初中数学(函数)专题辅导讲义与典型例题解析汇编
(专题精选)初中数学函数基础知识真题汇编附解析
(专题精选)初中数学函数基础知识真题汇编附解析一、选择题1.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.2.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到在线段AB上运动,到达点A达点A后,停止运动;动点Q以1cm/s的速度从B A后,停止运动.若动点P,Q同时出发,设点Q的运动时间是t(单位:s)时,两个动点之间的距离为S(单位:cm),则能表示s与t的函数关系的是( )A.B.C.D.【答案】D【解析】【分析】根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【详解】:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.3.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C.【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C 、D 的正误.【详解】解:∵s 随t 的增大而减小,∴选项A 、B 错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s 随t 的增大减小得比开始的快,∴s 随t 的增大减小得比开始的快,∴选项C 错误;选项D 正确;故选:D .【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键5.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.7.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B .【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.9.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D【答案】C【解析】 试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .10.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.11.若y x =有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应13.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=22,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )A .B .C .D .【答案】B【解析】【分析】注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,S vt vt vt=⨯-⨯=-≤.2214(1)②小正方形穿入大正方形但未穿出大正方形,S=⨯-⨯=,22113③小正方形穿出大正方形,=⨯-⨯-=+≤,S vt vt vt22(11)3(1)∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.17.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.18.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.19.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.20.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.。
专题3.4 函数的应用(解析版)
专题3.4函数的应用1.一次函数模型的应用一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0).一次函数是常见的一种函数模型,在初中就已接触过.2.二次函数模型的应用二次函数模型:f (x )=+bx +c (a ,b ,c 为常数,a ≠0).二次函数为生活中常见的一种数学模型,因二次函数可求其最大值(或最小值),故最优、最省等最值问题常用到二次函数模型.3.幂函数模型的应用幂函数模型应用的求解策略(1)给出含参数的函数关系式,利用待定系数法求出参数,确定函数关系式.(2)根据题意,直接列出相应的函数关系式.4.分段函数模型的应用由于分段函数在不同区间上具有不同的解析式,因此分段函数在研究条件变化前后的实际问题中具有广泛的应用.5.“对勾”函数模型的应用对勾函数模型是常考的模型,要牢记此类函数的性质,尤其是单调性:y =ax +(a >0,b >0),当x >0时,在(0,]上递减,在(,+)上递增.另外,还要注意换元法的运一、单选题1.已知函数()22x f x =-,则函数()y f x =的图象可能是()A .B .C .D .【答案】B ()22,12222,1x xxx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B .2.设函数()2,01,0x x f x x x -⎧≤=⎨->⎩,则满足()()12f x f x +<的x 的取值范围是()A .(],1-∞B .()1,+∞C .[)1,+∞D .(),1-∞【答案】D 因为()2,01,0x x f x x x -⎧≤=⎨->⎩,当0x ≤时,()2xf x -=显然单调递减;当0x >时,()2f x x =-也是单调递减;且()002101f ==-=,即函数图像连续不断,所以()f x 在其定义域上单调递减,由()()12f x f x +<可得12x x +>,解得1x <.故选:D.3.根据表格中的数据,可以断定方程(2)0( 2.72)x e x e -+=≈的一个根所在的区间是()x -10123ex 0.371 2.727.4020.12x +212345A .(-1,0)B .(0,1)C .(1,2)D .(2,3)【答案】C【解析】设函数()(2)0x f x e x =-+=,(1)0.3710,(0)120,(1) 2.7230f f f -=-<=-<=-<,(2)7.4040f =->,∴(1)(2)0f f <,又()(2)x f x e x =-+在区间(1,2)连续,∴函数()f x 在区间(1,2)存在零点,∴方程根所在的区间为(1,2),故选:C.4.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若实数(0,1)m ∈,则函数()()g x f x m =-的零点个数为()A .0B .1C .2D .3【答案】D【解析】令()()0g x f x m =-=,得()f x m =,根据分段函数()f x 的解析式,做出函数()f x 的图象,如下图所示,因为(0,1)m ∈,由图象可得出函数()()g x f x m =-的零点个数为3个,故选:D.5.某地一天内的气温()Q t (单位:℃)与时刻t (单位:h )之间的关系如图所示,令()C t 表示时间段[]0,t 内的温差(即时间段内最高温度与最低温度的差),则()C t 与t 之间的函数图像大致是A .B .C .D .【答案】D【解析】由题图看出,0=t 时,()0C t =,排除B ;在[]0,4上,()C t 不断增大,在[]4,8上,()C t 先是一个定值,然后增大,在[]812,上,()C t 不断增大,在[]1220,上,()C t 是个定值,在[]20,24上,()C t 不断增大,故选D.6.甲、乙两人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步,到中点后改为骑自行车,最后两人同时到达B地.已知甲骑自行车比乙骑自行车快.若每人离开甲地的距离S与所用时间t的函数用图象表示,则甲、乙对应的图象分别是A.甲是(1),乙是(2)B.甲是(1),乙是(4)C.甲是(3),乙是(2)D.甲是(3),乙是(4)【答案】B【解析】由甲先骑自行车后跑步,故图象斜率先大后小,则甲图象为(1)或(3),由乙先跑步后骑自行车,故图象斜率先小后大,则乙图象为(2)或(4),又甲骑车比乙骑车快,即甲前一半路程图象的中y随x的变化比乙后一半路程y随x的变化要快,所以甲为(1),乙为(4).故选:B.7.某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人单独购买A,B商品分别付款168元和423元,假设他一次性购买A,B两件商品,则应付款是A.413.7元B.513.7元C.546.6元D.548.7元【答案】C【解析】依题意可得,因为168200<,所以购买A商品没有优惠,则A商品的价格为168元.当购买价值500元的物品时实际付款为5000.9450423⨯=>,所以购买B商品享受了9折优惠,则B商品的原价为4234700.9=元.若一次性购买两件商品则付款总额为168+470=638元,则应付款(638500)0.75000.9546.6-⨯+⨯=元,故选C8.给下图的容器甲注水,下面图象中哪一个图象可以大致刻画容器中水的高度与时间的函数关系:().A .B .B .C .D .【答案】B 试题分析:容器下端较窄,上端较宽,当均匀的注入水时,刚开始的一段时间高度变化较大,随时时间的推移,高度的变化速度开始减小,即高度变化不太明显,四个图像中只有B 项符合特点二、解答题9.2022年第24届北京冬季奥林匹克运动会,于2022年2月4日星期五开幕,将于2月20日星期日闭幕.该奥运会激发了大家对冰雪运动的热情,与冰雪运动有关的商品销量持续增长.对某店铺某款冰雪运动装备在过去的一个月内(以30天计)的销售情况进行调查发现:该款冰雪运动装备的日销售单价()P x (元/套)与时间x (被调查的一个月内的第x 天)的函数关系近似满足()1kP x x=+(k 为正常数).该商品的日销售量()Q x (个)与时间x (天)部分数据如下表所示:x 10202530()Q x 110120125120已知第10天该商品的日销售收入为121元.(1)求k 的值;(2)给出两种函数模型:①()Q x ax b =+,②()|25|Q x a x b =-+,请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量()Q x 与时间x 的关系,并求出该函数的解析式;(3)求该商品的日销售收入()f x (130x ≤≤,*N x ∈)(元)的最小值.【答案】(1)1k =(2)选择②,()125|25|Q x x =--,(130x ≤≤,*N x ∈)(3)121元【解析】(1)因为第10天该商品的日销售收入为121元,所以(10)(10)111012110k P Q ⎛⎫⋅=+⋅= ⎪⎝⎭,解得1k =;(2)由表中数据可得,当时间变化时,该商品的日销售量有增有减,并不单调,故只能选②:()|25|Q x a x b=-+代入数据可得:11010251202025a b a b ⎧=-+⎪⎨=-+⎪⎩,解得1a =-,125b =,所以()125|25|Q x x =--,(130x ≤≤,*N x ∈)(3)由(2)可得,()**100,125,N 12525150,2530,N x x x Q x x x x x ⎧+≤<∈=--=⎨-≤≤∈⎩,所以,()()()**10010125,N 150149,2530,N x x x xf x P x Q x x x x x ⎧++≤<∈⎪⎪=⋅=⎨⎪+-≤≤∈⎪⎩,所以当125x ≤<,*N x ∈时,100()101f x x x=++在区间[1,10]上单调递减,在区间[10,25)上单调递增,所以当10x =时,()f x 有最小值,且为121;当2530x ≤≤,*N x ∈时,150()149f x x x=+-为单调递减函数,所以当30x =时,()f x 有最小值,且为124,综上,当10x =时,()f x 有最小值,且为121元,所以该商品的日销售收入最小值为121元.10.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(1)当20200x ≤≤时,求函数()v x 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()()f x xv x =可以达到最大,并求出最大值(精确到1辆/小时)﹒【答案】(1)()60,020,()1200,202003x v x x x ≤≤⎧⎪=⎨-+<≤⎪⎩;(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.【解析】当020x ≤≤时,()60v x =;当20200x ≤≤时,设()v x ax b =+,由已知得2000,2060,a b a b +=⎧⎨+=⎩解得132003a b ⎧=-⎪⎪⎨⎪=⎪⎩,故函数()v x 的表达式为()60,020,()1200,202003x v x x x ≤≤⎧⎪=⎨-+<≤⎪⎩;(2)依题意并由(1)可得()260,020,()1200,202003x x f x x x x ≤≤⎧⎪=⎨-+<≤⎪⎩,当020x ≤≤时,()f x 为增函数,故当20x =时,其最大值为60×20=1200;当20200x <≤时,()21()100100003f x x ⎡⎤=---⎣⎦,∴当100x =时,()f x 在区间(20,200]上取得最大值1000033333≈,∵3333>1200,∴当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.11.某地空气中出现污染,须喷洒一定量的去污剂进行处理,据测算,每喷洒1个单位的去污剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为y =161,04815,4102x xx x ⎧-≤≤⎪⎪-⎨⎪-<≤⎪⎩,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的㳖度之和,由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.(1)若一次喷洒4个单位的去污剂,则去污时间可达几天?(2)若第一次喷洒2个单位的去污剂,6天后再喷洒(14)a a ≤≤个单位的去污剂,要使接下来的4天中能够持续有效去污,试求a 的最小值.(精确到0.11.4)【答案】(1)8天(2)1.6【解析】(1)解:∵一次喷洒4个单位的净化剂,∴浓度()644,0448202,410x f x y x x x ⎧-≤≤⎪==-⎨⎪-≤⎩<,则当04x ≤≤时,由64448x-≥-,解得0x ≥,∴此时04x ≤≤.当410x <≤时,由2024x -≥,解得8x ≤,∴此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天.(2)解:设从第一次喷洒起,经()610x x ≤≤天,浓度()()()1161625114428614a g x x a x a x x =-+-⎡⎤⎛⎫⎢⎥ ⎪=-+-----⎝⎭⎣⎦,∵[]1448x -∈,,而14a ≤≤,∴8[]4,,故当且仅当14x -=时,y有最小值为4a -.令44a -≥,解得244a -≤,∴y a的最小值为24 1.6-.12.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益()f x 与投资额x 成正比,其关系如图1;投资股票等风险型产品的年收益()g x 与投资额x 的算术平方根成正比,其关系如图2.(1)分别写出两种产品的年收益()f x 和()g x 的函数关系式;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?【答案】(1)()()108f x x x =≥,())0g x x =≥(2)投资债券类产品16万元,股票类投资为4万元,收益最大为3万元【解析】(1)依题意:可设()()10f x k x x =≥,())0g x k x =≥,∵()1118f k ==,()2112g k ==,∴()()108f x x x =≥,())0g x x =≥.(2)设投资债券类产品x 万元,则股票类投资为()20x -万元,年收益为y 万元,依题意得:()()20y f x g x =+-,即)0208x y x =+≤≤,令t =则220x t =-,0,t ⎡∈⎣,则22082t t y -=+,0,t ⎡∈⎣()21238t =--+,所以当2t =,即16x =万元时,收益最大,max 3y =万元.13.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供x ([]0,10x ∈)(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服,A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅- ⎪+⎝⎭(万件),其中k 为工厂工人的复工率([]0.5,1k ∈),A 公司生产t 万件防护服还需投入成本20950x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)当复工率0.8k =时,政府补贴多少万元才能使A 公司的防护服利润达到最大?并求出最大值.【答案】(1)3601808204ky k x x =---+,[]0,10x ∈,[]0.5,1k ∈(2)当复工率0.8k =时,政府补贴2万元才能使A 公司的防护服利润达到最大值60万元【解析】(1)由题意得()802095030820y x t x t t x =+-+-=--1236030682018082044k k x k x x x ⎛⎫=---=--- ⎪++⎝⎭,即3601808204ky k x x =---+,[]0,10x ∈,[]0.5,1k ∈.(2)由0.8k =,得288288144820812444y x x x x =---=--+++,因()28828888432248326444x x x x +=++-≥⨯-=++,当且仅当2x =时取等号,所以6412460y ≤-+=.故当复工率0.8k =时,政府补贴2万元才能使A 公司的防护服利润达到最大值60万元.14.已知函数()()21322m f x m m x -=-+是幂函数.(1)求函数()f x 的解析式;(2)判断函数()f x 的奇偶性,并证明你的结论;(3)判断函数()f x 在()0,∞+上的单调性,并证明你的结论.【答案】(1)()2f x x -=;(2)函数()f x 为偶函数;(3)()f x 在()0,∞+上单调递减,证明见解析.(1)因为函数()()21322m f x m m x -=-+是幂函数,则2221m m -+=,解得1m =,故()2f x x -=.(2)函数()2f x x -=为偶函数.证明如下:由(1)知()2f x x -=,其定义域为{}0x x ≠关于原点对称,因为对于定义域内的任意x ,都有()()()()222211f x x x f x xx ---=-====-,故函数()2f x x -=为偶函数.(3)()f x 在()0,∞+上单调递减.证明如下:在()0,∞+上任取1x ,2x ,不妨设120x x <<,则()()221212221211f x f x x xx x ---=-=-()()2221212122221212x x x x x x x x x x -+-===,()12,0,x x ∈+∞且12x x <,222121120,0,0x x x x x x ∴-<+>>,()()12f x f x >()f x ∴在()0,∞+上单调递减.。
初中数学锐角三角函数的全集汇编及解析(1)
初中数学锐角三角函数的全集汇编及解析(1)一、选择题1.如图,△ABC 的外接圆是⊙O ,半径AO=5,sinB=25,则线段AC 的长为( )A .1B .2C .4D .5【答案】C【解析】【分析】 首先连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,又由⊙O 的半径是5,sinB=25,即可求得答案. 【详解】解:连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,∵∠B 和∠D 所对的弧都为弧AC ,∴∠B=∠D ,即sinB=sinD=25, ∵半径AO=5,∴CD=10,∴2sin 105AC AC D CD ===, ∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55m oB .500cos55m oC .500tan55m oD .500cos55m o 【答案】B【解析】【分析】根据已知利用∠D 的余弦函数表示即可.【详解】 在Rt △BDE 中,cosD=DE BD, ∴DE=BD •cosD=500cos55°.故选B .【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.3.如图,AB 是O e 的弦,直径CD 交AB 于点E ,若3AE EB ==,15C ∠=o ,则OE 的长为( )A .3B .4C .6D .33【答案】D【解析】【分析】 连接OA .证明OAB ∆是等边三角形即可解决问题.【详解】如图,连接OA .∵AE EB =,∴CD AB ⊥,∴»»AD BD=, ∴230BOD AOD ACD ∠=∠=∠=o ,∴60AOB ∠=o ,∵OA OB =,∴AOB ∆是等边三角形,∵3AE =, ∴tan 6033OE AE =⋅=o ,故选D .【点睛】本题考查圆周角定理,勾股定理,垂径定理,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( )A .1000sin α米B .1000tan α米C .1000tan α米D .1000sin α米 【答案】C【解析】【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC ABα=,即可解决问题. 【详解】 解:在Rt ABC ∆中,∵90CAB ∠=o ,B α∠=,1000AC =米,∴tan AC AB α=, ∴1000tan tan AC AB αα==米. 故选:C .【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.5.如图,点E从点A出发沿AB方向运动,点G从点B出发沿BC方向运动,同时出发且速度相同,DE GF AB=<(DE长度不变,F在G上方,D在E左边),当点D到达点B时,点E停止运动.在整个运动过程中,图中阴影部分面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小【答案】B【解析】【分析】连接GE,过点E作EM⊥BC于M,过点G作GN⊥AB于N,设AE=BG=x,然后利用锐角三角函数求出GN和EM,再根据S阴影=S△GDE+S△EGF即可求出结论.【详解】解:连接GE,过点E作EM⊥BC于M,过点G作GN⊥AB于N设AE=BG=x,则BE=AB-AE=AB-x∴GN=BG·sinB=x·sinB,EM=BE·sinB=(AB-x)·sinB∴S阴影=S△GDE+S△EGF=12DE·GN+12GF·EM=12DE·(x·sinB)+12DE·[(AB-x)·sinB]=12DE·[x·sinB+(AB-x)·sinB]=12 DE·AB·sinB∵DE、AB和∠B都为定值∴S阴影也为定值故选B.【点睛】此题考查的是锐角三角函数和求阴影部分的面积,掌握利用锐角三角函数解直角三角形和三角形的面积公式是解决此题的关键.6.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,则tan∠DEC的值是()A .1B .12C .3D .3 【答案】C【解析】【分析】 先根据题意过点C 作CF ⊥BD 与点F 可求得△AEB ≌△CFD (AAS ),得到AE =CF =1,EF =323-=33,即可求出答案 【详解】过点C 作CF ⊥BD 与点F .∵∠BAE =30°,∴∠DBC =30°,∵BC =2,∴CF =1,BF =3 ,易证△AEB ≌△CFD (AAS )∴AE =CF =1,∵∠BAE =∠DBC =30°,∴BE =33 AE =33, ∴EF =BF ﹣BE =3 ﹣3=233 , 在Rt △CFE 中,tan ∠DEC =323CFEF ==, 故选C .【点睛】此题考查了含30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等7.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m 【答案】A【解析】设MN=xm ,在Rt △BMN 中,∵∠MBN=45∘,∴BN=MN=x ,在Rt △AMN 中,tan ∠MAN=MN AN , ∴tan30∘=16x x+ =3√3, 解得:x=8(3 +1),则建筑物MN 的高度等于8(3 +1)m ;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.8.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45︒,向前走6m 到达B 点, 测得顶端点P 和杆底端点Q 的仰角分别是60︒和30°,则该电线杆PQ 的高度( )A .623+B .63+C .103D .83+【答案】A【解析】【分析】 延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则问题求解.【详解】解:延长PQ 交直线AB 于点E ,设PE=x .在直角△APE 中,∠A=45°,AE=PE=x ;∵∠PBE=60°∴∠BPE=30°在直角△BPE 中,BE=3PE=3x , ∵AB=AE-BE=6米,则x-3x=6, 解得:x=9+33.则BE=33+3.在直角△BEQ 中,QE=33BE=33(33+3)=3+3. ∴PQ=PE-QE=9+33-(3+3)=6+23.答:电线杆PQ 的高度是(6+23)米.故选:A .【点睛】本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题.9.如图,O e 是ABC V 的外接圆,AD 是O e 的直径,若O e 的半径是4,1sin 4B ,则线段AC 的长是( ).A.2 B.4 C.32D.6【答案】A 【解析】【分析】连结CD如图,根据圆周角定理得到∠ACD=90︒,∠D=∠B,则sinD=sinB=14,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【详解】连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90︒,∵∠D=∠B,∴sinD=sinB=14,在Rt△ACD中,∵sinD=ACAD=14,∴AC=14AD=14×8=2.故选A.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.10.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为 45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为 60°,已知斜坡AB的坡角为30°,AB=AE=10 米.则标识牌CD的高度是( )米.A.15-53B.20-103C.10-53D.53-5【答案】A【解析】【分析】过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,通过解直角三角形可求出BM,AM,CN,DE的长,再结合CD=CN+EN−DE即可求出结论.【详解】解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABE中,AB=10米,∠BAM=30°,∴AM=AB•cos30°=3BM=AB•sin30°=5(米).在Rt△ACD中,AE=10(米),∠DAE=60°,∴DE=AE•tan60°=3在Rt△BCN中,BN=AE+AM=10+3CBN=45°,∴CN=BN•tan45°=10+3(米),∴CD=CN+EN−DE=10+33=3故选:A.【点睛】本题考查了解直角三角形−仰角俯角问题及解直角三角形−坡度坡脚问题,通过解直角三角形求出BM,AM,CN,DE的长是解题的关键.11.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )A .303 n mileB .60 n mileC .120 n mileD .(30303)+n mile 【答案】D【解析】 【分析】 过点C 作CD ⊥AB ,则在Rt △ACD 中易得AD 的长,再在直角△BCD 中求出BD ,相加可得AB 的长.【详解】过C 作CD ⊥AB 于D 点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt △ACD 中,cos ∠ACD=CD AC , ∴CD=AC •cos ∠ACD=60×33032=. 在Rt △DCB 中,∵∠BCD=∠B=45°,∴3∴3答:此时轮船所在的B 处与灯塔P 的距离是(3)nmile .故选D .【点睛】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.12.如图,一张直角三角形纸片BEC 的斜边放在矩形ABCD 的BC 边上,恰好完全重合,边BE ,CE 分别交AD 于点F ,G ,已知8BC =,::4:3:1AF FG GD =,则CD的长为()A.1 B.2C.3D.2【答案】C【解析】【分析】由ABCD是矩形,得到AD=BC=8,且矩形的四个角是直角,根据::4:3:1AF FG GD=,可以求出DG的长度,再根据余角的性质算出∠DCE的大小,根据三角函数即可算出DC的长度.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,∠DCB=90︒,又∵::4:3:1AF FG GD=∴111 4318GD AD AD===++,∵∠ECB=60°,∴∠DCE=906030︒-︒=︒,又∵31 tan30GDCD CD︒===,∴3CD=,故答案为C.【点睛】本题主要考查矩形、特殊直角三角形、余角的性质,运用线段的比例长算出其中各段的长度是解本题的关键,特殊角的三角函数也是重要知识点,应掌握.13.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B 重合),C、D分别是弦AP,BP的中点.若33CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AH AO,∴AO=336 sin32AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14.一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B.若以港口O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()A .(303-50,30)B .(30, 303-50)C .(303,30)D .(30,303)【答案】A【解析】【分析】【详解】 解:OA =15×4=60海里, ∵∠AOC =60°,∴∠CAO =30°,∵sin 30°=OC AO =12, ∴CO =30海里, ∴AC =303海里,∴BC =(303-50)海里,∴B (303-50,30).故选A【点睛】本题考查掌握锐角三角函数的应用.15.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A 的正对记作sadA ,即sadA =底边:腰.如图,在ABC ∆中,AB AC =,2A B ∠=∠.则sin B sadA ⋅=( )A .12B 2C .1D .2【答案】C【解析】【分析】证明△ABC 是等腰直角三角形即可解决问题.【详解】解:∵AB=AC ,∴∠B=∠C ,∵∠A=2∠B ,∴∠B=∠C=45°,∠A=90°,∴在Rt △ABC 中,BC=sin AC B ∠=2AC , ∴sin ∠B •sadA=1AC BC BC AC=g , 故选:C .【点睛】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得60BAC ∠=︒,70DAC ∠=︒,则竹竿AB 与AD 的长度之比为( ).A .2sin70︒B .2cos70︒C .2tan70︒D .2tan 70︒【答案】B【解析】【分析】 直接利用锐角三角函数关系分别表示出AB ,AD 的长,即可得出答案.【详解】解:∵∠BAC=60°,∠DAC=70°,∴cos60°=12AC AB =, 则AB=2AC , ∴cos70°=AC AD, ∴AC=AD •cos70°,AD=cos70AC ︒,∴2cos70ACACABAD=︒=2cos70°.故选:B.【点睛】此题主要考查了解直角三角形的应用,正确表示出各边长是解题关键.17.如图,△ABC的顶点是正方形网格的格点,则cos A=()A.12B.22C.32D.5【答案】B【解析】【分析】构造全等三角形,证明△ABD是等腰直角三角形,进行作答.【详解】过A作AE⊥BE,连接BD,过D作DF⊥BF于F.∵AE=BF,∠AEB=∠DFB,BE=DF,∴△AEB≌△BFD,∴AB=DB.∠ABD=90°,∴△ABD是等腰直角三角形,∴cos∠DAB=22.答案选B.【点睛】本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.18.如图,等边ABCV边长为a,点O是ABCV的内心,120FOG∠=︒,绕点O旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE ∴S △ODE =12DE·OH=3OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 336a ∴S △ODE 的最小值为342=2348a ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵DE=3OE ∴OE 最小时,DE 最小而OE 的最小值为OE′=36a ∴DE 的最小值为3×3a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确, 故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.19.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB :BC =2:1,且BE ∥AC ,CE ∥DB ,连接DE ,则tan ∠EDC =( )A .14B .16C .26D .310【答案】B【解析】【分析】过点E 作EF ⊥直线DC 交线段DC 延长线于点F ,连接OE 交BC 于点G .根据邻边相等的平行四边形是菱形即可判断四边形OBEC 是菱形,则OE 与BC 垂直平分,易得EF=12x ,CF=x .再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD 的对角线AC 、BD 相交于点O ,AB :BC =2:1,∴BC =AD ,设AB =2x ,则BC =x .如图,过点E 作EF ⊥直线DC 交线段DC 延长线于点F ,连接OE 交BC 于点G .∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=12AD=12x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB=2x,∴CF=12OE=x.∴tan∠EDC=EFDF=122xx x+=16.故选:B.【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.20.如图,在矩形ABCD中E是CD的中点,EA平分,BED PE AE∠⊥交BC于点P,连接PA,以下四个结论:①EB平分AEC∠;②PA BE⊥;③3AD AB=;④2PB PC=.其中结论正确的个数是()A.4个B.3个C.2个D.1个【答案】A【解析】【分析】根据矩形的性质结合全等三角形的判定与性质得出△ADE ≌△BCE (SAS ),进而求出△ABE 是等边三角形,再求出△AEP ≌△ABP (SSS ),进而得出∠EAP =∠PAB =30°,再分别得出AD 与AB ,PB 与PC 的数量关系即可.【详解】解:∵在矩形ABCD 中,点E 是CD 的中点,∴DE =CE ,又∵AD =BC ,∠D =∠C ,∴△ADE ≌△BCE (SAS ),∴AE =BE ,∠DEA =∠CEB ,∵EA 平分∠BED ,∴∠AED =∠AEB ,∴∠AED =∠AEB =∠CEB =60°,故:①EB 平分∠AEC ,正确;∴△ABE 是等边三角形,∴∠DAE =∠EBC =30°,AE =AB ,∵PE ⊥AE ,∴∠DEA +∠CEP =90°,则∠CEP =30°,故∠PEB =∠EBP =30°,则EP =BP ,又∵AE =AB ,AP =AP ,∴△AEP ≌△ABP (SSS ),∴∠EAP =∠PAB =30°,∴AP ⊥BE ,故②正确;∵∠DAE =30°,∴tan ∠DAE =DE AD =tan30°∴AD ,即2AD =, ∵AB =CD ,∴③AD AB =正确; ∵∠CEP =30°,∴CP =12EP , ∵EP =BP , ∴CP =12BP , ∴④PB =2PC 正确.综上所述:正确的共有4个.故选:A.【点睛】此题主要考查了四边形综合,全等三角形的判定与性质,等边三角形的判定与性质,含30度角的直角三角形性质以及三角函数等知识,证明△ABE是等边三角形是解题关键.。
(整理版)函数的应用举例·例题解析
函数的应用举例·例题解析1.几何问题类用函数思想解决几何(如平面几何、立体几何及解析析几何)问题,这是常常出现的数学本身的综合运用问题.【例1】如图2.9-1,一动点P自边长为1的正方形ABCD的顶点A出发,沿正方形的边界运动一周,再回到A点.假设点P的路程为x,点P到顶点A的距离为y,求A、P两点间的距离y与点P的路程x之间的函数关系式.解(1)当点P在AB上,即0≤x≤1时,AP=x,也就是y=x.(2)当点P在BC边上,即1<x≤2时,AB=1,AB+BP=x,BP=x-1,根据勾股定理,得AP2=AB2+BP2222x xy=AP=1+(x1)2∴.-=-+(3)当点P在DC边上,即2<x≤3时,AD=1,DP=3-x.根据勾股定理,得AP2=AD2+DP2.2610x x-=-+∴y=AP=1+(3x)2(4)当点P在AD边上,即3<x≤4时,有y=AP=4-x.∴所求的函数关系式为2.行程问题类【例2】,A、B两地相距150公里,某人开汽车以60公里/小时的速度从A 地到达B地,在B地停留一小时后再以50公里/小时的速度返回A地,求汽车离开A 地的距离x表示为时间t的函数.解根据题意:(1)汽车由A到B行驶t小时所走的距离x=60t,(0≤t≤2.5)(2)汽车在B地停留1小时,那么B地到A地的距离x=<x≤3.5)(3)由B地返回A地,那么B地到A地的距离x=150-50(t-3.5)=325-<x≤6.5)总之≤≤<≤-<≤x =60t(0t 2.5)150(2.5t 3.5)32550t(3.5t 6.5)⎧⎨⎪⎩⎪ 3.工程设计问题类工程设计问题是指运用数学知识对工程的定位、大小、采光等情况进行合理布局、计算的一类问题.【例3】 要在墙上开一个上部为半圆,下部为矩形的窗户(如图2.9-2所示),在窗框为定长l 的条件下,要使窗户透光面积最大,窗户应具有怎样的尺寸?解 设半圆的直径为x ,矩形的高度为y ,窗户透光面积为S ,那么窗框总长++,l =x 2x 2y π ∴++·-y =2(2+)x4S =x xy =x 2(2+)x 4x =22l l l l --+-+++πππππππ8848242422()()x 当时,,此时,x =24+S =y =4+max 2l l l πππ242()+=x 答 窗户中的矩形高为,且半径等于矩形的高时,窗户的透光l 4+π面积最大.说明 应用二次函数解实际问题,关键是设好适当的一个变量,建立目标函数.【例4】 要使火车平安行驶,按规定,铁道转弯处的圆弧半径不允许小于600米,如果某段铁路两端相距156米,弧所对的圆心角小于180°,试确定圆弧弓形的高所允许的取值范围.解 设园的半径为R ,圆弧弓形高CD=x(m).在Rt △BOD 中,DB =78,OD=B -x∴(R -x)2+782=R 2解得 R =x 2+60842x由题意知R ≥600∴≥x x260842+600 得x 2-1200x +6084≥0(x >0),解得x ≤5.1或x ≥1194.9(舍)∴圆弧弓形高的允许值范围是(0,5.1].4.营销问题类这类问题是指在营销活动中,计算产品本钱、利润(率),确定销售价格.考虑销售活动的盈利、亏本等情况的一类问题.在营销问题中,应掌握有关计算公式:利润=销售价-进货价.【例5】 将进货价为8元的商品按每件10元售出,每天可销售200件,假设每件售价涨价元,其销售量就减少10件.问应将售价定为多少时,才能使所赚利润最大,并求出这个最大利润.解 设每件售价提高x 元,那么每件得利润(2+x)元,每天销售量变为(200-20x)件,所获利润y=(2+x)(200-20x)=-20(x -4)2+720当x=4时,即售价定为14元时,每天可获最大利润为720元.5.单利问题类单利是指本金到期后的利息不再参加本金计算.设本金为P 元,每期利率为r ,经过n 期后,按单利计算的本利和公式为S n =P(1+nR).【例6】 某人于1996年6月15日存入银行1000元整存整取定期一年储蓄,月息为9‰,求到期的本利和为多少?解 这里P=1000元,r=9‰,n =12,由公式得S 12=P(1+12r)=1000×(1+9×12)=1108元.答 本利和为1108元.6.复利问题类复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息.设本金为P,每期利率为r,设本利和为y,存期为x,那么复利函数式为y=P(1+r)x.【例7】某企业方案发行企业债券,每张债券现值500元,按年利率%的复利计息,问多少年后每张债券一次归还本利和1000元?(参考,=0.0274).解设n年后每张债券一次归还本利和1000元,由1000=500(1+%)n,解得≈11.答11年后每张债券应一次归还本利和1000元.7.函数模型类这个问题是指在问题中给出函数关系式,关系式中有的带有需确定的参数,这些参数需要根据问题的内容或性质来确定之后,然后使问题本身获解.【例8】某工厂今年1月、2月、3月生产某产品分别为1万件、万件、万件.为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产品的月产量y与月份数x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a、b、c为常数),4月份该产品的产量为万件,请问用以上哪个函数作为模拟函数较好,并说明理由.解设二次函数y1=f(x)=px2+qx+x(p≠0)则++++++f(1)=p q r=1f(2)=4p2q r=1.2 f(3)=9p3q r=1.3⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪P=0.05 q=0.35r=0.7-∴y1=f(x)=-2++f(4)=-×16+×4+又y=ab x+c得·+·+·+-a b c=1a b c=1.2a b c=1.3a=0.8b=12c=1.423⎧⎨⎪⎩⎪⇒⎧⎨⎪⎪⎩⎪⎪∴-+当时,-+经比较可知:用-+作模拟函数较好.y =0.8(12) 1.4x =4y =0.8(12) 1.4=1.35y =0.8(12) 1.4x 4x 【例9】 有甲乙两种产品,生产这两种产品所能获得的利润依次是和万元,它们与投入资金万元的关系是,=,今P Q()x()P =x 4Q 34x 投入3万元资金生产甲、乙两种产品,为获得最大利润,对甲、乙两种产品的资金投入分别应为多少?最大利润是多少?解 设投入甲产品资金为x 万元,投入乙产品资金为(3-x)万元,总利润为y 万元.y =P Q =14x (0x 3)t =3x x =3t (0t )y =14(3t )t =1422++≤≤令则-≤≤,∴-+3433343221162----+x t () 当时,此时,-.t =32y =2116x =3t =34max 2 答 对甲、乙产品分别投资为万元和万元,获最大利润为2116万元. 8.增长率(或降低率)问题类这类问题主要是指工农业生产中计算增长率、产值等方面的一类计算题.【例10】 某工厂1988年生产某种产品2万件,方案从1989年开始,每年的产量比上一年增长20%,问哪一年开始,这家工厂生产这种产品的年产量超过12万元(lg2=,lg3=0.4771)解 设过x 年后,产量超过12万件.那么有2(1+20%)x >12解得x >答 从1998年开始年产量可超过12万件.9.相关学科问题类这类问题是指涉及相关学科(如物理、化学等)知识的一类数学问题.【例11】 在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…,a n ,共n 个数据,我们规定所测量的物理量的“最正确近似值〞a 是这样一个量:与其它近似值比拟,a 与各数据差的平方和最小,依此规定,求从a 1,a 2,…,a n 推出的a 值.解 a 应满足:y=(a -a 1)2+(a -a 2)2+…+(a -a n )2=-++…++++…+na 2(a a a )a a a a 212n 1222n 2此式表示以a 为自变量的二次函数,∵n >0.∴当时,有最小值.此时a =2(a +a ++a )2n=a y a =a 12n 11 ++++++a a na a n n n 22 10.决策问题类决策问题,是指根据已掌握的数据及有关信息,利用数学知识对某一事件进行分析、计算,从而作出正确决策的题.【例12】 某厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给A 地10台,B 地8台,从甲地调运一台至A 地、B 地的运费分别为400元和800元,从乙地调运一台至A 地、B 地的运费分别为300元和500元.(1)设从乙要调x 台至A 地,求总运费y 关于x 轴的函数关系式.(2)假设总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案及最低的运费.解 (1)y=300x +500(6-x)+400(10-x)+800[12-(10-x)]=200(x +43)(0≤x ≤6,x ∈N)(2)当x=0,1,2时,y ≤9000,故共有三种方案,总运费不超过9000元.(3)在(1)中,当x =0时,总运费最低,调运方案为:乙地6台全调B 地,甲地调2台至B 地,10台至A 地,这时,总运费y =8600元.。
新初中数学一次函数全集汇编含解析(1)
新初中数学一次函数全集汇编含解析(1)一、选择题1.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<【答案】C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.2.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b >0时图象在一、二、四象限.3.一次函数y=kx+b(k<0,b>0)的图象可能是( )A .B .C .D .【答案】C【解析】【分析】根据k 、b 的符号来求确定一次函数y=kx+b 的图象所经过的象限.【详解】∵k<0,∴一次函数y=kx+b 的图象经过第二、四象限.又∵b >0时,∴一次函数y=kx+b 的图象与y 轴交与正半轴.综上所述,该一次函数图象经过第一象限.故答案为:C.【点睛】考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB V (O 为坐标原点)的面积为( )A .32B .2C .23D .3【答案】C【解析】【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=V 23, 故选:C.【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k >-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k=-,当b x k>-时,0y <; D 不正确;故选:D . 【点睛】 本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.6.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+C .1y x =+D .5342y x =+ 【答案】D【解析】【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。
初中数学函数家教讲义
初中数学函数家教讲义一、函数的基本概念及性质1.1 函数的定义我们先来了解函数的定义。
在数学中,函数是一种对应关系,它将一个集合的元素映射到另一个集合的元素上。
简而言之,函数是一种规则,它将自变量的取值映射到因变量的取值上。
1.2 函数的符号表示函数通常用字母表示,常见的表示方法有f(x)、g(x)等。
其中,f代表函数的名称,x代表自变量,而f(x)则表示函数f对自变量x的取值。
1.3 定义域和值域接下来我们来介绍函数的定义域和值域。
定义域是指函数所有自变量的取值范围,它决定了函数的有效输入。
值域是指函数所有因变量的取值范围,它是函数的有效输出。
1.4 三种基本函数初中数学中常见的函数有三种:线性函数、二次函数和反比例函数。
二、线性函数2.1 线性函数的定义线性函数是一种特殊的函数,它的函数图像是一条直线。
线性函数的一般形式可以表示为:y = kx + b,其中k和b为常数,k表示直线的斜率,b表示直线的截距。
2.2 线性函数的图像特点线性函数的图像具有以下特点:- 斜率k决定了直线的倾斜程度,k越大直线越陡峭,k越小直线越平缓。
- 截距b决定了直线与y轴的交点位置,当b为正数时,直线在y 轴上方交点;当b为负数时,直线在y轴下方交点。
三、二次函数3.1 二次函数的定义二次函数是一种特殊的函数,它的函数图像是一条抛物线。
二次函数的一般形式可以表示为:y = ax² + bx + c,其中a、b、c为常数。
3.2 二次函数的图像特点二次函数的图像具有以下特点:- 当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
- 抛物线的顶点坐标为(-b/2a, f(-b/2a)),其中f(-b/2a)表示函数在顶点的取值。
四、反比例函数4.1 反比例函数的定义反比例函数是一种特殊的函数,它的函数图像是一条曲线。
反比例函数的一般形式可以表示为:y = k/x,其中k为常数。
4.2 反比例函数的图像特点反比例函数的图像具有以下特点:- 曲线与坐标轴不相交,称为渐近线。
九年级数学专题讲座
九年级数学专题讲座一、函数专题1. 一次函数知识点回顾一次函数的表达式为公式(公式,公式为常数,公式)。
当公式时,函数为正比例函数公式。
一次函数的图象是一条直线,公式决定直线的倾斜程度(公式,直线从左到右上升;公式,直线从左到右下降),公式决定直线与公式轴的交点(公式)。
题目解析例:已知一次函数公式,求它的图象与公式轴、公式轴的交点坐标。
解:当公式时,公式,解得公式,所以与公式轴交点坐标为公式。
当公式时,公式,所以与公式轴交点坐标为公式。
2. 二次函数知识点回顾二次函数的表达式一般式为公式(公式,公式,公式为常数,公式)。
顶点式为公式(公式为顶点坐标)。
二次函数图象是抛物线,公式决定抛物线的开口方向(公式开口向上;公式开口向下),对称轴为公式(一般式)或公式(顶点式)。
题目解析例:求二次函数公式的顶点坐标和对称轴。
解:对于二次函数公式,其中公式,公式,公式。
对称轴公式。
把公式代入函数得公式,所以顶点坐标为公式。
3. 反比例函数知识点回顾反比例函数表达式为公式(公式为常数,公式)。
图象是双曲线。
当公式时,双曲线在一、三象限;当公式时,双曲线在二、四象限。
题目解析例:已知反比例函数公式,求当公式时公式的值,以及当公式时公式的值。
解:当公式时,公式。
当公式时,公式,解得公式。
二、几何专题1. 三角形知识点回顾三角形内角和为公式。
三角形的分类:按角分为锐角三角形、直角三角形、钝角三角形;按边分为等边三角形、等腰三角形、不等边三角形。
相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。
题目解析例:在公式中,公式,公式,求公式的度数。
解:因为三角形内角和为公式,所以公式。
例:已知公式和公式,公式,公式,判断这两个三角形是否相似。
解:因为在公式和公式中,公式,公式,两角分别相等,所以公式。
2. 四边形知识点回顾平行四边形的性质:对边平行且相等,对角相等,对角线互相平分。
人教版八年级数学下册《第19章函数初步》讲义(含解析)
满分晋级帅壮变形记漫画释义函数4级一次函数初步函数3级函数初步函数2级平面直角坐标系中的变换12函数初步知识互联网思路导航析式例题精讲【例1】⑴判断下列所指的量之间是否是函数关系,若是,请写出函数关系式,并指出其中的自变量.① 三角形的面积S 与长为5的边上的高h 之间.()2cm ()cm ()cm ② 某人坐公交车从甲站去往乙站,已知全程中各站票价均为0.4元,票价y 元与经过的车站数x 之间.⑵下图分别给出了变量与之间的对应关系,是的函数的图象是( )y x y x DCBA xyO x y O x y O O y x (人大附中期中)【解析】⑴ ① 是,,自变量为高h .52hS =② 是,,自变量为车站数x .0.4y x =⑵ C ,对于x 的每个值,y 都有唯一确定的值与之对应,由x 与y 之间的一对一的关系即可判断.本道例题旨在加强学生对函数定义的理解.【例2】判断下列式子中是否是的函数,若是,请指出自变量的取值范围:y x x ⑴ ; ⑵ ; ⑶ ; ⑷ ;35y x =-21x y x -=-2y x =3y x =-⑸ ; ⑹ ; ⑺ ; ⑻ .2y x =-21xy x +23x y x -=-3y x =【解析】⑶ ⑸不是,其余均是.其中:⑴ 为全体实数; ⑵ ; ⑷ 全体实数 ; x 1x ≠⑹ ; ⑺ 且; ⑻ 全体实数.1x >-2x ≥3x ≠典题精练【例3】⑴ 三角形的周长是,三边长分别为,,,则以为自变量表示的函数cm y 4cm 6cm cm x x y 关系式为_________,自变量的取值范围是 . x⑵ 矩形周长为30,则面积与一条边长之间的函数关系式为____________,其中的取y x x 值范围是___________.⑶ 一个小球由静止开始从一个斜坡向下滚动,其速度每秒增加2米,则小球的速度随时间v 变化的函数关系式为_______________;第秒时小球的速度为________.t 2.5⑷ 某市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过立方米,按每立方米元收费;若超过立方米,则超过部分每立方米按元收费,122124某户居民五月份交水费(元)与用水量(立方米)()之间的关系式为 y x 12x >,若该月交水费元,则这个月的实际用水 立方米.40【解析】⑴ ,;10y x =+210x <<⑵ ,.215y x x =-015x << ⑶ ,5米/秒.2v t =⑷ ,.424y x =-16思路导航函数的图象:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.画函数图象的步骤:列表—描点—连线(平滑的曲线)函数解析式与其图象的关系:⑴ 满足函数解析式的有序实数对为坐标的点一定在函数图象上;⑵ 函数图像上点的坐标满足函数解析式.例题精讲【例4】在同一平面直角坐标系中描点画出函数①;②的图象,并解决以下问题:21y x =-2y x =xyO ⑴ 判断下列哪些点分别在函数①②的图象上:;;;2.54A --,)13B ,()24C -,;;.()2.54D ,()2.25 1.5E ,()11F , ⑵ 观察两个函数的图象,当时,函数①和函数②中,是随着的增大而增大,还是0x >y x 随着的增大而减小?当时呢?x 0x <【解析】列表略,图象如下,注意强调几点:⑴自变量在定义域内取值;⑵连线时按照横坐标由小到大的顺序用平滑曲线连接;⑶由定义域判断图象是否有端点.题型二:函数的图象y=2x -1y=x 2xyO ⑴ 点A 、B 、E 均不在两个图象上,点在②上,点在①上,点在①和②上; C D F ⑵ 当时,函数①②中,均随着的增大而增大,当时,函数①中随的增大0x >y x 0x <y x 而增大,函数②中随的增大而减小.y x 典题精练【例5】⑴某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是( )(海淀期末练习)⑵小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”.如果用纵轴表示父亲与儿子行进中离家的距离,用横轴表示父y x 亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )yxOxyOxyO O xyA B CD⑶水池有2个进水口,1个出水口,每个进水口的进水量与时间的关系如图1所示,出水口的出水量与时间关系如图2所示,某天0点到6点该水池的蓄水量与时间关系如图3所示,下列论断:①0点到1点,打开2个进水口,关闭出水口;②1点到3点,同时关闭2个进水口和1个出水口;③3点到4点,关闭2个进水口,打开出水口;④5点到6点,同时打开2个进水口和1个出水口.其中可能正确的论断是()(人大附统练)A .①③B .①④C .②③D .②④⑷某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进到达学校.小明走路的速度V (米/分钟)是时间t (分钟)的函数,能正确反映这一函数关系的大致图象是( )Ot 分分分分V 分分/分分O t 分分分分V 分分/分分Ot 分分分分V 分分/分分V 分分/分分t 分分分分OA B C D【解析】⑴啤酒瓶内水面高度h 随水流出的时间t 变化的规律是先慢后快的两段,因为是匀速,所以表现在图象上为直线,故选A ;⑵C ;⑶由图中可以看出,一个进水管的速度为1;一个出水管的速度为2.从0点到1点,蓄水量由5增加到6,如果打开2个进水管关闭出水口的话,就要增加2,所以①不对,排除A 、B .3点到4点,蓄水量由6变为5,关闭2个进水口,打开出水口的话就应该减少2.③不对.故选D .⑷A ,此题易错在将函数当做路程.V 【例6】下面的图象反映的过程是:李明从家跑去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步回家,其中表示时间,表示李明离家的距离.x yO2.51.59565453015y/分分请根据以上图象信息回答下列问题:⑴ 体育场离家多远?李明从家到体育场用了多长时间? ⑵ 体育场离文具店有多远? ⑶ 李明在文具店停留了多久?⑷ 李明从文具店回家的平均速度是多少?【解析】⑴ 2.5千米,15分钟;⑵ 1千米;⑶ 20分钟;⑷ (千米/分).()1.595650.05÷-=【例7】已知两邻边不相等的长方形的周长为24cm ,设相邻两边中,较短的一边长为y cm ,较长的一边长为x cm .⑴求y 关于x 的函数解析式;⑵求自变量x 的取值范围;⑶当较短边长为4cm 时,求较长边的长.【解析】⑴∵2(x+y )=24,∴y=12-x ;⑵∵12012x y x x->⎧⎨=-<⎩∴6<x <12;⑶当y =4时,y =12-x =4,解得:x =8cm .【备注】此题难度不大,但是需要老师重点讲解自变量的取值范围,这是一个易错点,在初学函数时如果不注重对自变量取值范围的强调,对后面学习一、二次函数及反比例函数会有不利影响,容易造成学生失分。
最新初中数学函数家教讲义
)
A . (-4,3)
B. (-3,-4)
2.已知点 P(x,y) 位于第二象限,并且
.
C. (-3,4) D . (3,-4)
y≤ x+4 , x,y为整数,写出一个..符合上述条件的点 P 的坐标:
3.某地区的电力资源丰富,并且得到了较好的开发
.该地区一家供电公司为了鼓励居民用电,采用分
段计费的方法来计算电费 .月用电量 x(度)与相应电费 y(元)之间的函数图像如图所示 .
2.已知一次函数 y=( m+ 2)x+( 1- m),若 y 随 x 的增大而减小,且该函数的图像与
侧,则 m的取值范围是(
)
( A) m>- 2 ( B) m<1 (C)- 2<m<- 1 (D) m<- 2
x 轴的交点在原点的右
7.已知一次函数 y=k x + 2b+ 3 的图象经过点(- 1,- 3),k是方程m 2- 3m= 10 的一个根,且 Y 随x的增 大而增大,求这个一次函数解析式。
5 已知一条抛物线经过 (0,3) , (4,6) 两点,对称轴为 x= 3 ,求这条抛物线的解析式。
1.已知样本 x1、 x2、 x3、 x4 的平均数是 2,则 x 1+3、 x2+3、 x3+3、 x 4+3 的平均
数为
; .已知样本 x1, x2, x3, … , xn 的方差是 1,那么样本 2x1+3 ,
重要解题方法
1.用待定系数法求解析式(列方程 [ 组 ] 求解)。对求二次函数的解析式,要合理选用一般式
或顶点式,并应充分运用抛物线关于对称轴对称的 特点,寻找新的点的坐标。如下图: 2.利用图象一次(正比例)函数、反比例函数、二次 k、 b;a 、b、c 的符号。
(完整版)学生初中数学函数专题复习北师大版知识精讲
初三数学函数专题复习北师大版(一)一次函数 1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。
2.图象及其性质(1)形状:直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200ky x ky x ()若直线::3111222l yk xb l y k xb 当时,;当时,与交于,点。
k k l l b b b l l b 121212120//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。
(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。
(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。
3.应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。
【例题分析】例1. 已知一次函数y =kx +2的图象过第一、二、三象限且与x 、y 轴分别交于A 、B两点,O 为原点,若ΔAOB 的面积为2,求此一次函数的表达式。
例2. 小明用的练习本可以在甲商店买,也可以在乙店买,已知两店的标价都是每本1元,但甲店的优惠条件是:购买10本以上从第11本开始按标价的70%卖,乙店的优惠条件是:从第1本开始就按标价的85%卖。
(1)小明买练习本若干本(多于10)设购买x 本,在甲店买付款数为y 1元,在乙店买付款数为y 2元,请分别写出在两家店购练习本的付款数与练习本数之间的函数关系式;(2)小明买20本到哪个商店购买更合算?(3)小明现有24元钱,最多可买多少本?(二)反比例函数 1.定义:应注意的问题:中()是不为的常数;()的指数一定为“”ykxk x 1021 2.图象及其性质:(1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()yx yx()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300ky x ky x (4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。
初中数学中考复习 二次函数 专题讲义(含解析)
二次函数 专题讲义考点回顾一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值。
如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。
初中数学《二次函数解析式》讲义及练习 (2)
板块考试要求A 级要求B 级要求C 级要求二次函数能根据实际情境了解二次函数的意义;会利用描点法画出二次函数的图像能通过对实际问题中的情境分析确定二次函数的表达式;能从函数图像上认识函数的性质;会确定图像的顶点、对称轴和开口方向;会利用二次函数的图像求出二次方程的近似解能用二次函数解决简单的实际问题;能解决二次函数与其他知识结合的有关问题一、二次函数的图像与系数关系1. a 决定抛物线的开口方向:当0a >时⇔抛物线开口向上;当0a <时⇔抛物线开口向下a 决定抛物线的开口大小:a 越大,抛物线开口越小; a 越小,抛物线开口越大.注:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反.2. b 和a 共同决定抛物线对称轴的位置.(对称轴为:2bx a=-)当0b =时,抛物线的对称轴为y 轴; 当,a b 同号时,对称轴在y 轴的左侧; 当,a b 异号时,对称轴在y 轴的右侧.3. c 的大小决定抛物线与y 轴交点的位置.(抛物线与y 轴的交点为()0c ,) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴; 当0c <时,交点在y 轴的负半轴.二、二次函数的三种表达方式(1)一般式:()20y ax bx c a =++≠ (2)顶点式:()2y a x h k =-+()0a ≠(3)双根式(交点式):()()()120y a x x x x a =--≠2.如何设点:⑴ 一次函数y ax b =+(0a ≠)图像上的任意点可设为()11x ax b +,.其中10x =时,该点为直线与y 轴交知识点睛中考要求第二讲二次函数的解析式点.⑵ 二次函数2y ax bx c =++(0a ≠)图像上的任意一点可设为()2111x ax bx c ++,.10x =时,该点为抛物线与y 轴交点,当12bx a=-时,该点为抛物线顶点. ⑶ 点()11x y ,关于()00x x ,的对称点为()010122x x y y --,. 4.如何设解析式:① 已知任意3点坐标,可用一般式求解二次函数解析式;② 已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式;③ 已知抛物线与x 的两个交点坐标,可用交点式求解二次函数解析式.④ 已知抛物线经过两点,且这两点的纵坐标相等时,可用对称点式求解函数解析式(交点式可视为对称点式的特例)注:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.一、二次函数图象分布与系数的关系【例1】 ⑴(07济南)已知2y ax bx =+的图象如下左图所示,则y ax b =-的图象一定过( )A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限⑵(07常州)若二次函数222y ax bx a =++-(a b ,为常数)的图象如下中图,则a 的值为( )A. 2-B. 2-C. 1D. 2⑶(07南宁)已知二次函数2y ax bx c =++的图象如下右图所示,则点()P a bc ,在第 象限. OyxyxAO yxO重、难点1. 灵活应用二次函数的三种表达形式,求二次函数解析式。
(完整版)初中数学专题讲义--一次函数
初中数学专题讲义--一次函数一、知识归纳1.变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量2.函数:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
9、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴10、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b 即y=kx,所以说正比例函数是一种特殊的一次函数.(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向:⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小11一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). 12、直线y=k 1x+b 1与y=k 2x+b 2的位置关系 (1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 213、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 14、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值. 15、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 16、一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bc x b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b cx b a +-的图象交点.函数1、判断下列变化过程存在函数关系的是( D )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x xy ,当a x =时,y = 1,则a 的值为( B ) A.1 B.-1 C.3 D.213、下列各曲线中不能表示y 是x 的函数是( C )。
反比例函数讲义(知识点+典型例题)
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
中考数学总复习《几何与函数问题》考点梳理及型例题讲解课件
∵AB= AO2+OB2= (2 3)2+62=4 3, ∴AC=BC=2 3, ∴∠CAO=∠COA=60°, ∴∠ACO=60°, ∴S 阴影=S 扇形-S△ACO=60π×3(620 3)2-21×2 3×3=2π- 3 3.
(3)①OD=OB,D 在 OB 的中垂线上,如图 1,过点 D 作 DH⊥OB,垂足是 H,则 H 是 OB 中点.DH=12OC,OH=21OB,
∴D2,32.
图1
②BD=BO,如图 2,过点 D 作 DG⊥OB,垂足是 G,
图2 ∴OOGB=CCDB=15,DOGC=45,
∴O4G=15,D3G=45, ∴OG=45,DG=152, ∴D45,152. 综上所述,符合条件的点 D 的坐标为2,23或45,152.
解:(1)在 Rt△ABC 中, AB= BC2+AC2=5, 由题意知:AP=5-t,AQ=2t, 若 PQ∥BC,则△APQ ∽△ABC, ∴AAQC=AAPB,∴24t=5-5 t,∴t=170.
(2)过点 P 作 PH⊥AC 于点 H. ∵△APH ∽△ABC, ∴PBHC=AAPB,∴P3H=5-5 t, ∴PH=3-35t, ∴y=12×AQ×PH=21×2t×(3-53t)=-35t2+3t.
点 P 由 B 出发沿 BA 方向向点 A 匀速运动,速度为 1 cm/s;点 Q 由 A 出发沿 AC 方向向点 C 匀速运动,速度为 2 cm/s;连接 PQ. 若设运动的时间为 t(单位:s)(0<t<2),解答下列问题:
(1)当 t 为何值时,PQ∥BC? (2)设△AQP 的面积为 y(单位:cm2),求 y 与 t 之间的函数关 系式. (3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长 和面积同时平分?若存在,求出此时 t 的值;若不存在,请说明 理由. 分析点拨:(1)设BP为t,则AQ=2t,证△APQ ∽△ABC; (2)过点 P 作 PH⊥AC 于 H;(3)构建方程模型,求 t.
初中数学函数家教讲义
初中数学函数家教讲义第一章:引言函数是数学中的重要概念,它在数学和其他学科中都有广泛的应用。
本讲义将介绍初中数学中与函数相关的基本概念、性质和解题方法,旨在帮助学生理解、掌握函数的基本知识,提高数学学习的效果。
第二章:函数与映射1. 函数的定义函数是一种特殊的映射关系,它将一个元素从一个集合映射到另一个集合,且每个元素在映射中都有唯一的对应元素。
函数用符号表示为:y = f(x),其中x是自变量,y是因变量。
2. 定义域和值域函数的定义域是自变量所有可能取值的集合,值域是因变量所有可能取值的集合。
我们用集合表示函数的定义域和值域,例如:定义域D = {x ∈ R},值域R。
3. 映射图与函数图像映射图是表示函数的一种方法,它将自变量和因变量通过箭头连接起来,可以清晰地展示函数的映射关系。
函数图像是函数在坐标系中的几何表达,常用于描述函数的性质和变化趋势。
第三章:常见函数及其性质1. 线性函数线性函数是最简单的函数形式,表示为y = kx + b,其中k和b分别是常数。
线性函数的特点是函数图像为一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与纵坐标轴的交点。
2. 幂函数幂函数是形如y = x^a的函数,其中a是常数。
幂函数的特点是当a>0时,函数图像逐渐增长;当a<0时,函数图像逐渐减小;当a=0时,函数图像为常数。
3. 开平方函数开平方函数是形如y = √x的函数,表示x的平方根。
开平方函数的定义域为非负实数集合[0, +∞),值域为非负实数集合[0, +∞)。
4. 绝对值函数绝对值函数是形如y = |x|的函数,表示x的绝对值。
绝对值函数的定义域为全体实数集合R,值域为非负实数集合[0, +∞)。
第四章:函数的解题方法1. 函数的图像与实际问题函数的图像能够反映函数的性质和变化趋势,我们可以利用函数的图像解决实际问题,如求最大值、最小值、零点等。
2. 函数的运算法则函数的运算法则包括函数的加减、乘除、复合等运算,它们可以帮助我们对复杂函数进行简化和分析。
初中数学 函数模块3-2-正反比例函数讲义(含答案解析)
正反比例函数题型练题型一:正比例函数的定义一般的,形如()0y kx k =≠的函数被称为正比例函数.其中x 表示自变量,y 表示因变量.例1若函数()()2261y m x m x =++-是正比例函数,则m 的值是()A .3m =-B .1m =C .3m =D .3m >-【详解】由题意可知:260m +=∴3m =-故选:A变式11.若函数y =(k +1)x +k 2-1是正比例函数,则k 的值为________.【答案】1.【解析】【分析】根据正比例函数的定义列式计算即可;【详解】解:∵函数为正比例函数,∴k +1≠0且k 2-1=0,∴k =1.故答案是1.【点睛】本题主要考查了正比例函数的定义,准确分析计算是解题的关键.题型二:正比例函数的图象和性质正比例函数的图象是一根直线.当0k >时,函数图象经过一三象限,此时y 随着x 的增大而增大;当0k <时,函数图象经过二四象限,此时y 随着x 的增大而减小;例2.在正比例函数(8)y m x =-中,如果y 随自变量x 的增大而减小,那么正比例函数(8)y m x =-的图象在第________象限.【详解】解:∵在正比例函数(8)y m x =-中,y 随自变量x 的增大而减小,∴80m -<,∴80m ->,∴正比例函数(8)y m x =-的图象在一、三象限.故答案为:一、三.变式22.y =12x ,下列结论正确的是()A.函数图象必经过点(1,2)B.函数图象必经过第二、四象限C.不论x 取何值,总有y >0D.y 随x 的增大而增大【答案】D 【解析】【分析】根据正比例函数的图象与性质逐项判断即可.【详解】解:A 、当x =1时,12y =,所以函数图象必过点(1,12),故本选项结论错误,不符合题意;B 、∵102k =>,∴函数图象必过第一、三象限,故本选项结论错误,不符合题意;C 、当x <0时,y <0,故本选项结论错误,不符合题意;D 、∵102k =>,∴y 随x 的增大而增大,故本选项结论正确,符合题意.故选:D .【点睛】本题考查了正比例函数的图象与性质,属于基础题型,熟练掌握正比例函数的图象与性质是解题关键.题型三:反比例函数定义一般的,形如k(0,0)y k x x=≠≠的函数被称为正比例函数.其中x 表示自变量,y 表示因变量.反比例函数的变形式有两个:1,xy k y kx -==.①根据定义判断是否是反比例函数例3.1下列问题中的两个变量成反比例关系的是()A .汽车以80千米/时的速度行驶s 千米,用时t 时B .正方形的周长C 与它的面积SC .有一水池的容量为100立方米,每小时的灌水量q (立方米)与灌满水池所需要的时间t(小时)D .圆的面积S 与它的半径r 【详解】解:A 、汽车以80千米/时的速度行驶s 千米,用时t 时,则80s t =,s 是t 的正比例函数,故本选项错误;B 、正方形的面积22416C CS ⎛⎫== ⎪⎝⎭,S 是C 的二次函数,故本选项错误;C 、有一水池的容量为100立方米,每小时的灌水量q (立方米)与灌满水池所需要的时间t (小时)的函数关系为:100q t=,所以q 是t 的反比例函数,故本选项正确;D 、圆的面积S 与它的半径r 的函数关系为:2S r π=,所以S 是r 的二次函数,故本选项错误.故选:C .变式3.13.设x ,y 表示两个变量,在下列关系式:(l )2x y =-;(2)2y x=;(3)2y x =;(4)12xy =-,其中是y 关于x 的反比例函数的是()A.(1)(2)B.(1)(3)C.(2)(3)D.(2)(4)【答案】D 【解析】【分析】根据反比例函数的定义进行判断,反比例函数的一般形式是y=kx(k ≠0).【详解】(1)2xy =-,该函数属于正比例函数,故本关系式不合题意;(2)2y x=,该函数属于反比例函数,故本关系式符合题意;(3)2y x =,该函数属于正比例函数,故本关系式不合题意;(4)12xy =-,该函数属于反比例函数,故本关系式符合题意;故选D .【点睛】本题考查了反比例函数的定义.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=kx(k 为常数,k ≠0)或y=kx -1(k 为常数,k ≠0).②根据反比例函数的定义求参数.例3.2若函数231(1)mm y m x ++=+是反比例函数,则m 的值为()A .2m =-B .1m =C .2m =或1m =D .2m =-或1m =-【解析】根据反比例函数定义可知231110m m m ⎧++=-⎨+≠⎩解得11m m =-⎧⎨≠-⎩或2m =-,∴2m =-.故选A .变式3.24.若函数y=(3﹣k )231k k x --是反比例函数,那么k 的值是()A.0 B.3C.0或3D.不能确定【答案】A 【解析】【分析】直接利用反比例函数的定义分析得出答案.【详解】解:∵函数y=(3﹣k )231k k x --是反比例函数,∴k 2﹣3k ﹣1=﹣1,3﹣k ≠0,解得:k 1=0,k 2=3,(不合题意舍去)那么k 的值是:0.故选:A .【点睛】本题考查了反比例函数的定义,正确把握定义是解题的关键.③求函数关系例3.3已知121,y y y y =-与2x 成正比例,2y 与1x -成反比例,当1x =-时,3y =;当2x =时,3y =-.(1)求y 与x 之间的函数关系;(2)当x =时,求y 的值.【详解】解:(1)设212,1by ax y x ==-,则21b y ax x =--,把1,3x y =-=;2,3x y ==-分别代入得:13243a b a b ⎧+=⎪⎨⎪-=-⎩,解得125a b ⎧=⎪⎨⎪=⎩,所以y 与x 之间的函数关系为21521y x x =--;(2)当x =时,2215111)4212y x x =-=⨯-=-+=---变式3.35.已知12y y y =+,1y 与2x 在正比例关系,2y 与x 成反比例函数关系,且x 1=时,y 3=,x 1=-时,y 1=(1)求y 与x 的关系式.(2)求当2x =-时,y 的值.【答案】(1)212y x x =+;(2)152【解析】【分析】(1)根据正比例关系与反比例关系设出比例式,然后把两组数据代入关系式,解方程组即可;(2)把x 的值代入所求函数关系式,计算即可得解.【详解】(1)∵1y 与2x 在正比例关系,2y 与x 成反比例函数关系,∴211y k x =,∵2y 与x 成反比例函数关系,∴22k y x=,∴22121k y y y k x x=+=+,代入数据可得121231k k k k +=⎧⎨-=⎩,解得1221k k =⎧⎨=⎩,所以,y 与x 之间的函数关系式为212y x x=+(2)当x =−2时,()211522.22y =⨯-+=-【点睛】考查待定系数法求函数解析式,能够正确的设出y 与x 的关系式,进而用待定系数法求得解析式是解题的关键.变式3.46.已知y 是x 的反比例函数,下表列出了x 与y 的一些对应值.x …-4-3-2-123…y…1856-18…(1)写出这个反比例函数的表达式;(2)根据表达式完成上表.【答案】(1)18y x=-;(2)见解析【解析】【分析】(1)设反比例函数的表达式为y =kx,找出函数图象上一个点的坐标,然后代入求解即可;(2)将x 或y 的值代入函数解析式求得对应的y 或x 的值即可.【详解】解:(1)设反比例函数的表达式为y =k x,把3,6x y =-=代入得18k =-,18,y x∴=-(2)将y =185代入得:5x =-;将4x =-代入得:y =92;将2x =-代入得:y =9;将1x =-代入得:y =18,将18y =-代入得:x =1;将x =2代入得:9y =-,将x =3代入得:6y =-.【点睛】本题主要考查的是反比例函数的定义、函数图象上点的坐标与函数解析式之间的关系,求得函数的解析式是解题的关键.题型四:反比例函数图象和性质反比例函数的图象是两条双曲线,x 轴,y 轴是这两条线的渐近线.当0k >时,函数图象经过一三象限,此时y 随着x 的增大而减小;当0k <时,函数图象经过二四象限,此时y 随着x 的增大而增大;4.反比例函数图象例4.1若函数k y x =的图象经过点()3,8-,则下列各点中不在ky x=图象上的是().A .()4,6B .()3,8-C .()4,6-D .()4,6-【详解】∵函数ky x=的图象经过点()3,8-,∴()3824k xy ==-⨯=-,A .4624⨯=,故不在该函数图象上;B .()3824⨯-=-,在该函数图象上;C .4(6)24⨯-=-,在该函数图象上;D .(4)624-⨯=-,在该函数图象上.故选A .变式4.17.对于反比例函数4y x=,下列说法错误的是()A.它的图象与坐标轴永远不相交B.它的图象绕原点旋转180°能和本身重合C.它的图象关于直线y x =±对称D.它的图象与直线y x =-有两个交点【答案】D 【解析】【分析】当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A .∵反比例函数4y x=中,4>0,∴此函数图象在一、三象限,故本选项正确;B .∵反比例函数4y x=的图象双曲线关于原点对称,故本选项正确;C .反比例函数的图象可知,图象关于直线y x =±对称,故本选项正确;D .∵反比例函数4y x=的图象位于第一、三象限,直线y x =-经过第二、四象限,所以直线y x =-与双曲线4y x=无交点,故本选项错误;故选D .【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.②函数图象的对称性求点的坐标例4.2如图,已知直线y mx =与双曲线ky x=一个交点坐标为()3,4,则它们的另一个交点坐标是_____.【详解】解:因为直线y mx =过原点,双曲线ky x=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为()3,4,则另一个交点的坐标为()3,4--.故答案是:()3,4--.变式4.28.已知直线1y k x =与双曲线2k y x=交于(2, )A a -和(,3)B b -两点,则a=________,b=________.【答案】①.3②.2【解析】【分析】反比例函数的图象是中心对称图形,则它与经过原点的直线的两个交点一定关于原点对称,根据关于原点对称的性质即可解答.【详解】解:直线1y k x =与双曲线2k y x=都是关于原点对称图形,两图象交于(2, )A a -和(,3)B b -两点,∴点(2, )A a -和点(,3)B b -关于坐标原点对称,∴3a =,2b =.故答案为3;2.【点睛】本题主要考查了反比例函数图象的中心对称性,,掌握反比例函数图象是关于原点中心对称的性质是解题关键,③已知双曲线分布的象限求参数取值范围.例4.3函数25(1)ny n x -=+是反比例函数,且图象位于第二、四象限内,则n =____.【详解】根据反比函数的解析式(0)ky k x=≠,故可知10n +≠,即1n ≠-,且251n -=-,解得2n =?,然后根据函数的图象在第二、四三象限,可知10n +<,解得1n <-,所以可求得2n =-.故答案为:2-变式4.39.若反比例函数2k y x-=的图象经过第一、三象限,则k 的取值范围是______________.【答案】2k >【解析】【分析】根据反比例函数的图象和性质即可得.【详解】由题意得:20k ->,解得2k >,故答案为:2k >.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题关键.④函数的增减性.例4.4下列关于反比例函数6y x=的说法正确的是()A .y 随x 的增大而增大B .0x >时,y 随x 的增大而增大C .y 随x 的增大而减小D .0x >时,y 随x 的增大而减小【详解】解:∵60k =>,在每个象限内,y 随x 的增大而减小,故B 错误,D 正确,A 、C 表述片面,故错误,故选:D .变式4.410.下列函数中,y 随x 的增大而减小的是()A.2y x= B.2y x =C.2y x=- D.2y x =-【答案】C【解析】【分析】反比例函数的增减性有限制条件(即范围),一次函数当一次项系数为负数时,y 随着x 增大而减小.【详解】解:A 、函数y=2x 的图象是y 随着x 增大而增大,故本选项错误;C 、函数y =−2x 中的k <0,y 随着x 增大而减小,故本选项正确;B 、D 两个答案考虑其增减性时,需要考虑自变量的取值范围,故B 、D 错误.故选:C .【点睛】本题考查了一次函数、反比例函数的增减性.关键是明确各函数的增减性的限制条件.⑤比较反比例函数值或自变量大小例4.5已知点()()1,,2,A m B n 在反比例函数2y x=-图象上,则m 与n 的大小关系为_____.【详解】解:∵反比例函数2y x=-中,20k =-<,∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵012<<,∴A 、B 两点均在第四象限,∴m n <.故答案为:m n <.变式4.511.点()12()1,1,a y a y -+在反比例函数()0k y k x=>的图像上.若12y y <,则a 的范围是_________________.【答案】-1<a <1【解析】【分析】反比例函数中k >0,则同一象限内y 随x 的增大而减小,由于y 1<y 2,而a-1必小于a+1,则说明两点应该在不同的象限,得到a-1<0<a+1,从而得到a 的取值范围.【详解】解:∵在反比例函数y=k x中,k >0,∴在同一象限内y 随x 的增大而减小,∵a-1<a+1,y 1<y 2∴这两个点不会在同一象限,∴a-1<0<a+1,解得-1<a <1故答案为:-1<a <1.【点睛】本题考察了反比例函数的性质,解题的关键是熟悉反比例函数的增减性,当k >0,在每一象限内y 随x 的增大而减小;当k <0,在每一象限内y 随x 的增大而增大.题型五:比例系数k 的几何含义在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值k .例5如图,点A 是反比例函数k y x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B ,点C 为y 轴上的一点,连接,AC BC ,若ABC 的面积为3,则k 的值是_________.【详解】解:连结OA ,如图,∵AB x ⊥轴,∴OC //AB ,∴3OAB CAB S S == ,而12OAB S k =△,∴132k =,∵0k <,∴6k =-.故答案为6-.变式512.如图,已知点A 在反比例函数(0)k y k x=≠的图象上,过点A 作AB y ⊥轴于点B ,OAB 的面积是2.则k 的值是_________.【答案】4【解析】【分析】根据△OAB 的面积等于2即可得到线段OB 与线段AB 的乘积,进而得到A 点横坐标与纵坐标的乘积,进而求出k 值.【详解】解:设点A 的坐标为(,A A x y ),AB y ⊥,由题意可知:11==222⋅⋅= OAB A A S OB AB y x ,∴4⋅=A A y x ,又点A 在反比例函数图像上,故有4=⋅=A A k x y .故答案为:4.【点睛】本题考查了反比例函数系数k 的几何意义,三角形的面积公式等,熟练掌握反比例函数的图形和性质是解决此类题的关键.题型六:函数解析式实际问题①反比例函数与的物理应用例6.1某气球内充满了一定量的气体,当温度不变时,气球内气体的气压()kPa P 是气体体积()3m V 的反比例函数,其图象如图所示.(1)求该反比例函数的表达式.(2)当气体体积为31m 时,气球内气体的气压是多少?(3)当气球内的气压大于200kPa 时,气球将爆炸,为确保气球不爆炸,气球内气体的体积应不小于多少?【详解】解:(1)设=k v ρ,由题意知1200.8=k ,所以96k =,故96(0)v V ρ=>;(2)当31m v =时,96961==p ,∴气球内气体的气压是96kPa ;(3)当200kPa p =时,961220025v ==.所以为了安全起见,气体的体积应不少于312m 25.变式6.113.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)成正比例;1.5小时后(包括1.5小时)y 与x 成反比例.根据图中提供的信息,解答下列问题:(1)求一般成人喝半斤低度白酒后,y 与x 之间的两个函数关系式及相应的自变量x 取值范围;(2)依据人的生理数据显示,当80y ≥时,肝部正被严重损伤,请问喝半斤低度白酒后,肝部被严重损伤持续多少小时?【答案】(1)()100,(0 1.5);225, 1.5x x y x x≤<⎧⎪=⎨≥⎪⎩(2)2.0125小时【解析】【分析】1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案;(2)根据题意得出y =80时x 的值进而得出答案.【详解】解:(1)由题意可得:当0≤x ≤1.5时,设函数关系式为:y =kx ,则150=1.5k ,解得:k =100,故y =100x ,当1.5≤x 时,设函数关系式为:,a y x=则a =150×1.5=225,解得:a =225,故225( 1.5)y x x=≥综上所述:y 与x 之间的两个函数关系式为:()100,(0 1.5);225, 1.5x x y x x≤<⎧⎪=⎨≥⎪⎩(2)当y =80时,80=100x ,解得x =0.8,当y =80时,22580x=,解得x =2.8125,由图象可知,肝部被严重损伤持续时间=2.8125-0.8=2.0125(小时)【点睛】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是灵活掌握待定系数法确定函数解析式,学会利用函数解决实际问题.②反比例函数与销售问题例6.2某果品超市经销一种水果,已知该水果的进价为每千克15元,通过一段时间的销售情况发现,该种水果每周的销售总额相同,且每周的销售量y (千克)与每千克售价x (元)的关系如表所示每千克售价x (元)253040每周销售量y (千克)240200150(1)写出每周销售量y (千克)与每千克售价x (元)的函数关系式;(2)由于销售淡季即将来临,超市要完成每周销售量不低于300千克的任务,则该种水果每千克售价最多定为多少元?(3)在(2)的基础上,超市销售该种水果能否到达每周获利1200元?说明理由.【详解】(1)由表格中数据可得:k y x=,把()30,200代入得:6000y x =;(2)当300y =时,6000300x=,解得:20x =,即该种水果每千克售价最多定为20元;(3)由题意可得:6000(15)(15)1200 w y x xx=-=-=,解得:754 x=经检验:754x=是原方程的根,答:超市销售该种水果能到达每周获利1200元.变式6.214.某公司有某种海产品2104千克,寻求合适价格,进行8天试销,情况如下:第几天12345678销售价格(元/千克)400A250240200150125120销售量(千克)304048B608096100观察表中数据,发现可以用某种函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假设这批海产品的销售中,每天销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)猜想函数关系式:.(不必写出自变量的取值)并写出表格中A=,B=;(2)试销8天后,公司决定将售价定为150元/千克.则余下海产品预计天可全部售出;(3)按(2)中价格继续销售15天后,公司发现剩余海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新价格销售,那么新确定的价格最高不超过多少元/千克才能完成销售任务?【答案】(1)y=12000x,A=300,B=50;(2)余下的这些海产品预计再用20天可以全部售出;(3)新确定的价格最高不超过60元/千克才能完成销售任务.【解析】【分析】(1)根据图中数据求出反比例函数,再分别将y=40和x=240代入求出相对应的x和y;(2)先求出8天销售的总量和剩下的数量m,将x=150代入反比例函数中得到一天的销售量y,my即为所需要的天数;(3)求出销售15天后剩余的数量除2得到后两天每天的销售量y,将y的值代入反比例函数中即可求出x.【详解】(1)∵xy=12000,函数解析式为y=12000x,将y=40和x=240代入上式中求出相对应的x=300和y=50,∴A=300,B=50;(2)销售8天后剩下的数量m=2104-(30+40+48+50+60+80+96+100)=1600(千克),当x=150时,y=12000 150=80.∴my=1600÷80=20(天),∴余下的这些海产品预计再用20天可以全部售出;(3)1600-80×15=400(千克),400÷2=200(千克/天),即如果正好用2天售完,那么每天需要售出200千克.当y=200时,x=12000 200=60.所以新确定的价格最高不超过60元/千克才能完成销售任务.【点睛】考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.③一次函数与反比例函数综合例6.3为了做好新冠肺炎疫情期间开学工作,我区某中学用药熏消毒法对教室进行消毒.已知一瓶药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出倾倒一瓶药物后,从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量不低于8毫克时,消毒有效,那么倾倒一瓶药物后,从药物释放开始,有效消毒时间是多少分钟?【详解】(1)当015x ≤≤时,设()0y ax a =≠;当15x >时,设(0)k y k x=≠.将()15,20代入y ax =,2015a =,解得:43a =,∴4(015)3y x x =≤≤.将()15,20代入k y x =,2015k =,解得:300k =,∴300(15)y x x =>,∴4(015)3300(15)x x y x x⎧≤≤⎪⎪=⎨⎪>⎪⎩;(2)把8y =代入43y x =得,6x =;把8y =代入300y x=得,37.5x =,37.5631.5-=(分钟).答:有效消毒时间是31.5分钟.变式6.315.已知12y y y =+,1y 是x 的反比例函数,2y 是x 的正比例函数,当2x =时,6y =-;当1x =时,3y =.(1)求y 与x 的函数关系式;(2)当4x =-时,求y 的值.【答案】(1)85y x x=-;(2)18.【解析】【分析】(1)首先根据正比例与反比例函数的定义分别设出函数解析式,用待定系数法求出y 与x 的函数关系式,然后再代入求值.(2)将4x =-,代入解析式即可.【详解】(1)设11k y x =,22y k x =,则121226,2 3.k k k k ⎧+=-⎪⎨⎪+=⎩解得128,5.k k =⎧⎨=-⎩故85y x x =-.(2)当4x =-时,()854184y =-⨯-=-【点睛】此题考查正比例函数的定义,反比例函数的定义,解题关键在于利用待定系数法求解.④反比例函数与面积例6.4某校园艺社计划利用已有的一堵长为10m 的墙,用篱笆围一个面积为212m 的矩形园子.(1)如图,设矩形园子的相邻两边长分别为()m x 、()m y .①求y 关于x 的函数表达式;②当4y ≥时,求x 的取值范围;(2)小凯说篱笆的长可以为9.5m ,洋洋说篱笆的长可以为10.5m .你认为他们俩的说法对吗?为什么?【详解】(1)①由题意12xy =,∴1265y x x ⎛⎫=≥ ⎪⎝⎭②4y ≥时,124x≥,解得3x ≤所以635x ≤≤.(2)当1229.5x x +=时,整理得:2419240,Δ0x x -+=<,方程无解.当12210.5x x+=时,整理得2421240,Δ570x x -+==>,符合题意;∴小凯的说法错误,洋洋的说法正确.变式6.416.如图所示,P 是反比例函数y =kx的图象上任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为M ,N.(1)求k 的值;(2)求证:矩形OMPN 的面积为定值.【答案】(1)4;(2)证明见解析【解析】【分析】(1)由反比例函数y=kx的图象上一点的坐标为(1,4),即可得到结论;(2)根据反比例函数系数k 的几何意义得到:矩形PAOB 的面积为|k|.【详解】解:(1)如图,∵反比例函数ky x=的图象上一点的坐标为()1,4,∴414k =⨯=;(2)∵4k =,∴反比例函数的解析式为:4y x=,(2)∵P 是反比例函数ky x=的图象上任意一点,PM x ⊥轴,PN y ⊥轴,∴矩形OMPN 的面积4k ==,∴矩形OMPN 的面积为定值【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.实战练:17.经过以下一组点可以画出函数2y x =图象的是()A.(0,0)和(2,1)B.(1,2)和(1,2)-- C.(1,2)和(2,1)D.(1,2)-和(1,2)【答案】B 【解析】【分析】分别把各点坐标代入函数y=2x 进行检验即可.【详解】解:A 项, 当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误;B 项, 当1x =时,2y =;当1x =-时,2y =-,∴两组数据均符合,故本选项正确;C 项, 当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误D 项, 当1x =-时,22y =-≠,∴点(1,2)-不符合,故本选项错误.故选B.【点睛】本题考查的是正比例函数的图象,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.18.下列关系式中,y 是x 的反比例函数的是()A.y =4xB.y x=3 C.y =﹣1xD.y =x 2﹣1【答案】C 【解析】【分析】根据反比例函数的定义逐一判断即可.【详解】A 、y =4x 是正比例函数;B 、yx=3,可以化为y =3x ,是正比例函数;C 、y =﹣1x是反比例函数;D 、y =x 2﹣1是二次函数;故选:C .【点睛】本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.19.反比例函数6y x =的图像上点的坐标为整数的点的个数是().A.2B.4C.6D.8【答案】D 【解析】【分析】分别求出满足x 、y 均为整数时的对应值,再根据反比例函数图象的特点求出符合条件的点的个数即可.【详解】∵当x=1、2、3、6时y 的对应值为6、3、2、1,∴在第一象限内有四个点符合条件,∵此函数的图象关于原点对称,∴在第三象限内必有四个点符合此条件,∴横坐标和纵坐标都是整数的点的个数是8个.故选D.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于掌握其性质定义.20.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是().A.函数值随自变量x 的增大而增大B.函数值随自变量x 的增大而减小C.函数图象关于原点对称D.函数图象过二、四象限【答案】A 【解析】【详解】解:设正比例函数解析式(0)y kx k =≠,∵正比例函数过(2,3)-,∴32k -=,∴32k =-,∴正比例函数解析式为32y x =-,∵302k =-<,∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称,∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的.故选A .21.若反比例函数32my x-=的图象在二、四象限,则m 的值可以是()A.1-B.2C.1D.0【答案】B 【解析】【分析】根据反比例函数32my x -=的图象在二、四象限,可知3-2m <0,从而可以求得m 的取值范围,然后即可解答本题.【详解】解:∵反比例函数32my x-=的图象在二、四象限,∴3-2m <0,解得,32m >,故选:B .【点睛】本题考查反比例函数的性质、反比例函数的图象,解答本题的关键是明确题意,利用反比例函数的性质解答.22.若正比例函数y =(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是()A.m <0B.m >0C.m <12D.m >12【答案】D 【解析】【分析】根据正比例函数的大小变化规律判断k 的符号.【详解】解:根据题意,知:y 随x 的增大而减小,则k <0,即1-2m <0,m >12.故选:D .【点睛】本题考查正比例函数的性质.根据正比例函数的大小变化规律判断k 的符号:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.23.下列关于反比例函数8y x=-,结论正确的是()A.图象必经过()2,4B.图象在二,四象限内C.在每个象限内,y 随x 的增大而减小D.当1x >-时,则8y >【答案】B 【解析】【分析】根据反比例函数的图象和性质,逐一判断选项,即可得到答案.【详解】∵2488⨯=≠-,∴A 错误,∵k=-8<0,即:函数8y x=-的图象在二,四象限内,∴B 正确,∵k=-8<0,即:在每个象限内,y 随x 的增大而增大,∴C 错误,∵当1x >-时,则8y >或0y <,∴D 错误,故选B .【点睛】本题主要考查反比例函数的图象和性质,掌握比例系数k 的意义与增减性,是解题的关键.24.已知在函数()232my m x-=-中,当m=_________时,它是正比例函数.【答案】2m =-【解析】【分析】根据正比例函数的定义得到231m -=,20m -≠,即可求解.【详解】解:由题意得231m -=,20m -≠,∴2m =±,且2m ≠,∴2m =-.故答案为:-2【点睛】本题考查了正比例函数的定义,形容()0y x k =≠的函数叫正比例函数,故自变量指数为1,正比例系数不等于0.25.已知正比例函数y=(3k ﹣1)x ,若y 随x 的增大而增大,求k 的取值范围.【答案】k 的取值范围为k >13.【解析】【分析】根据正比例函数图象的增减性可求出k 的取值范围.【详解】解:根据y 随x 的增大而增大,知:3k ﹣1>0,解得k >13.故k 的取值范围为k >13.【点睛】本题考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y 随x 的增大而增大;当k<0时,图象经过二、四象限,y 随x 的增大而减小.26.已知正比例函数图象上一个点A 在x 轴的下侧,y 轴的右侧,距离x 轴4个单位长度,距离y 轴2个单位长度,求该正比例函数的表达式.【答案】该正比例函数的表达式为y=﹣2x .【解析】【分析】根据已知条件得到点A 的坐标为(2,﹣4),设正比例函数的表达式为y=kx (k ≠0),然后将点(2,﹣4)代入y=kx 中求解即可.【详解】∵点A 在x 轴的下侧,y 轴的右侧,距离x 轴4个单位长度,距离y 轴2个单位长度,∴点A 的坐标为(2,﹣4).设正比例函数的表达式为y=kx (k ≠0),将点(2,﹣4)代入y=kx 中,﹣4=2k ,解得:k=﹣2,∴该正比例函数的表达式为y=﹣2x .【点睛】本题主要考查了待定系数法求正比例函数解析式,根据已知条件得到点A 的坐标是解题关键.27.已知y 是x 的正比例函数,当x=﹣3时,y=12.(1)求y 关于x 的函数解析式;(2)当12x =-时的函数值.【答案】(1)y=﹣4x ;(2)当12x =-时的函数值是2.【解析】【分析】(1)由题意可设y=kx (k ≠0).把x 、y 的值代入该函数解析式,通过方程来求k 的值即可;(2)把x 的值代入(1)中的函数式即可求得相应的y 值.【详解】(1)由题意可设y=kx (k ≠0).则12=﹣3k ,解得,k=﹣4,所以y 关于x 的函数解析式是y=﹣4x ;(2)由(1)知,y=﹣4x ,当x=﹣12时,y=﹣4×(﹣12)=2.即当12x =-时的函数值是2.【点睛】本题考查了待定系数法求正比例函数解析式.此题实际上是利用代入法求得的系数k 的值28.已知正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y 是随着x 的增大而增大?还是随着x 的增大而减小?【答案】(1)2y x =或2y x =-;(2)当2y x =时,图象经过第一、三象限;当2y x=-。
新初中数学函数之平面直角坐标系单元汇编含解析(2)
新初中数学函数之平面直角坐标系单元汇编含解析(2)一、选择题1.在平面直角坐标系中,点P (0,﹣4)在( )A .x 轴上B .y 轴上C .原点D .与x 轴平行的直线上【答案】B【解析】【分析】根据点P 的坐标为(0,﹣4)即可判断点P (0,﹣4)在y 轴上.【详解】在平面直角坐标系中,点P (0,﹣4)在y 轴上,故选:B .【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.2.在平面直角坐标系中,过点2)A -画直线a x ⊥轴,过点(B -画直线b y ⊥轴,直线,a b 相交于点P ,则点P 的坐标是( )A .B .C .)1-D .(- 【答案】A【解析】【分析】根据过点2)A -画直线a x ⊥轴可以知道P 点的横坐标,根据过点(B -画直线b y ⊥轴可以知道p 点的纵坐标,由点P 的横纵坐标即可得到答案.【详解】解:∵点p 是通过点2)A -画直线a x ⊥轴,过点(B -画直线b y ⊥轴得到的交点,∴点P 的横坐标与点A点P 的纵坐标与点B ,因此,点p 的坐标为, 故A 为答案.【点睛】本题主要考查了与直角坐标系有关的知识,掌握向x 轴画垂线得到的点横坐标相同,向y 轴作垂线得到的点纵坐标相同是解题的关键.3.如图,在平面直角坐标系中,()11A ,,()11B ,-,()12C --,,()12D -,,把一条长为2019个单位长度且没有弹性的细线(线的粗细不略不计)的一端固定在点A 处,并按A B C D A -----…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(1,0)B .(1,1)C .(-1,1)D .(-1,-2)【答案】A【解析】【分析】 根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (-1,1),C (-1,-2),D (1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即细线另一端所在位置的点的坐标是(1,0).故选:A .【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.4.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()()()()()()1,02,02,11,11,22,2,,,,,······根据这个规律,第2019个点的纵坐标为( )A .5B .6C .7D .8【答案】B【解析】【分析】 观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n 时,共有n 2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B .【点睛】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.5.已知点() ,3A a 、点()3, B b -关于y 轴对称,点(),P a b --在第( )象限A .一B .二C .三D .四【答案】C【解析】【分析】根据点A 、点B 关于y 轴对称,求出a ,b 的值,然后根据象限点的符号特点即可解答.【详解】∵点() ,3A a 、点()3, B b -关于y 轴对称,∴a=3,b=3,∴点P 的坐标为()3, 3 --,∴点P 在第三象限,故答案为:C.【点睛】本题考查了轴对称和象限内点的符号特点,解题的关键是熟练掌握其性质.6.若点M 的坐标为b |+1),则下列说法中正确的是 ( )A .点M 在x 轴正半轴上B .点M 在x 轴负半轴上C .点M 在y 轴正半轴上D .点M 在y 轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M 的横、纵坐标的符号; 然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】有意义,则-a 2≥0,∴a =0.∵|b |≥0,∴|b |+1>0,∴点M 在y 轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.7.已知在平面直角坐标系中,点A 的坐标为(﹣3,4),下列说法正确的有( )个 ①点A 与点B (-3,﹣4)关于x 轴对称②点A 与点C (3,﹣4)关于原点对称③点A 与点F (-4,3)关于第二象限的平分线对称④点A 与点C (4,-3)关于第一象限的平分线对称A .1B .2C .3D .4【答案】D【解析】【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于第2象限角平分线对称的点的坐标特点:横纵坐标变换位置且变为相反数;关于第1象限角平分线对称的点的坐标特点:横纵坐标变换位置.综合以上即可得答案.【详解】∵点A 的坐标为(﹣3,4),∴点A 关于x 轴对称的点的坐标为(﹣3,﹣4),点A 关于原点对称的点的坐标为(3,-4),点A 关于第二象限的角平分线对称的点的坐标为(-4,3)点A 关于第一象限的角平分线对称的点的坐标为(4,-3)∴①、②、③、④正确.故选:D .【点睛】此题主要考查了关于x 轴、y 轴、第二象限的角平分线、第一象限的角平分线对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.8.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,在平面直角坐标系上有个点(1,0)P ,点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向左跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位到达3(1,2)P -,第4次向右跳动3个单位到达4(2,2)P ,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点2019P 的坐标为( ).A .(505,1010)B .(505,505)-C .(505,1010)-D .(505,505)-【答案】C【解析】【分析】 设第n 次跳动至点Pn ,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)”,依此规律结合2019=504×4+3即可得出点P 2019的坐标.【详解】设第n 次跳动至点Pn ,观察发现:P (1,0),P 1(1,1),P 2(−1,1),P 3(−1,2),P 4(2,2),P 5(2,3),P 6(−2,3),P 7(−2,4),P 8(3,4),P 9(3,5),…,∴P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数).∵2019=504×4+3,∴P 2019(-504-1,504×2+2),即(505,1010)-.故选:C .【点睛】本题考查了规律型中点的坐标,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数)”是解题的关键.10.在平面直角坐标系中,已知Rt ABC ∆中的直角顶点C 落在第一象限,()0,0A ,()10,0B ,且6BC =,则C 点的坐标是( )A .()6.4,4.8B .()8,6C .()8,4.8D .()3.6,4.8【答案】A【解析】【分析】作CD ⊥OB 交OB 于D ,由勾股定理求出AC 的长,根据面积法求出CD 的长,再根据勾股定理求出OD 的长,即可求出点C 的坐标.【详解】作CD ⊥OB 交OB 于D ,∵()10,0B ,∴OB=10,∵∠C=90°,∴AC=221068-=,∵1122OC BC OB CD⋅=⋅,∴8×6=10CD,∴CD=4.8,∴OD= 228 4.8 6.4-=,∴C点的坐标是()6.4,4.8.故选A.【点睛】本题考查了图形与坐标的性质,勾股定理,以及面积法求线段的长,根据面积法求出CD 的长是解答本题的关键.11.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C12.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为( )A.(3,-1) B.(-3,1) C.(1,-3) D.(-1,3)【答案】A【解析】【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,结合第四象限点(+,-),可得答案.【详解】解:若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为(3,-1),故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是( )A.(3,4) B.(-3,4) C.(-4,3) D.(4,3)【答案】A【解析】【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【详解】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选A.【点睛】本题考查了点的位置判断方法及点的坐标几何意义.14.根据下列表述,能确定位置的是()A.天益广场南区B.凤凰山北偏东42oC.红旗影院5排9座D.学校操场的西面【答案】C【解析】【分析】根据有序数对可以确定坐标位置对各选项分析判断后利用排除法求解.【详解】解:A、天益广场南区,不能确定位置,故本选项错误;B、凤凰山北偏东42o,没有明确具体位置,故本选项错误;C、红旗影院5排9座,能确定位置,故本选项正确;D 、学校操场的西面,不能确定位置,故本选项错误;故选:C .【点睛】本题考查了坐标位置的确定,有序数对可以确定一个具体位置,即确定一个位置需要两个条件,二者缺一不可.15.P 在第二象限,P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是( ) A .()2,3-B .()3,2-C .()3,2D .()2,3【答案】B【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求解即可.【详解】解:∵点P 在第二象限,且到x 轴的距离为2,到y 轴的距离为3,∴点P 的横坐标为-3,纵坐标为2,∴点P 的坐标是(-3,2).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.16.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)【答案】B【解析】【分析】根据x 轴上点的纵坐标为0,可得P 点的纵坐标,根据点P 到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】由x 轴上的点P ,得P 点的纵坐标为0,由点P 到y 轴的距离为3,得P 点的横坐标为3或-3,∴点P 的坐标为(3,0)或(-3,0),故选B .【点睛】本题考查了点的坐标,利用y 轴上点的横坐标为得出P 点的横坐标是解题关键,注意点到x 轴的距离是点的纵坐标的绝对值.17.在平面直角坐标系中.对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(3,2)]等于()A.(3,2) B.(3.﹣2) C.(﹣3,2) D.(﹣3,﹣2)【答案】C【解析】【分析】根据f、g的规定进行计算即可得解.【详解】g[f(3,2)]=g(3,﹣2)=(﹣3,2).故选C.【点睛】本题考查了点的坐标,读懂题目信息,理解f、g的运算方法是解题的关键.18.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【答案】A【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【详解】解:∵点P(1﹣a,2a+6)在第四象限,∴10 260aa->⎧⎨+<⎩解得a<﹣3.故选A.【点睛】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为()A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.20.如果点P 在第三象限内,点P 到x 轴的距离是4,到y 轴的距离是5,那么点P 的坐标是( )A .(﹣4,﹣5)B .(﹣4,5)C .(﹣5,4)D .(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.。
初中数学 函数模块3-1 函数基础知识讲义(含答案解析)
函数基础知识题型练题型一:有序数对的概念有顺序的两个数a 与b 组成的数对,叫做有序数对.①有序数对表示位置例1.1如图,写出表示下列各点的有序数对:(A ,);(5,2)B ;(C ,);(D ,);(E ,);(F ,);(G ,);(H ,);(I ,).【详解】解:(3,3)A ;(5,2)B ;(7,3)C ;(10,3)D ;(10,5)E ;(7,7)F ;(5,7)G ;(3,6)H ;(4,8)I .故答案:3;7,3;10,3;10,5;7,7;5,7;3,6;4,8变式1.11.同学们喜欢看电影,在电影院内,要确定一个座位般需要___个数据,“3排5号”与“5排3号”的含义____.(填“相同”或“不相同”)如果记“10排20号”为(10,20),那么(20,10)表示____,“11排9号”可表示为____.【答案】①.两,②.不相同,③.20排10号,④.(11,9).【解析】【分析】在平面直角坐标系中,要用两个数据即一个有序数对才能表示一个点的位置,在电影院内,相当于在平面直角坐标系内,确定一个座位需要2个数据,一个用来确定排,一个用来确定号.【详解】故依据题意又:(1)两,(2).不相同,(3)20排10号,(4)(11,9).【点睛】本题是数学在生活中应用,平面位置对应平面直角坐标系,可以做到在生活中理解数学的意义.②有序数对表示路线例1.2如图,小鱼家在(10,8)A 处,小云家在(4,4)B 处,从小鱼家到小云家可以按下面的两条路线走:路线①:(10,8)(10,7)(8,7)(8,6)(6,6)(6,5)(4,5)(4,4)→→→→→→→.路线②:(10,8)(4,8)(4,4)→→.(1)请你在图上画出这两条路线,并比较这两条路线的长短;(2)请你依照上述方法再写出一条路线.【详解】解:(1)路线①②如图所示.根据平移的性质可知它们的长度相等.(2)(答案不唯一)画出路线③:(10,8)(10,4)(4,4)→→,如图所示:变式1.22.如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是()A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)【答案】C【解析】【分析】根据点的坐标的定义结合图形对各选项分析判断即可得解.【详解】A、(0,4)→(0,0)→(4,0)都能到达,故本选项错误;B、(0,4)→(4,4)→(4,0)都能到达,故本选项错误;C、(3,4)→(4,2)不都能到达,故本选项正确;D、(0,4)→(1,4)→(1,1)→(4,1)→(4,0)都能到达,故本选项错误.故选C.【点睛】本题考查了坐标确定位置,熟练掌握点的坐标的定义并准确识图是解题的关键.题型二:平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.平面上的任意一点都可以用一个有序数对来表示.①平面直角坐标系中点的坐标的几何含义(到坐标轴的距离)例2.1已知点(2,1)A a a -+到y 轴的距离是3,则a 的值为()A .1-B .2C .1-或5D .2或4-【详解】解:∵点(2,1)A a a -+到y 轴的距离是3,∴2-a =3或2-a =-3,∴a =-1或5,故选:C .变式2.13.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为()A.(4,-2)B.(-4,2)C.(-2,4)D.(2,-4)【答案】A【解析】【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2,即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2).故选A .【点睛】本题考查点的坐标.②各象限点的坐标特点建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限.坐标轴上的点不属于任何象限.其中:四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例1.2下列各点在第二象限的是()A .(0)B .(2,1)-C .(0,1)-D .(2,1)-【详解】A 、(,0)在x 轴上,故本选项不合题意;B 、(2,1)-在第二象限,故本选项符合题意;C 、(0,1)-在y 轴上,故本选项不合题意;D 、(2,1)-在第四象限,故本选项不合题意.答案:B .变式1.24.如图,小手盖住的点的坐标可能是().A.(﹣3,4);B.(5,2);C.(﹣3,﹣6);D.(6,﹣4).【答案】D【解析】【分析】先判断手所在的象限,再判断象限横纵坐标的正负即可.【详解】因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负.只有选项D 符合题意,故选D.【点睛】考查每个象限点的坐标特征,掌握每个象限点的坐标特征是解题的关键.③已知点所在的象限求参数例2.3若点(,1)P m 在第二象限内,则点Q (,0m -)在()A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上【详解】∵点(),1P m 在第二象限,∴0m <,则0m ->,∴点()0Q m -,在x 轴正半轴上,故选A .变式2.35.在平面直角坐标系内,点P (3m -,5m -)在第四象限,则m 的取值范围是()A.53m -<< B.35m -<< C.35m << D.53m -<<-【答案】C【解析】【详解】解:点P (3m -,5m -)在第四象限,根据第四象限点的坐标特征,则3050m m ->⎧⎨-<⎩解得:35m <<故选C .④点坐标规律探索例2.4如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位.在第2020分钟时,这个粒子所在位置的坐标是()A .(4,45)B .(45,4)C .(44,4)D .(4,44)【详解】粒子所在位置与运动的时间的情况如下:位置:(1,1)运动了2=1×2分钟,方向向左,位置:(2,2)运动了6=2×3分钟,方向向下,位置:(3,3)运动了12=3×4分钟,方向向左,位置:(4,4)运动了20=4×5分钟,方向向下;…总结规律发现,设点(n,n),当n为奇数时,运动了n(n+1)分钟,方向向左;当n为偶数时,运动了n(n+1)分钟,方向向下;∵44×45=1980,45×46=2070∴到(44,44)处,粒子运动了44×45=1980分钟,方向向下,故到2020分钟,须由(44,44)再向下运动2020-1980=40分钟,44-40=4,到达(44,4).故选:C.变式2.46.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0), ,根据这个规律探索可得,第120个点的坐标为()A.(16,0)B.(15,14)C.(15,0)D.(14,13)【答案】C【解析】【分析】经过观察每个列的数的个数是有规律的分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,这样就不难找到第120个点的位置,进而可以写出它的坐标.【详解】把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,⋯,第n 列有n 个数.则n 列共有(1)2n n +个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1201231415=+++⋯++,则第120个数一定在第15列,由上到下是第15个数.因而第120个点的坐标是(15,0).答案:C .【点睛】本题考查了点与坐标的关系,需要细心观察才能找到规律,通过此类题目的训练可以提高分析问题的能力以及归纳能力,属于常考题型.题型三:坐标方法的简单应用例3.1如图,象棋盘上“将”位于点(2,1)-,“象”位于点(4,)1-,则“炮”位于点()A .(1,2)B .(2,1)-C .(1,2)-D .(2,1)【详解】如图所示:“炮”位于点(1,2)-,故选:C .例3.2如图所示,三角形ABC 三个顶点的坐标分别是A (2,-2),B (1,2),C (-2,-1).求三角形ABC 的面积.【详解】过点A ,C 分别作平行于y 轴的直线,过点A ,B 分别作平行于x 轴的直线,它们的交点为D ,E ,F ,得到正方形ADEF ,则该正方形的面积为4×4=16三角形ABD 、三角形BCE 、三角形ACF 的面积分别是:11422⨯⨯=,133 4.52⨯⨯=,11422⨯⨯=.所以三角形ABC 的面积为16-2-4.5-2=7.5变式3.17.如图,若点E 的坐标为(﹣1,1),点F 的坐标为(2,﹣1),则点G 的坐标为()A.(2,0)B.(2,2)C.(0,2)D.(2,1)【答案】B【解析】【分析】由点E ,点F 的坐标,先确定坐标轴,然后在确定点G 的坐标即可.【详解】由点E 的坐标为(﹣1,1),在第二象限,向右移动1个单位即为y 轴,向下移动1个单位为x 轴,建立如图直角坐标系,如图所示:点G 到x 轴距离为2,则|y|=2,到y 轴的距离也是2,|x|=2,由点G 在第一象限,点G 的坐标为(2,2),故选择:B.【点睛】本题考查已知点的位置确定坐标问题,关键是坐标系的建立,利用已知点平移的办法找坐标轴,掌握点在象限的特征.变式3.28.如图,在平面直角坐标系中,四边形ABCD各个顶点的坐标分别为A(﹣1,3),B(﹣3,2),C(﹣4,0),D(0,0)(1)求四边形ABCD的面积;(2)如果把四边形ABCD各个顶点的横坐标加2,纵坐标减1,所得四边形的面积又是多少?试画出四边形.【答案】(1)152;(2)152,见解析【解析】【分析】(1)把四边形ABCD分割为两个三角形和一个直角梯形,然后根据三角形面积公式和梯形的面积公式进行计算;(2)由于把四边形ABCD各个顶点的横坐标加2,纵坐标减1,则相当于把四边形四边形ABCD向右平移2个单位,再向下平移1个单位,利用平移的性质得到平移后的四边形的面积不变.【详解】解:(1)四边形ABCD的面积=12×1×2+12×(2+3)×2+12×1×3=152;(2)把四边形ABCD各个顶点的横坐标加2,纵坐标减1,所得四边形的面积与原四边形的面积相等,为152,如图,四边形A′B′C′D′为所求..【点睛】此题考查坐标与图形性质、三角形的面积、图形平移的性质,正确掌握坐标系中图形面积的割补计算法及图形的平移的规律是解题的关键.题型四:用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.①坐标表示位置例4.1如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B 出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A.(2,2)→(2,5)→(5,6)B.(2,2)→(2,5)→(6,5)C.(2,2)→(6,2)→(6,5)D.(2,2)→(2,3)→(6,3)→(6,5)【详解】A选项:由图象可知(2,2)→(2,5)→(5,6)不能到达点A,正确.B选项:由图象可知(2,2)→(2,5)→(6,5)能到达点A,与题意不符.C选项:由图象可知(2,2)→(6,2)→(6,5)到达点A,与题意不符.D选项:由图象可知(2,2)→(2,3)→(6,3)→(6,5)到达点A正确,与题意不符.故选A .变式4.19.如图是丁丁画的一张脸的示意图,如果用()2,2-表示左眼,用()0,2表示右眼,那么嘴的位置可以表示成().A.()1,0 B.()1,0- C.()1,1- D.()1,1-【答案】B【解析】【分析】根据题意建立平面直角坐标系,由坐标系中点的特征解题即可.【详解】建立平面直角坐标系,如图,嘴的坐标为()1,0-故选:B .【点睛】本题考查坐标确定位置,其中涉及建立直角坐标系,各象限点的坐标的特征等,是常见考点,难度较易,掌握相关知识是解题关键.②用方向角和距离确定物体的位置例4.2一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O 处,事故船位于距O 点40海里的A 处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为().A.事故船在搜救船的北偏东60︒方向B.事故船在搜救船的北偏东30°方向C.事故船在搜救船的北偏西60︒方向D.事故船在搜救船的南偏东30°方向【详解】如题图所示,事故船在搜救船的北偏东30︒方向.故选B.变式4.210.如图,点B相对于点A的方向是().A.南偏东43︒B.北偏西47︒C.西偏北47︒D.东偏南47︒【答案】B【解析】【分析】先根据题意得出∠1的角度,再根据方位即可得到答案.【详解】解:如图所示:在A的正西方于点C.由题意可得,43CAB ∠=︒,所以,190904347CAB ∠=︒-∠=︒-︒=︒,故由点B 相对于点A 的方向是:北偏西47︒,故选:B .【点睛】此题主要考查了方向角,根据题意得出∠1的度数是解题关键.题型五:用坐标表示平移在平面直角坐标系中,将点(x ,y )向右(或左)平移a 个单位长度,可以得到对应点(x +a ,y )(或(x -a ,y ));将点(x ,y )向上(或下)平移b 个单位长度,可以得到对应点(x ,y +b )(或(x ,y -b )).在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.①已知图形的平移求点的坐标例5.1如图,在平面直角坐标系中,线段AB 的两个端点是()1,3A ,()2,1B .将线段AB 沿某一方向平移后,若点A 的对应点A '的坐标为()2,0-,则点B 的对应点B '的坐标为()A .()3,2-B .()1,3--C .()1,2--D .()0,2-【详解】()1,3A 平移后得到A '()2,0-横坐标减小3,纵坐标减小3,()23,13B '∴--即()1,2B '--故选:C .变式5.111.如图所示,(1,0)A 、点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,且点C 的坐标为(,)a b ,且3a =+-.(1)直接写出点C 的坐标;(2)直接写出点E 的坐标;【答案】(1)(3,2)-;(2)(2,0)-【解析】【分析】(1)根据二次根式的被开方数是非负数求出a 、b 值,即可得出答案;(2)根据平移的性质即可得出点E 坐标;【详解】解:(1)3a = ,2b ∴=,3a =-,点C 的坐标为(,)a b ,∴点C 的坐标为:(3,2)-;故答案为:(3,2)-;(2) 点B 在y 轴上,点C 的坐标为:(3,2)-,B∴点向左平移了3个单位长度,-∴向左平移3个单位得到:(2,0)(1,0)A-,∴点E的坐标为:(2,0)-.故答案为:(2,0)【点睛】本题考查坐标与图形变换-平移、二次根式的性质,熟练掌握图形变换过程中点的坐标特征是解答的关键.②已知点平移前后的坐标判断平移方式例5.2将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【详解】由于图形各顶点的横坐标都减去2,故图形只向左移动2个单位,故选A.变式5.212.在平面直角坐标系中,将某个图象上各点的横坐标都加上3,得到一个新图形,那么新图形与原图形相比().A.向右平移3个单位B.向左平移3个单位C.向上平移3个单位D.向下平移3个单位【答案】A【解析】【分析】根据把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度可直接得到答案.【详解】若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比向右平移3个单位,故选A.【点睛】此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.题型六:变量与函数的概念在某个变化过程中,有两个变量x和y,如果给x一个值,y就有唯一确定值与它对应,那么x是自变量,y叫做x的函数.其中x叫自变量,y叫因变量.在一个变化过程中,发生变化的量叫变量,有些数值是不随变量而改变的,称它们为常量.自变量,函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值.因变量,随着自变量的变化而变化,且自变量取唯一值时,因变量有且只有唯一值与其相对应.函数定义例6.1下列曲线中不能表示y是x的函数的是()A.B.C.D.【详解】解:A、由图像可知,对于x的每一个取值,y不是有唯一确定的值与之对应,曲线不能表示y是x的函数,符合题意;B、由图像可知,对于x的每一个取值,y都有唯一确定的值与之对应,曲线能表示y是x的函数,不符合题意;C、由图像可知,对于x的每一个取值,y都有唯一确定的值与之对应,曲线能表示y是x的函数,不符合题意;D、由图像可知,对于x的每一个取值,y都有唯一确定的值与之对应,曲线能表示y是x的函数,不符合题意;故选:A.变式6.113.如图,有一个球形容器,小海在往容器里注水的过程中发现,水面的高度h、水面的面积S及注水量V是三个变量.下列有四种说法:①S是V的函数;②V是S 的函数;③h是S的函数;④S是h的函数.其中所有正确结论的序号是()A.①③B.①④C.②③D.②④【答案】B【解析】【分析】由函数的概念求解即可.【详解】①:由题意可知,对于注水量V的每一个数值,水面的面积S都有唯一值与之对应,所以V是自变量,S是因变量,所以S是V的函数,符合题意;②:由题意可知,对于水面的面积S的每一个数值,注水量V的值不一定唯一,所以V不是S的函数,不符合题意;③:由题意可知,对于水面的面积S的每一个数值,水面的高度h的值不一定唯一,所以h不是S的函数,不符合题意;④:由题意可知,对于水面的高度h的每一个数值,水面的面积S都有唯一值与之对应,h是自变量,S是因变量,所以S是h的函数,符合题意;所以正确的的序号有①④,故选:B.【点睛】此题考查了函数的概念,解题的关键是熟记函数的概念.②求自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.例6.2函数1y x =-中自变量x 的取值范围是()A .x ≥-3B .x ≥-3且1x ≠C .1x ≠D .3x ≠-且1x ≠≥0,∴x +3≥0,∴x ≥-3,∵x -1≠0,∴x ≠1,∴自变量x 的取值范围是:x ≥-3且x ≠1故选B .变式6.214.函数()02y x =+-的自变量x 的取值范围是()A.1x ≥- B.2x > C.1x >-且2x ≠ D.1x ≠-且2x ≠【答案】C【解析】【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解.【详解】解:函数()02y x =+-的自变量x 的取值范围是:10x +>且20x -≠,解得:1x >-且2x ≠,故选:C .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.③求自变量的值或函数值例6.3已知函数|1|2y x =-+.(1)求自变量等于5时的函数值;(2)求函数值等于5时的自变量值.【详解】解:(1)当5x =时,|51|2426y =-+=+=;(2)当5y =时,5|1|2x =-+,解得:4x =或2-.变式6.315.已知变量s 与t 的关系式是213,2s t t =-则当2t =-时,s =__________________.【答案】-8【解析】【分析】直接把t=-2代入关系式213,2s t t =-计算即可.【详解】解:当t=-2时,s=3×(-2)-12×(-2)2=-6-2=-8,故答案为:-8.【点睛】此题主要考查了函数值,关键是掌握当已知函数解析式时,求函数值就是求代数式的值.题型七:函数的表示方法①用表格表示变量间的关系,例7.1下表是某报纸公布的世界人口数据情况:表中的变量()年份19571974198719992010人口数30亿40亿50亿60亿70亿A .仅有一个,是时间(年份)B .仅有一个,是人口数C .有两个,一个是人口数,另一个是时间(年份)D .一个也没有【详解】解;观察表格,时间在变,人口在变,故C 正确;故选:C .变式7.116.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如表:t (小时)0123y (升)12011210496由表格中y 与t 的关系可知,当汽车行驶_____小时,油箱的余油量为0.【答案】15【解析】【分析】由表格可知油箱中有油120升,每行驶1小时,耗油8升,则可求解.【详解】解:由表格可知,每行驶1小时,耗油8升,∵t =0时,y =120,∴油箱中有油120升,∴120÷8=15小时,∴当行驶15小时时,油箱的余油量为0,故答案为:15.【点睛】本题考查了变量与常量,注意贮满120L 油的汽车,最多行驶的时间就是油箱中剩余油量为0的时的t 的值.②用关系式表示变量间的关系,例7.2圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是()A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量C .2是常量,r 是变量D .2是常量,C 、r 是变量【详解】解:圆的周长计算公式是c =2πr ,C 和r 是变量,2、π是常量,故选:B .变式7.217.一名老师带领x 名学生到动物园参观,已知成人票每张30元,学生票每张10元,设门票的总费用为y 元,则y 与x 的关系式为().A.1030y x =+ B.40y x = C.1030y x =- D.20y x=【答案】A【解析】【分析】根据总费用=1名老师的门票费用+x 名学生的门票费用解答即可.【详解】解:根据题意,得:1030y x =+.故选:A .【点睛】本题考查了利用关系式表示变量之间的关系,找准题中的等量关系:总费用=老师票价+学生票价是解题关键.③用图象表示变量间的关系.例7.3为积极响应党和国家精准扶贫的号召,某扶贫工作队步行前往扶贫点开展入户调查.队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地.设行进时间为t (单位:min ),行进的路程为s (单位:m ),则能近似刻画s 与t 之间的函数关系的大致图象是()A .B .C .D .【详解】解:根据题意得,队员的行进路程s (单位:m )与行进时间t (单位:min )之间函数关系的大致图象是故选:A变式7.318.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t (分钟),所走路程为s (米),s 与t 之间的函数关系如图所示,则下列说法中,错误的是()A.小明中途休息用了20分钟B.小明在上述过程中所走路程为7200米C.小明休息前爬山的速度为每分钟60米D.小明休息前后爬山的平均速度相等【答案】B【解析】【分析】根据函数图象可知,小明40分钟爬山2400米,40~60分钟休息,60~100分钟爬山(4800-2400)米,爬山的总路程为4800米,根据路程、速度、时间之间的关系进行解答即可.【详解】A、小明中途休息的时间是:60-40=20分钟,故本选项正确;B、小明在上述过程中所走路程为4800米,故本选项错误;C、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确;D、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选B.【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.题型八:函数的图象①函数图象识别例8.1一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A.B C.D.【详解】解:设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是为h=20-5t,由关系是不难发现,t越大,h越小,符合此条件的只有D.故选:D.变式8.119.六月P市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S(千米)与时间t(小时)之间的函数关系的大致图像是()A. B. C.D.【答案】A【解析】【分析】根据题意,结合图象分析问题.【详解】由题意知,这个过程应分为三部分:①从驻地出发乘汽车走的一段距离,②部队休整了一段时间,③部队步行的距离;首先可排除的是D选项;由于部队是从驻地出发,那么S的初始值应该是0,可以排除B选项;由常识知汽车的速度要大于步行的速度,故①的倾斜度要大于③的倾斜度,所以C 选项可以排除;故选A.【点睛】考点:函数的图象.②从函数的图象获取信息例8.2某通讯公司推出三种上网月收费方式.这三种收费方式每月所收的费用y(元)与上网时间x(小时)的函数关系如图所示,则下列判断错误的是()A.每月上网不足25小时,选择A方式最省钱B.每月上网时间为30小时,选择B方式最省钱C.每月上网费用为60元,选择B方式比A方式时间长D.每月上网时间超过70小时,选择C方式最省钱【详解】解:由题意可知:A、每月上网不足25小时,选择A方式最省钱,故本选项不合题意;B、每月上网时间为30小时,选择A方式的费用为:30+5×[(120-30)÷(50-25)]=48(元),B方式为50元,C方式为120元,所以选择A方式最省钱,故本选项符合题意;C、每月上网费用为60元,选择B方式比A方式时间长,故本选项不合题意;D、每月上网时间超过70小时,选择C方式最省钱,故本选项不合题意;故选:B.变式8.220.如图是某人骑自行车出行的图象,从图象中可以得到的信息是()A.从起点到终点共用了50minB.20~30min时速度为0km h D.40min与50min时速度是不相同的C.前20min速度为4/【答案】B【解析】【分析】分别根据函数图象的实际意义可依次判断各个选项是否正确.【详解】A、从起点到终点共用了60min,故本选项错误;B、20~30min时速度为0,故本选项正确;C、前20min的速度是5/km h,故本选项错误;D、40min与50min时速度是相同的,故本选项错误.故选:B.【点睛】本题考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.③用描点法画函数图象描点法画函数图像的步骤:1.列表2.描点3.连线x ,下表是y与x的几组对应值例8.3已知y是x的函数,自变量x的取值范围为0x0123 3.54 4.5…y1234321…指出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象.【详解】如图:变式8.321.已知一根长为20m 的铁丝围成一个长方形,若宽为x ,长为y .(1)写出y 关于x 的函数解析式;(2)画出所对应的函数图象.【答案】(1)10,y x =-(2)画图见解析【解析】【分析】(1)利用长方形的周长公式可直接列出函数关系式;(2)先求解自变量x 的取值范围,再利用描点法画函数图象即可得到答案.【详解】解:(1)由题意得:()220,x y +=10,y x ∴=-(2)10,y x =- x \>0,且10x ->0,解得:0<x <10,列表:x 010=-100y x10描点并画图如下:【点睛】本题考查的是列一次函数关系式,利用描点法画一次函数的图象,求解自变量的取值范围是易错点.④动点问题的函数例8.4如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.【详解】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录:一次函数(含答案) 反比例函数(含答案) 二次函数的应用(含答案 函数的综合应用(含答案)一次函数【回顾与思考】一次函数0,0,y y x k y x ⎧≠⎧⎪⎨≠⎩⎪⎪>⎧⎪⎨⎨<⎩⎪⎪⎪⎪⎩一般式y=kx+b(k 0)概念正比例函数y=kx(k 0)随的增大而增大性质随的增大而减小b图象:经过(0,b),(-,0)的直线k【例题经典】理解一次函数的概念和性质例1 若一次函数y=2x 222m m --+m-2的图象经过第一、第二、三象限,求m 的值.【分析】这是一道一次函数概念和性质的综合题.一次函数的一般式为y=kx+b (k ≠0).首先要考虑m 2-2m-2=1.函数图象经过第一、二、三象限的条件是k>0,b>0,而k=2,只需考虑m-2>0.由222120m m m ⎧--=⎨->⎩便可求出m 的值.用待定系数法确定一次函数表达式及其应用例2 (2006年济宁市)鞋子的“鞋码”和鞋长(cm )存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值:(1)分析上表, (2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式; (3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?【评析】本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.建立函数模型解决实际问题例3 (2006年南京市)某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?【评析】本题提供了一个与生产实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.【考点精练】 基础训练1.下列各点中,在函数y=2x-7的图象上的是( ) A .(2,3) B .(3,1) C .(0,-7) D .(-1,9)2.如图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b>0的解集是( )A .x>0B .x>2C .x>-3D .-3<x<2(第2题) (第4题) (第7题) 3.已知两个一次函数y 1=-2b x-4和y 2=-1a x+1a的图象重合,则一次函数y=ax+b 的图象所经过的象限为( )A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限 4.如图,直线y=kx+b 与x 轴交于点(-4,0),则y>0时,x 的取值范围是( ) A .x>-4 B .x>0 C .x<-4 D .x<0 5.(2005年杭州市)已知一次函数y=kx-k ,若y 随x 的增大而减小,则该函数的图像经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限 6.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y=-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 2 7.(2006年绍兴市)如图,一次函数y=x+5的图象经过点P (a ,b )和点Q (c ,d ),•则a (c-d )-b (c-d )的值为________. 8.(2006年贵阳市)函数y 1=x+1与y 2=ax+b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_______. 9.(2006年重庆市)如图,已知函数y=ax+b 和y=kx 的图象交于点P , 则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是________.(第8题) (第9题)10.(2006年安徽省)一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:___________.能力提升11.(2006年宿迁市)经过点(2,0)且与坐标轴围成的三角形面积为2•的直线解析式是_________.12.(2006年德阳市)地表以下岩层的温度t(℃)随着所处的深度h(千米)•的变化而变化.t与h之间在一定范围内近似地成一次函数关系.(1)根据下表,求t(℃)与h(千米)之间的函数关系式;(2)求当岩层温度达到1770℃时,岩层所处的深度为多少千米?温度t(℃)…90 160 300 …深度h(km)… 2 4 8 …13.(2006年陕西省)甲、乙两车从A地出发,沿同一条高速公路行驶至距A•地400千米的B地.L1、L2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L2的函数表达式(不要求写出x的取值范围);(2)甲、乙两车哪一辆先到达B地?该车比另一辆车早多长时间到达B地?14.(2006年伊春市)某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程;加工过程中,当油箱中油量为10升时,•机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象.根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x的取值范围);(2)机器运行多少分钟时,第一个加工过程停止?(3)加工完这批工件,机器耗油多少升?15.(2006年吉林省)小明受《乌鸦喝水》故事的启发,•利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?应用与探究16.(2006年宁波市)宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列,1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDP为y(亿元)•与建设用地总量x (万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式.(2)据调查2005年市区建设用地比2004年增加4万亩,•如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(•精确到0.001万亩)答案:例题经典例1:m=3 例2:(1)一次函数, (2)设y=kx+b ,则由题意,得2216,22819,10k b k k b b =+=⎧⎧⎨⎨=+=-⎩⎩解得 , ∴y=•2x-10,(3)x=26时,y=2×26-10=42.答:应该买42码的鞋. 例3:解:(1)当x ≤40时,设y=kx+b . 根据题意,得20001050300030,1500.k b k k b b =+=⎧⎧⎨⎨=+=⎩⎩解这个方程组,得, ∴当x•≤40时,y 与x 之间的关系式是y=50x+1500,∴当x=40时,y=50×40+1500=3500,当x ≥40•时,根据题意得,y=100(x-40)+3500,即y=100x-500. ∴当x ≥40时,y 与x 之间的关系式是y=100x-500. (2)当y ≥4000时,y 与x 之间的关系式是y=100x-500, 解不等式100x-50≥4000,得x ≥45, ∴应从第45天开始进行人工灌溉. 考点精练1.C 2.C 3.D 4.A 5.B 6.A 7.25 8.1<x<2 9.42x y =-⎧⎨=-⎩ 10.答案不唯一.例如:y=-x-1 11.y=x-2或y=-x+212.(1)t 与h 的函数关系式为t=35h+20.(2)当t=1770时,有1770=35h+20,解得:h=50千米.13.解:(1)设L 2的函数表达式是y=k 2x+b ,则2230,419400.4k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩解之,得k 2=100,b=-75,∴L 2的函数表达式为y=100x-75. (2)乙车先到达B 地,∵300=100x-75,∴x=154. 设L 1的函数表达式是y=k 1x ,∵图象过点(154,300),∴k 1=80.即y=80x .当y=400时,400=80x ,∴x=5,∴5-194=14(小时), ∴乙车比甲车早14小时到达B 地.14.解:(1)设所求函数关系式为y=kx+b ,由图象可知过(10,100),(30,80)两点,•得1010013080,110k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得:,∴y=-x+110.(2)当y=10时,-x+110=10,x=100,机器运行100分钟时,•第一个加过程停止. (3)第一加工过程停止后再加满油只需9分钟,加工完这批工件,•机器耗油166升. 15.解:(1)2, (2)设y=kx+b ,把(0,30),(3,36)代入得:30,2,336.30.b k k b b ==⎧⎧⎨⎨+==⎩⎩解得:,即y=2x+30. (3)•由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.16.解:(1)设函数关系式为y=kx+b ,由题意得33295,48985.k b k b +=⎧⎨+=⎩,解得k=46,b=-1223,∴该函数关系式为y=46x-1223.(2)由(1)知2005年的年GDP 为46×(48+4)-1223=1169(•亿元)•,•∵1169-985=184(亿元),∴2005年市区相应可以新增加GDP184亿元. (3)•设连续两个建设用地总量分别为x 1万亩和x 2万亩, 相应年GDP 分别为y 1亿元和y 2亿元,满足y 2-y 1=1,•则 y 1=46x 1-1223 ③ y 2=46x 2-1223 ④, ④-③得y 2-y 1=46(x 2-x 1),即46(x 2-x 1)=1,∴x 2-x 1=146≈0.022(万亩), 即年GDP 每增加1亿元,需增加建设用地约0.022万亩.反比例函数【回顾与思考】反比例函数⎧⎪⎨⎪⎩概念图像与性质应用【例题经典】理解反比例函数的意义 例1 若函数y=(m 2-1)x235m m +-为反比例函数,则m=________.【解析】在反比例函数y=k x中,其解析式也可以写为y=k ·x -1,故需满足两点,一是m 2-1≠0,二是3m 2+m-5=-1 【点评】函数y=kx为反比例函数,需满足k ≠0,且x 的指数是-1,两者缺一不可.会灵活运用反比例函数图象和性质解题 例2 (2006年常德市)已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y=•的图象上的三点,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 3<y 2<y 1 B .y 1<y 2<y 3 C .y 2<y 1<y 3 D .y 2<y 3<y 1【解析】反比例函数y=2x的图象是双曲线、由k=2>0•知双曲线两个分支分别位于第一、三象限内,且在每一个象限内,y的值随着x值的增大而减小,点P1,P2,P3•的横坐标均为负数,故点P1,P2均在第三象限内,而P3的第一象限.故y>0.•此题也可以将P,P,P三点的横坐标取特殊值分别代入y=2x中,求出y1,y2,y3的值,再比较大小.例3 (2006年烟台市)如图,一次函数y=kx+b的图象与反比例函数y=mx图象交于A(-2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.【解析】(1)求反比例函数解析式需要求出m的值.把A(-2,1)代入y=mx中便可求出m=-2.把B(1,n)代入y=2x-中得n=-2.由待定系数法不难求出一次函数解析式.(2)认真观察图象,结合图象性质,便可求出x的取值范围.【考点精练】基础训练1.反比例函数y=-2x的图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限2.已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为()3.某闭合电路中,电源的电压为定值,电流I(A)与与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间关系的图像,则用电阻R表示电流I的函数解析式为()A.I=2366 ...B IC ID IR R R R===-(第3题) (第5题) (第6题)4.若双曲线y=6x经过点A(m,3),则m的值为()A.2 B.-2 C.3 D.-35.(2006年威海市)如图,过原点的一条直线与反比例函数y=kx(k<0)的图像分别交于A、B两点,若A点的坐标为(a,b),则B点的坐标为()A.(a,b) B.(b,a) C.(-b,-a) D.(-a,-b)6.(2006年长春市)如图,双曲线y=8x的一个分支为()A.① B.② C.③ D.④7.(2006年济宁市)反比例函数y=kx与正比例函数y=2x图象的一个交点的横坐标为1,则反比例函数的图像大致为()8.(2006年深圳市)函数y=kx(k≠0)的图象如图所示,那么函数y=kx-k•的图象大致是()9.(2006年茂名市)已知点P是反比例函数y=kx(k≠0)的图像上任一点,过P•点分别作x轴,轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k的值为() A.2 B.-2 C.±2 D.410.(2006年绵阳市)如图,梯形AOBC的顶点A、C在反比例函数图象上,OA∥BC,上底边OA在直线y=x上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为()A.3 B.3 C.3-1 D.3+1(第10题) (第11题) (第12题) 能力提升11.如图是一次函数y1=kx+b和反比例函数y2=mx的图象,观察图象写出y1>y2时,x•的取值范围__________.12.如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=1x(x>0)的图象上,则点E的坐标是()A.(512+,512-) B.(3535,22+-)C.(512-,512+) D.(3535,22-+)13.(2006年重庆市)如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(-203,5),D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是_________.14.(2006年崇文区)在平面直角坐标系XOY中,直线y=-x绕点O顺时针旋转90°得到直线L,直线L与反比例函数y=kx的图象的一个交点为A(a,3),试确定反比例函数的解析式.15.(2006年十堰市)某校科技小组进行野外考察,途中遇到一片十几米宽的料泥地.为了完全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,•构筑成一条临时通道,木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,•其图象如下图所示.(1)请直接写出一函数表达式和自变量取值范围;(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板的面积至少要多大?应用与探究16.某厂从2002年起开始投入技术改进资金,经技术改进后,•某产品的生产成本不断降年度2002 2003 2004 2005投入技改资金x(万元) 2.5 3 4 4.5产品成本y(万元/件)7.2 6 4.5 4(1确定哪种函数能表示其变化规律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式;(2)按照这种变化规律,若2006年已投入技改资金5万元.①预计生产成本每件比2005年降低多少万元?②如果打算在2006年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)答案: 例题经典例1:m=43-例2:C 例3:(1)y=-2x,y=-x-1 (2)x<-2或0<x<1考点精练1.D 2.A 3.C 4.A 5.D 6.D 7.B 8.C 9.C 10.D11.-•2<x<0或x>3 12.A 13.y=-12 x14.解:依题意得,直线L的解析式为y=x.因为A(a,3)在直线y=x上,则a=3,即A(3,3),又因为(3,3)在y=kx的图象上,可求得k=9,所以反比例函数的解析式为y=9 x15.(1)P=600S(S>0),(2)当S=0.2时,P=6000.2=3000.即压强是3000Pa.(3)由题意知,600S≤6000,∴S≥0.1.即木板面积至少要有0.1m2.16.(1)设其为一次函数,解析式为y=kx+b,把x=2.5,y=7.2;x=3,y=6分别代入得7.2 2.563.k bk b=+⎧⎧⎨⎨=+⎩⎩k=-2.4解得b=13.2.一次函数解析式为y=-2.4x+13.2,把x=4时,y=4.5代入此函数解析式.左边≠右边, ∴不是一次函数,同理,也不是二次函数,设其为反比例函数,解析式为y=k x . 当x=2.5•时,y=7.2,可得7.2=2.5k,得k=18,∴反比例函数为y=18x .验证:当x=3时,y=183=6,符合反比例函数.同理可验证:x=4时,y=4.5;x=4.5时,y=4成立. ∴可用反比例函数x=18x表示其变化规律. (2)①降低0.4万元.②还需投入0.63万元.二次函数【回顾与思考】【例题经典】由抛物线的位置确定系数的符号例1 (1)二次函数y=ax 2+bx+c 的图像如图1,则点M (b ,ca)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 (2)(2005年武汉市)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )A.1个 B.2个 C.3个 D.4个(1) (2)【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键.会用待定系数法求二次函数解析式例2(2006年烟台市)如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为y m2.(1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴.例3 (2005年天津市)已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.【考点精练】基础训练1.二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()A.y=x2+3 B.y=x2-3 C.y=(x+3)2 D.y=(x-3)22.二次函数y=-(x-1)2+3图像的顶点坐标是()A.(-1,3) B.(1,3) C.(-1,-3) D.(1,-3)3.二次函数y=x2+x-6的图象与x轴交点的横坐标是()A.2和-3 B.-2和3 C.2和3 D.-2和-34.二次函数y=a x2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;•③b2-4ac>0,其中正确的个数是()A.0个 B.1个 C.2个 D.3个5.(2006年常德市)根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y•的对应值,判断方程a x2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()x 6.17 6.18 6.19 6.20y=a x2+bx+c -0.03 -0.01 0.02 0.04A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.206.(2006年南充市)二次函数y=ax2+bx+c,b2=ac,且x=0时y=-4则()A.y最大=-4 B.y最小=-4 C.y最大=-3 D.y最小=37.(2006年苏州市)抛物线y=2x2+4x+5的对称轴是x=______.8.(2006年宿迁市)将抛物线y=x2向左平移4个单位后,再向下平移2个单位,•则此时抛物线的解析式是________.9.(2006年锦州市)已知二次函数的图象开口向上,且顶点在y轴的负半轴上,请你写出一个满足条件的二次函数的表达式________.10.(2006年长春市)函数y=x2+bx-c的图象经过点(1,2),则b-c的值为______.能力提升11.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC•的三个顶点A,B,C,则ac的值是________.12.观察下面的表格:x 0 1 2a x2 2ax2+bx+c 4 6(1)求a,b,c的值,并在表格内的空格中填上正确的数;(2)求二次函数y=ax2+bx+c图象的顶点坐标与对称轴.13.(2006年南通市)已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,•其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=a x2+bx+c当x<0时的图象;(3)利用抛物线y=a x2+bx+c,写出x为何值时,y>0.14.(2006年长春市)如图,P 为抛物线y=34x 2-32x+14上对称轴右侧的一点,且点P 在x 轴上方,过点P 作PA 垂直x 轴于点A ,PB 垂直y 轴于点B ,得到矩形PAOB .若AP=1,求矩形PAOB 的面积.15.(2006年莆田市)枇杷是莆田名果之一.某果园有100棵枇杷树,每棵平均产量为40千克.现准备多种一些枇杷树以提高产量,但是如果多种树,•那么树之间的距离和每一棵树接受的阳光就会减少.根据实践经验,每多种一棵树,•投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克.问:增种多少棵枇杷树,•投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?[注:抛物线y=ax 2+bx+c 的顶点坐标是(-2ba,244ac b a )]应用与探究 16.(2006年常州市)在平面直角坐标系中,已知二次函数y=a (x-1)2+k •的图像与x 轴相交于点A 、B ,顶点为C ,点D 在这个二次函数图像的对称轴上,若四边形ABCD•是一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.答案:例题经典 例1:(1)D (2)B 例2:(1)y=2x 2,(2)8;24.5;(3)5秒.例3:(1)顶点(-1,-3),对称轴x=-1,(2)6 考点精练1.D 2.B 3.A 4.C 5.C 6.C 7.x=-1 8.y=(x+4)2-2(y=x 2+8x+14) 9.答案不唯一,符合要求即可.如:y=x 2-2 10.1 11.-2 12.(1)a=2,b=-3,c=4,0,8,3 (2)顶点(34,238)对称轴是直线x=3413.(1)y=-12x 2+32x+2,顶点坐标(32,258) (2)略,(3)当-1<x<4时,y>0. 14.∵PA ⊥x 轴,AP=1,∴点P 的纵坐标为1.当y=1时,34x 2-32x+14=1,即x 2-2x-1=0,•解得x 12,x 2=2,∵抛物线的对称轴为x=1,点P 在对称轴的右侧,∴2,∴矩形PAOB 的面积为(2)个平方单位. 15.设增种x 棵时,果园的总产量为y 千克,根据题意得:y=(100+x )(40-0.25x )=4000-25x+40x-0.25x 2=-0.25x 2+15x+4000, ∵a=-0.25<0,∴当x=-2b a =-1520.25-⨯=30时,y 最大,•y 最大值=244ac b a-=24(0.25)4000154(0.25)⨯-⨯-⨯-=4225.答:当增种30棵枇杷树时,投产后果园总产量最多,达4225千克.16.解:本题共四种情况,设二次函数的图像的对称轴与x 轴相交于点E , (1)•如图①,当∠CAD=60°时,因为ABCD为菱形,一边长为2,所以DE=1,BE=3,所以点B的坐标为(1+3,0),点C的坐标为(1,-1),解得k=-1,a=13,所以y=13(x-1)2-1.(2)如图②,当∠ACB=•60°时,由菱形性质知点A的坐标为(0,0),点C的坐标为(1,3),解得k=-3,a=3,所以y=•3(x-1)2-3,同理可得:y=-13(x-1)2+1=,y=-3(x-1)2+3,所以符合条件的二次函数的表达式有:y=13(x-1)2-1,y=3(x-1)2-3,y=-13(x-1)2+1,y=-3(x-1)2+3.二次函数的应用【回顾与思考】二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少【例题经典】用二次函数解决最值问题例1(2006年旅顺口区)已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.例2 某产品每件成本10元,试销阶段每件产品的销售价x(元)•与产品的日销售量y (件)之间的关系如下表:x(元)15 20 30 …y(件)25 20 10 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?【解析】(1)设此一次函数表达式为y=kx+b.则1525,220k bk b+=⎧⎨+=⎩解得k=-1,b=40,•即一次函数表达式为y=-x+40.(2)设每件产品的销售价应定为x元,所获销售利润为w元w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225.产品的销售价应定为25元,此时每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;(2)•问的求解依靠配方法或最值公式,而不是解方程.【考点精练】1.二次函数y=12x2+x-1,当x=______时,y有最_____值,这个值是________.2.在距离地面2m高的某处把一物体以初速度V0(m/s)竖直向上抛出,•在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:S=V0t-12gt2(其中g是常数,通常取10m/s2),若V0=10m/s,则该物体在运动过程中最高点距离地面________m.3.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.•有研究表明,晴天在某段公路上行驶上,速度为V(km/h)的汽车的刹车距离S(m)可由公式S=1 100V2确定;雨天行驶时,这一公式为S=150V2.如果车行驶的速度是60km/h,•那么在雨天行驶和晴天行驶相比,刹车距离相差_________米.4.(2006年南京市)如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,•分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN~矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?5.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x(元/千克)… 25 24 23 22 …销售量y(千克)…2000 2500 3000 3500 …(1)在如图的直角坐标系内,作出各组有序数对(x,y)所对应的点.连接各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x(元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?6.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)•与销售单价x (元)(x≥30)存在如下图所示的一次函数关系式.(1)试求出y与x的函数关系式;(2)设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(•直接写出答案).7.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.8.(2006年泉州市)一条隧道的截面如图所示,它的上部是一个以AD•为直径的半圆O,下部是一个矩形ABCD.(1)当AD=4米时,求隧道截面上部半圆O的面积;(2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米.①求隧道截面的面积S(米)关于半径r(米)的函数关系式(不要求写出r的取值范围);②若2米≤CD≤3米,利用函数图象求隧道截面的面积S的最大值( 取3.14,结果精确到0.1米)答案:例题经典例1:解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x≤4)易知CN=4-x,EM=4-y.且有NP BC BFCN AF-=(作辅助线构造相似三角形),即34yx--=12,∴y=-12x+5,S=xy=-12x2+5x(2≤x≤4),此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,•函数的值是随x的增大而增大,对2≤x≤4来说,当x=4时,S有最大值S最大=-12×42+5×4=12.考点精练1.-1,小,-322.7 3.364.解:∵矩形MFGN∽矩形ABCD,∴MN MF AD AB=,∵AB=2AD,MN=x,∴MF=2x,∴EM=EF-MF=10-2x,∴S=x(10-2x)=-2x2+10x=-2(x-52)2+252,∴当x=52时,S有最大值为252.5.解:(1)正确描点、连线.由图象可知,y是x的一次函数,设y=kx+b,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,: 25002414500k b kk b b=+=-⎧⎧⎨⎨=+=⎩⎩解得,∴y=-500x+14500.(2)P=(x-13)·y=(x-•13)·(-500x+14500)=-500x2+21000x-188500=-500(x-21)2+32000,∴P与x的函数关系式为P=-500x2+21000x-188500,当销售价为21元/千克时,能获得最大利润.6.解:(1)设y=kx+b由图象可知,3040020,: 402001000k b kk b b+==-⎧⎧⎨⎨+==⎩⎩解之得,∴y=-20x+1000(30≤x≤50)(2)P=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000.∵a=-20<0,∴P有最大值.当x=-14002(20)⨯-=•35时,P最大值=4500.即当销售单价为35元/千克时,每天可获得最大利润4500元.(3)31≤x•≤34或36≤x≤39.7.解:(1)M(12,0),P(6,6).(2)设这条抛物线的函数解析式为:y=a(x-6)2+6,∵抛物线过O(0,0),∴a(0-6)2+6=0,解得a=16,∴这条抛物线的函数解析式为y=-16(x-6)2+6,即y=-16x2+2x.(3)设点A的坐标为(m,-16m2+2m),∴OB=m,AB=DC=-16m2+2m,根据抛物线的轴对称,可得:OB=CM=m,∴BC=12-2m,即AD=12-2m,∴L=AB+AD+DC=-16m2+2m+12-2m-16m2+2m=-13m2+2m+12=-13(m-3)2+15.∴当m=3,即OB=3米时,三根木杆长度之和L的最大值为15米.8.(1)当AD=4米时,S半圆=12π×(2AD)2=12π×22=2π(米2).(2)①∵AD=2r,AD+CD=8,∴CD=8-AD=8-2r,∴S=12πr2+AD·CD=12πr2+2r(8-2r)=(12π-4)r2+16r,②由①知CD=8-2r,又∵2米≤CD≤3米,∴2≤8-2r≤3,∴2.5≤r≤3,由①知S=(12π-4)r2+16r=(12×3.14-4)r2+16r=-2.43r2+16r=-2.43(r-82.43)2+642.43,∵-2.43<0,∴函数图象为开口向下的抛物线,∵函数图象对称轴r=82.43≈3.3.又2.5≤r≤3<3.3,由函数图象知,在对称轴左侧S随r的增大而增大,故当r=3时,S有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).答:隧道截面面积S的最大值约为26.1米2.函数的综合应用【回顾与思考】函数应用1.:2.:3.:4.⎧⎪⎪⎨⎪⎪⎩一次函数图像及性质二次函数图像及性质反比例函数图像及性质综合应用【例题经典】一次函数与反比例函数的综合应用例1(2006年南充市)已知点A(0,-6),B(-3,0),C(m,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,•可不写画法).【点评】本题是一道一次函数和反比例函数图象和性质的小综合题,题目设计新颖、巧妙、难度不大,但能很好地考查学生的基本功.一次函数与二次函数的综合应用例2(2005年海门市)某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,•若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y(桶)之间满足如图所示关系.(1)求y与x的函数关系式;(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:•该班学生集体改饮桶装纯净水与个人买材料,哪一种花钱更少?(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,•你有何感想(不超过30字)?【点评】这是一道与学生生活实际紧密联系的试题,由图象可知,一次函数图象经过点(4,400)、(5,320)可确定y与x关系式,同时这也是一道确定最优方案题,可利用函数知识分别比较学生个人购买饮料与改饮桶装纯净水的费用,分析优劣.二次函数与图象信息类有关的实际应用问题例3一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y1与上市时间x的关系可用图(a)的一条线段表示;•它的种植成本y2与上市时间x的关系可用图(b)中的抛物线的一部分来表示.(1)求出图(a)中表示的市场售价y1与上市时间x的函数关系式.(2)求出图(b)中表示的种植成本y2与上市时间x的函数关系式.(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)。