增大, ∵-4>-5>-6.5, ∴y 2>y 1>y 3, 故选C. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.7.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >> B .132y y y >> C .321y y y >> D .312y y y >>A解析:A 【分析】根据二次函数的对称性、增减性即可得. 【详解】由二次函数的性质可知,当1x ≥-时,y 随x 的增大而减小, 抛物线2(1)y x =-+的对称轴为1x =-,∴0x =时的函数值与2x =-时的函数值相等,即为1y ,∴点()10y ,在此抛物线上,又点()21,B y ,()32,C y 在此抛物线上,且1012-<<<,123y y y ∴>>,故选:A . 【点睛】本题考查了二次函数的对称性、增减性,熟练掌握二次函数的性质是解题关键. 8.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( ) A .2(2-1)-3y x = B .22(-1)-3y x = C .2(21)-3y x =+ D .22(1)-3y x =+B解析:B 【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可. 【详解】解:抛物线y =22x 的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y =22(1)x - -3.故选:B 【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.9.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .C解析:C 【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论. 【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确. 故选:C . 【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键. 10.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-D解析:D 【分析】 解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可. 【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0),∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3, ∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022,当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3). 故选:D . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.二、填空题11.如图,已知二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x <-1时,y <0;②30a b +>;③2-13a ≤≤-;④248ac ab ->;其中正确的结论有_________.①③【分析】由二次函数的对称性可得与x 轴的另一个交点坐标为由图像可得开口向下则有对称轴为直线即由此可进行求解问题【详解】解:由二次函数二次函数的图像与x 轴交于点A (30)对称轴为直线x =1可得抛物线解析:①③ 【分析】由二次函数的对称性可得与x 轴的另一个交点坐标为()1,0-,由图像可得开口向下,则有0a <,240b ac ->,对称轴为直线1x =,即20a b +=,由此可进行求解问题.【详解】解:由二次函数二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,可得抛物线与x 的另一个交点坐标为()1,0-,开口向下,即0a <,当1x ≤时,y 随x 的增大而增大, ∴当1x <-时,y <0,故正确;∵对称轴为直线1x =,即20a b +=,0a <, ∴300a b a a +=+=<,故②错误;设抛物线的解析式为()()13y a x x =+-,则223y ax ax a =--,令x=0时,则有y=-3a ,∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点), ∴233a ≤-≤,解得:213a -≤≤-,故③正确; ∵23c ≤≤,240b ac ->,由248ac b a ->得248ac a b ->, ∵0a <,∴224b c a-<,∴20c -<,∴2c <,与23c ≤≤矛盾,故④错误; 所以正确的结论有①③; 故答案为①③. 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次不等式220x x m -++>的解集为______________________.【分析】根据二次函数的对称性求出二次函数图象与轴的另一个交点再写出x 轴下方部分的x 的取值范围即可【详解】由图可知对称轴为直线所以二次函数图象与x 轴的另一个交点坐标为(0)由图象可知:函数值大于0的的 解析:13x【分析】根据二次函数的对称性求出二次函数图象与x 轴的另一个交点,再写出x 轴下方部分的x 的取值范围即可. 【详解】由图可知,对称轴为直线1x =,所以,二次函数图象与x 轴的另一个交点坐标为(1-,0), 由图象可知:函数值大于0的x 的取值范围为:13x ,所以,220x x m -++>的解集为13x .故答案为:13x .【点睛】本题考查了二次函数与不等式,主要利用了二次函数的对称性以及数形结合的思想,难点在于先求出函数图象与x 轴的另一个交点坐标. 13.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.2013【分析】分别过B1B2B3作y 轴的垂线垂足分别为ABC 设A0A1=aA1A2=bA2A3=c 则AB1=aBB2=bCB3=c 再根据所求正三角形的边长分别表示B1B2B3的纵坐标逐步代入抛物线解析:2013 【分析】分别过B 1,B 2,B 3作y 轴的垂线,垂足分别为A 、B 、C ,设A 0A 1=a ,A 1A 2=b ,A 2A 3=c ,则AB 1=32a ,BB 2=32b ,CB 3=32c ,再根据所求正三角形的边长,分别表示B 1,B 2,B 3的纵坐标,逐步代入抛物线y=23x 2中,求a 、b 、c 的值,得出规律. 【详解】分别过1B ,2B ,3B 作y 轴的垂线,垂足分别为A 、B 、C , 设01A A a =,12A A b =,23A A c =,由勾股定理则22101032AB A B AA a =-=,232BB b =,332CB c =, 1111312233AA AB a a ==⨯=,则13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 2211312233BA BB b b ==⨯=,则23,22b B b a ⎛⎫+ ⎪ ⎪⎝⎭, 3331233CA c ===,则33,2c B a b ⎫++⎪⎪⎝⎭,在正011A B A △中,13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 代入223y x =中,得223234a a =⨯,解得1a =,即011A A =, 在正122A B A △中,23,122b B b ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2231234b b +=⨯,解得2b =,即122A A =, 在正233A B A △中,33,322c B c ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2233234c c ⎛⎫+=⨯ ⎪⎝⎭,解得3c =,即233A A =, …,依此类推由此可得201220132013A B A △的边长2013=.故答案为:2013.【点睛】本题考查了二次函数的综合运用.勾股定理应用,掌握探究规律题的解题方法,关键是根据正三角形的性质用边长表示抛物线上点的坐标,利用抛物线解析式求正三角形的边长,得到规律.14.已知抛物线y =x 2+9的最小值是y =_____.9【分析】直接利用二次函数的最值问题求解【详解】解:∵y =x2+9∴当x =0时y 有最小值最小值为9故答案为:9【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h 当a >0时x=ky 有解析:9【分析】直接利用二次函数的最值问题求解.【详解】解:∵y =x 2+9,∴当x =0时,y 有最小值,最小值为9.故答案为:9.【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h ,当a >0时,x=k ,y 有最小值h ;当a <0时,x=k ,y 有最大值h .15.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 16.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).>【分析】根据抛物线y =﹣(x+1)2+3得到开口向下对称轴为直线x =﹣1然后根据二次函数的性质判断函数值的大小【详解】解:∵抛物线y =﹣(x+1)2+3的开口向下对称轴为直线x =﹣1∴当x >﹣1时 解析:>【分析】根据抛物线y =﹣(x +1)2+3得到开口向下,对称轴为直线x =﹣1,然后根据二次函数的性质判断函数值的大小.【详解】解:∵抛物线y =﹣(x +1)2+3的开口向下,对称轴为直线x =﹣1,∴当x >﹣1时,y 随x 的增大而减小,∵1<2,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质是解题的关键.17.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.18.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5.【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出.【详解】∵二次函数2y x bx =+的对称轴为直线2x =, ∴222b b x a =-=-=,∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0,∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0, ∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5, 则t 的取值范围是-4≤t<5.故答案为:-4≤t<5.【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键.19.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____. ()【分析】根据抛物线y =x2﹣3x+2与x 轴交于AB 两点与y 轴交于点C 得A (10)B (20)C (02)过点B 作BM ⊥BC 交CD 延长线于点M 过点M 作MG ⊥x 轴于点G 易证等腰直角三角形OCB ∽等腰直角解析:(715,24) 【分析】 根据抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,得A (1,0),B (2,0),C (0,2),过点B 作BM ⊥BC 交CD 延长线于点M ,过点M 作MG ⊥x 轴于点G ,易证等腰直角三角形OCB ∽等腰直角三角形GBM ,可得M (8,6),再求得直线CM 的解析式为y =12x +2,联立直线和抛物线,解方程组即可得点D 的坐标. 【详解】 解:∵抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,∴解得A (1,0),B (2,0),C (0,2),∴OB =OC∴∠OBC =45°,如图,过点B 作BM ⊥BC 交CD 延长线于点M ,过点M 作MG ⊥x 轴于点G ,∴∠COB =∠MGB =90°∴∠CBO +∠MBG =90°∴∠MBG =45°∴MG =BG∴等腰直角三角形OCB ∽等腰直角三角形GBM ∴BC BM =OC BG ∵tan ∠DCB =MB BC =3 ∴123BG= ∴BG =6∴MG =6 ∴M (8,6)设直线CM 解析式为y =kx +b ,把C (0,2),M (8,6)代入,解得k =12,b =2 所以直线CM 的解析式为y =12x +2 联立212232y x y x x ⎧=+⎪⎨⎪=-+⎩解得1102x y =⎧⎨=⎩,2272154x y ⎧=⎪⎪⎨⎪=⎪⎩∴D (715,24) 故答案为(715,24). 【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征、解直角三角形,解决本题的关键是掌握二次函数的性质.20.抛物线y =x²-x 的顶点坐标是________【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?解析:(1)每件衬衫应降价20元;(2)每件衬衫降价15元时,商场平均每天赢利最多 .【分析】(1)设每件衬衫应降价x 元,由题意可以得到关于x 的一元二次方程,解方程即可得到问题解答;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式,然后根据函数的性质可以得到问题解答 .【详解】解:(1)设每件衬衫应降价x 元,由题意可以得到:(10+x )(40-x )=600,解之得:x=10或x=20,因为尽快减少库存,∴每件衬衫降价20元时,商场平均每天赢利600元;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式为:y=(10+x )(40-x ),配方得:()215625y x =--+,∴当x=15时,y 取得最大值625,即当每件衬衫降价15元时,商场平均每天赢利最多,且赢利为625元.【点睛】本题考查一元二次方程与二次函数的综合运用,根据题意列出一元二次方程或函数关系式,并根据方程的解或函数的性质作答是解题关键.22.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10件.设每件涨价(0)x x ≥元. (1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得纯利润(纯利润=毛利润-经营费用)最大,超市对该商品售价为______元,最大纯利润为______元.解析:(1)50010y x =-;(2)2104005000w x x =-++,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)75,5000.【分析】(1)根据每件涨价x 元,每周销量就减少10x 件即可得;(2)根据“毛利润=(每件的售价-每件的成本)⨯销售量”可得w 与x 的函数关系式,再根据二次函数的性质即可得;(3)设一周销售获得的纯利润为Q 元,先根据纯利润的计算公式求出Q 与x 的函数关系式,再利用二次函数的性质求解即可得.【详解】(1)由题意,每件涨价x 元,每周销量就减少10x 件,则50010y x =-;(2)由题意得:(5040)(10)(50010)w x y x x =+-=+-,整理得:2104005000w x x =-++,将此二次函数的解析式化成顶点式为210(20)9000w x =--+,由二次函数的性质可知,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)设一周销售获得的纯利润为Q 元,则220%(50)1040050000.2(50)(50010)Q w x y x x x x =-+=-++-+-,整理得:28400Q x x =-+,即28(25)5000Q x =--+,由二次函数的性质可知,当25x =时,Q 取得最大值,最大值为5000,则此时该商品售价为50502575x +=+=(元),故答案为:75,5000.【点睛】本题考查了一次函数与二次函数的应用、二次函数的性质,熟练掌握二次函数的性质是解题关键.23.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标解析:(1)证明见解析;(2)a >1或a <﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x 2+(2k-1)x+2=0得到k =2,由此得到该抛物线解析式为y =x 2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x 2+(2k-1)x+2﹣y =0恒成立,由此列出关于x 、y 的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k =1时,方程为x+2=0,所以x =﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k 2-12k+9=(2k-3)2≥0,即△≥0,∴无论k 取任何实数时,方程总有实数根(2)解:令y =0,则(k-1)x 2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x 的一元二次方程,得x 1=﹣2,x 2=11-k, ∵二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,∴1-k =-1,k=2.∴该抛物线解析式为y =x 2+3x+2,由图象得到:当y 1>y 2时,a >1或a <﹣4.(3)依题意得(k-1)x 2+(2k-1)x+2﹣y =0恒成立,即k (x 2+2x )-x 2-x ﹣y+2=0恒成立,得:x 2+2x=0;x 1=0,y 1=2;x 2=-2,y 2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.24.某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克)与增种果树x (棵)之间的函数关系如图所示.(1)求每棵果树产果y (千克)与增种果树x (棵)之间的函数关系式;(2)设果园的总产量为w (千克),求w 与x 之间的函数表达式;(3)试说明(2)中总产量w (千克)随增种果树x (棵)的变化而变化的情况,并指出增种果树x 为多少棵时获得最大产量,最大产量w 是多少?解析:(1)1802y x =-+;(2)215048002w x x =-++ ;(3)当x=50时,w 的最大值为6050.【分析】 (1)由图像可得坐标()()12,74,28,66,设y kx b =+,然后代入求解即可; (2)根据(1)及题意可直接进行求解;(3)由(2)及二次函数的性质可进行求解.【详解】解:(1))由图像可得坐标()()12,74,28,66,则设y kx b =+,把点()()12,74,28,66代入得:12742866k b k b +=⎧⎨+=⎩,解得:1280k b ⎧=-⎪⎨⎪=⎩, ∴1802y x =-+; (2)由(1)及题意得:()()16060802w x y x x ⎛⎫=+⋅=+⋅-+ ⎪⎝⎭215048002x x =-++; (3)由(2)得:()221150480050605022w x x x =-++=--+, ∴102a =-<,开口向下,对称轴为直线50x =, ∴当50x ≤时,y 随x 的增大而增大,当50x ≥时,y 随x 的增大而减小,∴当50x =时,w 取最大,最大值为6050.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键. 25.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___.(2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n 的取值范围是______.②若向右平移,则n 的取值范围是______.解析:(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤ 【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.【详解】解:(1)∵抛物线y =mx 2+2mx -3的对称轴为直线x =22m m-=-1,AB=4, ∴点A (-3,0),点B (1,0),故答案为:x =-1,(-3,0);(2)∵抛物线y =mx 2+2mx -3过点B (1,0),∴0=m +2m -3,∴m =1,∴抛物线的解析式:y =x 2+2x -3,(3)如图,∵y =x 2+2x -3=(x +1)2-4,∴设向左平移后的解析式为:y =(x +1+n )2-4,把x =-3,y =0代入解析式可得:0=(-3+1+n )2-4,∴n =0(舍去),n =4,∴向左平移,则n 的取值范围是0<n ≤4;设向右平移后的解析式为:y =(x +1-n )2-4,把x =0,y =-3代入解析式可得:-3=(1-n )2-4,∴n =0(舍去),n =2,∴向右平移,则n 的取值范围是0<n ≤2,故答案为:0<n ≤4;0<n ≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.26.已知抛物线的顶点为()1,4-,且过点()2,5-.(1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果).解析:(1)()214y x =--或223y x x =--; (2)1x <-或3x > 【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得 ()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x−1)2−4,解得:1x =3,2x =−1,故抛物线与x 轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y >0时,自变量x 的取值范围为:x <−1或x >3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x 轴的交点,正确画出函数图象是解题关键.27.为了在体育中考中取得更好地成绩,小明积极训练.在某次试投中,实心球经过的路线是如图所示的抛物线的一部份.已知实心球出手处A 距离地面的高度是169米,当实心球运行的水平距离为3米时,达到最大高度259米的B 处,实心球的落地点为C . (1)如图,已知AD CD ⊥于D ,以D 为原点,CD 所在直线为x 轴建立平面直角坐标系,在图中画出坐标系,点B 的坐标为________;(2)小明此次投掷的成绩是多少米?解析:(1)253,9B ⎛⎫ ⎪⎝⎭;(2)8米 【分析】 (1)根据题意直接写出坐标即可;(2)求出二次函数表达式,求C 点横坐标即可;【详解】(1)坐标系253,9B ⎛⎫ ⎪⎝⎭(2)设抛物线的表达式为225(3)(0)9y a x a =-+≠ 由抛物线经过点160,9A ⎛⎫ ⎪⎝⎭ 得21625(3)99a =-+解得19a =- 2125(3)99y x =--+ 0y =时,18x =,22x =-(舍)答:小明此次投掷的成绩是8米【点睛】此题考查利用二次函数解决实际问题,理解函数定义是关键28.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元? 解析:(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.。
第二十二章《二次函数》知识点总结人教版数学九年级上册
《二次函数》知识点总结【知识点1 二次函数的表达式】1. 一般式: . 顶点坐标: . 对称轴: .2. 顶点式: .顶点坐标: . 对称轴: . 【知识点2 二次函数的图象与性质】 1. 二次项系数a 决定抛物线的 开口方向 ;①当0>a 时,抛物线的 ; ②当0<a 时,抛物线的 ; ③ ||a 越大,抛物线的开口 .3.常数项c 决定抛物线 与y 轴 交点的位置 . ①当0=c ,抛物线与y 轴交于 ; ②当0>c ,抛物线与y 轴交于 ; ③当0<c ,抛物线与y 轴交于 .5.根据a 、b 、c 的符号,画出二次函数的草图:①已知 a <0、b <0、c <0 ②已知 a>0、b <0、c >0 6.描述下面二次函数c bx ax y ++=2的增减性: 【知识点3 抛物线与坐标轴的交点】 1. 抛物线c bx ax y ++=2与x 轴的交点个数,即02=++c bx ax . ①当 ,抛物线与x 轴有两个交点; ②当 ,抛物线与x 轴有1个交点; ③当 ,抛物线与x 轴有没有交点;2.求抛物线c bx ax y ++=2与x 轴的交点的过程: 3.求抛物线c bx ax y ++=2与y 轴的交点的过程:4.函数 y = ax 2 + bx + c 的图象如图,那么 ①方程 ax 2 + bx + c =2 的根是 ______________;2.系数a 和b 共同决定抛物线 对称轴的位置 . ①a 和b 同号,对称轴在原点的 ; ②a 和b 异号, .4.根据图象判断出a 、b 、c 的符号:方法总结:第一步:求出对称轴;第二步:用箭头在对称轴两侧标出上升和下降;第三步:描述增减性.①当 时,随的增大而减小; ②当 时, 随的增大而增大;∵轴上的点, 为零,∴ . ∵轴上的点, 为零,∴ .②不等式 ax 2 + bx + c >0 的解集是 ___________; ③不等式 ax 2 + bx + c <2 的解集是 _________.④ a + b + c 0 ,4a 2 b + c 0 , 9a +3 b + c 0 .【知识点4 抛物线的平移】二次函数 y = ax 2 + bx + c 的平移口诀:“上下平移, ;左右平移, .” 【 * *知识点5 抛物线的对称 ** 】抛物线c bx ax y ++=2关于x 轴对称的解析式为 . 抛物线c bx ax y ++=2关于y 轴对称的解析式为 . 【 * *知识点6 二次函数图象的画法 ** 】 画出二次函数3-2-2x x y =的的图象.【典型例题 】1.m2+1+2x −是二次函数,则m 的值为( )C. −1D. 1或−12.【求顶点坐标 】抛物线y =2(x −3)4的顶点坐标是( ) A. (3,4)B. (−3,4)C. (3,−4)D. (2,4)3.【与坐标轴的交点 】抛物线y =−x 2+4x −4与坐标轴的交点个数为( ) A. 0B. 1C. 2D. 34.【平移】将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( ) A. 向左平移1个单位 B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位5.【平移】抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的( )A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先向右平移3个单位,再向上平移2个单位 6.【图象与性质】对于抛物线y =−3(x +1)2−2,下列说法正确的是( ) A. 抛物线开口向上 B. 当x >−1时,y 随x 的增大而减小 C. 函数最小值为−2D. 顶点坐标为(1,−2)7.【增减性】已知(−3,y 1),(−1,y 2),(2,y 3)是抛物线y =−3x 2+6x +m 上的三个点.则( ) A. y 1<y 3<y 2B. y 3<y 2<y 1C. y 1<y 2<y 3D. y 2<y 1<y 38.【最值】已知二次函数y=x2−4x+2,关于该函数在−1≤x≤3的取值范围内,下列说法正确的是( )A. 有最大值−1,有最小值−2B. 有最大值0,有最小值−1C. 有最大值7,有最小值−1D. 有最大值7,有最小值−29.【系数与图象】二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B. C. D.10.【求解析式】如图所示,已知二次函数y=ax2+bx+c的图象,求二次函数的解析式.11.如图,已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的解析式、对称轴及顶点坐标;(2)点C是抛物线与x轴的一个交点,点D是抛物线与y轴的交点,求三角形ACD 的面积;(3)已知点M(x1,y1)和N(1+x1,y2)在抛物线对称轴的右侧,判段y1和y2的大小.12.在运动会比赛时,九年级的一名男同学推铅球,已知铅球经过的路线是某二次函数图象的一部分(如图所示),如果这名男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求出这个二次函数的解析式;(2)请求出这名男同学比赛时的成绩?13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.(1)建立平面直角坐标系,求抛物线的解析式;(2)如果水面下降1m,则水面宽度是多少米?14.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?。
人教版数学九年级上册第二十二章知识归纳:二次函数
二次函数1.二次函数的一般形式:y=ax2+bx+c.(a≠0)2.关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距, 即二次函数图象必过(0,c)点.3.y=ax2(a≠0)的特性:当y=ax2+bx+c (a≠0)中的b=0且c=0时二次函数为y=ax2 (a≠0);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y轴对称;(2)顶点(0,0);4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式-------待定系数法.5.二次函数的顶点式:y=a(x-h)2+k (a≠0);由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h 和函数的最值y= k.最值6.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式.7.二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k的值, a值不变,具体规律如下:k值增大<=> 图象向上平移;k值减小<=> 图象向下平移;(x-h)值增大<=> 图象向左平移;(x-h)值减小<=> 图象向右平移.8.二次函数y=ax2+bx+c (a≠0)的图象及几个重要点的公式:9.二次函数y=ax2+bx+c (a≠0)中,a、b、c与Δ的符号与图象的关系:(1) a>0 <=> 抛物线开口向上;a<0 <=> 抛物线开口向下;(2) c>0 <=> 抛物线从原点上方通过;c=0 <=> 抛物线从原点通过;c<0 <=> 抛物线从原点下方通过;(3) a, b异号<=> 对称轴在y轴的右侧;a, b同号<=> 对称轴在y轴的左侧;b=0 <=> 对称轴是y轴;(4) b2-4ac>0 <=> 抛物线与x轴有两个交点;b2-4ac =0 <=> 抛物线与x轴有一个交点(即相切);b2-4ac<0 <=> 抛物线与x轴无交点.10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.。
第22章二次函数全章知识点归纳总结人教版九年级数学上册
初三上学期二次函数全章知识点归纳总结【例1】下列函数是二次函数的有()①y=(x+1)2﹣x2;②y=﹣3x2+5;③y=x3﹣2x;④y=x2−1x+3.A.1个B.2个C.3个D.4个【变式11】下列函数中,是二次函数的有()①y=√x2+2;②y=﹣x2﹣3x;③y=x(x2+x+1);④y=11+x2;⑤y=﹣x+x2.A.1个B.2个C.3个D.4个【例2】若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣1【变式21】函数y=(a﹣5)x a2+4a+5+2x﹣1,当a=时,它是一次函数;当a=时,它是二次函数.【例3】关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【例4】下列具有二次函数关系的是()A.正方形的周长y与边长x B.速度一定时,路程s与时间tC.正方形的面积y与边长x D.三角形的高一定时,面积y与底边长x【例5】某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y关于x的函数解析式是()A.y=2(x+1)2B.y=2(1﹣x)2C.y=(x+1)2D.y=(x﹣1)2【变式51】据省统计局公布的数据,合肥市2021年第一季度GDP总值约为2.4千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是()A.y=2.4(1+2x)B.y=2.4(1﹣x)2C.y=2.4(1+x)2D.y=2.4+2.4(1+x)+2.4(1+x)【例1】用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【变式11】把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+12x2(2)y=﹣2x2﹣5x+7【变式12】用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x=时,代数式﹣3(x﹣2)2+4有最(填写大或小)值为.(2)当x=时,代数式﹣x2+4x+4有最(填写大或小)值为.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 【例2】已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x … 0 1 2 3 4 … y…52125…(1)求该二次函数的表达式; (2)当x =6时,求y 的值;(3)在所给坐标系中画出该二次函数的图象.【变式21】如图,已知二次函数y =−12x 2+bx +c 的图象经过A (2,0)、B (0,﹣6)两点. (1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点; (3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴. 【知识点3 二次函数的图象与各系数之间的关系】在y 轴的右侧则0<ab ,概括的说就是“左同右异” ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置. 【知识点4 二次函数图象的平移变换】 (1)平移步骤:变式21例2①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ①保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【例4】把抛物线y =ax 2+bx +c 的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y =(x ﹣3)2+5,则a +b +c = .【变式41】要得到函数y =﹣(x ﹣2)2+3的图象,可以将函数y =﹣(x ﹣3)2的图象( ) A .向右平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向下平移3个单位 C .向左平移1个单位,再向上平移3个单位 D .向左平移1个单位,再向下平移3个单位 【知识点5 二次函数图象的对称变换】 (1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; (4)关于顶点对称(即:抛物线绕顶点旋转180°)()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.向上 向下【例1】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【例2】在二次函数y =﹣x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为x … ﹣1 1 3 4 … y … ﹣6m n﹣6…A .m <nB .m >nC .m =nD .无法确定0a >0a <【变式21】二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32【知识点1 二次函数图象与x轴的交点情况决定一元二次方程根的情况】二次函数的图象【例1】抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是()A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【变式11】抛物线y=x2+2x﹣3与坐标轴的交点个数有()A.0个B.1个C.2个D.3个【例2】二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是()A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【知识点1 解二次函数的实际应用问题的一般步骤】审:审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系);设:设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确;列:列函数解析式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数;解:按题目要求结合二次函数的性质解答相应的问题;检:检验所得的解,是否符合实际,即是否为所提问题的答案;答:写出答案.【例1】为优化迪荡湖公园的灯光布局,需要在一处岸堤(岸堤足够长)为一边,用总长为80m的灯带在湖中围成了如图所示的①②③三块灯光喷泉的矩形区域,且要求这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【变式11】爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣6x+10=(x2﹣6x+9﹣9)+10=(x﹣3)2﹣9+10=(x﹣3)2+1≥1;因此x2﹣6x+10有最小值是1,只有当x=3时,才能得到这个式子的最小值1.同样﹣3x2﹣6x+5=﹣3(x2+2x+1﹣1)+5=﹣3(x+1)2+8,因此﹣3x2﹣6x+5有最大值是8,只有当x=﹣1时,才能得到这个式子的最小值8.(1)当x=时,代数式﹣2(x﹣3)2+5有最大值为.(2)当x=时,代数式2x2+4x+3有最小值为.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?【例2】如图,在矩形ABCD中,AB=12cm,BC=9cm.P、Q两点同时从点B、D出发,分别沿BA、DA 方向匀速运动(当P运动到A时,P、Q同时停止运动),已知P点的速度比Q点大1cm/s,设P点的运动时间为x秒,△P AQ的面积为ycm2,(1)经过3秒△P AQ的面积是矩形ABCD面积的1时,求P、Q两点的运动速度分别是多少?3(2)以(1)中求出的结论为条件,写出y与x的函数关系式,并求出自变量x的取值范围.【变式31】廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)。
人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结
《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。
(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x的二次式,x 的最高次数是2.(2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a 在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y =a(x-h)2+k ,抛物线的顶点坐标是(h,k);(2) 当h =0时,抛物线y =ax 2+k 的顶点在y 轴上;当k =0时,抛物线a(x-h)2的顶点在x 轴上;当h =0且k =0时,抛物线y =ax 2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y 轴,则设y=ax 2;如果对称轴是y 轴,但不过原点,则设y=ax 2+k4、抛物线的性质: (1).抛物线是轴对称图形。
对称轴为直线 x = -b/2a 。
九年级数学上册第二十二章二次函数知识点总结归纳(带答案)
九年级数学上册第二十二章二次函数知识点总结归纳单选题1、定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x −m )2−m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1C .4,0D .5+√172,-1 答案:D分析:分别讨论当对称轴位于y 轴左侧、位于y 轴与正方形对称轴x =1之间、位于直线x =1和x =2之间、位于直线x =2右侧共四种情况,列出它们有交点时满足的条件,得到关于m 的不等式组,求解即可. 解:由正方形的性质可知:B (2,2);若二次函数y =(x −m )2−m 与正方形OABC 有交点,则共有以下四种情况:当m ≤0时,则当A 点在抛物线上或上方时,它们有交点,此时有{m ≤0m 2−m ≤2, 解得:−1≤m <0;当0<m ≤1时,则当C 点在抛物线上或下方时,它们有交点,此时有{0<m ≤1(2−m )2−m ≥0, 解得:0<m ≤1;当1<m ≤2时,则当O 点位于抛物线上或下方时,它们有交点,此时有{1<m ≤2m 2−m >0, 解得:1<m ≤2;当m >2时,则当O 点在抛物线上或下方且B 点在抛物线上或上方时,它们才有交点,此时有{m >2m 2−m ≥0(2−m )2−m ≤2 ,解得:2<m≤5+√17;2,−1.综上可得:m的最大值和最小值分别是5+√172故选:D.小提示:本题考查了抛物线与正方形的交点问题,涉及到列一元一次不等式组等内容,解决本题的关键是能根据图像分析交点情况,并进行分类讨论,本题综合性较强,需要一定的分析能力与图形感知力,因此对学生的思维要求较高,本题蕴含了分类讨论和数形结合的思想方法等.2、如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点,若−2< x1<−1,则下列四个结论:①3<x2<4,②3a+2b>0,③b2>a+c+4ac,④a>c>b.正确结论的个数为()A.1个B.2个C.3个D.4个答案:B分析:根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点已经x=-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a-b+c<0,即可判断④.∵对称轴为直线x=1,-2<x1<-1,∴3<x2<4,①正确,∵−b= 1,2a∴b=- 2а,∴3a+2b= 3a-4a= -a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,∴a-b+c<0,∴a+c<b,∵a>0,∴b=-2a<0,∴a+c<0,∴b2 -4ac > a+ c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a-b+c<0,b=-2a,∴3a+c<0,∴c<-3a,∴b=–2a,∴b>c,以④错误;故选B小提示:本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.3、抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对答案:D分析:根据二次函数图象及性质,即可判定.∵抛物线y=x2+3开口向上,在其图象上有两点A(x1,y1),B(x2,y2),且y1<y2,∴|x1|<|x2|,∴0≤x1<x2,或x2<x1≤0,或x2>0,x1≤0且x2+x1>0,或x2<0,x1>0且x2+x1<0,故选:D.小提示:本题考查了二次函数的图象及性质,熟练掌握和运用二次函数的图象及性质是解决本题的关键.4、如图,某公司准备在一个等腰直角三角形ABC的绿地上建造一个矩形的休闲书吧PMBN,其中点P在AC上,点NM分别在BC,AB上,记PM=x,PN=y,图中阴影部分的面积为S,若NP在一定范围内变化,则y与x,S与x满足的函数关系分别是()A.反比例函数关系,一次函数关系B.二次函数关系,一次函数关系C.一次函数关系,反比例函数关系D.一次函数关系,二次函数关系答案:D分析:先求出AM=PM,利用矩形的性质得出y=﹣x+m,最后利用S=S△ABC-S矩形PMBN得出结论.设AB=m(m为常数).在△AMP中,∠A=45°,AM⊥PM,∴△AMP为等腰直角三角形,∴AM=PM,又∵在矩形PMBN中,PN=BM,∴x+y=PM+PN=AM+BM=AB=m,即y=﹣x+m,∴y与x成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.5、二次函数y =x 的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限答案:A分析:由抛物线解析式可得抛物线开口方向及顶点坐标,进而求解.∵y =x 2, ∴抛物线开口向上,顶点坐标为(0,0),∴抛物线经过第一,二象限.故选:A .小提示:本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.6、关于x 的方程ax 2+bx +c =0有两个不相等的实根x 1、x 2,若x 2=2x 1,则4b −9ac 的最大值是( )A .1B .√2C .√3D .2答案:D分析:根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.解:由方程ax 2+bx +c =0有两个不相等的实根x 1、x 2可得,a ≠0,x 1+x 2=−b a ,x 1x 2=c a ∵x 2=2x 1,可得3x 1=−b a ,2x 12=c a ,即2(−b 3a )2=c a 化简得9ac =2b 2 则4b −9ac =−2b 2+4b =−2(b 2−2b)=−2(b −1)2+2故4b −9ac 最大值为2故选D小提示:此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.7、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.8、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.9、已知二次函数y=mx2−4m2x−3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤−1或m>0D.m≤−1答案:A分析:先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m<0,根据二次函数的性质求得m的不同取值范围便可.解:∵二次函数y=mx2−4m2x−3,∴对称轴为x=2m,抛物线与y轴的交点为(0,−3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤−3,即m⋅42−4m2⋅4−3≤−3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤−3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.小提示:本题考查了二次函数的性质,关键是分情况讨论.10、如图,某涵洞的截面是抛物线形,现测得水面宽AB=1.6m,涵洞顶点O与水面的距离CO是2m,则当水位上升1.5m时,水面的宽度为()A.0.4mB.0.6mC.0.8mD.1m答案:C分析:根据题意可建立平面直角坐标系,然后设函数关系式为y=ax2,由题意可知A(−0.8,−2),代入求解函数解析式,进而问题可求解.解:建立如图所示的坐标系:设函数关系式为y=ax2,由题意得:A(−0.8,−2),∴−2=0.8×0.8×a,,解得:a=−258∴y=−25x2,8x2,当y=-0.5时,则有−0.5=−258解得:x=±0.4,∴水面的宽度为0.8m;故选C.小提示:本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.填空题11、已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式−3m2+3m+2022的值为______.答案:2019分析:先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.所以答案是:2019.小提示:本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.12、如图,在平面直角坐标系中,抛物线y=−x2+2mx+m−2(m为常数,且m>0)与直线y=2交于A、B两点.若AB=2,则m的值为______.答案:√21−12分析:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得x2−2mx−m+4=0,利用根与系数关系求得AB,可建立关于m的方程并解出即可.解:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得:−x2+2mx+m−2=2,即:x2−2mx−m+4=0∴x1+x2=2m,x1x2=−m+4,∴AB=|x2−x1|=√(x2+x1)2−4x1x2=√(2m)2−4(−m+4)=2,∴m2+m−5=0,解得:m1=√21−12,m2=−√21−12(舍去),所以答案是:√21−12.小提示:本题考查了抛物线与x轴的交点、二次函数与一元二次方程的关系、二次函数图象上点的坐标特征,熟练掌握这三个知识点的综合应用是解题关键.13、平移二次函数的图象,如果有一个点既在平移前的函数图象上,又在平移后的函数图象上,我们把这个点叫做“关联点”.现将二次函数y=x2+2x+c(c为常数)的图象向右平移得到新的抛物线,若“关联点”为(1,2),则新抛物线的函数表达式为_______.答案:y=(x−3)2−2分析:将(1,2)代入y=x2+2x+c,解得c=-1,设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,然后将(1,2)代入得到关于m的方程,通过解方程求得m的值即可.解:将(1,2)代入y=x2+2x+c,得12+2×1+c=2,解得c=-1.设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,将(1,2)代入,得(1+1-m)2-2=2.整理,得2-m=±2.解得m1=0(舍去),m2=4.故新抛物线的表达式为y=(x-3)2-2.故答案是:y=(x−3)2−2.小提示:本题主要考查了二次函数图象与几何变换,二次函数图象上点的坐标特征以及待定系数法确定函数关系式,解题的关键是理解“关联点”的含义.14、如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.则当水位下降m=________时,水面宽为5m?答案:1.125分析:以抛物线的顶点为原点建立坐标系,则可以设函数的解析式是y=ax2,然后求得水面与抛物线的交点坐标,利用待定系数法求解抛物线的解析式,再利用点的坐标特点即可求解.解:如图,建立如下的坐标系:水面与抛物线的交点坐标是(-2,-2),(2,−2),设函数的解析式是y=ax2,则4a=-2,解得a=−12,则函数的解析式是y=−12x2.当水面宽为5米时,把x=52代入抛物线的解析式可得:y=12×(52)2=258=3.125,∴3.125−2=1.125(米),所以答案是:1.125.小提示:本题考查了待定系数法求二次函数的解析式,二次函数的性质,建立合适的平面直角坐标系,求得水面与抛物线的交点是解题的关键.15、根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是ℎ=−5t2+20t,当飞行时间t为___________s时,小球达到最高点.答案:2分析:将函数关系式转化为顶点式即可求解.根据题意,有ℎ=−5t2+20t=−5(t−2)2+20,当t=2时,ℎ有最大值.所以答案是:2.小提示:本题考查二次函数解析式的相互转化及应用,解决本题的关键是熟练二次函数解析式的特点及应用.解答题16、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.答案:(1)y=−3x+300;(2)售价60元时,周销售利润最大为4800元;(3)m=5分析:(1)①依题意设y=kx+b,解方程组即可得到结论;(2)根据题意得W=(−3x+300)(x−a),再由表格数据求出a=20,得到W=(−3x+300)(x−20)=−3(x−60)2+4800,根据二次函数的顶点式,求出最值即可;(3)根据题意得W=−3(x−100)(x−20−m)(x⩽55),由于对称轴是直线x=60+m2>60,根据二次函数的性质即可得到结论.解:(1)设y=kx+b,由题意有{40k+b=180 70k+b=90,解得{k=−3b=300,所以y关于x的函数解析式为y=−3x+300;(2)由(1)W=(−3x+300)(x−a),又由表可得:3600=(−3×40+300)(40−a),∴a=20,∴W=(−3x+300)(x−20)=−3x2+360x−6000=−3(x−60)2+4800.所以售价x=60时,周销售利润W最大,最大利润为4800;(3)由题意W=−3(x−100)(x−20−m)(x⩽55),其对称轴x=60+m2>60,∴0<x⩽55时上述函数单调递增,所以只有x=55时周销售利润最大,∴4050=−3(55−100)(55−20−m).∴m=5.小提示:本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.17、“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y1(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y1=ax2+ c,部分对应值如表:221.③1~7月份该蔬菜售价x1(元/千克),成本x2(元/千克)关于月份t的函数表达式分别为x1=12t+2,x2=1 4t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.答案:(1)a=−15,c=9(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元分析:(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w元,根据w=x售价−x成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x的值,再求出总利润即可.(1)把{x=3,y=7.2,{x=4,y=5.8代入y需求=ax2+c可得{9a+c=7.2,①16a+c=5.8.②②-①,得7a=−1.4,解得a=−15,把a=−15代入①,得c=9,∴a=−15,c=9.(2)设这种蔬菜每千克获利w元,根据题意,有w=x售价−x成本=12t+2−(14t2−32t+3),化简,得w=−14t2+2t−1=−14(t−4)2+3,∵−14<0,t=4在1≤t≤7的范围内,∴当t=4时,w有最大值.答:在4月份出售这种蔬菜每千克获利最大.(3)由y供给=y需求,得x−1=−15x2+9,化简,得x2+5x−50=0,解得x1=5,x2=−10(舍去),∴售价为5元/千克.此时,y供给=y需求=x−1=4(吨)=4000(千克),把x=5代入x售价=12t+2,得t=6,把t=6代入w=−14t2+2t−1,得w=−14×36+2×6−1=2,∴总利润=w⋅y=2×4000=8000(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.小提示:此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.18、一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少? 答案:(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14分析:(1)根据题意和函数图象,可以设出抛物线的解析式,然后根据抛物线过点F 和点M 即可求得该抛物线的解析式;(2)先求出抛物线的解析式,再根据题意判断该隧道能通过的车辆的最高高度,便可判断该车辆能安全通过.(3)射出H 的坐标,用n 表示出L ,利用二次函数的性质求解即可.解:(1)由题意得M (0,4),F (4,0)可设抛物线的解析式为y=ax 2+4,将F (4,0)代入y=ax 2+4中,得a=-14, ∴抛物线的解析式为y=-14x 2+4; (2)当x=3,y=74, 74+2-12=3.25>3.2,∴能安全通过; (3)由GH=n ,可设H (n 2,−n 216+4),∴GH+GA+BH=n+(−n 216+4)×2+2×2=−18n 2+n +12,∴L=−18n 2+n +12,∵a <0,抛物线开口向下,∴当n=-b=4时,L有最大值,最大值为14.2a小提示:本题考查了二次函数的实际应用,解题的关键是要注意自变量的取值范围必须使实际问题有意义.。
第22章 二次函数知识点总结 2023—2024学年人教版数学九年级上册
第二十二章二次函数22.1二次函数的图像和性质22.1.1 二次函数知识点一 二次函数的定义1.二次函数的定义:一般地,形如)0a ,,(2≠++=是常数,c b a c bx ax y 的函数,叫做二次函数.2.任何一个二次函数的解析式都可化成)0a ,,(2≠++=是常数,c b a c bx ax y 的形式,因此,把)0a ,,(2≠++=是常数,c b a c bx ax y 叫做二次函数的一般式3.二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 中y x ,是变量,c b a ,,是常量.自变量x 的取值范围是全体实数,b 和c 可以是任意实数,a 必须是不等于 0的实数.知识点二 实际问题中的二次函数22.1.2二次函数2ax y =的图像和性质理解 题意 分析问题中的变量和常量及它们之间的关系列函数 关系式22.1.3二次函数()k h x a y +-=2的图像和性质第一课时 二次函数k ax y +=2的图像和性质第二课时 二次函数()2h x a y -=的图像和性质第三课时 二次函数()k h x a y +-=2的图像和性质22.1.4 二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 的图象和性质第一课时 二次函数c bx ax y ++=2的图象和性质知识点一 二次函数c bx ax y ++=2与()k h x a y +-=2之间的关系 利用二次函数图象平移的规律求平移后的函数的解析式,首先要把函数解析式化为顶点式:()k h x a y +-=2知识点二 二次函数c bx ax y ++=2的图象和性质 1. 二次函数c bx ax y ++=2的图象是一条抛物线,与抛物线2ax y =的形状相同,位置不同,利用配方法可以将c bx ax y ++=2转化成顶点式,即a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++= 2. 二次函数c bx ax y ++=2的性质(1)当0>a 时,抛物线开口向上,对称轴为直线a bx 2-=,顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac ab 44,22c bx ax y ++=20>a0<a开口方向 向上 向下对称轴 直线ab x 2-= 直线ab x 2-= 顶点坐标⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ⎪⎪⎭⎫⎝⎛--a b ac a b 44,22 增减性当a b x 2->时,y 随x 的增大而增大;当a b x 2-<时,y 随x 的增大而减小当abx 2->时,y 随x 的增大而减小;当abx 2-<时,y 随x 的增大而增大最值当ab x 2-=时,ab ac y 442-=最小值当ab x 2-=时,ab ac y 442-=最大值知识点三 二次函数c bx ax y ++=2的图象与系数c b a ,,之间的关系 系数 图像的特征 系数的符号a开口向上 0>a 开口向下0<a b对称轴为y 轴 0=b对称轴在y 轴左侧同号b a ,对称轴在y 轴右侧 异号b a ,c经过原点0=c 与y 轴正半轴相交 0>c 与y 轴负半轴相交0<c第二课时 用待定系数法求二次函数的解析式知识点一 用待定系数法求二次函数的解析式根据已知条件确定二次函数解析式,通常利用待定系数法,用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题便捷。
2021年九年级数学上册第二十二章《二次函数》知识点总结(答案解析)(1)
一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.设A(﹣2,y 1),B(1,y 2),C(2,y 3)是抛物线y =﹣(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( ) A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 3>y 2>y 1 D .y 3>y 1>y 2 3.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个4.如图等边ABC 的边长为4cm ,点P ,点Q 同时从点A 出发点,Q 沿AC 以1cm/s 的速度向点C 运动,点P 沿A B C --以2cm/s 的速度也向点C 运动,直到到达点C 时停止运动,若APQ 的面积为()2cm S ,点Q 的运动时间为()s t ,则下列最能反映S 与t 之间大致图象是( ).A .B .C .D .5.如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x ax x ++=--有正整数解,则所有符合条件的a 的值之和为( ). A .9 B .8 C .4 D .36.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个7.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .8.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限9.把抛物线231y x =+向上平移2个单位,则所得抛物线的表达式为( ) A .233y x =+ B .231y x =- C .()2321y x =++D .()2321y x =-+10.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( ) x … ﹣1 0 1 2 3 … y…3﹣13…A .4个B .3个C .2个D .1个11.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( ) A .0m ≤B .12m <C .102m <<D .12m <<12.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .13.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小. 14.抛物线2288y x x =-+-的对称轴是( ) A .2x =B .2x =-C .4x =D .4x =-15.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间满足函数解析式y 112=-x 223+x 53+,由此可知该生此次实心球训练的成绩为( ) A .6米B .8米C .10米D .12米二、填空题16.小明研究抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数)性质时得到如下结论: ①这条抛物线的顶点始终在直线y =x +1上;②当﹣1<x <2时,y 随x 的增大而增大,则a 的取值范围为a ≥2;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2a ,则y 1>y 2; ④只存在一个a 的值,使得抛物线与x 轴的两个交点及抛物线的顶点构成等腰直角三角形;其中正确结论的序号是____.17.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,x 的取值范围是______.18.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____. 19.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.20.把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为_____.21.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.22.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________23.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②abc>0;③20a b -=;④80a c +<;⑤930a b c ++>,其中结论正确的是__________.(填正确结论的序号)24.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.25.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________.26.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)三、解答题27.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克. (1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)要使每天获利不少于6000元,求涨价x 的范围.28.已知二次函数y =ax 2+bx+c 中自变量x 和函数值y 的部分对应值如表:(1)求该二次函数的函数关系式;(2)在所给的直角坐标系中画出此函数的图象;(3)作该二次函数y =ax 2+bx+c 的图象关于x 轴对称的新图象,则新图象的函数关系式为 .29.已知抛物线2(0)y ax bx a =+≠经过点(4,8)A -和点(,0)(0)P m m ≠.(1)若点A 是抛物线的顶点,则m =______.(2)如图,若2m =,设此时抛物线的顶点为B ,求OAB 的面积.30.如图①,抛物线23y ax bx =++与x 轴交于()3,0A 、()1,0B -两点,与y 轴交于点C .(1)求抛物线23y ax bx =++的解析式;(2)如图②,连接AC ,点E 是第一象限内抛物线上的动点,过点E 作EF AC ⊥于点F ,//EG y 轴交AC 于点G ,求EFG 面积的最大值及此时点E 的坐标;(3)如图③,若抛物线的顶点坐标为点D ,点P 是抛物线对称轴上的动点,在坐标平面内是否存在点Q ,使得以A 、D 、P 、Q 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版九年级数学
第二十二章二次函数知识点总结(1)
知识要点:
一、相关概念及定义
1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,
,是常数,0a ≠)的函数,叫做二次 函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,
可以为零。
二次函数的定义域是全体实数。
2、二次函数2y ax bx c =++的结构特征:
⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。
⑵ a b c ,
,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二、二次函数各种形式之间的变换
1、二次函数c bx ax y ++=2
用配方法可化成:()k h x a y +-=2
的形式,其中
a
b a
c k a b h 4422
-=-=,。
2、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2
;
③()2
h x a y -=;④()k h x a y +-=2
;⑤c bx ax y ++=2。
三、二次函数解析式的表示方法
1、一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);
2、顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
3、两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标)。
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示。
二次函数解析式的这三种形式可以互化。
四、二次函数2y ax bx c =++图象的画法
1、五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开 口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五
点为:顶点、与y 轴的交点()0c ,
、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交 点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点)。
2、画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点。
五、几种特殊二次函数
1、二次函数2
ax y =的性质
2、二次函数2y ax c =+的性质
3、二次函数()2
y a x h =-的性质 4、二次函数
y a x h k =-+的性质 六、抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点
1、a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;
a 相等,抛物线的开口大小、形状相同。
2、对称轴:平行于y 轴(或重合)的直线记作2b
x a
=-。
特别地,y 轴记作直线0=x 。
3、顶点坐标:),(a
b a
c a b 4422
--
4、顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口
方向、开口大小完全相同,只是顶点的位置不同。
七、抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 1、二次项系数a
二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠。
⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大。
总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口 的大小。
2、一次项系数b
在二次项系数a 确定的前提下,b 决定了抛物线的对称轴。
⑴ 在0a >的前提下,
当0b >时,02b
a -<,即抛物线的对称轴在y 轴左侧;
当0b =时,02b
a -=,即抛物线的对称轴就是y 轴;
当0b <时,02b
a ->,即抛物线对称轴在y 轴的右侧。
⑵ 在0a <的前提下,结论刚好与上述相反,
当0b >时,02b
a ->,即抛物线的对称轴在y 轴右侧;
当0b =时,02b
a -=,即抛物线的对称轴就是y 轴;
当0b <时,02b
a -<,即抛物线对称轴在y 轴的左侧。
总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置。
3、常数项c
⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负。
总结起来,c 决定了抛物线与y 轴交点的位置。
总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的。
八、求抛物线的顶点、对称轴的方法
1、公式法:a b ac a b x a c bx ax y 44222
2
-+
⎪⎭
⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线a
b x 2-=。
2、配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2
的形式,
得到顶点为(h ,k ),对称轴是直线h x =。
3、运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂 直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点。
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失。
九、用待定系数法求二次函数的解析式
1、一般式:c bx ax y ++=2
.已知图像上三点或三对x 、y 的值,通常选择一般式。
2、顶点式:()k h x a y +-=2
.已知图像的顶点或对称轴,通常选择顶点式。
3、交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。