2015年湘教版九年级上册数学基础知识竞赛试卷及答案
2015年湘教版九年级上册数学基础知识竞赛试卷及答案
2015年下期九年级上册数学基础知识竞赛试卷」、选择题(每小题3分,共24分)1用配方法解一元二次方程x2—4x • 3 =0时可配方得()A.(x-2)2=7B.(x-2)2=1C.(x 2)2=1D. (x 2)2 =22.在△ ABC中,a^ 2,b='-6 ,c=2 “,则最长边上的中线长为()A. ■2B. 3C.2D.以上都不对二、填空题(每小题3分,共21分)9.等腰三角形两腰上的高相等”,这个命题的逆命题是__________________ . 10方程x(x-1)=2(x-1)的解为_______________ .11如图,在△ ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边a b 20, 10a b3.若 b c, 则b c的值为().1121110210(A) 21(B) 11(C) 21(D) 114.如图,是块三角形草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在(A.三角形的三条中线的交点B.三角形三边的垂直平分线的交点C.三角形三条角平分线的交点D.三角形三条高所在直线的交点5.如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线(X 0)上的一个动点,当点B的横坐标逐渐增大时,△ OAB的面积将会(A.逐渐增大B.逐渐减小6.如图,在等腰梯形ABCD中, 则梯形ABCD的面积为(A. 3 3cm2B. 6cm2C. C.不变D.先增大后减小AB // CD,对角线AC 丄BC,ZB=60°,6 3cm2 D.12cm227.将抛物线y=2x T2x+16绕它的顶点旋转180。
,所得抛物线的解析式是().2 A y »2x -12x 162B y = —2x 12x-162C y =—2x2+12x—19 2D y = -2x2 12x-20丄 a -ab 8 .若实数a,b满足2b22 = 0,则a的取值范围是((A) a=2(B) a>4BC=2cm,)•(C) a h2或a>4 (D) 一2PW4 3 y =一xAC于点E,A BCE的周长等于18 cm,贝U AC的长等于____________ cm.12在正方形ABCD中有一点E,A EAB是等边三角形,则/ CED为 __________________ .13一个函数的图像关于y轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y=xJbx_4是“偶函数”,该函数的图像与x轴交于点A和点B,顶点为P,那么△ ABP的面积是14.如图,在△ ABC中,AB = AC = 1,点D、E在直线动,设BD = x, CE= y.如果/ BAC = 30° Z DAE =则y与x之间的函数关系式为 _________________ .15. 一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶. 在某一时刻在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t二________________ .三、解答题(共55分)16 计算:'3 tan60°|-3sin 30°| - cos2 45°(6分)17在国家的宏观调控下,某市的商品房成交价由今年3月份的14000元/平方米下降到5月份的12600元/平方米.(1)问4、5两月平均每月降价的百分率是多少?(参考数据:•• 0.9、0.95 )(2)如果房价继续回落,按照此前降价的百分率,你预测到7月份该市的商品房成交价是否会跌破10000元/平方米?请说明理由。
湘教版九年级数学上册第一章测试题及答案2套
湘教版九年级数学上册第一章测试题及答案2套第1章测试题(一)1.下列函数中,表示y 是x 的反比例函数的是( )A .y =2x -13B .y =1x -1C .y =-1x 2D .y =12x2.如果点(3,-4)在反比例函数y =kx 的图象上,那么下列各点中,在此图象上的是( )A .(3,4)B .(-2,-6)C .(-2,6)D .(-3,-4)3.某闭合电路中,电源的电压为定值,电流I (A)与电阻R (Ω)成反比例函数关系.如图所示的是该电路中电流I 与电阻R 之间的函数关系的图象,当电阻R 为5Ω时,电流I 为( ) A .6 A B .5 A C .1.2 A D .1 A4.已知反比例函数y =3x ,下列结论中不正确的是( )A .图象经过点(-1,-3)B .图象在第一、三象限C .当x >1时,0<y <3D .当x <0时,y 随着x 的增大而增大5.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =k 2x 的图象无交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<06.已知点A (-1,y 1),B (2,y 2)都在双曲线y =3+mx 上,且y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m >-3D .m <-37.在同一平面直角坐标系中,正比例函数y =kx 与反比例函数y =k -1x 的图象不可能是( )8.如图,分别过反比例函数y =2x (x >0)图象上任意两点A ,B 作x 轴的垂线,垂足分别为点C ,D ,连接OA ,OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1,S 2,则S 1与S 2的大小关系是( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定9.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1的值为( ) A .4 B.143 C.163 D .610.如图①,在矩形ABCD 中,BC =x ,CD =y ,y 与x 满足的反比例函数关系如图②所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( ) A .当x =3时,EC <EM B .当y =9时,EC >EM C .当x 增大时,EC ·CF 的值增大 D .当y 增大时,BE ·DF 的值不变二、填空题(每题3分,共24分)11.已知反比例函数y =k -1x (k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是________.12.若点(2,y 1),(3,y 2)在函数y =-2x 的图象上,则y 1________y 2(填“>”“<”或“=”).13.若反比例函数y =kx 的图象与一次函数y =mx 的图象的一个交点的坐标为(1,2),则它们另一个交点的坐标为____________.14.某气球内充满了一定质量的气体,当温度不变时,气球内气体的压强p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示,则当气球内气体体积V (m 3)的范围是0.8<V <2时,气体的压强p (kPa)的范围是________.15.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,且△ABP的面积为6,则这个反比例函数的表达式为________.16.如图,矩形ABCD在第一象限,AB在x轴的正半轴上(点A与点O重合),AB=3,BC =1,连接AC,BD,交点为M.将矩形ABCD沿x轴向右平移,当平移距离为________时,点M在反比例函数y=1x的图象上.17.如图,过原点O的直线与两个反比例函数的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=1x,则y2与x的函数表达式是____________.18.如图,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x 轴、y轴上,反比例函数的图象与正方形的两边AB,BC分别交于点M,N,ND⊥x轴,垂足为D,连接OM,ON,MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,2+1).其中正确结论的序号是____________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数表达式;(2)当x=5时,求y的值.20.如图,已知一次函数与反比例函数的图象交于点A(-4,-2)和B(a,4).(1)求反比例函数的表达式和点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值?21.如图,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=kx的图象上,当-3≤x≤-1时,求y的取值范围.22.如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在y轴,x轴上,点B的坐标为(4,2),直线y=-12x+3分别交AB,BC于点M,N,反比例函数y=kx的图象经过点M,N.(1)求反比例函数的表达式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.23.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10 ℃,待加热到100 ℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20 ℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数表达式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40 ℃的开水,则他需要在什么时间段内接水?24.如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于A,B两点,过点A作AC⊥x轴于点C,连接BC,若△ABC的面积为2.(1)求k的值.(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.答案一、1.D 2.C 3.C 4.D 5.D6.D 解析:由题意知,反比例函数图象在第二、四象限,所以3+m <0,即m <-3. 7.D8.C 解析:∵点A ,B 均在反比例函数y =2x (x >0)的图象上,∴S △AOC =S △BOD =1.由题图可知,△AOC 与△BOD 有一个公共部分△COE ,因此△AOE 与梯形ECDB 的面积相等,即S 1=S 2,故选C.9.A 解析:设A 点坐标为⎝ ⎛⎭⎪⎫m ,k 1m ,B 点坐标为⎝ ⎛⎭⎪⎫n ,k 1n ,则C 点坐标为⎝ ⎛⎭⎪⎫m ,k 2m ,D 点坐标为⎝ ⎛⎭⎪⎫n ,k 2n ,由题意得⎩⎪⎨⎪⎧n -m =103,k 1-k2m =2,解得k 2-k 1=4.k 2-k 1n=3, 10.D二、11.k <1 12.<13.(-1,-2) 解析:∵反比例函数y =kx 的图象关于原点成中心对称,一次函数y =mx 的图象经过原点,且关于原点成中心对称, ∴它们的交点也关于原点成中心对称.∵点(1,2)关于原点成中心对称的点为(-1,-2), ∴它们另一个交点的坐标为(-1,-2). 14.48<p <12015.y =12x 解析:连接OA ,则△ABP 与△ABO 的面积相等,都等于6,∴反比例函数的表达式是y =12x .16.12 解析:将矩形ABCD 沿x 轴向右平移后,过点M 作ME ⊥AB 于点E ,则AE =12AB =32,ME =12BC =12.设OA =m ,则OE =OA +AE =m +32,∴M ⎝ ⎛⎭⎪⎫m +32,12.∵点M 在反比例函数y =1x 的图象上, ∴12=1m +32,解得m =12.17.y 2=4x 18.①③④三、19.解:(1)设y 与x 的函数表达式为y =k x -1, 由题意得2=k-5-1,解得k =-12.∴y 与x 的函数表达式为y =-12x -1. (2)当x =5时,y =-12x -1=-125-1=-3.20.解:(1)设反比例函数表达式为y =kx (k ≠0),∵反比例函数图象经过点A (-4,-2),∴-2=k -4, ∴k =8.∴反比例函数表达式是y =8x .∵点B (a ,4)在函数y =8x 的图象上,∴4=8a ,∴a =2. ∴点B 的坐标为(2,4).(2)根据图象得当x >2或-4<x <0时,一次函数的值大于反比例函数的值. 21.解:(1)∵△AOB 的面积为2,且反比例函数的图象在第一、三象限,∴k =4,∴反比例函数表达式为y =4x . ∵A (4,m ),∴m =44=1.(2)∵当x =-3时,y =-43;当x =-1时,y =-4. 又∵反比例函数y =4x 在x <0时,y 随x 的增大而减小,∴当-3≤x ≤-1时,y 的取值范围为-4≤y ≤-43. 22.解:(1)由题意易得点M 的纵坐标为2.将y =2代入y =-12x +3,得x =2.∴M (2,2).把点M 的坐标代入y =kx ,得k =4, ∴反比例函数的表达式是y =4x . (2)由题意得S △OPM =12OP ·AM ,∵S 四边形BMON =S 矩形OABC -S △AOM -S △CON =4×2-2-2=4,S △OPM =S 四边形BMON , ∴12OP ·AM =4.又易知AM =2,∴OP =4.∴点P 的坐标是(0,4)或(0,-4). 23.解:(1)当0≤x ≤8时,设y =k 1x +b ,将(0,20),(8,100)分别代入y =k 1x +b ,可求得k 1=10,b =20. ∴当0≤x ≤8时,y =10x +20. 当8<x ≤a 时,设y =k 2x ,将(8,100)代入y =k 2x , 得k 2=800.∴当8<x ≤a 时,y =800x .综上,当0≤x ≤8时,y =10x +20; 当8<x ≤a 时,y =800x .(2)将y =20代入y =800x , 解得x =40,即a =40. (3)当y =40时,x =80040=20.∴要想喝到不低于40 ℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.24.解:(1)∵正比例函数图象与反比例函数图象的两个交点关于原点对称,∴S △AOC =S △BOC =12S △ABC =1. ∵AC ⊥x 轴,∴k =2.(2)假设存在这样的点D ,设点D 的坐标为(m ,0).由⎩⎪⎨⎪⎧y =2x ,y =2x,解得⎩⎨⎧x 1=1,y 1=2,⎩⎨⎧x 2=-1,y 2=-2.∴A (1,2),B (-1,-2). ∴AD =(1-m )2+22, BD =(m +1)2+22, AB =(1+1)2+(2+2)2=2 5.当D 为直角顶点时, ∵AB =25,∴OD =12AB = 5.∴点D 的坐标为(5,0)或(-5,0). 当A 为直角顶点时, 由AB 2+AD 2=BD 2,得(2 5)2+(1-m )2+22=(m +1)2+22,解得m =5,即D (5,0). 当B 为直角顶点时,由BD 2+AB 2=AD 2,得(m +1)2+22+(2 5)2=(1-m )2+22,解得m =-5,即D (-5,0).∴存在这样的点D ,使△ABD 为直角三角形,点D 的坐标为(5,0)或(-5,0)或(5,0)或(-5,0).第1章测试题(二)一、选择题(每题3分,共24分) 1.下面的函数是反比例函数的是( ) A .y =3x -1B .y =x 2C .y =13x D .y =-1x 3 2.反比例函数的图象经过点(-2,3),则此函数的图象也经过点( ) A .(2,-3) B .(-3,-3) C .(2,3) D .(-4,6) 3.若反比例函数y =k -1x 的图象位于第一、三象限,则k 的取值可能是( )A .-1B .0C .1D .24.已知反比例函数y =-2x ,下列结论不正确的是( ) A .图象必经过点(-1,2) B .y 随x 的增大而减小 C .图象位于第二、四象限 D .若x >1,则-2<y <05.某厂现有300吨原材料,这些原材料的使用天数y 与平均每天消耗的吨数x 之间的函数表达式是( )A .y =300x (x >0)B .y =300x (x ≥0) C .y =300x (x ≥0) D .y =300x (x >0)6.反比例函数y =2x 的图象上有两个点(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( ) A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .不能确定7.在同一坐标系中,函数y =kx 和y =-kx +5的大致图象可能是( )A B C D8.在学完反比例函数图象的画法后,嘉琪同学画出了函数y =ax -1的图象,如图所示,那么关于x 的分式方程ax -1=2的解是( )A .x =1B .x =2C .x =3D .x =4 二、填空题(每题4分,共32分)9.反比例函数y =-5x 的自变量x 的取值范围是________________. 10.反比例函数y =kx 的图象经过点(3,-3),则k 的值为________.11.若正比例函数y=-2x与反比例函数y=kx的图象的一个交点坐标为(-1,2),则另一个交点的坐标为____________.12.在某一电路中,保持电压不变,电流I(A)与电阻R(Ω)成反比例,其图象如图所示,则这一电路的电压为________V.13.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=kx(x>0)的图象经过顶点B,则k的值为____________.14.已知点P(m,n)在直线y=x+3上,也在双曲线y=2x上,则m2+n2的值为________.15.点A(-5,y1),B(-3,y2),C(2,y3)都在双曲线y=2 020x上,则y1,y2,y3的大小关系是____________.16.如图,点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上,且BC∶CA=1∶2,双曲线y=kx(x>0)经过点C,则k=____________.三、解答题(17~19题每题8分,20,21题每题10分,共44分)17.已知反比例函数y=2m-4x,若在每个象限内,函数值y随x的增大而减小,求m的取值范围.18.已知函数y =kx 的图象经过点(-3,4).(1)求k 的值,并在如图所示的正方形网格(每个小方格的边长为1个单位长度)中画出这个函数的图象;(2)当x 取何值时,函数值小于0?19.如图,在菱形OABC 中,点A 的坐标为(10,0),对角线OB ,AC 相交于点D ,OB ·AC =160.双曲线y =kx (x >0)经过点D ,交BC 的延长线于点E . (1)求点C 的坐标; (2)求双曲线的函数表达式.20.如图,一次函数y =kx +b 与反比例函数y =4x 的图象交于A (m ,4),B (2,n )两点,与坐标轴分别交于M,N两点.(1)求一次函数的表达式;(2)根据图象直接写出当kx+b-4x>0时,x的取值范围;(3)求△AOB的面积.21.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1 mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,第3天时硫化物的浓度降为4 mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:(1)求整改过程中当0≤x<3时,硫化物的浓度y与时间x之间的函数表达式;(2)求整改过程中当x≥3时,硫化物的浓度y与时间x之间的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天内(含15天)不超过最高允许的1 mg/L?为什么?答案一、1.C 2.A 3.D 4.B 5.A 6.D 7.D8.A 解析:由图可知,函数y =a x -1的图象经过点(3,0),则a3-1=0, 解得a =3,所以由a x -1=2,得3x -1=2,解得x =1. 二、9.x ≠0 10.-9 11.(1,-2) 12.8 13.3214.13 解析:∵点P (m ,n )在直线y =x +3上,∴n -m =3, ∵点P (m ,n )在双曲线y =2x 上, ∴mn =2,∴m 2+n 2=(n -m )2+2mn =9+4=13. 15.y 3>y 1>y 216.2 解析:如图,连接OC ,∵点A 在双曲线y =6x (x >0)上,AB ⊥x 轴,∴S △OAB =12×6=3,∵BC ∶CA =1∶2, ∴S △OBC =3×13=1,∵双曲线y =kx (x >0)经过点C ,∴S △OBC =12|k |=1,∴|k |=2,∵双曲线y =kx (x >0)在第一象限,∴k =2. 三、17.解:∵反比例函数y =2m -4x ,在每个象限内,函数值y 随x 的增大而减小,∴2m -4>0,解得m >2. 18.解:(1)把(-3,4)代入y =kx ,得k =-3×4=-12,∴y =-12x ,作图如图所示:(2)由图象可以看出,当x >0时,函数值小于0.19.解:(1)如图,过B 作BF ⊥x 轴于点F ,过D 作DG ⊥x 轴于点G ,过C 作CH ⊥x 轴于点H .∵A (10,0),∴OA =10,∴S 菱形ABCO =OA ·BF =12AC ·OB =12×160=80, 即10BF =80,∴BF =8.在Rt △ABF 中,AB =10,BF =8,由勾股定理可得AF =6,易知CH =BF =8. 在Rt △OCH 和Rt △ABF 中,⎩⎨⎧OC =AB ,CH =BF ,∴Rt △OCH ≌Rt △ABF ,∴OH =AF =6, ∴点C 的坐标为(6,8).(2)由(1)得OF =OA +AF =10+6=16, ∵四边形OABC 为菱形,∴D 为OB 中点,易得DG =12BF =12×8=4,OG =12OF =12×16=8,∴D (8,4),∵双曲线过点D ,∴4=k8,解得k =32,∴双曲线的函数表达式为y =32x (x >0).20.解:(1)∵点A 在反比例函数y =4x 的图象上,∴4m =4,解得m =1,∴点A 的坐标为(1,4),又∵点B 也在反比例函数y =4x 的图象上, ∴42=n ,解得n =2, ∴点B 的坐标为(2,2),又∵点A ,B 在y =kx +b 的图象上, ∴⎩⎨⎧k +b =4,2k +b =2,解得⎩⎨⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6.(2)根据图象得:当kx +b -4x >0时,x 的取值范围为x <0或1<x <2. (3)∵直线y =-2x +6与x 轴的交点为N ,∴点N 的坐标为(3,0), ∴S △AOB =S △AON -S △BON =12×3×4-12×3×2=3.21.解:(1)前3天的函数图象是线段,设函数表达式为y =kx +b . 把(0,10),(3,4)分别代入函数表达式,得⎩⎨⎧b =10,3k +b =4,解得⎩⎨⎧k =-2,b =10.所以当0≤x <3时,硫化物的浓度y 与时间x 之间的函数表达式为y =-2x +10. (2)当x ≥3时,设y =k x .把(3,4)代入函数表达式,得4=k3,所以k =12.所以当x ≥3时,硫化物的浓度y 与时间x 之间的函数表达式为y =12x .(3)能.理由:当x =15时,y =1215=0.8.因为0.8<1,所以该企业所排污水中硫化物的浓度能在15天内(含15天)不超过最高允许的1 mg/L.。
湘教版九年级数学上册月考试卷带答案
湘教版九年级数学上册月考试卷带答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .2 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.下列各数:-2,0,13,0.020020002…,π( )A .4B .3C .2D .15.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.若2x y +=-,则222x y xy ++的值为( )A .2-B .2C .4-D .47.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.计算22111m m m ---的结果是__________. 2.分解因式:29a -=__________.31x -x 的取值范围是__________.4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为________.5.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、A6、D7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、11 m-2、()()33 a a+-3、1x≥4、3或3 2.5、-36三、解答题(本大题共6小题,共72分)1、32x=-.2、3.3、(1)y=﹣x2+2x+3;(2)P (97,127);(3)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.4、(1)略;(2).5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
湘教版九年级上册数学第1章 反比例函数含答案(夺分金卷)
湘教版九年级上册数学第1章反比例函数含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,将-块含有角的直角三角板如图放置,直角顶点C的坐标为,顶点A的坐标为,顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A. B. C. D.2、已知函数y=(k<0),又x1,x2对应的函数值分别是y1,y2,若x2>x1>0对,则有()A. y1>y2>0B. y2>y1>0C. y1<y2<0D. y2<y<013、函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=4、如图,在平面直角坐标中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y= 的图象上,则k的值为()A.3B.﹣3C.6D.﹣65、如图,点A在反比例函数y=(x>0)的图像上,点B在反比例函数y=(x>0)的图像上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为( )A.10B.12C.14D.166、如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别为C,D,E,连接OA,OB,0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S37、对于反比例函数,下列说法不正确的是()A.点在它的图象上B.它的图象在第一、三象限C.当时,随的增大而增大 D.当时,随的增大而减小8、若M(﹣2,y1),N(﹣1,y2),P(2,y3)三点都在函数y= (k<0)的图像上,则y1, y2, y3的大小关系是()A.y3>y1>y2B.y3>y2>y1C.y1>y2>y3D.y2>y1>y39、若,则函数与在同一平面直角坐标系中的图象大致是()A. B. C.D.10、如图,分别过点,作x 轴的垂线,与反比例函数的图像交于点分别过,作的垂线,垂足分别为,分别过点作的垂线,垂足分别为.设矩形的面积为S1,矩形的面积为S2,矩形面积为S3,依此类推,则的值为()A. B. C. D.11、点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能确定12、已知反比例函数y=的图象如图,则一元二次方程x2-(2k-1)x+k2-1=0根的情况是()A.有两个不等实根B.有两个相等实根C.没有实根D.无法确定。
湘教版九年级数学上册单元测试题全套(含答案)
湘教版九年级数学上册单元测试题全套(含答案)第1章章末检测(时间:90分钟满分:100分)一、选择题(每小题4分,共40分)1.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<02.在同一直角坐标系中,若直线y=k1x与双曲线y=没有公共点,则()A.k1k2<0B.k1k2>0C.k1+k2<0D.k1+k2>03.下列函数中,y既不是x的正比例函数,也不是反比例函数的是()A.y=B.C.y=﹣3x2D.xy=﹣24.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A.4B.C.5D.5.下列函数中,y是x的反比例函数的是()A.y=x﹣1B.y=C.D.y=6.对于函数y=﹣,下列说法错误的是()A.它的图象分布在第二、四象限B.它的图象与直线y=x无交点C.当x>0时,y的值随x的增大而增大D.当x<0时,y的值随x的增大而减小7.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A.k<3B.k≤3C.k>3D.k≥38.若y=2x m﹣5为反比例函数,则m=()A.-4B.-5C.4D.59.反比例函数y=-的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限10.若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,过点M(﹣2,1)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为________.12.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.13.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.如果以此蓄电池为电源的用电器的限制不能超过12A,那么用电器的可变电阻应控制的范围是________.14.如图,点A为反比例函数y=图象上一点,过点A作AB⊥x轴于点B,连接OA,△ABO的面积为4,则k=________.15.已知y与2x﹣1成反比例,且当x=1时,y=2,那么当x=0时,y=________.16.已知双曲线y=经过点(﹣1,2),那么k的值等于________.17.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为________.18.若y=m 5m 3x ﹣()是反比例函数,则m 满足的条件是________.三、解答题(共5小题,共36分)19.(6分)水池中蓄水90m 2,现用放水管以x (m 3/h )的速度排水,经过y (h )排空,求y 与x 之间的函数表达式,y 是x 的反比例函数吗?20.(7分)已知反比例函数的解析式为y=,确定a 的值,求这个函数关系式.21.(8分)张华同学在一次做电学实验时,记录下电流I (安)与电阻R (欧)有如表对应关系:R ...2481016 (I)…16843.22…通过描点、连线,观察并求出I 与R 之间的函数关系式.22.(6分)已知反比例函数y=﹣.(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.23.(9分)已知反比例函数y=(k为常数,k≠1).(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.参考答案一、选择题1.B2.A3.C4.B5.D6.D7.A8.C9.C10.A二、填空题11.612.813.R≥3W14.-815.﹣216.-317.218.4三、解答题19.解:由题意,得y=,y是x的反比例函数.20.解:由反比例函数的解析式为y=,得,解得a=3,a=﹣3(不符合题意要舍去).21.解:如图,由图可知I与R之间满足反比例函数关系,设I=,将(2,16)代入,得k=32,故I=.22.解:(1)原式=,比例系数为﹣;(2)当x=﹣10时,y=﹣.(3)当y=6时,﹣=6,解得,x=﹣.23.解:(Ⅰ)由题意,设点P的坐标为(m,2).∵点P在正比例函数y=x的图象上,∴2=m ,即m=2.∴点P 的坐标为(2,2).∵点P 在反比例函数y=的图象上,∴2=,解得k=5.(Ⅱ)∵在反比例函数y=图象的每一支上,y 随x 的增大而减小,∴k ﹣1>0,解得k >1.(Ⅲ)∵反比例函数y=图象的一支位于第二象限,∴在该函数图象的每一支上,y 随x 的增大而增大.∵点A (x 1,y 1)与点B (x 2,y 2)在该函数的第二象限的图象上,且y 1>y 2,∴x 1>x 2.第2章章末检测时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.已知关于x 的方程x 2-2x +3k =0有两个不相等的实数根,则k 的取值范围是()A .k <13B .k >13C .k <13且k ≠0D .k >-13且k ≠02.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是()A .560(1+x )2=315B .560(1-x )2=315C .560(1-2x )2=315D .560(1-x 2)=3153.已知关于x 的一元二次方程x 2+mx -8=0的一个实数根为2,则另一实数根及m 的值分别为()A .4,-2B .-4,-2C .4,2D .-4,24.已知y =k -1x +1是关于x 的一次函数,则一元二次方程kx 2+2x +1=0的根的情况为()A .没有实数根B .有一个实数根C .有两个不相等的实数根D .有两个相等的实数根5.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A .32B .126C .135D .1446.下列方程,是关于x 的一元二次方程的是()A .(x +1)2=2(x +1) B.1x 2+1x-2=0C .ax 2+bx +c =0D .x 2+2x =x 2-17.若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2的值为()A.-4B.3C.-43D.4 38.使得代数式3x2-6的值等于21的x的值是()A.3B.-3C.±3D.±39.用配方法解下列方程,配方正确的是()A.2y2-7y-4=0可化为=818B.x2-2x-9=0可化为(x-1)2=8C.x2+8x-9=0可化为(x+4)2=16D.x2-4x=0可化为(x-2)2=410.方程x-2=x(x-2)的解是()A.x1=x2=1B.x1=0,x2=2C.x1=x2=2D.x1=1,x2=2二、填空题(每小题3分,共24分)11.把一元二次方程(x-3)2=4化为一般形式是____________,其中二次项为_______,一次项系数为_______,常数项为_______.12.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a+b的值是________.13.如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是__________.14.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m的值等于________.15.若a为方程x2+x-5=0的解,则a2+a+1的值为________.16.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x21+x22=4,则m 的值为____________.17.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请_______支球队参加比赛.18.如图,邻边不相等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是________m(可利用的围墙长度超过6m).三、解答题(共66分)19.(6分)解下列方程:(1)(2x-1)2=9;(2)x2+3x-4=0;(3)2x 2+5x -1=0.20.(6分)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2-4ac >0的情况,她是这样做的:由于a ≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-ca,……第一步x 2+b a x =-ca +,……第二步=b 2-4ac4a 2,……第三步x +b2a=b 2-4ac4a 2,……第四步x =-b +b 2-4ac 2a.……第五步(1)嘉淇的解法从第_______步开始出现错误;事实上,当b 2-4ac >0时,方程ax 2+bx +c =0(a ≠0)的求根公式是__________.(2)用配方法解方程:x 2-2x -24=0.21.(8分)已知实数a ,b 是方程x 2-x -1=0的两根,求b a +ab的值.22.(8分)菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予九折优惠.试求小华购买蔬菜所需的费用.23.(9分)已知关于x的方程mx2-(m+2)x+2=0.(1)求证:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根?24.(9分)如图,某新建火车站站前广场需要绿化,该项绿化工程中有一块长为20米、宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56平方米,两块绿地之间及周边留有宽度相等的人行通道(如图),问人行通道的宽度是多少米?25.(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是______________斤(用含x的代数式表示).(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?26.(10分)如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,点Q以2cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动.问:(1)P、Q两点从开始出发多长时间时,四边形PBCQ的面积是33cm2?(2)P、Q两点从开始出发多长时间时,点P与Q之间的距离是10cm?参考答案1.A2.B3.D4.A5.D6.A7.D8.C9.D10.D11.x2-6x+5=0x2-6512.-113.m<-414.215.616.-1或-317.718.1解析:设AB长为x m,则BC长为(6-2x)m.依题意得x(6-2x)=4,解得x1=1,x2=2.当x=1时,6-2x=4;当x=2时,6-2x=2(舍去).即AB的长度为1m.19.解:(1)x1=2,x2=-1;(2分)(2)x1=-4,x2=1;(4分)(3)x1=-5+334,x2=-5-334.(6分)20.解:(1)四x=-b±b2-4ac2a(2分)(2)x2-2x=24,x2-2x+1=24+1,(x-1)2=25,(4分)x-1=±5.∴x1=6,x2=-4.(6分)21.解:∵实数a,b是方程x2-x-1=0的两根,∴a+b=1,ab=-1,(4分)∴ba+ab=b2+a2ab=(a+b)2-2abab=-3.(8分)22.解:(1)设平均每次下调的百分率为x,由题意得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).答:平均每次下调的百分率为20%.(4分)(2)3.2×0.9×5000=14400(元).(7分)答:小华购买蔬菜所需费用为14400元.(8分)23.(1)证明:∵当m≠0时,Δ=(m+2)2-8m=m2-4m+4=(m-2)2.∵(m-2)2≥0,∴Δ≥0,即方程有实数根.(3分)当m=0时,原方程变形为-2x+2=0,即x=1.∴不论m为何值时,方程总有实数根;(5分)(2)解:解方程得x=m+2±(m-2)2m,x1=2m,x2=1.(7分)∵方程有两个不相等的正整数根,∴m=1或2,当m=2时,Δ=0,不合题意,∴m=1.(9分)24.解:设人行通道的宽度为x米,则根据题意,得(20-3x)(8-2x)=56,解得x1=2,x2=263.(6分)当x=263时,8-2x<0,故舍去,∴x=2.(8分).答:人行通道的宽为2米.(9分) 25.解:(1)(100+200x)(3分)(2)根据题意得(4-2-x)(100+200x)=300,解得x1=12,x2=1.(6分)∵每天至少售出260斤,当x=12时,100+200x=200<260,当x=1时,100+200x=300>260,∴x=1.(9分)答:张阿姨需将每斤的售价降低1元.(10分)26.解:(1)设经过x s,则BP=(16-3x)cm,CQ=2x cm.由题意得(16-3x+2x)×6×12=33,解得x=5.(3分)答:经过5s,四边形PBCQ的面积是33cm2.(4分)(2)设出发t s,点P与点Q之间的距离是10cm,则BP=(16-3t)cm,CQ=2t cm.过Q作QH⊥AB于H,∴HQ=AD=6cm,PH=|16-5t|cm.(6分)在Rt△PQH中,由勾股定理得PH2+HQ2=PQ2,即(16-5t)2+62=102,解得t1=1.6,t2=4.8.即出发1.6s或4.8s时,点P与Q之间的距离是10cm.(10分)第3章章末检测(时间:90分钟满分:120分)一.选择题(每小题3分,共30分)1.如果=,那么的值是()A.B.C.D.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=13.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.﹣1B.(+1)C.3﹣D.(﹣1)4.如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8B.10C.11D.125.已知,△ABC∽△DEF,△ABC与△DEF的面积之比为1:2,当BC=1,对应边EF的长是()A.B.2C.3D.46.已知图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于O 点,对于各图中的两个三角形而言,下列说法正确的是()A.只有(1)相似B.只有(2)相似C.都相似D.都不相似7.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A .B .C .D.8.如图,身高1.8m 的小超站在某路灯下,发现自己的影长恰好是3m ,经测量,此时小超离路灯底部的距离是9m ,则路灯离地面的高度是()A .5.4mB .6mC .7.2mD .9m9.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD .若B (1,0),则点C 的坐标为()A .(1,2)B .(1,1)C .(,)D .(2,1)10.如图,△ABC 中,点D 在线段AB 上,且∠BAD=∠C ,则下列结论一定正确的是()A .AB 2=AC•BD B .AB•AD=BD•BC C .AB 2=BC•BD D .AB•AD=BD•CD 二.填空题(每小题4分,共32分)11.已知≠0,则的值为.12.如图,已知点C 是线段AB 的黄金分割点,且BC>AC.若S 1表示以BC 为边的正方形面积,S 2表示长为AB 、宽为AC 的矩形面积,则S 1与S 2的大小关系为.13.给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).14.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为.15.已知△ABC ∽△DEF ,△ABC 与△DEF 的相似比为4:1,则△ABC 与△DEF 对应边上的高之比为.16.如图,AD=DF=FB ,DE ∥FG ∥BC ,则S Ⅰ:S Ⅱ:S Ⅲ=.第8题图第9题图第10题图17.如图,是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).18.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,CD=2,BD=1,则AD 的长是,AC 的长是.三.解答题(共58分)19.(8分)如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1.(2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2.(3)求△CC 1C 2的面积.20.(8分)已知:如图,在△ABC 中,∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B ,C 点重合),∠ADE=45°.求证:△ABD ∽△DCE .21.(10分)在平行四边形ABCD 中,E 为BC 边上的一点.连结AE .(1)若AB=AE ,求证:∠DAE=∠D ;(2)若点E 为BC 的中点,连接BD ,交AE 于F ,求EFFA的值.第16题图第17题图第18题图22.(10分)如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.23.(10分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?24.(12分)如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A,C的坐标;(2)反比例函数y=的图象经过点B,求k的值;(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.C 2.C 3.A 4.D 5.A 6.C7.A8.C9.B10.C 二.填空题(共8小题)11.12.S1=S213.①②④⑤14.:115.4:116.1:3:517.818.42三.解答题(共6小题)19.解:(1)如图:(2)如图所示:(a)(a)(3)如图所示:(b)(b)△CC1C2的面积为×3×6=9.20.证明:∵∠BAC=90°,AB=AC=1,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°﹣∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.21.证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴,∵E为BC的中点,∴BE=BC=AD,∴EF:FA=1:2.22.解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,∴MN=3;②图2,作∠ANM=∠B,则△ANM∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的长为3或.23.解:(1)∵四边形EGFH为矩形,∴BC∥EF,∴△AEF∽△ABC;(2)设正方形零件的边长为a在正方形EFGH中,EF∥BC,EG∥AD∴△AEF∽△ABC,△BFG∽△BAD∴,,∴,即.解得a=48.即正方形零件的边长为48.(3)设长方形的长为x,宽为y,当长方形的长在BC时,由(1)知:.∵,∴当,即x=60,y=40,xy最大为2400.当长方形的宽在BC时,,∵,∴当,即x=40,y=60,xy最大为2400,又∵x≥y,所以长方形的宽在BC时,面积<2400综上,长方形的面积最大为2400.24.解:(1)解一元二次方程x2﹣12x+36=0,解得:x1=x2=6,∴OA=OC=6,∴A(﹣6,0),C(6,0);(2)如图1,过点B作BE⊥AC,垂足为E,∵∠BAC=45°,∴AE=BE,设BE=x,∵BC=4,∴CE=,∵AE+CE=OA+OC,∴x+=12,整理得:x2﹣12x+32=0,解得:x1=4(不合题意舍去),x2=8∴BE=8,OE=8﹣6=2,∴B(2,8),把B(2,8)代入y=,得k=16.(3)存在.如图2,若点P在OD上,若△PDB∽△AOP,则,即解得:OP=2或OP=6∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP,则,即,解得:OP=12,∴P(0,12);如图4,若点P在OD上方,△BDP∽△AOP,则,即,解得:OP=4+2或OP=4﹣2(不合题意舍去),∴P(0,4+2);如图5,若点P在y轴负半轴,△PDB∽△AOP,则,即,解得:OP=﹣4+2或﹣4﹣2,则P点坐标为(0,﹣2﹣4)或(0,﹣4+2)(不合题意舍去).∴点P的坐标为:(0,2)或(0,6)或(0,12)或(0,﹣4+2)或(0,﹣2﹣4).第4章章末检测(时间:90分钟满分:120分)一、选择题(每小题3分,共36分)1.在Rt△ABC中,∠C=90°,sinA=,那么tanB的值是()A. B. C. D.2.下列计算正确的是()A.sin60°﹣sin30°=sin30°B.sin245°+cos245°=1C.cos60D.cos303.在Rt△ABC中,已知∠C=90°,AC=12,BC=5,则cosA等于()A. B. C. D.4.在△ACB中,AB=10,sinA=,则BC的长为()A.6B.7.5C.8D.不能确定5.在△ABC中,若|sinA-|+(cosB-)2=0,则∠C的度数是()A.30°B.45°C.60°D.90°6.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B,C两地相距120海里.若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,则此时“中国海监50”的航行距离是()A.40B.60﹣20C.20D.207.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()A. B. C. D.8.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为()A.24米B.20米C.16米D.12米9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A.34.14米B.34.1米C.35.7米D.35.74米10.在Rt△中,∠C=90°,BC=1,那么AB的长为()A. B. C. D.11.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A. B. C. D.12.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A. B.C. D.二、填空题(每小题4分,共40分)13.河堤横断面如图,堤高BC=5米,迎水坡AB的坡度是1:(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是________.14.在正方形的网格中,△ABC的位置如图,则tanB的值为________.15.一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为________米.16.王小勇操纵一辆遥控汽车从A处沿北偏西60°方向走10m到B处,再从B处向正南方走20m到C处,此时遥控汽车离A处________m.17.如图,BD⊥AC于点D,DE∥AB,EF⊥AC于点F,若BD平分∠ABC,则与∠CEF相等的角(不包括∠CEF)的个数是________.18.AE、CF是锐角三角形ABC的两条高,若AE:CF=3:2,则sinA:sinC等于________.19.如图,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是________km.20.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为________.21.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为________cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).22.计算:2sin45°=________.三、解答题(共3题,共44分)23.(14分)如图,海面上B、C两岛分别位于A岛的正东和正北方向.一艘船从A岛出发,以18海里/时的速度向正北方向航行2小时到达C岛,此时测得B岛在C岛的南偏东43°.求A、B两岛之间的距离.(结果精确到0.1海里)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】24.(14分)如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山AB的高度.(参考数据:≈1.73)25.(16分)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.参考答案一、选择题1.A2.B3.C4.D5.D6.B7.D8.D9.C10.D11.B12.C二、填空题13.10m14.15.216.1017.418.2:319.(20﹣20)20.421.14.122.三、解答题23.解:由题意得,AC=18×2=36海里,∠ACB=43°.在Rt△ABC中,∵∠A=90°,∴AB=AC•tan∠ACB=36×0.93≈33.5海里.故A、B两岛之间的距离约为33.5海里.24.解:过D作DE⊥BC于E,作DF⊥AB于F,设AB=x,在Rt△DEC中,∠DCE=30°,CD=100,∴DE=50,CE=50.在Rt△ABC中,∠ACB=45°,∴BC=x.则AF=AB﹣BF=AB﹣DE=x﹣50,DF=BE=BC+CE=x+50.在Rt△AFD中,∠ADF=30°,tan30°=,∴,∴x=50(3+)≈236.5.经检验:x=50(3+)是原分式方程的解.答:山AB的高度约为236.5米.25.(1)解:∵∠BDC=45°,∠C=90°,∴BC=DC=20m.答:建筑物BC的高度为20m.(2)解:设DC=BC=xm,根据题意可得:tan50°==≈1.2,解得:x=25.答:建筑物BC的高度为25m.第5章章末检测(时间:45分钟满分:100分)一、选择题(本大题共8个小题,每小题3分,共24分)1.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为()A.9.5万件B.9万件C.9500件D.5000件2.某鞋店试销一款女鞋,试销期间对不同颜色鞋的销量情况统计如下表:颜色黑色棕色白色红色销售量(双)75453255鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是()A.平均数B.众数C.中位数 C.以上都不是3.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数2=0.002、s乙2=0.03,则()据,其方差分别为s甲A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定4.去年某校有1500人参加中考,为了了解他们的数学成绩.从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有()A.400名B.450名C.475名D.500名5.某校对460名初三学生进行跳绳技能培训,以提高同学们的跳绳成绩.为了解培训的效果,随机抽取了40名同学进行测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,从图中可以估计出该校460名初三学生中,能获得跳绳“优秀”的总人数大约是()A.10B.16C.115D.1506.某校在“爱护地球绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数量(单位:棵)456810人数302225158若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总棵数是()A.58B.580C.1160D.58007.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50%B.55%C.60%D.65%8.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()A.45个B.48个C.50个D.55个二、填空题(本大题共6个小题,每小题3分,共18分)9.为了考察甲、乙两种油菜花的长势,分别从中抽取了20株测得其高度,并求得它们的方差分别为s甲2=3.6米2,s乙2=12.8米2,则种油菜花长势比较整齐.10.从某市5000份试卷中随机抽取了400份试卷,其中有360份成绩合格,估计全市成绩合格的人数约为.11.从某校参加毕业会考的学生中,随机抽查了20名学生的数学成绩,分数如下:90848886987861541009795847071778572637948可以估计该校这次参加毕业会考的数学平均成绩为.12.某学校为了做好道路交通安全教育工作,随机抽取本校100名学生就上学的交通方式进行调查,根据调查结果绘制扇形图如图所示.若该校共有1000名学生,请你估计全校步行上学的学生人数约有人.13.漳州市某校在开展庆“六·一”活动前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:你最喜欢的活动猜谜唱歌投篮跳绳其他人数681682请你估计该校七年级学生中,最喜欢“投篮”这项活动的约有人.14.为了了解某校九年级学生的身体素质情况,在该校九年级随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出频数分布直方图(如图,每组数据可含最小值,不含最大值),如果在一分钟内跳绳次数少于120次的为不合格,那么可以估计该校九年级300名学生中跳绳不合格的人数为.三、解答题(共58分)15.(10分)下表是某居民小区五月份的用水情况:月用水量(米3)4568911户数237521(1)计算20户家庭的月平均用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计这500户家庭该月共用水多少立方米?16.(12分)某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:鞋的号码35.53636.53737.5人数4616122现在该经销商要进200双上述五种女运动鞋,你认为应该怎样进货比较合理?17.(12分)某家灯具厂为了比较两种灯泡的使用寿命,各抽8只做试验,结果如下表(单位:小时):25瓦45744345945144446446043840瓦466439452464438459467455哪种灯泡的使用寿命较长?哪种质量比较稳定?18.(12分)以“光盘”为主题的公益活动越来越受到社会的关注.某校为培养学生勤俭节约的习惯,随机抽查了部分学生(态度分为:赞成、无所谓、反对),并将抽查结果绘制成图1和图2(统计图不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共抽查了多少名学生?(2)将图1补充完整;(3)根据抽样调查结果,请你估计该校3000名学生中有多少名学生持反对态度?19.(12分)某市对参加2012年中考的50000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a 0.35.2≤x<5.510b(1)在频数分布表中,a的值为,b的值为,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是,并根据上述信息估计全市初中毕业生中视力正常的学生有多少人?参考答案1.A2.B3.A4.B5.C6.D7.C8.A9.甲10.450011.7912.40013.16014.7215.(1)20户家庭的月平均用水量=425367859211201⨯+⨯+⨯+⨯+⨯+⨯=6.7(米3).(2)这500户家庭该月共用水量=6.7×500=3350(米3).16.由调查结果可以确定35.5,36,36.5,37,37.5号码的鞋的比例为2∶3∶8∶6∶1.∴进200双鞋时,各种号码分别应进货为:号码为35.5:200×110=20(双);号码为36:200×320=30(双);号码为36.5:200×25=80(双);号码为37:200×310=60(双);号码为37.5:200×120=10(双).17.两种灯泡使用寿命的平均数是x 25瓦=452,x 40瓦=455;两种灯泡使用寿命的方差是s 225瓦=78,s 240瓦=114.5.因为x 25瓦<x 40瓦,所以40瓦灯泡的使用寿命较长.因为s 225瓦<s 240瓦,所以25瓦灯泡的质量较稳定.18.(1)130÷65%=200(名),即此次抽样调查中,共抽查了200名学生.(2)“反对”的学生有:200-130-50=20(名).图略.(3)3000×20200=300(名),即估计约300名学生持反对态度.19.(1)600.05补全图形略.(2)4.6≤x<4.9.(3)35%,50000×35%=17500(人).。
湘教版九年级数学上册单元测试题全套(含答案)
湘教版九年级数学上册单元测试题全套(含答案)第1章章末检测(时间:90分钟满分:100分)一、选择题(每小题4分,共40分)1.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是()A. y1<0<y2B. y2<0<y1C. y1<y2<0D. y2<y1<02.在同一直角坐标系中,若直线y=k1x与双曲线y= 没有公共点,则()A. k1k2<0B. k1k2>0C. k1+k2<0D. k1+k2>03.下列函数中,y既不是x的正比例函数,也不是反比例函数的是()A. y=B.C. y=﹣3x2D. xy=﹣24.如图,在平面直角坐标系中,一条直线与反比例函数y= (x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y= (x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A. 4B.C. 5D.5.下列函数中,y是x的反比例函数的是()A. y=x﹣1B. y=C.D. y=6.对于函数y=﹣,下列说法错误的是()A. 它的图象分布在第二、四象限B. 它的图象与直线y=x无交点C. 当x>0时,y的值随x的增大而增大D. 当x<0时,y的值随x的增大而减小7.反比例函数y= 的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A. k<3B. k≤3C. k>3D. k≥38.若y=2x m﹣5为反比例函数,则m=()A. -4B. -5C. 4D. 59.反比例函数y=-的图象位于( )A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限10.若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A. 第一、三象限B. 第一、二象限C. 第二、四象限D. 第三、四象限二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,过点M(﹣2,1)分别作x轴、y轴的垂线与反比例函数y= 的图象交于A,B两点,则四边形MAOB的面积为________.12.如图,A,B是反比例函数y= 图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.13.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.如果以此蓄电池为电源的用电器的限制不能超过12A,那么用电器的可变电阻应控制的范围是________.14.如图,点A为反比例函数y= 图象上一点,过点A作AB⊥x轴于点B,连接OA,△ABO的面积为4,则k=________.15.已知y与2x﹣1成反比例,且当x=1时,y=2,那么当x=0时,y=________.16.已知双曲线y= 经过点(﹣1,2),那么k的值等于________.17.如图,反比例函数y= (x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为________.18.若y=m 5m 3x ﹣()是反比例函数,则m 满足的条件是________ .三、解答题(共5小题,共36分)19.(6分)水池中蓄水90m 2,现用放水管以x (m 3/h )的速度排水,经过y (h )排空,求y 与x 之间的函数表达式,y 是x 的反比例函数吗?20. (7分)已知反比例函数的解析式为y=, 确定a 的值,求这个函数关系式.21. (8分)张华同学在一次做电学实验时,记录下电流I (安)与电阻R (欧)有如表对应关系:通过描点、连线,观察并求出I 与R 之间的函数关系式.22. (6分)已知反比例函数y=﹣. (1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.23. (9分)已知反比例函数y=(k为常数,k≠1).(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.参考答案一、选择题1.B2.A3.C4.B5.D6.D7.A8.C9.C 10.A二、填空题11.6 12.8 13.R≥3W 14.-8 15.﹣2 16.-3 17.2 18.4三、解答题19.解:由题意,得y=,y是x的反比例函数.20.解:由反比例函数的解析式为y=,得,解得a=3,a=﹣3(不符合题意要舍去).21.解:如图,由图可知I与R之间满足反比例函数关系,设I= ,将(2,16)代入,得k=32,故I= .22.解:(1)原式=,比例系数为﹣;(2)当x=﹣10时,y=﹣.(3)当y=6时,﹣=6,解得,x=﹣.23.解:(Ⅰ)由题意,设点P的坐标为(m,2).∵点P在正比例函数y=x的图象上,∴2=m ,即m=2.∴点P 的坐标为(2,2).∵点P 在反比例函数y=的图象上, ∴2=,解得k=5.(Ⅱ)∵在反比例函数y=图象的每一支上,y 随x 的增大而减小, ∴k ﹣1>0,解得k >1.(Ⅲ)∵反比例函数y=图象的一支位于第二象限,∴在该函数图象的每一支上,y 随x 的增大而增大.∵点A (x 1 ,y 1)与点B (x 2 ,y 2)在该函数的第二象限的图象上,且y 1>y 2 ,∴x 1>x 2 .第2章章末检测时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.已知关于x 的方程x 2-2x +3k =0有两个不相等的实数根,则k 的取值范围是( )A .k <13B .k >13C .k <13且k ≠0D .k >-13且k ≠0 2.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( )A .560(1+x )2=315B .560(1-x )2=315C .560(1-2x )2=315D .560(1-x 2)=3153.已知关于x 的一元二次方程x 2+mx -8=0的一个实数根为2,则另一实数根及m 的值分别为( )A .4,-2B .-4,-2C .4,2D .-4,24.已知y =k -1x +1是关于x 的一次函数,则一元二次方程kx 2+2x +1=0的根的情况为( )A .没有实数根B .有一个实数根C .有两个不相等的实数根D .有两个相等的实数根5.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )A .32B .126C .135D .1446.下列方程,是关于x 的一元二次方程的是( )A .(x +1)2=2(x +1) B.1x 2+1x-2=0 C .ax 2+bx +c =0 D .x 2+2x =x 2-17.若方程3x 2-4x -4=0的两个实数根分别为x 1,x 2,则x 1+x 2的值为( )A .-4B .3C .-43 D.438.使得代数式3x 2-6的值等于21的x 的值是( )A .3B .-3C .±3D .±39.用配方法解下列方程,配方正确的是( )A .2y 2-7y -4=0可化为2⎝⎛⎭⎫y +722=818 B .x 2-2x -9=0可化为(x -1)2=8C .x 2+8x -9=0可化为(x +4)2=16D .x 2-4x =0可化为(x -2)2=410.方程x -2=x (x -2)的解是( )A .x 1=x 2=1B .x 1=0,x 2=2C .x 1=x 2=2D .x 1=1,x 2=2二、填空题(每小题3分,共24分)11.把一元二次方程(x -3)2=4化为一般形式是____________,其中二次项为_______,一次项系数为_______,常数项为_______.12.已知x =1是一元二次方程x 2+ax +b =0的一个根,则代数式a +b 的值是________.13.如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是__________.14.若关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0,则m 的值等于________.15.若a 为方程x 2+x -5=0的解,则a 2+a +1的值为________.16.已知关于x 的一元二次方程x 2+(m +3)x +m +1=0的两个实数根为x 1,x 2,若x 21+x 22=4,则m的值为____________.17.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请_______支球队参加比赛.18.如图,邻边不相等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m 2,则AB 的长度是________m(可利用的围墙长度超过6m).三、解答题(共66分)19.(6分)解下列方程:(1)(2x -1)2=9;(2)x 2+3x -4=0;(3)2x 2+5x -1=0.20.(6分)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2-4ac >0的情况,她是这样做的:由于a ≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-c a,……第一步 x 2+b a x +⎝⎛⎭⎫b 2a 2=-c a +⎝⎛⎭⎫b 2a 2,……第二步 ⎝⎛⎭⎫x +b 2a 2=b 2-4ac 4a 2,……第三步 x +b 2a =b 2-4ac 4a 2,……第四步 x =-b +b 2-4ac 2a.……第五步 (1)嘉淇的解法从第_______步开始出现错误;事实上,当b 2-4ac >0时,方程ax 2+bx +c =0(a ≠0)的求根公式是__________.(2)用配方法解方程:x 2-2x -24=0.21.(8分)已知实数a ,b 是方程x 2-x -1=0的两根,求b a +a b的值.22.(8分)菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予九折优惠.试求小华购买蔬菜所需的费用.23.(9分)已知关于x的方程mx2-(m+2)x+2=0.(1)求证:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根?24.(9分)如图,某新建火车站站前广场需要绿化,该项绿化工程中有一块长为20米、宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56平方米,两块绿地之间及周边留有宽度相等的人行通道(如图),问人行通道的宽度是多少米?25.(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是______________斤(用含x的代数式表示).(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?26.(10分)如图,已知A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动.问:(1)P、Q两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?(2)P、Q两点从开始出发多长时间时,点P与Q之间的距离是10 cm?参考答案1.A2.B3.D 4.A 5.D 6.A 7.D 8.C 9.D 10.D11.x 2-6x +5=0 x 2 -6 512.-1 13.m <-4 14.2 15.616.-1或-3 17.718.1 解析:设AB 长为x m ,则BC 长为(6-2x )m.依题意得x (6-2x )=4,解得x 1=1,x 2=2.当x =1时,6-2x =4;当x =2时,6-2x =2(舍去).即AB 的长度为1m.19.解:(1)x 1=2,x 2=-1;(2分)(2)x 1=-4,x 2=1;(4分)(3)x 1=-5+334,x 2=-5-334.(6分) 20.解:(1)四 x =-b ±b 2-4ac 2a(2分) (2)x 2-2x =24,x 2-2x +1=24+1,(x -1)2=25,(4分)x -1=±5.∴x 1=6,x 2=-4.(6分)21.解:∵实数a ,b 是方程x 2-x -1=0的两根,∴a +b =1,ab =-1,(4分)∴b a +a b =b 2+a 2ab =(a +b )2-2ab ab=-3.(8分) 22.解:(1)设平均每次下调的百分率为x ,由题意得5(1-x )2=3.2,解得x 1=0.2=20%,x 2=1.8(舍去). 答:平均每次下调的百分率为20%.(4分)(2)3.2×0.9×5000=14400(元).(7分)答:小华购买蔬菜所需费用为14400元.(8分)23.(1)证明:∵当m ≠0时,Δ=(m +2)2-8m =m 2-4m +4=(m -2)2.∵(m -2)2≥0,∴Δ≥0,即方程有实数根.(3分)当m =0时,原方程变形为-2x +2=0,即x =1.∴不论m 为何值时,方程总有实数根;(5分)(2)解:解方程得x =m +2±(m -2)2m ,x 1=2m,x 2=1.(7分)∵方程有两个不相等的正整数根,∴m =1或2,当m =2时,Δ=0,不合题意,∴m =1.(9分)24.解:设人行通道的宽度为x 米,则根据题意,得(20-3x )(8-2x )=56,解得x 1=2,x 2=263.(6分)当x =263时,8-2x <0,故舍去,∴x =2.(8分). 答:人行通道的宽为2米.(9分)25.解:(1)(100+200x )(3分)(2)根据题意得(4-2-x )(100+200x )=300,解得x 1=12,x 2=1.(6分)∵每天至少售出260斤,当x =12时,100+200x =200<260,当x =1时,100+200x =300>260,∴x =1.(9分)答:张阿姨需将每斤的售价降低1元.(10分)26.解:(1)设经过x s ,则BP =(16-3x )cm ,CQ =2x cm.由题意得(16-3x +2x )×6×12=33,解得x =5.(3分)答:经过5s ,四边形PBCQ 的面积是33cm 2.(4分)(2)设出发t s ,点P 与点Q 之间的距离是10cm ,则BP =(16-3t )cm ,CQ =2t cm.过Q 作QH ⊥AB 于H ,∴HQ =AD =6cm ,PH =|16-5t |cm.(6分)在Rt △PQH 中,由勾股定理得PH 2+HQ 2=PQ 2,即(16-5t )2+62=102,解得t 1=1.6,t 2=4.8.即出发1.6s 或4.8s 时,点P 与Q 之间的距离是10cm.(10分)第3章章末检测(时间:90分钟满分:120分)一.选择题(每小题3分,共30分)1.如果=,那么的值是()A.B.C.D.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=13.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.﹣1 B.(+1)C.3﹣D.(﹣1)4.如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10C.11 D.125.已知,△ABC∽△DEF,△ABC与△DEF的面积之比为1:2,当BC=1,对应边EF的长是()A.B.2C.3D.46.已知图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于O 点,对于各图中的两个三角形而言,下列说法正确的是()A.只有(1)相似B.只有(2)相似C.都相似D.都不相似7.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A .B .C .D .8.如图,身高1.8m 的小超站在某路灯下,发现自己的影长恰好是3m ,经测量,此时小超离路灯底部的距离是9m ,则路灯离地面的高度是( )A .5.4mB . 6mC . 7.2mD .9m9.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD .若B (1,0),则点C 的坐标为( )A .(1,2)B . (1,1)C . (,)D .(2,1)10.如图,△ABC 中,点D 在线段AB 上,且∠BAD=∠C ,则下列结论一定正确的是( )A .AB 2=AC•BD B .AB•AD=BD•BCC .AB 2=BC•BD D .AB•AD=BD•CD二.填空题(每小题4分,共32分)11.已知≠0,则的值为.12.如图,已知点C 是线段AB 的黄金分割点,且BC >AC .若S1表示以BC为边的正方形面积,S 2表示长为AB 、宽为AC 的矩形面积,则S 1与S 2的大小关系为 .13.给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有 (填序号).14.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之 比为 .15.已知△ABC ∽△DEF ,△ABC 与△DEF 的相似比为4:1,则△ABC 与△DEF 对应边上的高之比为 .16.如图,AD=DF=FB ,DE ∥FG ∥BC ,则S Ⅰ:S Ⅱ:S Ⅲ= .第8题图 第9题图 第10题图17.如图,是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD 的顶端C处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是 米(平面镜的厚度忽略不计).18.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,CD=2,BD=1,则AD 的长是 ,AC 的长是 .三.解答题(共58分)19.(8分)如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1.(2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2.(3)求△CC 1C 2的面积.20.(8分)已知:如图,在△ABC 中,∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B ,C 点重合),∠ADE=45°.求证:△ABD ∽△DCE .21.(10分)在平行四边形ABCD 中,E 为BC 边上的一点.连结AE .(1)若AB=AE ,求证:∠DAE=∠D ;(2)若点E 为BC 的中点,连接BD ,交AE 于F ,求EF FA 的值.第16题图 第17题图第18题图22.(10分)如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.23.(10分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?24.(12分)如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A,C的坐标;(2)反比例函数y=的图象经过点B,求k的值;(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.C 2.C 3.A 4.D 5.A 6.C 7.A 8.C 9.B 10.C 二.填空题(共8小题)11.12.S1=S213.①②④⑤14.:115.4:116.1:3:517.818.42三.解答题(共6小题)19.解:(1)如图:(2)如图所示:(a)(a)(3)如图所示:(b)(b)△CC1C2的面积为×3×6=9.20.证明:∵∠BAC=90°,AB=AC=1,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°﹣∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.21.证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴,∵E为BC的中点,∴BE=BC=AD,22.解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,∴MN=3;②图2,作∠ANM=∠B,则△ANM∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的长为3或.23.解:(1)∵四边形EGFH为矩形,∴BC∥EF,∴△AEF∽△ABC;(2)设正方形零件的边长为a在正方形EFGH中,EF∥BC,EG∥AD∴△AEF∽△ABC,△BFG∽△BAD∴,,∴,即.解得a=48.即正方形零件的边长为48.(3)设长方形的长为x,宽为y,当长方形的长在BC时,由(1)知:.∵,∴当,即x=60,y=40,xy最大为2400.当长方形的宽在BC时,,∵,∴当,即x=40,y=60,xy最大为2400,又∵x≥y,所以长方形的宽在BC时,面积<2400综上,长方形的面积最大为2400.24.解:(1)解一元二次方程x2﹣12x+36=0,解得:x1=x2=6,∴OA=OC=6,∴A(﹣6,0),C(6,0);(2)如图1,过点B作BE⊥AC,垂足为E,∵∠BAC=45°,∴AE=BE,设BE=x,∵BC=4,∴CE=,∵AE+CE=OA+OC,∴x+=12,整理得:x2﹣12x+32=0,解得:x1=4(不合题意舍去),x2=8∴BE=8,OE=8﹣6=2,∴B(2,8),把B(2,8)代入y=,得k=16.(3)存在.如图2,若点P在OD上,若△PDB∽△AOP,则,即解得:OP=2或OP=6∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP,则,即,解得:OP=12,∴P(0,12);如图4,若点P在OD上方,△BDP∽△AOP,则,即,解得:OP=4+2或OP=4﹣2(不合题意舍去),∴P(0,4+2);如图5,若点P在y轴负半轴,△PDB∽△AOP,则,即,解得:OP=﹣4+2或﹣4﹣2,则P点坐标为(0,﹣2﹣4)或(0,﹣4+2)(不合题意舍去).(0,2)或(0,6)或(0,12)或(0,﹣4+2)或(0,﹣2﹣4).第4章章末检测(时间:90分钟满分:120分)一、选择题(每小题3分,共36分)1.在Rt△ABC中,∠C=90°,sinA= ,那么tanB的值是()A. B. C. D.2.下列计算正确的是()A. sin60°﹣sin30°=sin30°B. sin245°+cos245°=1C. cos60D. cos303.在Rt△ABC中,已知∠C=90°,AC=12,BC=5,则cosA等于()A. B. C. D.4.在△ACB中,AB=10,sinA= ,则BC的长为()A. 6B. 7.5C. 8D. 不能确定5.在△ABC中,若|sinA-|+(cosB-)2=0,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°6.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B,C两地相距120海里.若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,则此时“中国海监50”的航行距离是()A. 40B. 60﹣20C. 20D. 207. 如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()A. B. C. D.8.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为()A. 24米B. 20米C. 16米D. 12米9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A. 34.14米B. 34.1米C. 35.7米D. 35.74米10.在Rt△中,∠C=90°,BC=1,那么AB的长为()A. B. C. D.11.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A. B. C. D.12.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A. B.C. D.二、填空题(每小题4分,共40分)13.河堤横断面如图,堤高BC=5米,迎水坡AB的坡度是1:(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是________ .14.在正方形的网格中,△ABC的位置如图,则tanB的值为________.15.一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为________米.16.王小勇操纵一辆遥控汽车从A处沿北偏西60°方向走10m到B处,再从B处向正南方走20m到C处,此时遥控汽车离A处________ m.17.如图,BD⊥AC于点D ,DE∥AB,EF⊥AC于点F,若BD平分∠ABC,则与∠CEF相等的角(不包括∠CEF)的个数是________.18.AE、CF是锐角三角形ABC的两条高,若AE:CF=3:2,则sinA:sinC等于________ .19. 如图,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是________km.20. 如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为________.21. 如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为________cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).22.计算:2sin45°=________.三、解答题(共3题,共44分)23.(14分)如图,海面上B、C两岛分别位于A岛的正东和正北方向.一艘船从A岛出发,以18海里/时的速度向正北方向航行2小时到达C岛,此时测得B岛在C岛的南偏东43°.求A、B两岛之间的距离.(结果精确到0.1海里)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】24. (14分)如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角(参考数据:≈1.73)为30°的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山AB的高度.25. (16分)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点(可用的参考数据:sin50°≈0.8,tan50°≈1.2)处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.参考答案一、选择题1.A2.B3.C4.D5.D6.B7.D8.D9.C 10.D 11.B 12.C二、填空题13.10m 14.15.2 16.1017.4 18.2:319.(20 ﹣20)20.4 21.14.1 22.三、解答题23.解:由题意得,AC=18×2=36海里,∠ACB=43°.在Rt△ABC中,∵∠A=90°,∴AB=AC•tan∠ACB=36×0.93≈33.5海里.故A、B两岛之间的距离约为33.5海里.24.解:过D作DE⊥BC于E,作DF⊥AB于F,设AB=x,在Rt△DEC中,∠DCE=30°,CD=100,∴DE=50,CE=50 .在Rt△ABC中,∠ACB=45°,∴BC=x.则AF=AB﹣BF=AB﹣DE=x﹣50,DF=BE=BC+CE=x+50 .在Rt△AFD中,∠ADF=30°,tan30°= ,∴,∴x=50(3+ )≈236.5.经检验:x=50(3+ )是原分式方程的解.答:山AB的高度约为236.5米.25.(1)解:∵∠BDC=45°,∠C=90°,∴BC=DC=20m.答:建筑物BC的高度为20m.(2)解:设DC=BC=xm,根据题意可得:tan50°= = ≈1.2,解得:x=25.答:建筑物BC的高度为25m.第5章章末检测(时间:45分钟满分:100分)一、选择题(本大题共8个小题,每小题3分,共24分)1.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为( )A.9.5万件B.9万件C.9 500件D.5 000件2.某鞋店试销一款女鞋,试销期间对不同颜色鞋的销量情况统计如下表:鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是( )A.平均数B.众数C.中位数 C.以上都不是3.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则( )A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定4.去年某校有1 500人参加中考,为了了解他们的数学成绩.从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有( )A.400名B.450名C.475名D.500名5.某校对460名初三学生进行跳绳技能培训,以提高同学们的跳绳成绩.为了解培训的效果,随机抽取了40名同学进行测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,从图中可以估计出该校460名初三学生中,能获得跳绳“优秀”的总人数大约是( )A.10B.16C.115D.1506.某校在“爱护地球绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:若该校共有1 000名学生,请根据以上调查结果估计该校学生的植树总棵数是( )A.58B.580C.1 160D.5 8007.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于( )A.50%B.55%C.60%D.65%8.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )A.45个B.48个C.50个D.55个二、填空题(本大题共6个小题,每小题3分,共18分)9.为了考察甲、乙两种油菜花的长势,分别从中抽取了20株测得其高度,并求得它们的方差分别为s甲2=3.6米2,s乙2=12.8米2,则种油菜花长势比较整齐.10.从某市5 000份试卷中随机抽取了400份试卷,其中有360份成绩合格,估计全市成绩合格的人数约为.11.从某校参加毕业会考的学生中,随机抽查了20名学生的数学成绩,分数如下:90 84 88 86 98 78 61 54 100 9795 84 70 71 77 85 72 63 79 48可以估计该校这次参加毕业会考的数学平均成绩为.12.某学校为了做好道路交通安全教育工作,随机抽取本校100名学生就上学的交通方式进行调查,根据调查结果绘制扇形图如图所示.若该校共有1 000名学生,请你估计全校步行上学的学生人数约有人.13.漳州市某校在开展庆“六·一”活动前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:请你估计该校七年级学生中,最喜欢“投篮”这项活动的约有人.14.为了了解某校九年级学生的身体素质情况,在该校九年级随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出频数分布直方图(如图,每组数据可含最小值,不含最大值),如果在一分钟内跳绳次数少于120次的为不合格,那么可以估计该校九年级300名学生中跳绳不合格的人数为.三、解答题(共58分)15.(10分)下表是某居民小区五月份的用水情况:(1)计算20户家庭的月平均用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计这500户家庭该月共用水多少立方米?16.(12分)某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:现在该经销商要进200双上述五种女运动鞋,你认为应该怎样进货比较合理?17.(12分)某家灯具厂为了比较两种灯泡的使用寿命,各抽8只做试验,结果如下表(单位:小时):哪种灯泡的使用寿命较长?哪种质量比较稳定?18.(12分)以“光盘”为主题的公益活动越来越受到社会的关注.某校为培养学生勤俭节约的习惯,随机抽查了部分学生(态度分为:赞成、无所谓、反对),并将抽查结果绘制成图1和图2(统计图不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共抽查了多少名学生?(2)将图1补充完整;(3)根据抽样调查结果,请你估计该校3 000名学生中有多少名学生持反对态度?19.(12分)某市对参加2012年中考的50 000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a的值为,b的值为,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是,并根据上述信息估计全市初中毕业生中视力正常的学生有多少人?参考答案1.A2.B3.A4.B5.C6.D7.C8.A9.甲10.4 500 11.79 12.400 13.160 14.7215.(1)20户家庭的月平均用水量=425367859211201⨯+⨯+⨯+⨯+⨯+⨯=6.7(米3).(2)这500户家庭该月共用水量=6.7×500=3 350(米3).16.由调查结果可以确定35.5,36,36.5,37,37.5号码的鞋的比例为2∶3∶8∶6∶1. ∴进200双鞋时,各种号码分别应进货为:号码为35.5:200×110=20(双);号码为36:200×320=30(双);号码为36.5:200×25=80(双);号码为37:200×310=60(双);号码为37.5:200×120=10(双).17.两种灯泡使用寿命的平均数是x25瓦=452,x40瓦=455;两种灯泡使用寿命的方差是s225瓦=78,s240瓦=114.5.因为x25瓦<x40瓦,所以40瓦灯泡的使用寿命较长.因为s225瓦<s240瓦,所以25瓦灯泡的质量较稳定.18.(1)130÷65%=200(名),即此次抽样调查中,共抽查了200名学生. (2)“反对”的学生有:200-130-50=20(名).图略.(3)3 000×20200=300(名),即估计约300名学生持反对态度.19.(1)60 0.05 补全图形略.(2)4.6≤x<4.9.(3)35%,50000×35%=17500(人).。
湘教版九年级上数学第一章反比例函数测试题及答案
湘教版九年级上数学第一章反比例函数测试题及答案(总6页)-本页仅作为预览文档封面,使用时请删除本页-2九年级上数学第一章反比例函数测试题(时限:100分钟 总分:100分)班级 姓名 总分一、 选择题(本题共8小题,每小题3分,共24分)1. 下列各点中,在反比例函数3y x=图象上的是( ) A. 3,(1) B. 3,(-1) C. 13,3⎛⎫ ⎪⎝⎭ D.133⎛⎫⎪⎝⎭,2. 已知函数ky x=的图象过点(1,-2),则该函数的图象必在( ) A. 第二、三象限 B. 第二、四象限 C. 第一、三象限 D. 第三、四象限 3. 若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围 是( ) A .2->mB .2-<mC .2>mD .2<m4. 已知三角形的面积一定,则底边a 与其上的高h 之间的函数关系的图象大致是( )A B C D5. 6x图象上有三个点112233(,),(,),(,)x y x y x y ,其中1230x x x <<<,则123,,y y y 的大小关系是 ( )A. 123y y y <<B. 312y y y <<haO h Oha O ha O3C. 213y y y <<D. 321y y y << 6. 若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系中的大致图象可能是( )7. 如图,函数11y x =-和函数22y x=的图象相交于点 (2,)M m , (1,)N n -,若12y y >,则x 的取值范围是( )A .102x x <-<<或B .12x x <->或C .1002x x -<<<<或D .102x x -<<>或二、填空题(本题共8小题,每小题3分,共24分)9. 反比例函数ky x=的图象经过点,3(-2),则函数的解析式为____________. 10. 已知y 与21x +() 成反比例,且当=1x 时,=3y ,那么当=0x 时,=y __________.11. 有一面积为60的梯形,其上底长是下底长的13,若下底长为x ,高为y ,则y 与x 的函数关系式为____________.12. 近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 .13. 反比例函数4y x= 图象的对称轴的条数是 条.14. 如图,反比例函数xky =的图象位于第一、三象限,其中y x O C y x O Ay x O Dy x OB O xyA 34第一象限内的图象经过点A (1,3),请在第三象限内的图象 上找一个你喜欢的点P ,你选择的P 点坐标为 .15.正比例函数y =x 与反比例函数y =1x 的图象相交于A 、C两点.AB ⊥x 轴于B ,CD ⊥y 轴于D (如图),则四边形 ABCD 的面积为 .16. 如图,反比例函数xky =的图像上有两点()4,2A 、()b B ,4,则AOB ∆的面积为 .三、解答题(本大题共6小题,共52分)17. 你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的粗细(横截面积) S (m 2)的反比例函数,其图象如图所示.⑴ 写出y (m )与S (mm 2)的函数关系式; ⑵ 求当面条横截面积为 mm 2时,面条的总长度是多少米?S y(m)(mm 2)OP(4,32)1008060402054321xABDy OC xyOAB518. 如图,在平面直角坐标系xOy 中,反比例函数xy 2-=的图象与一次函数k kx y -= 的图象的一个交点为(1,)A n -.(1)求这个一次函数的解析式;(2)若P 是x 轴上一点,且满足45APO ∠=︒, 求点P 的坐标.19. 如图,在平面直角坐标系xOy 中,正比例函数32y x =-与反比例函数ky x=的图象在第二象限交于点A ,且点A 的横坐标为-2.(1) 求反比例函数的解析式;(2)点B 的坐标为(-3,0),若点P 在y 轴上,且△AO B 的面积 与△AOP 的面积相等,直接写出点P 的坐标.20.一次函数y ax b =+的图像与反比例函数ky x=的图像交于(2,)M m 、(1,4)N -- 两点.(1)求反比例函数和一次函数的解析式;(2)根据图像写出使反比例函数值大于一次函数值的x 取值范围.622. 如图,一次函数b ax y +=的图象与反比例函数xky =的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 的面积相等?若存在,给出证明并求出点P 的坐标; 若不存在,说明理由.y xD(4,m)C(1,4)ABO7九年级数学第一章反比例函数测试题参考答案一、选择题:; 2. B ; ; ; ;6. B ;;二、填空题:9. 6y x=-; 10. 9; 11. 900)y x x=>(; 12. 100y x=; 13. 2; 14. 答案不唯一, x 、y 满足3xy =,且0x <、0y <即可; 15. 2; 16. 6三、解答题:17. (1)128(0)y S S => (2)80m y =18. (1)∵ 点A (1,)n -在反比例函数xy 2-=的图象上,∴ 2n =.∴ 点A 的坐标为12-(,).∵ 点A 在一次函数y kx k =-的图象上, ∴2k k =--. ∴1-=k . ∴ 一次函数的解析式为1+-=x y . (2)点P 的坐标为(-3,0)或(1,0).19. (1)∵正比例函数32y x =-的图象经过点A ,且点A 的横坐标为2-,∴点A 的纵坐标为3.∵反比例函数k y x =的图象经过点A (2,3-), ∴32k =-. ∴6k =-. ∴6y x=-.(2)点P 的坐标为9(0,)2或9(0,)2-.820. (1)4y x=,22y x =-; (2)1x <-或02x <<.21. (1)40k =,80m =. (2)23.22. (1)4,1y m x== (2) 7.5CODS =(3)存在. 利用点C 、D 关于直线y x =对称. (2,2)P 或(2,2)P --..。
2020年湘教版九年级上册数学基础知识竞赛试卷及答案
数学知识竞赛初中试题答案 2015年下期九年级上册数学基础知识竞赛试卷一、选择题(每小题3分,共24分) 1.用配方法解一元二次方程x2?4x?3?0时可配方得()A.(x?2)2?7B.(x?2)2?1C.(x?2)2?1D.(x?2)2?2 2.在△ABC中,a=2 ,b=6 ,c=22 ,则最长边上的中线长为() A.2 B. 3 C.2D.以上都不对 aba?b 3.若b?20, c?10,则b?c的值为(). 1121110210 (A)21 (B)11 (C)21 (D)11 4.如图,是一块三角形草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边:的距离相等,凉亭的位置应选在()名姓A.三角形的三条中线的交点 B.三角形三边的垂直平分线的交点 C.三角形三条角平分线的交点 D.三角形三条高所在直线的交点 5.如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y?3 x (x?0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会( ) A.逐渐增大 B. 逐渐减小C.不变D.先增大后减小:级6.如图,在等腰梯形ABCD中,AB∥CD,对角线AC⊥BC,∠B=60°,BC=2cm,班则梯形ABCD的面积为() A.33cm2 B. 6cm2 C. 63cm2D.12cm2 7.将抛物线y?2x2?12x?16绕它的顶点旋转180°,所得抛物线的解析式是().A.y??2x2?12x?16 B.y??2x2?12x?16 C.y??2x2?12x?19 D.y??2x2?12x?20 18.若实数a,b满足2a?ab?b2?2?0,则a的取值范围是().(A)a≤?2 (B)a≥4 (C)a≤?2或 a≥4 (D)?2≤a≤4 二、填空题(每小题3分,共21分) 9.“等腰三角形两腰上的高相等”,这个命题的逆命题是 .10.方程x(x-1)=2(x-1)的解为. 11.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边 AC于点E,△BCE的周长等于18 cm,则AC的长等于cm. 12.在正方形ABCD中有一点E,△EAB是等边三角形,则∠CED为 . 13一个函数的图像关于y轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y?x2?bx?4是“偶函数”,该函数的图像与x轴交于点A和点B,顶点为P,那么△ABP的面积是 14.如图,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.如果∠BAC=30°,∠DAE=105°,则y与x之间的函数关系式为 . 15.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t=.三、解答题(共55分) 16.计算: 3tan600?|?3sin300|?cos2450 (6分) 17.在国家的宏观调控下,某市的商品房成交价由今年3月份的14000元/平方米下降到5 月份的12600元/平方米. (1)问4、5两月平均每月降价的百分率是多少?(参考数据:0.9?0.95) (2)如果房价继续回落,按照此前降价的百分率,你预测到7月份该市的商品房成交价是否会跌破10000元/平方米?请说明理由。
湘教版九年级上册数学全册单元测试卷
湘教版九年级上册初中数学全册试卷(5套单元试卷+1套期中试卷+1套期末试卷)第1章测试卷一、选择题(每题3分,共24分)1.下面的函数是反比例函数的是()A.y=3x-1B.y=x2C.y=13x D.y=-1x32.反比例函数的图象经过点(-2,3),则此函数的图象也经过点() A.(2,-3) B.(-3,-3) C.(2,3) D.(-4,6)3.若反比例函数y=k-1x的图象位于第一、三象限,则k的取值可能是()A.-1 B.0 C.1 D.24.已知反比例函数y=-2x,下列结论不正确的是()A.图象必经过点(-1,2) B.y随x的增大而减小C.图象位于第二、四象限D.若x>1,则-2<y<05.某厂现有300吨原材料,这些原材料的使用天数y与平均每天消耗的吨数x 之间的函数表达式是()A.y=300x(x>0) B.y=300x(x≥0)C.y=300x(x≥0) D.y=300x(x>0)6.反比例函数y=2x的图象上有两个点(x1,y1),(x2,y2),且x1<x2,则下列关系成立的是()A.y1>y2B.y1<y2C.y1=y2D.不能确定7.在同一坐标系中,函数y=kx和y=-kx+5的大致图象可能是()A B C D8.在学完反比例函数图象的画法后,嘉琪同学画出了函数y=ax-1的图象,如图所示,那么关于x的分式方程ax-1=2的解是()A.x=1 B.x=2 C.x=3 D.x=4 二、填空题(每题4分,共32分)9.反比例函数y=-5x的自变量x的取值范围是________________.10.反比例函数y=kx的图象经过点(3,-3),则k的值为________.11.若正比例函数y=-2x与反比例函数y=kx的图象的一个交点坐标为(-1,2),则另一个交点的坐标为____________.12.在某一电路中,保持电压不变,电流I(A)与电阻R(Ω)成反比例,其图象如图所示,则这一电路的电压为________V.13.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=kx(x>0)的图象经过顶点B,则k的值为____________.14.已知点P(m,n)在直线y=x+3上,也在双曲线y=2x上,则m2+n2的值为________.15.点A(-5,y1),B(-3,y2),C(2,y3)都在双曲线y=2 020x上,则y1,y2,y3的大小关系是____________.16.如图,点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上,且BC∶CA=1∶2,双曲线y=kx(x>0)经过点C,则k=____________.三、解答题(17~19题每题8分,20,21题每题10分,共44分)17.已知反比例函数y=2m-4x,若在每个象限内,函数值y随x的增大而减小,求m的取值范围.18.已知函数y=kx的图象经过点(-3,4).(1)求k的值,并在如图所示的正方形网格(每个小方格的边长为1个单位长度)中画出这个函数的图象;(2)当x取何值时,函数值小于0?19.如图,在菱形OABC中,点A的坐标为(10,0),对角线OB,AC相交于点D,OB·AC=160.双曲线y=kx(x>0)经过点D,交BC的延长线于点E.(1)求点C的坐标;(2)求双曲线的函数表达式.20.如图,一次函数y=kx+b与反比例函数y=4x的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M,N两点.(1)求一次函数的表达式;(2)根据图象直接写出当kx+b-4x>0时,x的取值范围;(3)求△AOB的面积.21.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1 mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,第3天时硫化物的浓度降为4 mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x/天 3 4 5 6 …硫化物的浓度y/(mg/L) 4 3 2.4 2 …(1)求整改过程中当0≤x<3时,硫化物的浓度y与时间x之间的函数表达式;(2)求整改过程中当x≥3时,硫化物的浓度y与时间x之间的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天内(含15天)不超过最高允许的1mg/L?为什么?答案一、1.C 2.A 3.D 4.B 5.A 6.D 7.D8.A :由图可知,函数y =a x -1的图象经过点(3,0),则a3-1=0, 解得a =3,所以由a x -1=2,得3x -1=2,解得x =1. 二、9.x ≠0 10.-9 11.(1,-2) 12.8 13.3214.13 :∵点P (m ,n )在直线y =x +3上,∴n -m =3, ∵点P (m ,n )在双曲线y =2x 上, ∴mn =2,∴m 2+n 2=(n -m )2+2mn =9+4=13. 15.y 3>y 1>y 216.2 :如图,连接OC ,∵点A 在双曲线y =6x (x >0)上,AB ⊥x 轴,∴S △OAB=12×6=3,∵BC ∶CA =1∶2, ∴S △OBC =3×13=1,∵双曲线y =kx (x >0)经过点C , ∴S △OBC =12|k |=1,∴|k |=2,∵双曲线y =kx (x >0)在第一象限,∴k =2.三、17.解:∵反比例函数y =2m -4x ,在每个象限内,函数值y 随x 的增大而减小,∴2m -4>0,解得m >2. 18.解:(1)把(-3,4)代入y =kx ,得k =-3×4=-12,∴y =-12x ,作图如图所示:(2)由图象可以看出,当x >0时,函数值小于0.19.解:(1)如图,过B 作BF ⊥x 轴于点F ,过D 作DG ⊥x 轴于点G ,过C 作CH ⊥x 轴于点H .∵A (10,0),∴OA =10,∴S 菱形ABCO =OA ·BF =12AC ·OB =12×160=80, 即10BF =80,∴BF =8.在Rt △ABF 中,AB =10,BF =8,由勾股定理可得AF =6,易知CH =BF =8.在Rt △OCH 和Rt △ABF 中,⎩⎨⎧OC =AB ,CH =BF ,∴Rt △OCH ≌Rt △ABF ,∴OH =AF =6, ∴点C 的坐标为(6,8).(2)由(1)得OF =OA +AF =10+6=16, ∵四边形OABC 为菱形,∴D 为OB 中点,易得DG =12BF =12×8=4,OG =12OF =12×16=8,∴D (8,4), ∵双曲线过点D ,∴4=k8,解得k =32, ∴双曲线的函数表达式为y =32x (x >0).20.解:(1)∵点A 在反比例函数y =4x 的图象上,∴4m =4,解得m =1,∴点A 的坐标为(1,4),又∵点B 也在反比例函数y =4x 的图象上,∴42=n ,解得n =2, ∴点B 的坐标为(2,2),又∵点A ,B 在y =kx +b 的图象上, ∴⎩⎨⎧k +b =4,2k +b =2,解得⎩⎨⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6.(2)根据图象得:当kx +b -4x >0时,x 的取值范围为x <0或1<x <2. (3)∵直线y =-2x +6与x 轴的交点为N ,∴点N 的坐标为(3,0), ∴S △AOB =S △AON -S △BON =12×3×4-12×3×2=3.21.解:(1)前3天的函数图象是线段,设函数表达式为y =kx +b . 把(0,10),(3,4)分别代入函数表达式,得⎩⎨⎧b =10,3k +b =4,解得⎩⎨⎧k =-2,b =10.所以当0≤x <3时,硫化物的浓度y 与时间x 之间的函数表达式为y =-2x +10.(2)当x ≥3时,设y =k x .把(3,4)代入函数表达式,得4=k3,所以k =12.所以当x ≥3时,硫化物的浓度y 与时间x 之间的函数表达式为y =12x .(3)能.理由:当x =15时,y =1215=0.8.因为0.8<1,所以该企业所排污水中硫化物的浓度能在15天内(含15天)不超过最高允许的1 mg/L.第2章测试卷一、选择题(每题3分,共24分)1.下列关于x 的方程是一元二次方程的是( ) A .3x (x -4)=0 B .x 2+y -3=0 C.1x 2+x =2D .x 3-3x +8=02.方程x 2=x 的解是( )A .x 1=x 2=1B .x 1=x 2=0C .x 1=-1,x 2=0D .x 1=1,x 2=03.方程2x 2+6x -1=0的两根为x 1,x 2,则x 1+x 2等于( ) A .-6 B .6 C .-3 D .34.用配方法解下列方程,其中应在两端同时加上9的是()A.x2-9x=5 B.2x2-6x=5 C.x2+6x=5 D.x2+3x=5 5.下列一元二次方程中,有实数根的方程是()A.x2-x+1=0 B.x2-2x+3=0C.x2+x-1=0 D.x2+4=06.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0,那么我们称这个方程为“美丽”方程.已知ax2+bx+c=0(a≠0)是“美丽”方程,且有两个相等的实数根,则下列结论正确的是()A.a=b=c B.a=b C.b=c D.a=c7.若(a+b)(a+b+2)=8,则a+b的值为()A.-4 B.2 C.4 D.-4或28.将进货单价为40元的商品按50元出售时,每天能卖500个,已知该商品每涨价1元,其每天的销量就要减少10个,为了每天赚8 000元利润,每个的售价应为()A.60元B.80元C.60元或80元D.100元二、填空题(每题4分,共32分)9.若m是方程x2=2x+3的根,则1-m2+2m的值为________________.10.对于实数a,b,定义运算“※”:a※b=a2+b,则方程x※(x-2)=0的根为________________.11.方程x2-9x+18=0的两个根是等腰三角形的底长和腰长,则这个三角形的周长为________.12.如果方程(m-3)xm2-7-x+3=0是关于x的一元二次方程,那么m的值为________.13.设m,n分别为一元二次方程x2-2x-2 022=0的两个实数根,则m2-3m -n=____________.14.共享单车为市民出行带来了方便,某单车公司第一个月投放1 000辆单车,计划第三个月投放单车数量比第一个月多440辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,则x满足的方程是________________________________.15.已知分式x2+x-2x-1的值为0,则x的值为____________.16.若a,b,c是△ABC中∠A,∠B,∠C的对边,且方程a(x2-1)-2c x+b(x2+1)=0有两个相等的实数根,则∠B=________°.三、解答题(17题16分,18~21题每题7分,共44分)17.解方程.(1)(x-5)2=16; (2)x2+5x=0;(3)x2-2x-1=0; (4)x2-5x+3=0;(5)x2-12x-4=0; (6)2x(x-3)+x=3;(7)4(2x-1)2-36=0; (8)4x2+12x+9=81.18.在实数范围内定义一种新运算“△”,其规则为a△b=a2-b2.(1)求4△3的值;(2)求(x+2)△5=0中x的值.19.关于x的一元二次方程x2+(2k-1)x+k2=0有两个不等实根x1,x2.(1)求实数k的取值范围;(2)若方程的两实根x1,x2满足x1+x2+x1x2-1=0,求k的值.20.如图,某农场要建一个矩形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用木栏围成,木栏长40 m.(1)若养鸡场的面积为200 m2,求养鸡场靠墙的一边长;(2)养鸡场的面积能达到250 m2吗?如果能,请给出设计方案;如果不能,请说明理由.21.【发现】x4-5x2+4=0是一个一元四次方程.【探索】根据该方程的特点,通常用“换元法”解方程:设x2=y,那么x4=y2,于是原方程可变为________________.解得y1=1,y2=________________.当y=1时,x2=1,∴x=±1;当y=____________时,x2=____________,∴x=____________.∴原方程有4个根,分别是____________________________.【应用】仿照上面的解题过程,解方程:(x2-2x)2+x2-2x-6=0.答案一、1.A 2.D 3.C4.C :将x 2+6x =5配方得x 2+6x +9=5+9,即(x +3)2=14.5.C :当判别式为非负数时,方程有实数根.a ,c 异号时判别式一定大于0. 6.D :由题意得a -b +c =0,∴b =a +c .∵方程有两个相等的实数根,∴Δ=b 2-4ac =(a +c )2-4ac =(a -c )2=0,∴a =c . 7.D 8.C 二、9.-210.x 1=1,x 2=-2 :根据题意,得x 2+x -2=0,则(x -1)(x +2)=0,∴x -1=0或x +2=0,解得x 1=1,x 2=-2.11.15 :解方程x 2-9x +18=0得x 1=3,x 2=6,所以腰长为6,底长为3,所以周长为15. 12.-313.2 020 :∵m ,n 分别为一元二次方程x 2-2x -2 022=0的两个实数根,∴m +n =2,m 2-2m =2 022,∴原式=m 2-2m -m -n =m 2-2m -(m +n )=2 022-2=2 020.14.1 000(1+x )2=1 000+44015.-2 :依题意得⎩⎨⎧x 2+x -2=0,x -1≠0,解得x =-2.16.90 :方程化为一般形式为(a +b )x 2-2cx -(a -b )=0.∵方程有两个相等的实数根,∴Δ=4c 2-4(a +b )[-(a -b )]=4c 2+4(a +b )(a -b )=4(a 2+c 2-b 2)=0,∴a 2+c 2=b 2,∴∠B =90°.三、17.解:(1)x 1=9,x 2=1. (2)x 1=0,x 2=-5. (3)x 1=1+2,x 2=1- 2. (4)x 1=5+132,x 2=5-132.(5)x 1=6+2 10,x 2=6-2 10.(6)x 1=3,x 2=-12.(7)x 1=-1,x 2=2.(8)x 1=3,x 2=-6. 18.解:(1)4△3=42-32=16-9=7. (2)由题意得(x +2)2-25=0,∴(x+2)2=25,∴x+2=±5,∴x+2=5或x+2=-5,解得x1=3,x2=-7.19.解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=0有两个不等实根x1,x2,∴Δ=(2k-1)2-4×1×k2=-4k+1>0,解得k<1 4.(2)由根与系数的关系得x1+x2=-(2k-1)=1-2k,x1x2=k2.∵x1+x2+x1x2-1=0,∴1-2k+k2-1=0,解得k=0或k=2.∵k<14,∴k=0.20.解:设垂直于墙的一边长为x m,则靠墙的一边长为(40-2x)m.(1)根据题意得x(40-2x)=200.解得x1=x2=10,∴养鸡场靠墙的一边长为40-2×10=40-20=20(m).(2)不能.理由如下:根据题意得x(40-2x)=250,∴-2x2+40x-250=0.∵Δ=402-4×(-2)×(-250)<0,∴方程无实数根,∴养鸡场的面积不能达到250 m2.21.解:【探索】y2-5y+4=0;4;4;4;±2;x1=1,x2=-1,x3=2,x4=-2 【应用】设m=x2-2x,则原方程可变为m2+m-6=0,解得m=2或m=-3.当m=2时,x2-2x=2,∴x=1±3;当m=-3时,x2-2x=-3,即x2-2x+3=0,∵Δ<0,∴方程无实数解.综上,原方程的解为x=1± 3.第3章测试卷一、选择题(每题3分,共24分)1.下列四组线段中,不是成比例线段的是()A.a=3,b=6,c=2,d=4 B.a=1,b=2,c=6,d= 3C.a=4,b=6,c=5,d=10 D.a=2,b=5,c=15,d=2 3 2.能判定△ABC∽△DEF的条件是()A.ABDE=ACDF B.ABDE=ACDF,∠A=∠FC.ABDE=ACDF,∠B=∠E D.ABDE=ACDF,∠A=∠D3.若△ABC∽△DEF,其面积的比为4∶9,则△ABC与△DEF的周长比为() A.2∶3 B.16∶81 C.3∶2 D.4∶94.如图,D是Rt△ABC的斜边BC上异于B,C的一点,过点D作直线截△ABC,使截得的三角形与△ABC相似,满足条件的直线共有()A.1条B.2条C.3条D.4条5.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.ADAB=AEAC B.CECF=EAFBC.DEBC=ADBD D.EFAB=CFCB6.在直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按1∶2把△EFO缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1) B.(8,-4)或(-8,4)C .(2,-1)D .(8,-4)7.如图,已知AB AD =BC DE =ACAE .下列结论错误的是( ) A .△ABC ∽△ADE B .∠BAD =∠CAE C .AD 平分∠BAC D .∠ABD =∠ACE8.如图,阳光通过窗口照到室内,在地面上留下一段亮区.已知亮区一边到窗下的墙脚距离CE =3.6 m ,窗高AB =1.2 m ,窗口底边离地面的高度BC =1.5 m ,则亮区ED 的长为( )A .1.5 mB .1.6 mC .1.8 mD .2.1 m二、填空题(每题4分,共32分)9.已知x y =23,则3x =________,y x =________,x +y y =________,xx +y =________.10.把长为5+1的线段进行黄金分割,则分成的较长线段的长为____________. 11.两个相似三角形的相似比为4∶5,其中一个三角形的一条中线长为20,则另一个三角形的对应边上的中线长为____________.12.如图,一组平行横线,其相邻横线间的距离都相等,已知点A ,B ,C ,D ,O 都在横线上,且线段AD ,BC 交于点O ,则AB ∶CD 等于____________.13.如图,在△ABC 中,DE ∥BC ,BD =2AD ,AE =3,则AC 的长是____________.14.如图,在△ABC 与△DEF 中,AB DE =BCEF ,∠B =∠E , CM ⊥AB ,FN ⊥DE ,点G 、H 分别是BC 、EF 的中点.若CM FN =23,则DHAG =____________.15.如图,在四边形 ABCD 中,AD ∥BC ,∠B =90°,AB =7,AD =3,BC =4.点P 为AB 边上一动点,若△P AD 与△PBC 相似,则满足条件的点P 有________个.16.如图,AD 是△ABC 的中线,点E 在AC 上,BE 交AD 于点F ,AF AD =14,则AEAC =________.三、解答题(17~20题每题8分,21题12分,共44分)17.如图,一条河的两岸有一段是互相平行的,为了测量河宽,王刚先站在岸边观察对岸的一目标B ,然后在岸边做一标记D ,使BD 垂直于岸边,再沿岸边走到点C ,接着垂直岸边走到点A ,使A ,B 和岸边的一点F 在一条直线上.如果量得AC =5 m ,FD =20 m ,CF =4 m ,那么河宽BD 是多少米?18.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(6,0),B(3,6),C(-3,3),以O为位似中心,画出四边形OABC的位似图形,使它与四边形OABC的位似比为1∶3,并求出四边形OABC的面积.19.如图,某人拿着一把长为12 cm的刻度尺站在离电线杆20 m的地方.他把手臂向前伸直,尺子竖直,尺子两端恰好遮住电线杆,已知臂长约为40 cm,求电线杆的高度.20.如图,在△ABC中,点D是AC上一点,已知AB=24,AC=18,AD=12.在AB上取一点E,若以A,D,E为顶点的三角形与△ABC相似,求线段AE 的长.21.如图,在△ABC中,∠C=90°,BC=8 cm,AC∶AB=3∶5,点P从点B 出发沿BC向点C以2 cm/s的速度移动,点Q从点C出发沿CA向点A以1 cm/s 的速度移动,P,Q两点同时出发,同时停止.(1)经过多少秒,△CPQ的面积为8 cm2?(2)经过多少秒,以C,P,Q为顶点的三角形恰与△ABC相似?答案一、1.C 2.D 3.A 4.C 5.C 6.A7.C :∵AB AD =BC DE =ACAE ,∴△ABC ∽△ADE (选项A 成立),∴∠BAC =∠DAE ,∴∠BAD =∠CAE (选项B 成立). ∵AB AD =ACAE ,∠BAD =∠CAE , ∴△ABD ∽△ACE ,∴∠ABD =∠ACE (选项D 成立).而AD 平分∠BAC 不一定成立.故选C. 8.B :根据题意,得AE ∥BD ,∴CD ∶CE =CB ∶CA . 又∵AB =1.2 m ,CE =3.6 m ,BC =1.5 m ,∴(3.6-ED )∶3.6=1.5∶(1.2+1.5),解得ED =1.6 m. 二、9.2y ;32;53;25 10.211.16或25 :设对应边上的中线长为x . ①若4∶5=20∶x ,则x =25; ②若4∶5= x ∶20,则x =16.综上,对应边上的中线长为16或25. 12.2∶3 13.9 14.3215.2 :∵AD ∥BC ,∴∠A =180°-∠B =90°,∴∠A =∠B =90°.设AP 的长为x ,则BP 的长为7-x .①若△APD ∽△BPC ,则AP ∶BP =AD ∶BC ,即x ∶(7-x )=3∶4,解得x =3;②若△APD ∽△BCP ,则AP ∶BC =AD ∶BP ,即x ∶4=3∶(7-x ),解得x =4或x =3.∴满足条件的点P 有2个.16.17 :如图,过点D 作DG ∥BE ,交AC 于点G .∴AE AG =AF AD =14.∵AD 是△ABC的中线,∴BD =DC ,∴CG EG =CD BD =1,∴AE AC =17.三、17.解:由题意得AC ∥BD , ∴△ACF ∽△BDF , ∴AC ∶BD =CF ∶FD ,又∵AC=5 m,FD=20 m,CF=4 m,∴BD=25 m.答:河宽BD是25 m.18.解:如图,四边形OA1B1C1和四边形OA2B2C2即为所求;四边形OABC的面积=9×6-12×3×6-12×3×6-12×3×3=31.5.19.解:如图,作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC,△ABC∽△AEF,∴BC∶EF=AM∶AN,∵AM=0.4 m,AN=20 m,BC=0.12 m,∴EF=BC·ANAM=0.12×200.4=6(m).答:电线杆的高度为6 m.20.解:∵∠A是公共角,∴△AED与△ABC相似分两种情况:①AD与AC是对应边时,∵AB=24,AC=18,AD=12,AE AB=ADAC,∴AE24=1218,解得AE=16;②AD与AB是对应边时,∵AB=24,AC=18,AD=12,AE AC=ADAB,∴AE18=1224,解得AE=9.综上,线段AE的长为9或16. 21.解:(1)设AC=3a cm,AB=5a cm,由勾股定理,得AB2=AC2+BC2,∴(3a)2+82=(5a)2,解得a=2(负值舍去),∴AC=6 cm,AB=10 cm. 设经过t s,△CPQ的面积为8 cm2,则PC=(8-2t)cm,CQ=t cm,∴12×(8-2t)×t=8,即t2-4t+8=0.∵Δ<0,∴此方程无解.答:不论经过多少秒,△CPQ的面积都不能为8 cm2.(2)设经过x s,以C,P,Q为顶点的三角形恰与△ABC相似.∵∠C=∠C,∴要使以C,P,Q为顶点的三角形恰与△ABC相似,则需有CQCA=CPCB或CQCB=CP CA,∴x6=8-2x8或x8=8-2x6,解得x=2.4或x=32 11.答:经过2.4 s或3211s,以C,P,Q为顶点的三角形恰与△ABC相似.第4章测试卷一、选择题(每题3分,共24分)1.2sin 45°=()A.22 B. 2 C.1 D. 32.在Rt△ABC中,∠C=90°,∠A, ∠B, ∠C的对边分别为a,b,c,下列结论正确的是()A.sin A=ab B.cos B=ac C.tan A=ba D.tan B=bc3.在△ABC中,∠A,∠C都是锐角,且sin A=32,tan C=3,则△ABC的形状是()A.直角三角形B.钝角三角形C.等边三角形D.不能确定4.已知α为锐角,且cos(90°-α)=12,则sin α的值为()A.33 B.22 C.12 D.325.如图,一河坝的横断面为梯形ABCD,AD∥BC,AB=CD,坝顶BC=10米,坝高BE=12米,斜坡AB的坡度i=1∶1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米(第5题)(第6题)6.如图,某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/时的速度沿北偏西60°方向航行23小时到达B处,那么tan∠ABP的值为()A.12B.2 C.55 D.2 557.如图,直线y=34x+3分别与x轴,y轴交于A,B两点,则cos∠BAO的值是()A.45 B.35 C.43 D.34(第7题)(第8题)8.如图,测绘师在离古塔10米远的点C处测得塔顶A的仰角为α,他又在离古塔25米远的点D处测得塔顶A的仰角为β,若tan α·tan β=1,点D,C,B 在同一条直线上,则测绘师测得古塔的高度约为(参考数据:10≈3.162)() A.15.81米B.16.81米C.30.62米D.31.62米二、填空题(每题4分,共32分)9.计算:cos 30°+3sin 30°=________.10.在Rt△ABC中,∠C=90°,AB=2BC,则sin B的值为________.11.如图,方格纸中每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫作格点.△ABC的顶点都在方格纸的格点上,则cos A=________.12.如图,在▱ABCD中,AE⊥BD于点E,∠EAC=30°,AE=3,则AC的长等于________.13.如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了________米.14.如图,菱形ABCD的周长为20 cm,且tan∠ABD=43,则菱形ABCD的面积为________cm2.15.如图,在△ABC中,AB=AC,∠A=45°,AC的垂直平分线分别交AB,AC 于点D,E,连接CD.如果AD=1,那么tan∠BCD=________.16.如图,一艘货轮以18 2 km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30 min后到达C 处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是____________km.三、解答题(17~19题每题8分,20,21题每题10分,共44分)17.计算:|tan 60°-3|+3tan 30°+2cos 30°-(2 020-sin 45°)0.18.如图,在△ABC中,AD是BC边上的高,∠C=45°,sin B=13,AD=1.求BC的长.19.如图,在四边形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为E.若AD=12,AB=2 3,求CE的长.20.如图,长沙市岳麓山某处有一座信号塔AB,山坡BC的坡度为i=1∶3,现为了测量塔高AB,测量人员选择山坡C处为一测量点,测得∠DCA=45°,然后他沿着山坡向上行走100 m到达点E处,再测得∠FEA=60°.(1)求山坡BC的坡角∠BCD的度数;(2)求塔顶A到CD的铅直高度AD和塔高AB(精确到1 m,参考数据:3≈1.73,2≈1.41).21.为了应对人口老龄化问题,国家大力发展养老事业.某养老机构定制轮椅供行动不便的老人使用.如图是一种型号的手动轮椅的侧面示意图,该轮椅前后长度为120 cm,后轮半径为24 cm,CB=CD=24 cm,踏板CB与CD垂直,横档AD、踏板CB与地面所成的角分别为15°、30°.求:(1)横档AD的长;(2)点C距地面的高度.(sin 15°≈0.26,cos 15°≈0.97,精确到1 cm)答案一、1.B :2sin 45°=2×22= 2.2.B :根据三角函数定义:sin A =a c ,cos B =a c ,tan A =a b ,tan B =b a .3.C :∵∠A ,∠C 都是锐角,sin A =32,tan C =3,∴∠A =60°,∠C =60°,∴∠A =∠B =∠C =60°,∴△ABC 为等边三角形. 4.C :∵cos(90°-α)=sin α,又cos(90°-α)=12,∴sin α=12.5.D :∵坝高BE =12米,斜坡AB 的坡度i =1∶1.5,∴AE =1.5BE =18米.∵BC =10米,AD ∥BC ,AB =CD ,∴易得AD =2AE +BC =2×18+10=46(米). 6.A :在△P AB 中,∠APB =60°+30°=90°,P A =20海里,PB =60×23=40(海里),故tan ∠ABP =P A PB =2040=12.7.A :当x =0时,y =3,当y =0时,x =-4,∴A (-4,0),B (0,3),∴OA=4,OB =3. 在Rt △AOB 中,由勾股定理得AB =5,则cos ∠BAO =OA AB =45. 8.A :∵BC =10米,BD =25米,∴在Rt △ABC 中,AB =BC ·tan α=10tan α米,在Rt △ABD 中,AB =BD ·tan β=25tan β米. ∵tan α·tan β=1, ∴AB 2=10tan α·25tan β=250,∴AB =250=510≈5×3.162=15.81(米).二、9.3 :cos 30°+3sin 30°=32+3×12= 3.10.32 :∵AB =2BC ,∴AC =AB 2-BC 2=(2BC )2-BC 2=3BC ,∴sin B=AC AB =3BC 2BC =32. 11.2 5512.4 3 :设AC ,BD 相交于点O .在Rt △AEO 中,cos ∠EAO =AE AO ,即cos 30°=3AO ,解得AO =2 3. ∵四边形ABCD 是平行四边形,∴AC=2AO=4 3.13.100:∵tan A=BCAC=13=33,∴∠A=30°,∴BC=AB·sin 30°=200×12=100(米).14.24:连接AC交BD于点O,则AC⊥BD.∵菱形的周长为20 cm,∴菱形的边长为5 cm.在Rt△ABO中,tan∠ABO=OAOB=43,故可设OA=4x cm,OB=3x cm.又∵AB=5 cm,根据勾股定理可得,OA=4 cm,OB=3 cm,∴AC=8 cm,BD=6 cm,∴菱形ABCD的面积为12×6×8=24(cm2).15.2-1:∵∠A=45°,AD=1,∴DE=AD·sin 45°=2 2.∵∠A=45°,AC的垂直平分线分别交AB,AC于点D,E,∴AE=DE=CE=2 2,∠A=∠ADE=∠EDC=∠DCE=45°,AD=CD=1,∴AC=2,∠ADC=90°,∴BD=AB-AD=AC-AD=2-1,∴tan ∠BCD=BDCD=2-1.16.18:如图,过点C作CE⊥AB于E,18 2×0.5=9 2(km),∴AC=9 2 km.∵∠CAB=45°,∴CE=AC·sin 45°=9 km.∵灯塔B在C处的南偏东15°方向,∴∠NCB=75°,∴∠B=30°,∴BC=CEsin B=18 km.三、17.解:原式=3-3+3×33+2×32-1=3-3+1+3-1=3.18.解:在Rt△ABD中,∵sin B=ADAB=13,AD=1,∴AB=3.∵BD2=AB2-AD2,∴BD=32-12=2 2.在Rt△ADC中,∵tan C=ADCD=tan 45°=1,∴CD=AD=1,∴BC=BD+CD=2 2+1.19.解:如图,过点A作AH⊥BC于点H,则AD=HC=1 2.∵在Rt△ABH中,∠B=30°,AB=2 3,cos B=BH AB,∴BH=AB·cos 30°=2 3×32=3,∴BC=BH+HC=72.∵CE⊥AB,∠B=30°,∴CE=BC·sin 30°=7 4.20.解:(1)依题意,得tan∠BCD=13=33,∴∠BCD=30°.(2)如图,过点E作EG⊥CD于点G.∵∠ACD=45°,∠BCD=30°,∴∠ACE=15°,∠DAC=45°.∵∠AEF=60°,∴∠EAF=30°.∵∠DAC=45°,∴∠EAC=∠DAC-∠EAF=15°,∴∠ACE=∠EAC,∴AE=CE=100 m.在Rt△AEF中,∠AEF=60°,∴AF=AE·sin 60°=50 3 m.在Rt △CEG 中,CE =100 m ,∠ECG =30°,∴EG =CE ·sin30°=50 m , ∴AD =AF +FD =AF +EG =50 3+50≈137(m).在Rt △BCD 中,DC =AD ≈137 m ,∠BCD =30°,∴BD =DC ·tan 30°≈79 m ,∴AB =AD -BD ≈58 m.21.解:(1)如图,过C 作CG ⊥BG 于G ,过D 作DF ∥BG 交GC 的延长线于F ,过A 作AE ⊥DF 于E .在Rt △DFC 中,FC =DC ·sin 30°=24×12=12 (cm),DF =DC ·cos 30°=24×32=12 3 (cm).在Rt △BCG 中,CG =BC ·cos 30°=24×32=12 3(cm),∴AE =120-24-12-12 3≈63.2(cm).在Rt △ADE 中,AD =AE cos 15°≈63.20.97≈65(cm). 因此,横档AD 的长约为65 cm.(2)在Rt △ADE 中,DE =AD ·sin 15°≈65×0.26=16.9 (cm),∴点C 距地面的高度为DE +24-DF ≈16.9+24-12 3≈20(cm). 因此,点C 距地面的高度约为20 cm.第5章测试卷一、选择题(每题3分,共24分)1.从总体中抽取一个样本,计算出样本方差为3,可以估计总体方差() A.一定大于3 B.约等于3C.一定小于3 D.与样本方差无关2.从250个数据中随机抽取50个作为样本进行统计,在频率分布表中,落在90.5~100.5这一组的频率是0.12,那么估计这250个数据在90.5~100.5的有()A.60个B.30个C.12个D.6个3.刚刚喜迁新居的赵伟为估计今年四月份(30天)的家庭用电量,在四月份上旬连续8天同一时刻观察电表显示的千瓦时数并记录如下:日期1号2号3号4号5号6号7号8号电表显示数/千瓦时27 30 34 41 47 50 55 62 估计赵伟家四月份用电总量为()A.1 297.5千瓦时 B.1 482.9千瓦时C.131.25千瓦时D.150千瓦时4.随机抽查某商场六月份5天的营业额分别如下(单位:万元):3.4,2.9,3.0,3.1,2.6,估计这个商场六月份(30天)的营业额是()A.90万元B.450万元C.3万元D.15万元5.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成如图所示的条形统计图,据此可以估计该校所有学生平均每人每天的课外阅读时间为()A.1小时B.0.9小时C.0.5小时D.1.5小时6.某校举办了一次知识竞赛,为了评价甲、乙、丙、丁四个班学生的竞赛成绩,先分别从四个班各随机抽取了10名学生的成绩. 他们成绩的平均分都是75分,方差分别为0.5,2.5,1.1,0.3.那么这四个班的竞赛成绩较稳定的是() A.甲班B.乙班C.丙班D.丁班7.娄底市质检部门对某酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸(单位:片)分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为()A.95% B.92% C.97% D.98%8.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助生物工作者估计这片山林中雀鸟的数量约为()A.1 000只B.10 000只C.5 000只D.50 000只二、填空题(每题4分,共32分)9.甲、乙两台机器分别灌装每瓶质量为500克的酸奶,从甲、乙灌装的酸奶中分别随机抽取了30瓶,测得它们实际质量的方差是s甲2=4.8,s乙2=3.6,那么________(填“甲”或“乙”)机器灌装的酸奶质量较稳定.10.某校在一次健康知识竞赛活动中,随机抽取部分同学测试的成绩为样本(成绩为整数),绘制的成绩频数分布直方图如图所示,若这次测试成绩80分以上(不含80分)为优秀,则优秀率为________%.11.岳阳市教育局为了解本市2019年九年级学生的身体素质情况,随机抽取了1 000名九年级学生进行检测,身体素质达标率为95%,那么估计岳阳市12万名九年级学生中身体素质达标的大约有________万人.12.某班环保小组的6名同学记录了自己家中一周内丢弃的塑料袋的数量分别如下(单位:个):33,25,28,26,25,31.如果该班有45名学生,估计全班同学家中本周共丢弃塑料袋________个.13.某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”“反对”“弃权”三种意见的人数进行统计,绘制成如图所示的扇形统计图.若该校有1 000名学生,则赞成该方案的学生约有________人.14.常德市某校在开展庆“六一”活动前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:你最喜欢的活动跳舞唱歌投篮跳绳其他人数 6 9 13 10 2请你估计该校七年级学生中最喜欢“投篮”这项活动的有________人.15.九(1)班同学为了解2019年某小区家庭月均用水量情况,随机调查了该小区部分家庭,并将调查数据整理如下:月均用水量x/t 频数/户频率0<x≤5 6 0.125<x≤100.2410<x≤1516 0.3215<x≤2010 0.2020<x≤25 425<x≤30 2 0.04若该小区有1 000户家庭,根据调查数据估计该小区月均用水量超过20 t的家庭有________户.16.为了考察甲、乙两种小麦的长势,某农研所科技人员分别从中随机抽取10株麦苗,测得苗高(单位:cm)如下表:则____________种小麦的长势比较整齐.(填“甲”或“乙”)三、解答题(17,18题每题8分,19,20题每题9分,21题10分,共44分) 17.甲、乙两人在10次打靶测试中命中的环数如下:甲:7,8,9,7,10,10,9,10,10,10乙:10,8,7,9,8,10,10,9,10,9(1)分别计算甲、乙两人这10次测试成绩的平均数和方差;(2)推荐一人参加射击比赛,你认为谁更合适,请说明理由.18.为了解某市市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制了如下尚不完整的统计表:(1)补全表格中①~④的数据;(2)将每天阅读时间不低于60 min的市民称为“阅读爱好者”,若该市约有800万人,请估计该市能称为“阅读爱好者”的市民约有多少万人.19.某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其他),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):学生孝敬父母情况统计表学生孝敬父母情况条形统计图根据以上信息解答下列问题:(1)求这次被调查的学生有多少人;(2)求表中m,n,p的值,并补全条形统计图;(3)该校有1 600名学生,估计该校全体学生中选择B选项的有多少人.20.为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下统计图表.根据图表中提供的信息,回答下列问题:(1)在样本中,男生身高的中位数落在________组(填组别序号),女生身高在B组的人数有________人;(2)在样本中,身高在150≤x<155之间的人数共有________人,身高人数最多的在________组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生约有多少人.21.据湖南省环保网发布的消息,某市空气质量评价连续两年居全省14个城市之首,下表(一)是该市2019年5月份前10天的空气质量指数统计表.(一)2019年5月1日~10日空气质量指数(AQ I)情况(二)空气质量污染指数标准(AQ I)(1)请你计算这10天该市空气质量指数的平均数,并据此判断这10天该市空气质量平均情况属于哪个等级(结果保留整数);(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)该市空气质量“达标”的天数(结果保留整数).答案一、1.B 2.B 3.D 4.A 5.A 6.D 7.B8.B二、9.乙10.6611.11.412.1 260 13.70014.13015.12016.乙:∵x甲=110×(10+12+12+14+11+13+14+12+11+11)=12,x乙=110×(10+11+13+12+12+11+13+14+12+12)=12,∴s甲2=110×[(10-12)2+3×(11-12)2+3×(12-12)2+(13-12)2+2×(14-12)2]=1.6,s乙2=110×[(10-12)2+2×(11-12)2+4×(12-12)2+2×(13-12)2+(14-12)2]=1.2,∵s甲2>s乙2,∴乙种小麦的长势比较整齐.三、17.解:(1)x甲=110×(7+8+9+7+10+10+9+10+10+10)=9(环),x乙=110×(10+8+7+9+8+10+10+9+10+9)=9(环),s甲2=110×[2×(7-9)2+(8-9)2+2×(9-9)2+5×(10-9)2]=1.4,s乙2=110×[(7-9)2+2×(8-9)2+3×(9-9)2+4×(10-9)2]=1.(2)乙更合适.理由:由(1)可得x甲=x乙,s甲2>s乙2,可推测乙的成绩更稳定,∴推荐乙参加射击比赛更合适.18.解:(1)①0.45②100③0.05④1 000(2)根据题意得800×(0.1+0.05)=120(万人).答:估计该市能称为“阅读爱好者”的市民约有120万人.19.解:(1)48÷0.2=240(人).∴这次被调查的学生有240人.(2)m=240×0.15=36,n=240×0.4=96,p=60÷240=0.25.补全条形统计图如图所示:(3)1 600×0.25=400(人).∴该校全体学生中选择B选项的有400人.20.解:(1)D;12(2)16;C(3)500×12+142+4+8+12+14+480×(30%+15%)=541(人).答:估计身高在155≤x<165之间的学生约有541人.21.解:(1)x=110×(28+38+94+53+63+149+53+90+84+35)=68.7≈69,在51~100之间,∴这10天该市空气质量平均情况属于良.(2)∵这10天中空气质量“达标”的天数为9天,∴365×910=328.5≈329(天),∴今年该市空气质量“达标”的天数为329天.期中测试卷一、选择题(每题3分,共24分)1.如图,反比例函数y =kx 的图象经过点A (2,1), 该反比例函数的表达式为( ) A .y =12x B .y =-12x C .y =2x D .y =-2x2.把一元二次方程(1-x )(2-x )=3-x 2化成一般形式ax 2+bx +c =0(a ≠0),其中a ,b ,c 分别为( )A .2,3,-1B .2,-3,-1C .2,-3,1D .2,3,1 3.若反比例函数y =m -2x 的图象在每个象限内y 随x 的增大而增大,则m 的取值范围是( )A .m >-2B .m <-2C .m >2D .m <2 4.若a b =53,则a -b a 的值为( ) A.23B.25C.35 D .-235.点P 1(x 1,y 1),P 2(x 2,y 2)在双曲线y =-1x 上,若x 1<0<x 2,则下列结论正确的是( )A .y 1<y 2<0B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 2 6.某型号手机原来销售单价是4 000元,经过两次降价促销,现在的销售单价是2 560元,若两次降价的百分率相同,则每次降价的百分率为( ) A .10% B .15% C .20% D .25%7.如图,点D 在△ABC 的边AC 上,添加下列条件后不能判定△ADB 与△ABC 相似的是( )A .∠ABD =∠CB .∠ADB =∠ABC C.AB BD =CB CDD.AD AB =AB AC8.若y=k-1x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根二、填空题(每题4分,共32分)9.已知m是关于x的方程x2+4x-5=0的一个根,则2(m2+4m)=________.10.已知关于x的方程x2+4x+n=0可以配方成(x+m)2=3,则(m-n)2 020=________.11.关于x的一元二次方程x2+kx-2=0的一个根为x=-2,则方程的另一个根为________.12.如图,已知反比例函数y=ax和一次函数y=kx+b的图象相交于A(-1,y1)、B(4,y2)两点,则不等式ax≤kx+b的解集为______________.13.若两个相似三角形的面积的比为1∶4,则这两个三角形的对应边的中线之比为________.14.如图所示的小孔成像问题中,光线穿过小孔,在竖直的屏幕上形成倒立的实像.若像的长度CD=2 cm,点O到AB的距离是12 cm,到CD的距离是3 cm,则蜡烛的高度AB为________cm.15.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,则当力达到20 N时,此物体在力的方向上移动的距离是________m.。
湘教版九年级数学上册月考考试题及答案【汇总】
湘教版九年级数学上册月考考试题及答案【汇总】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是()A.1 B.2 C.3 D.49.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式:a2b+4ab+4b=_______.3x2-x的取值范围是__________.4.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a、b代数式表示).5.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为__________.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程:15102x x x x-+--=22.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B 《红楼梦》、C 《西游记》、D 《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、D5、B6、C7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、b(a+2)23、x2≥4、a+8b56、5三、解答题(本大题共6小题,共72分)1、x=7.2、(1)证明见解析(2)1或23、(1)相切,略;(2)4、(1)理由见详解;(2)2BD=或1,理由见详解.5、(1)50;(2)见解析;(3)16.6、(1)4元或6元;(2)九折.。
湘教版初中九年级上册期末复习卷 数学竞赛
一、选择题(每小题3分,满分24分)1.一元二次方程的根是( )A .x 1=1,x 2=6B .x 1=2,x 2=3C .x 1=1,x 2=-6D .x 1=-1,x 2=62.下列函数中,当x >0时,y 随x 的增大而减小的是( )。
A.x y =B.xy 1= C.x y 1-= D.2x y = 3. 一个斜坡的坡角为30°,则这个斜坡的坡度为( )。
A . 1:2 B. 3 :2 C. 1: 3 D. 3 :14.已知锐角α满足2sin(α+20°)=1,则锐角α的度数为( )。
A.10°B.25°C.40°D.45°6.抛物线y=x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )。
A.y=x 2+4x+3B. y=x 2+4x+5C. y=x 2-4x+3D.y=x 2-4x -513.某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h 随时间t 变化的图象是( )15、如图,已知电杆垂直于地面,小明测得拉线与地面的夹角为α,拉线底部与电线杆底部的距离为m ,由此可知拉线的长应为A 、m ·coc αB 、αcos mC 、αsin m D 、m ·tan α 16、一只蚂蚁在如图所示的光盘上任意爬行,已知两圆半径分别为12cm 和3cm ,蚂蚁在阴影内的概率为A 、161B 、41C 、21 D 、不能确定2、一副中国象棋有红黑两色棋子共32枚,其中红“炮”黑“炮”各有2枚,小2560x x --=A明任意摸出一枚棋子,摸到“炮”的概率是。
3、人的正常体温是37℃,当气温与体温的比成黄金分割比时,人会感到最舒适。
那么,你感觉最舒适的气温约是℃(精确到十分位)5、张明为了测量甲、乙两楼的高度,他在甲楼顶测得乙楼顶的仰角为30°,又测得乙楼底的俯角为45°,已知两楼之间的距离为30米,由此可知乙楼的高度为米(精确到0.01米)。
2015年湘教版九年级数学上第1章反比例函数检测题及答案
(2,y 3),则函数值y 1,y 2,y 3的大小关系是()第1章反比例函数检测题(满分:100分,时间:90分钟) 、选择题(每小题3分,共30分) 1. .( 2015 •天津中考)已知反比例函数 y=-,当1<x<3时,y 的取值范围是() X A.0< y<1 2.函数y = E 的图象经过点 x B.1<y<2 (bC.2<y<6 B.二 3.在同一直角坐标系中, 函数D.y>6,则函数y 二kx 一2的图象不经过第(C.三 k 和y = kx • 3的图象大致是(D.四)象限.) )如图,正比例函数 4. (2015 •山东青岛中考 k函数 y -的图象相交于 A 、B 两点,其中点x %> y 时,x 的取值范围是( A . x<- 2 或 x>2 C. - 2<x<0 或 0<x<2 y i = kix 的图象与反比例A 的横坐标为2,当第丄题图B . x<- 2 或 0<x<2 D . -2<x<0 或 x>2■t v ■■5.购买 只茶杯需15元,则购买茶杯的单价.与 的关系式为( ) (取实数) B. y = 15 (取整数) x D. y =15 (取正整数) x y =(2k -1)x 3k2^k A 的图象位于第二、四象限,贝V k 的值是( B.0 或 1 C.0 或 2 D.4 A 的坐标是(2,0),△ ABO 是 15 A. y =x 15 C . y 二 x 6. 若反比例函数 A. 0 (取自然数)7. (2015 •浙江温州中考)如图,点 边三角形,点 B 在第一象限.若反比例函数y 的值是( 的图象经过点B ,则 A. 1 B. 2C. 3D. 2 3第-题圈8.在函数—_— (a 为常数)的图象上有三点 x(-3,y i ),(-1,丫2),A .y2 ::: y3 ::: yiB . y3 m ::: yi C.yi ::: y2 ::: y3D .y3 :::yi :::y29. (2015?江苏连云港中考)如图,0为坐标原点,菱形 OABC 的顶点A 的坐标为(一3, 4),顶点C 在x 轴的负半轴上,函数 y=-(xv 0)的图象经过顶点 B ,贝U k 的值为( )10. (2014 •福州中考) 如图,已知直线 y x 2分别与x 轴、y 轴交于 代B 两点, 与双曲线y k 交于E , F 两点,若AB 2EF 则k 的值是() xA . 1B.1C . 1D . 324二、填空题(每小题3分,共24分)11. (2015 •福州中考)一个反比例函数图象过点 A 「2, 一3),则这个反比例函数的解析式是 _________ .412. 若点缆込:L 址在反比例函数y的图象上,则当函数值―「时,自变量x 的取x值范围是 ___________ .13. _______________________________________ 已知反比例函数 y =3^ -3,当m 时,其图象的两个分支在第一、三象限内;x当m _____ 时,其图象在每个象限内y 随x 的增大而增大.14. 若反比例函数y 丿-3的图象位于第一、三象限内,正比例函数y =(2k -9)x 的图象x过第二、四象限,则 k 的整数值是 __________ .15. 现有一批救灾物资要从 A 市运往B 市,如果两市的距离为 500千米,车速为每小时 千米,从A 市到B 市所需时间为丁小时,那么『与]之间的函数关系式为 _______________ ,『是丫的 _______ 函数.116.(湖北黄石中考)若一次函数 旷妲* t 的图象与反比例函数的图象没有公共点,-27A. -36x17. (2015南京中考)如图,过原点 O 的直线与反比例函数 y i 、y 2的图象在第一象限内分别交于点A 、B ,且A 为OB 的中点,若函数 %二,则y 与x 的函数表达式是 ______________k(1)求反比例函数 y 的解析式;xk(2)当反比例函数y 的值大于一次函数 y=2x-4的值时,x求自变量x 的取值范围.21. (5分)已知反比例函数 一匹兰(m 为常数)的图象经过点 A (- 1 , 6).x(1) 求m 的值;(2) 如图,过点 A 作直线AC 与函数归8的图象交于点B , x第18题图第17题图18. (2015?浙江绍兴中考)在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的3边均平行于坐标轴,A 点的坐标为(a , a ).如图,若曲线y (x 0)与此正方形的边x有交点,贝U a 的取值范围是 __________ .三、解答题(共46分)119. (5分)如图,正比例函数 y x 的图象与反比例函数2ky (k = 0在第一象限内的图象交于 A 点,过A 点作xx轴的垂线,垂足为 M ,已知△久懑 的面积为1. (1) 求反比例函数的解析式;(2) 如果B 为反比例函数在第一象限图象上的点(点 B 与 点A 不重合),且B 点的横坐标为1,在x 轴上求一点P , 使PA - PB 最小.20.(6分)(浙江中考)若反比例函数k y与一次函数y = 2x-4的图象都经过点xA(a,2).随x的增大而减小,所以 2 v y v 6,故选C.与x轴交于点C,且AB = 2BC,求点C的坐标.22. (6分)如图所示,是某一蓄水池的排水速度湮!匚:£冷h )与排完水池中的水所用的时 t ( h ) 之间的函数关系图象.(1) 请你根据图象提供的信息求出此蓄水池的蓄水量 (2) 写出此函数的解析式.(3) 若要6 h 排完水池中的水,那么每小时的排水量应该是多少? (4) 如果每小时的排水量是 占咬札 那么水池中的水需要多少小时排完?23. ( 6分)如图,在直角坐标系中, 0为坐标原点.已知反比例函数- -(M ) 的图象经过点A (2, m ),过点A 作AB 丄x 轴于点B ,且△ AOB 的面积为一2(1) 求k 和m 的值;(2) 点C ( x, y )在反比例函数 --的图象上,求当1$W 3fI -时函数值y 的取值范围;;■(3) 过原点0的直线I 与反比例函数 - -的图象交于P 、Q 两点,试根据图象直接写出线段 PQ 长度的最小值•(1) 求一次函数和反比例函数的解析式;图象与反比例函数y=-的图象交于 A ( 2,3)、B (-3,n )两点.■VI24. (6分)(2015 •贵州安顺中考)如图,在平面直角坐标系 xOy 中,一次函数 y= kx+b 的第21题图随x的增大而减小,所以 2 v y v 6,故选C.(2)若P是y轴上一点,且满足厶FAB的面积是5,直接写出OP的长.25.(6分)如图,已知直线y^x m与x轴、y轴分别交于点A、B,与反比例函数y2= kx (X gji:)的图象分别交于点C、D,且C点的坐标为(-1,2).⑴分别求出直线AB及反比例函数的解析式;⑵求出点D的坐标;⑶利用图象直接写出:当x在什么范围内取值时,y,>y2.26.(6分)制作一种产品,需先将材料加热达到60 C后,再进行操作•设该材料温度为y (C),从加热开始计算的时间为x (分钟).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例函数关系(如图).已知该材料在操作加工前的温度为15 C,加热5分钟后温度达到60 C.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式.(2)根据工艺要求,当材料的温度低于15 C时,须停止操作,那么从开始加热到停止操作,共经历了多长时间?ly「c)第1章反比例函数检测题参考答案1. C 解析:对于反比例函数yh,当x=1时,y=6,当x=3时,y=2,又因为在每个象限内y° 平10 K 韓2# 3C x(分钟)第26题图随x 的增大而减小,所以2 v y v 6,故选C.2. A解析:因为函数 y = k 的图象经过点(1 , -1),所以k =— 1,所以y=kx - 2=— xx—2,根据一次函数的图象可知不经过第一象限 .3. A解析:由于不知道 k 的符号,此题可以分类讨论,当 沖]时,反比例函数y 二号的图象在第一、三象限,一次函数 y 二kx • 3的图象经过第一、二、三象限,可知 A 项符合;同理可讨论当时的情况. 4. D 解析:%二&X 与y 2的图象均为中心对称图形,贝U A 、B 两点关于原点对称,x所以B 点的横坐标为-2,观察图象发现:在y 轴左侧,当-2<x<0时,正比例函数y j =k )x 的 图象上的点比反比例函数 y 2 =理 的图象上的点高;在 y 轴右侧,当x>2时,正比例函数xy 2=《的图象上的点高.所以当如>y 2时,x 的取值x 范围是-2<x<0或x>2.6. A 解析:因为反比例函数的图象位于第二、四象限,所以 ;-: -_=-:,所以总」〔或.-[(舍去).所以I ,故选A.7. C 解析:如图,设点B 的坐标为(x , y ),过点B 作BC 丄X 轴A于点C 在等边△ ABO中,。
湘教版九年级数学上册单元测试卷附答案第1章 反比例函数
第1章反比例函数一、选择题(共15小题;共60分)1. 下列函数中是反比例函数的是A. B. C. D.2. 一个矩形的面积是,则这个矩形的一组邻边长与的函数关系的图象是A. B.C. D.3. 已知点,,都在反比例函数的图象上,则A. B. C. D.4. 甲乙两地相距,某人从甲地到乙地的速度与时间的函数关系图象大致为A. B.C. D.5. 下列函数中,表示反比例函数的是A. B. C. D.6. 若反比例函数的图象过点,则一次函数的图象过A. 第一、二、四象限B. 第一、三、四象限C. 第二、三、四象限D. 第一、二、三象限7. 若双曲线经过点,则的值为A. B. C. D.8. 如图,点的坐标是,是等边三角形,点在第一象限.若反比例函数的图象经过点,则的值是A. B. C. D.9. 下列函数中不是反比例函数的是A. B.C. D.10. 下列各变量之间的关系属于反比例函数关系的有①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当电压一定时,电路中的电阻与通过的电流强度之间的函数关系;③当矩形面积一定时,矩形的两边与之间的函数关系;④当受力一定时,物体所受到的压强与受力面积之间的函数关系.A. ①②③B. ②③④C. ①③④D. ①②③④11. 已知,,是反比例函数的图象上三点,且,则,,的大小关系是A. B. C. D.12. 年月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为土石方的任务,该运输公司平均运送土石方的速度(单位:)与完成运送任务所需的时间(单位:天)之间的函数关系式是A. B. C. D.13. 反比例函数的图象上有两点,,若,则下列结论正确的是A. B. C. D.14. 如图,在平面直角坐标系中,菱形的边在轴上,反比例函数的图象经过菱形对角线的交点,且与边交于点,点的坐标为,则的面积为15. 反比例函数与一次函数的图形有一个交点,则的值为A. B. D.二、填空题(共8小题;共38分)16. 如果与成正比例,与成反比例,则与成比例.17. 如图,在轴的正半轴上依次截取,过点,,,,分别作轴的垂线与反比例函数的图象相交于点,,,,,得直角三角形,,,,,并设其面积分别为,,,,,则的值为.18. 若梯形的下底长为,上底长为下底长的,面积为,则与的函数关系是(不考虑的取值范围).19. 若一个反比例函数的图象经过和,则这个反比例函数的表达式为.20. 当时,函数是反比例函数.21. 如图,在平面直角坐标系中,过点分别作轴、轴的垂线与反比例函数的图象交于,两点,则四边形的面积为22. 有关部门计划修建的铁路长千米,则铺轨天数(天)关于日铺轨量(千米/天)的函数表达式是.23. 如图,矩形的边与轴平行,顶点的坐标为,点与点在反比例函数的图象上,则点的坐标为.三、解答题(共4小题;共52分)24. 某蓄水池的排水管每小时排水立方米,小时可将满池的水全部排空.(1)求蓄水池的容积是多少;(2)如果增加排水管,使每小时的排水量达到(立方米)将满池水排空所需的时间为(小时)试写出关于的函数解析式,并指出其定义域;(3)如果准备在小时内将满池水排空,那么每小时的排水量至少为多少?(4)已知排水管的最大排水量为每小时立方米,那最少多长时间可将满池水全部排空?25. 问题:已知反比例函数()图象上三点的坐标分别是,,,且,,,试判断,,的大小关系.解:因为这个反比例函数的比例系数,所以在每一象限内的值随着的值增大而减小.由,即,可知.试判断以上解法是否正确,如果不正确,请加以改正.26. 已知是反比例函数,求的值,并写出函数的解析式.27. 如图,矩形的顶点,分别在,轴的正半轴上,点为对角线的中点,反比例函数在第一象限内的图象经过点,与相交于点,且点.(1)求反比例函数的关系式;(2)求四边形的面积;(3)若反比例函数的图象与矩形的边交于点,将矩形折叠,使点与点重合,折痕分别与,轴正半轴交于点,,若,求直线的函数关系式.答案第一部分1. B2. D3. D4. B5. C6. A7. C8. C9. B10. D11. D12. A 【解析】,.13. D14. A15. C【解析】由题意,把代入,得..点为反比例函数与一次函数的交点,..第二部分16. 反18.19.【解析】由题意得,,,化简得:,解得:(舍去),,设反比例函数解析式为,把代入可得,反比例函数解析式为.20.21.22.23.【解析】四边形是矩形,顶点的坐标为,设,两点的坐标分别为,.点与点在反比例函数的图象上,,.点的坐标为.第三部分24. (1),(2)(),(3),(4)小时.25. 略.26. ;.27. (1),点为对角线的中点,,点在反比例函数上,,反比例函数的关系式为:.(2)反比例函数的关系式为,四边形是矩形,,,,,(3)设点,,反比例函数的图象与矩形的边交于点,,解得,,如图,连接,设,则,,在中,,即,解得,,,,,即,解得或(舍去)..设直线的解析式为,,.解得直线的解析式为.。
湘教版九年级上册数学单元测试题全套(含答案)
湘教版九年级上册数学单元测试题全套(含答案)第一章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(每小题3分,共36分)1.下列函数关系式中,y 不是x 的反比例函数的是( D )A .xy =5B .y =53xC .y =-3x -1 D .y =2x -32.点P (-3,1)在双曲线y =kx上,则k 的值是( A )A .-3B .3C .-13 D.133.下列图象中是反比例函数y =-2x图象的是( C )4.已知反比例函数y =kx的图象经过P (-4,3),则这个函数的图象位于( D )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限5.若函数y =3x m +1是反比例函数,则m 的值是( B ) A .2 B .-2 C .±2 D .36.函数y =kx的图象如图所示,那么函数y =kx -k 的图象大致是( C )7.在温度不变的条件下,一定质量的气体的压强p (Pa)与它的体积V (m 3)成反比例.当V =200 m 3时,p =50 Pa.则当p =25 Pa 时,V 的值为( B )A .40 m 3B .400 m 3C .200 m 3D .100 m 38.如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x(k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( A )A .(-1,-2)B .(-2,-1)C .(-1,-1)D .(-2,-2)第8题图 第11题图 第12题图9.△ABC 的边BC =y ,BC 边上的高AD =x ,△ABC 的面积为3,则y 与x 的函数图象大致是( A )10.下列说法中:①反比例函数y =kx(k ≠0)的图象是轴对称图形,且有两条对称轴;②反比例函数y =kx(k ≠0)的图象,当k <0时,在每一个象限内,y 随x 的增大而增大;③若y与z 成反比例关系,z 与x 成反比例关系,则y 与x 也成反比例关系;④已知xy =1,则y 是x 的反比例函数.正确的有( C )A .1个B .2个C .3个D .4个11.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1·k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( D )A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <112.★如图,A ,B 是双曲线y =kx上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( B )A.43B.83C .3D .4 第Ⅱ卷(非选择题 共84分)二、填空题(每小题3分,共18分)13.如果反比例函数y =kx(k 是常数,k ≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y 的值随x 的增大而 减小 .(填“增大”或“减小”)14.已知点A (1,m ),B (2,n )在反比例函数y =-2x的图象上,则m 与n 的大小关系是__m <n __.15.将油箱注满k L 油后,轿车行驶的总路程s (km)与平均耗油量a (L/km)之间是反比例函数关系s =ka(k 是常数,k ≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1L 的速度行驶,可行驶760 km ,当平均耗油量为0.08 L/km 时,该轿车可以行驶 950 km.16.★如图,已知点A 是反比例函数y =-2x的图象上的一个动点,连接OA ,若将线段OA 绕点O 顺时针旋转90°得到线段OB ,则点B 所在图象的函数表达式为 y =2x.第16题图 第18题图17.已知点A (-1,y 1),B (1,y 2)和C (2,y 3)都在反比例函数y =kx(k >0)的图象上,则 y 1< y 3 < y 2 (填“y 1”,“y 2”或“y 3”).18.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1.反比例函数y =3x的图象经过A ,B 两点,则菱形ABCD 的面积三、解答题(共66分)19.(6分)函数y =(m +1)x 3-m 2是反比例函数,且当x >0时,y 随x 的增大而减小,求m 的值.解:依题意有⎩⎪⎨⎪⎧3-m 2=-1,m +1> 0.解得m =2.20.(6分)已知反比例函数y =kx(k ≠0)的图象经过点B (3,2),点B 与点C 关于原点O对称,BA ⊥x 轴于点A ,CD ⊥x 轴于点D .(1)求这个反比例函数的表达式;(2)求△ACD 的面积.解:(1)将B(3,2)代入y =kx 得k =6,∴反比例函数的表达式为y =6x.(2)∵点B ,C 关于原点O 对称, BA ⊥x 轴,CD ⊥x 轴, ∴OD =OA ,CD =AB , ∴S △ACD =2S △AOB ,∵S △AOB =12OA·AB =k2=3.∴S △ACD =6.21.(8分)已知反比例函数y =k x ,当x =-13时,y =-6.(1)这个函数的图象位于哪些象限?y 随x 的增大如何变化?(2)当12<x <4时,求函数值y 的取值范围.解:(1)把x =-13,y =-6代入y =k x 中,得-6=k-13,则k =2,即反比例函数的表达式为y =2x.因为k > 0,所以这个函数的图象位于第一、第三象限,在每个象限内,y 随x的增大而减小.(2)将x =12代入表达式中得y =4,将x =4代入表达式中得y =12,所以函数值y 的取值范围为12< y < 4.22.(8分)如图,反比例函数y =kx的图象与直线y =x -2交于点A ,且A 点纵坐标为1.(1)求反比例函数的表达式;(2)当y >1时,求反比例函数中x 的取值范围. 解:(1)把y =1代入y =x -2中, 得x =3.∴点A 的坐标为(3,1).把点A(3,1)代入y =kx中,得k =3.∴反比例函数的表达式为y =3x.(2)∵当x < 0时,y < 0,当x > 0时,反比例函数y =3x的函数值y 随x 的增大而减小,把y =1代入y =3x中,得x =3,∴当y >1时,x 的取值范围为0< x < 3.23.(8分)某蓄电池组的电压为定值,使用此电源时,电流I (A)与电阻R (Ω)之间的函数关系如图所示.(1)该蓄电池组的电压是多少?写出I 与R 的函数关系式;(2)如果以此蓄电池组为电源的用电器限制电流不得超过10 A ,那么用电器的可变电阻应控制在什么范围内?解:(1)由图象可知I 是R 的反比例函数,设I =UR,其图象经过A(9,4),∴4=U9,得U =36,∴函数表达式为I =36R ;(2)由题意可知0< 36R≤10,∴R ≥3.6.答:用电器的可变电阻应不小于3.6 Ω.24.(10分)(安顺中考)如图,点A (m ,m +1),B (m +3,m -1)是反比例函数y =kx(x >0)与一次函数y =ax +b 的交点.(1)求反比例函数与一次函数的表达式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时,x 的取值范围.解:(1)由题意可知,m(m +1)=(m +3)(m -1).解得m =3. ∴A(3,4),B(6,2). ∴k =4× 3=12.∴反比例函数的表达式为y =12x.∵A 点坐标为(3,4),B 点坐标为(6,2),∴⎩⎨⎧3a +b =4,6a +b =2,∴⎩⎪⎨⎪⎧a =-23,b =6.∴一次函数的表达式为y =-23x +6.(2)0< x < 3或x > 6.25.(10分)平行四边形ABCD 在平面直角坐标系中的位置如图所示,其中A (-4,0),B (2,0),C (3,3).反比例函数y =mx的图象经过点C .(1)求此反比例函数的表达式;(2)将平行四边形ABCD 沿x 轴翻折得到平行四边形ABC ′D ′,请你通过计算说明点D ′在双曲线上;(3)请你画出△AD ′C ,并求出它的面积.解:(1)∵点C(3,3)在反比例函数y =m x 的图象上,∴3=m3,∴m =9.故反比例函数的表达式为y =9x;(2)∵四边形ABCD 是平行四边形,∴CD 綊AB. ∵A(-4,0),B(2,0),C(3,3),∴点D 的纵坐标为3,CD =AB =2-(-4)=6, ∴点D 的横坐标为3-6=-3,即D(-3,3). ∵点D′与点D 关于x 轴对称,∴D ′(-3,-3).把x =-3代入y =9x得,y =-3.∴点D′在双曲线上;(3)画图略.∵C(3,3),D ′(-3,-3),∴点C 和点D′关于原点O 中心对称,∴D ′O =CO =12D′C ,∴S △AD ′C =2S △AOC =2× 12AO·| y c |=2× 12× 4× 3=12,即S △AD ′C =12.26.(10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元.设2017年1月为第1月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图.)(1)分别求该化工厂治污期间及治污工程完工后y 与x 之间对应的函数关系式; (2)治污改造工程完工后经过几个月,该厂月利润才能达到2017年1月的水平? (3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?解:(1)治污期间y =200x(1≤x ≤5),治污工程完工后y =20x -60(x >5). (2)把y =200代入y =20x -60,得x =13,13-5=8,故治污改造工程完工后经过8个月,该厂月利润才能达到2017年1月的水平.(3)把y =100分别代入y =200x和y =20x -60中得到x 的值分别为2和8,8-2=6,所以该厂资金紧张期共有6个月.湘教版九年级数学上册第二章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(每小题3分,共36分)1.下列方程中,是关于x 的一元二次方程的是( A )A .(x +1)2=2(x +1) B.1x 2+1x-2=0C .ax 2+bx +c =0 D .x 2+2x =x 2-12.已知关于x 的方程x 2+x -a =0的一个根为2,则另一个根是( A ) A .-3 B .-2 C .3 D .63.把方程2x 2-4x -1=0化为(x +m )2=32的形式,则m 的值是( B )A .2B .-1C .1D .2 4.下列方程中,解为x =1±2的是( C ) A .x 2-1=3 B .(x +1)2=2 C .(x -1)2=2 D .(x -2)2=15.解方程2(x -1)2=3(3x -1)的最适当的方法是( C ) A .直接开平方法 B .配方法 C .公式法 D .因式分解法6.★已知a ,b ,c 为常数,点P (a ,c )在第二象限,则关于x 的方程ax 2+bx +c =0根的情况是( B )A .没有实数根B .有两个不相等的实数根C .无法判断D .有两个相等的实数根 7.若关于x 的一元二次方程(m -1)x 2+2x +m 2-3m +2=0的常数项为0,则m =( B ) A .1 B .2 C .1或2 D .08.已知代数式3-x 与-x 2+3x 的值互为相反数,则x 的值是( A )A .-1或3B .1或-3C .1或3D .-1或-3 9.已知关于x 的方程x 2-2x +3k =0有两个不相等的实数根,则k 的取值范围是( A )A .k <13B .k >13C .k <13且k ≠0D .k >-13且k ≠010.“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司交付1 000台清洁能源公交车,以2017年客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果.预计到2019年,福田公司将向海外出口清洁能源公交车达到3 000台.设平均每年的出口增长率为x ,可列方程为( C )A .1 000(1+x %)2=3 000B .1 000(1-x %)2=3 000C .1 000(1+x )2=3 000D .1 000(1-x )2=3 00011.已知关于x 的方程x 2-6x +k =0的两根分别是x 1,x 2,且满足1x 1+1x 2=3,则k 的值是( B )A .1B .2C .3D .-212.若α,β为方程2x 2-5x -1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14 D .15第Ⅱ卷(非选择题 共84分)二、填空题(每小题3分,共18分) 13.把一元二次方程(x -3)2=4化为一般形式是 x 2-6x +5=0 ,其中二次项为 x 2 ,一次项系数为 -6 ,常数项为 5 .14.如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是 m <-4 .15.设x 1,x 2是方程5x 2-3x -2=0的两个实数根,则1x 1+1x 2的值为 -32.16.★若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b = 1或-12.17.如图,某小区有一块长为30 m ,宽为24 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480 m 2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为 2 米.18.★已知一个三角形的两边长为6和8,第三边长是方程x 2-16x +60=0的一个根,三、解答题(共6619.(9分)用适当的方法解下列方程: (1)2(x -3)2=72; 解:(x -3)2=36, x -3=± 6,∴x 1=-3,x 2=9;(2)6x 2-13x -5=0;解:这里a =6,b =-13,c =-5,因而b 2-4ac =(-13)2-4× 6×(-5)=289,∴x =13±2892×6,∴x 1=52,x 2=-13;(3)2(6x -1)2=3(6x -1).解:2(6x -1)2-3(6x -1)=0, (6x -1)[2(6x -1)-3]=0,∴x 1=16,x 2=512.20.(6分)已知a ,b ,c 均为实数,且a -2+|b +1|+(c +3)2=0,求方程ax 2+bx +c =0的根.解:依题意得⎩⎨⎧a -2=0,b +1=0,c +3=0,即⎩⎨⎧a =2,b =-1,c =-3,故方程为2x 2-x -3=0,解得x 1=32,x 2=-1.21.(7分)已知:关于x 的方程x 2+2mx +m 2-1=0. (1)不解方程:判断方程根的情况; (2)若方程有一个根为3,求m 的值. 解:(1)∵a =1,b =2m ,c =m 2-1,∵Δ=b 2-4ac =(2m)2-4× 1×(m 2-1)=4> 0, ∴方程x 2+2mx +m 2-1=0有两个不相等的实数根; (2)∵x 2+2mx +m 2-1=0有一个根是3, ∴32+2m × 3+m 2-1=0, 解得m =-4或-2.22.(8分)关于x 的一元二次方程x 2+3x +m -1=0的两个实数根分别为x 1,x 2. (1)求m 的取值范围;(2)若2(x 1+x 2)+x 1x 2+10=0,求m 的值.解:(1)∵关于x 的一元二次方程x 2+3x +m -1=0的两个实数根分别为x 1,x 2,∴Δ≥0,即32-4(m -1)≥0,解得m ≤134;(2)由根与系数的关系得x 1+x 2=-3,x 1x 2=m -1. ∵2(x 1+x 2)+x 1x 2+10=0. ∴2×(-3)+m -1+10=0. ∴m =-3.23.(8分)已知关于x 的一元二次方程x 2-(t -1)x +t -2=0. (1)求证:对于任意实数t ,方程都有实数根;(2)当t 为何值时,方程的两个根互为相反数?请说明理由. (1)证明:b 2-4ac =[-(t -1)]2-4(t -2)=t 2-6t +9=(t -3)2, ∵(t -3)2≥0,即b 2-4ac ≥0,∴对于任意实数t ,方程都有实数根.(2)解:当t =1时,方程的两个根互为相反数. 理由如下:要使方程的两个根互为相反数,即x 1+x 2=0, 根据根与系数的关系可知,x 1+x 2=t -1=0, 解得t =1,∴当t =1时,方程的两个根互为相反数.24.(8分)(北部湾中考)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7 500本,2016年图书借阅总量是10 800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1 350人,预计2017年达到1 440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a %,求a 的值至少是多少?解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x. 根据题意,得7 500(1+x)2=10 800, 解得x =0.2=20%或x =-2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%. (2)2016年的人均借阅量为10 800÷ 1 350=8本.根据题意,得8(1+a%)× 1 440-10 80010 800≥20%,解得a ≥12.5.答:a 的值至少是12.5.25.(10分)如图,有长为24 m 的篱笆,一面利用墙(墙的最大可用长度为10 m)围成中间隔有一道篱笆的长方形花圃.(1)现要围成面积为45 m 2的花圃,则AB 的长是多少?(2)现要围成面积为48 m 2的花圃能行吗?若不能,请说明理由; (3)能否使所围成的花圃的面积为51 m 2,为什么?解:(1)设CB 长为x m ,则AB 的长为(24-3x)m. 依题意得(24-3x)x =45. 整理得x 2-8x +15=0, 解得x 1=3,x 2=5.当x 1=3时,AB =15 m > 10 m(不合题意,舍去); 当x 2=5时,AB =9 m ,即AB 长为9 m ;(2)不能.理由如下:同(1)设未知数可列方程(24-3x)x =48, 整理得x 2-8x +16=0,解得x 1=x 2=4, ∴AB =12 m > 10 m ,故不能围成面积为48 m 2的花圃;(3)不能.理由如下:同(1)设未知数可列方程为(24-3x)x =51.整理得x 2-8x +17=0. 因为b 2-4ac =(-8)2-4× 1× 17=-4< 0,此方程无实数解,故不能围成. 26.(10分)某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/天的维护费用,设每间客房的定价提高了x 元.应为多少元?(纯收入=总收入-总维护费用)解:依题意得(200+x)⎝⎛⎭⎫60-x 10-⎝⎛⎭⎫60-x10×20=14 000,整理,得x 2-420x +32 000=0,解得x 1=320,x 2=100.当x =320时,有游客居住的客房数量是60-x10=28间.当x=100时,有游客居住的客房数量是60-x10=50间.所以当x =100时,能吸引更多的游客,则每个房间的定价为200+100=300元.答:每间客房的定价应为300元.湘教版九年级数学上册第三章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(每小题3分,共36分)1.下列四条线段中,成比例线段的为( B ) A .a =3,b =4,c =5,d =6 B .a =1,b =3,c =3,d =9 C .a =3,b =5,c =8,d =10 D .a =1,b =2,c =2,d =6 2.下列各组图形中有可能不相似的是( A ) A .各有一个角是45°的两个等腰三角形 B .各有一个角是60°的两个等腰三角形 C .各有一个角是105°的两个等腰三角形 D .两个等腰直角三角形3.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB 于点D ,则△BCD 与△ABC 的周长之比为( A )A .1∶2B .1∶3C .1∶4D .1∶5第3题图 第4题图 第7题图4.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC ,若BD =2AD ,则( B ) A.AD AB =12 B.AE EC =12 C.AD EC =12 D.DE BC =12 5.结合图形所给条件,无相似三角形的是( C )6.下列4组条件中,能判定△ABC∽△DEF的是(D)A.∠A=45°,∠B=55°;∠D=45°,∠F=75°B.AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°C.AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°D.BC=4,AC=6,AB=9;DE=18,EF=8,DF=127.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是(B)A.1∶2 B.1∶4 C.1∶5 D.1∶68.★如图,在△ABC中,D是边AC上一点,连接BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD·AC;③AD·BC=AB·BD;④AB·BC=AC·BD.其中单独能够判定△ABD∽△ACB的个数是(C)A.1个B.2个C.3个D.4个第8题图第10题图第11题图9.在△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边长是36,则最短的一边长是(C)A.27 B.12 C.18 D.2010.如图,E(-4,2),F(-1,-1),以O为位似中心,按位似比1∶2把△EFO缩小,则点E的对应点E′的坐标为(A)A.(2,-1)或(-2,1) B.(8,-4)或(-8,4)C.(2,-1) D.(8,-4)11.如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的平台DE(DE=BC=0.5米,A,C,B三点共线),把一面镜子水平放置在平台上的点G处,测得CG=15米,然后沿着直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得GE=3米,小明身高EF=1.6米,则凉亭的高度AB约为(A)A.8.5米B.9米C.9.5米D.10米12.如图,AB⊥BD,ED⊥BD,AB=16,ED=6,BD=20,动点C在线段BD上移动,当CD=________时,△ABC与△ECD相似(D)A.8 B.12C.6011D.8或12或6011第12题图第14题图第15题图第Ⅱ卷(非选择题共84分)二、填空题(每小题3分,共18分)13.若a b =23,则a +b b = 53.14.如图,直线a ∥b ∥c ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,若AB ∶BC =1∶2,DE =3,则EF 的长为__6__.15.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,BE 交CD 于点O ,连接DE ,有下列结论:①DE =12BC ;②△BOD ∽△COE ;③BO =2EO ;④AO 的延长线经过BC 的中点.其中正确的是 ①③④ .(填写所有正确结论的序号)16.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中图形的高度为6 cm ,则屏幕上图形的高度为__18cm__.第16题图 第17题图17.如图,在△ABC 中,∠ACB =90°,点D ,E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,连接CF .若AC =8,AB =10,则CD 的长为 258.18.在△ABC 中,AB =6 cm ,AC =5 cm ,点D ,E 分别在AB ,AC 上.若△ADE 与△ABC相似,且S △ADE ∶S 四边形BCED =1∶8,则AD = 2或53cm.三、解答题(共66分)19.(6分)如图,已知△AOC ∽△BOD . (1)求证:AC ∥BD ;(2)已知OA =4,OC =5,OB =3,求OD 的长.(1)证明:∵△AOC ∽△BOD ,∴∠D =∠C , ∴AC ∥BD.(2)解:∵△AOC ∽△BOD ,∴OA OC =OBOD,即45=3OD ,解得OD =154.20.(6分)如图,已知AD ∥BE ∥CF ,它们依次交直线l 1,l 2于点A ,B ,C 和点D ,E ,F ,DE EF =25,AC =14.(1)求AB ,BC 的长;(2)如果AD =7,CF =14,求BE 的长.解:(1)∵AD ∥BE ∥CF ,∴AB BC =DE EF =25,∴AB AC =27,∵AC =14,∴AB =4,∴BC =14-4=10;(2)过点A 作AG ∥DF 交BE 于点H ,交CF 于点G ,如图所示.又∵AD ∥BE ∥CF ,AD =7,∴AD =HE =GF =7,∵CF =14,∴CG =14-7=7, ∵BE ∥CF , ∴BH CG =AB AC =27,∴BH =2,∴BE =2+7=9.21.(8分)如图,AC ⊥BD ,C 为垂足,AB =78,AC =39,DE =42,CE =21,求证:△ABC ∽△EDC .证明:在Rt △ABC 中,BC =AB 2-AC 2=782-392=393, 在Rt △DCE 中,DC =DE 2-CE 2=422-212=213,∴AB DE =7842=137,BC DC =393213=137,AC EC =3921=137, ∴AB DE =BC DC =ACEC ,∴△ABC ∽△EDC. 22.(8分)(绥化中考)已知:△ABC 在平面直角坐标内.三个顶点的坐标分别为A (0,3),B (3,4),C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 (2,-2) ; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且相似比为2∶1,点C 2的坐标是 (1,0) ;(3)△A 2B 2C 2的面积是多少平方单位?解:∵A 2C 22=20,B 2C 22=20,A 2B 22=40,∴△A 2B 2C 2是等腰直角三角形,∴△A 2B 2C 2的面积是:12×20×20=10平方单位.23.(8分)定义:如图①,点C 在线段AB 上,若满足AC 2=BC ·AB ,则称点C 为线段AB 的黄金分割点.如图②,△ABC 中,AB =AC =2,∠A =36°,BD 平分∠ABC 交AC 于点D .(1)求证:点D 是线段AC 的黄金分割点; (2)求出线段AD 的长.(1)证明:∵∠A =36°,AB =AC , ∴∠ABC =∠ACB =72°,∵BD 平分∠ABC ,∴∠CBD =∠ABD =36°,∠BDC =72°,∴AD =BD ,BC =BD ,∴△ABC ∽△BDC ,∴BD AB =CD BC ,即AD AC =CDAD,∴AD 2=AC·CD ,∴点D 是线段AC 的黄金分割点;(2)解:∵点D 是线段AC 的黄金分割点,∴AD =5-12AC ,∵AC =2,∴AD =5-1.24.(10分)王林想用镜子测量一棵古松树的高,但因树旁有一条小河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C 点,人在F 点正好在镜中看到树尖A ;第二次他把镜子放在C ′处,人在F ′处正好看到树尖A .已知王林眼睛距地面1.7 m ,量得CC ′为12 m ,CF 为1.8 m ,C ′F ′为3.84 m ,求这棵古松树的高.解:设树高AB =x m ,BC =y m ,因为AB ⊥BC ,EF ⊥BC ,∠ACB =∠ECF ,所以△ABC ∽△EFC ,所以EF AB =CFBC,因为AB ⊥BC ,E ′F ′⊥C ′F ′,∠AC ′B =∠E′C′F′,所以△ABC′∽△E′F′C′,所以E′F′AB =C′F′BC′,因为EF =E′F′,所以CF BC =C′F′BC′,即1.8y =3.84y +12,解得y =18017,即BC =18017 m .所以1.7x =1.818017,解得x =10,即这棵松树的高为10 m.25.(10分)(杭州中考)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC .(1)求证:△ADE ∽△ABC ;(2)若AD =3,AB =5,求AFAG的值.(1)证明:在△AEF 和△ACG 中.∠AFE =∠AGC =90°,∠EAF =∠GAC , ∴△AEF ∽△ACG , ∴∠AEF =∠ACG.在△ADE 和△ABC 中,∠BAC 为公共角,∠AED =∠ACB , ∴△ADE ∽△ABC ;(2)解:由(1)知,△ADE ∽△ABC ,∴AD AB =AE AC =35. 又(1)中已证△AEF ∽△ACG , ∴AE AC =AF AG =35,即AF AG =35.26.(10分)在△ABC 中,AB =14,AE =12,BD =7,BC =28,且∠BAD =∠EAC . (1)求CE 的长;(2)请判断△AED 与△BEA 是否相似?并说明理由: (3)求AC 的长.解:(1)∵AB =14,BD =7,BC =28, ∴AB BD =2,BC AB =2,∴BC AB =AB BD. 又∵∠B =∠B ,∴△ABD ∽△CBA ,∴∠BAD =∠C. 而∠BAD =∠EAC ,∴∠EAC =∠C ,∴CE =AE =12; (2)△AED ∽△BEA.理由如下:∵AB =14,AE =12,BD =7,BC =28,CE =12,∴DE =9,BE =16,∴DE AE =912=34,AE BE =1216=34,∴DE AE =AE BE. 又∵∠AED =∠AEB ,∴△AED ∽△BEA ; (3)∵△AED ∽△BEA , ∴∠ADE =∠BAE.又∵∠BAD =∠EAC ,∴∠CAD =∠ADC , ∴AC =CD =9+12=21.湘教版九年级数学上册第四章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(每小题3分,共36分)1.计算6tan 45°-2cos 60°的结果是( D ) A .4 3 B .4 C .5 3 D .52.在Rt △ABC 中,∠C =90°,sin A =45,则cos B 的值等于( B )A.35B.45C.34D.553.△ABC 中,∠B =90°,AC =5,tan C =12,则BC 边的长为( B )A .2 5B .2 C. 5 D .44.在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( D )A .sin A =32B .tan A =12C .cos B =32D .tan B =35.在平面直角坐标系xOy 中,已知点A (2,1)和点B (1,0),则sin ∠AOB 的值等于( A )A.55 B.52 C.32 D.126.在△ABC 中,(2cos A -2)2+|1-tan B |=0,则△ABC 一定是( D ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形7.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( D )A .2 B.255 C.55 D.12第7题图 第8题图 第10题图8.如图,△ABC 中,AB =AC =4,∠C =72°,D 是AB 中点,点E 在AC 上,DE ⊥AB ,则cos A 的值为( C )A.5-12B.5-14C.5+14D.5+129.在Rt △ABC 中,b =215,∠C =90°,∠A =30°,则a ,c ,∠B 的值分别是( B ) A .a =25,c =4,∠B =60° B .a =25,c =45,∠B =60° C .a =25,c =415,∠B =60° D .a =215,c =4,∠B =60°10.如图,一个斜坡长130 m ,坡顶离水平地面的距离为50 m ,那么这个斜坡与水平地面夹角的正切值等于( C )A.513B.1213C.512D.131211.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为(A ,D ,B 在同一条直线上)( B )A.h sin αB.h cos αC.h tan αD .h ·cos α第11题图 第12题图 第15题图12.如图,某人站在楼顶观察对面笔直的旗杆AB ,已知观测点C 到旗杆的距离(CE 的长度)为8 m ,测得旗杆顶部的仰角∠ECA 为30°,旗杆底部的俯角∠ECB 为45°,那么旗杆AB 的高度是( D )A .(82+83)mB .(8+83)mC.⎝⎛⎭⎫82+833mD.⎝⎛⎭⎫8+833m第Ⅱ卷(非选择题 共84分)二、填空题(每小题3分,共18分)13.在△ABC 中,∠C =90°,AB =10,BC =6,则sin A = 35 ,tan B = 43.14.在Rt △ABC 中,∠C =90°,当已知∠A 和a 时,求c ,则∠A ,a ,c 的关系式是c =asin A. 15.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3,BC =2,tan A =43,则CD= 65.16.如图,某公园入口原有一段台阶,其倾角∠BAE =30°,高DE =2 m ,为方便残疾人士,拟将台阶改成斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC17.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3 h后到达小岛的北偏西45°的C 处,则该船行驶的速度为 40+4033海里/小时.18.△ABC 中,AB =4,BC =3,∠BAC =30°,则△ABC(共66分) 19.(6分)计算:(1)22cos 45°-tan 230°+33tan 60°; 解:原式=22·22-⎝⎛⎭⎫332+33·3=12-13+1=76;(2)sin 30°sin 60°-cos 45°-(tan 30°-1)2+tan 45°. 解:原式=1232-22-⎝⎛⎭⎫33-12+1 =3+2-⎝⎛⎭⎫1-33+1 =3+2-1+33+1=433+ 2.20.(8分)在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,根据下列条件进行计算:(1)b =20,∠B =45°,求a ,c ; (2)a =503,b =50,求∠A ,∠B .解:(1)在Rt △ABC 中,∠C =90°,∠B =45°,∴∠A =45°, ∴∠A =∠B ,∴a =b =20.又∵a 2+b 2=c 2,∴c =a 2+b 2=202; (2)∵a =503,b =50,∴c =a 2+b 2=100.又∵sin A =a c =503100=32,∴∠A =60°,∠B =90°-∠A =30°.21.(6分)已知a 为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α-3tan(α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan(α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3·3=1+12-3=-32.22.(8分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB =3 m ,已知木箱高BE =3m ,斜面坡角为30°,求木箱端点E 距地面AC 的高度EF .解:连接AE.在Rt △ABE 中,AB =3 m ,BE = 3 m ,∴AE =AB 2+BE 2=2 3 m.又∵tan ∠EAB =BE AB =33,∴∠EAB =30°.在Rt △AEF 中,∠EAF =∠EAB +∠BAC =60°,∴EF =AE·sin ∠EAF =23× sin 60°=23× 32=3 m.答:木箱端点E 距地面AC 的高度是3 m. 23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C =45°,sin B =13,AD =1.(1)求BC 的长;(2)求tan ∠DAE 的值.解:(1)∵AD 是BC 边上的高, ∴AD ⊥BC.在Rt △ABD 中,∵sin B =AD AB =13,AD =1,∴AB =3,∴BD =32-12=2 2.在Rt △ADC 中,∵∠C =45°,∴CD =AD =1. ∴BC =22+1,(2)∵AE 是BC 边上的中线,∴DE =22+12-1=2-12,∴tan ∠DAE =DE AD =2-121=2-12.24.(9分)(乐山中考)如图,在水平地面上有一幢房屋BC 与一棵树DE ,在地面观察点A 处测得屋顶C 与树梢D 的仰角分别是45°和60°,∠CAD =60°,在屋顶C 处测得∠DCA =90°.若房屋的高BC =6 m ,求树高DE 的长度.解:如图,在Rt △ABC 中, ∠CAB =45°,BC =6 m.∴AC =BCsin ∠CAB=6 2 m.在Rt △ACD 中,∠CAD =60°,∴AD =ACcos ∠CAD=12 2 m ;在Rt △DEA 中,∠EAD =60°.DE =AD·sin 60°=122·32=6 6 m.答:树DE 的高为6 6 m.25.(10分)(青岛中考)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520 km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数)(参考数据:sin 67°≈1213,cos 67°≈513,tan 67°≈125,3≈1.73)解:如图,作BD ⊥AC 于点D ,在Rt △ABD 中,∠ABD =67°,sin 67°=AD AB ≈1213.∴AD ≈1213AB =480 km ,cos 67°=BD AB ≈513,∴BD ≈513AB =200 km.在Rt △BCD 中,∠CBD =30°,tan 30°=CD BD =33,∴CD =33BD ≈115 km ,AC =AD +CD =595 km.答:AC 之间的距离约为595 km.26.(11分)(荆州中考)如图,某数学活动小组为测量学校旗杆AB 的高度,沿旗杆正前方23米处的点C 出发,沿斜面坡度i =1∶3的斜坡CD 前进4米到达点D ,在点D 处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE 为1.5米.已知A ,B ,C ,D ,E 在同一平面内,AB ⊥BC ,AB ∥DE .求旗杆AB 的高度.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34.计算结果保留根号)解:延长ED 交BC 的延长线于点F , 则∠CFD =90°,∵tan ∠DCF =i =13=33,∴∠DCF =30°. ∵CD =4,∴DF =12CD =2,CF =CD·cos ∠DCF =4× 32=23,∴BF =BC +CF =23+23=43, 过点E 作EG ⊥AB 于点G , 则GE =BF =4 3.GB =EF =ED +DF =1.5+2=3.5. 又∵∠AEG =37°,∴AG =GE·tan ∠AEG =43·tan 37°,则AB =AG +BG =43·tan 37°+3.5=33+3.5. 故旗杆AB 的高度为(33+3.5)米.湘教版九年级数学上册第五章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(每小题3分,共36分)1.质检部门对鑫利会所酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为( B )A .95%B .92%C .97%D .98%2.质检部门为了检测某品牌汽车的质量,从同一批次共10万件产品中随机抽取2 000件进行检测,共检测出次品3件,则估计在这一批次的10万产品中次品数约为( C )A .15件B .30件C .150件D .1 500件 3.光明中学的七年级(1)班学生对月球上是否有水进行猜想:有35%的人认为有水,45%的人认为无水,20%的人不知道,该校现有七年级学生480人,则认为有水的学生有( C )A .96人B .216人C .168人D .200人4.甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如下表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是( C )A .甲B .乙5.为了了解我市A区和800份试卷,经过统计计算得到:x A=89,x B=89;s2A=5.6,s2B=7.8.由此可以估计A,B两区(B) A.A区的高分比B区多B.B区学生成绩没有A区学生成绩整齐C.两区的成绩一样,没有什么差别D.B区学生成绩比A区学生的成绩整齐6.为了了解某校九年级学生的运算能力,抽取了100名学生进行测试,将所得成绩(单位:分)) A.22人B.30人C.60人D.70人7.某校七年级共有1 000人,为了了解这些学生的视力情况,抽查了20名学生的视力,对所得数据进行整理.若数据在4.85~5.15这一小组的频率为0.3,则可估计该校七年级学生视力在4.85~5.15范围内的人数有(B)A.600人B.300人C.150人D.30人8.某文具商店共有单价分别为10元、15元和20元的三种文具盒出售,该商店统计了2015年3月份这三种文具盒的销售情况,并绘制如图所示的统计图.你认为这个商店4月份购进这三种文具盒的比例较为合理的是(D)A.1∶2∶3 B.2∶1∶3 C.3∶5∶12 D.5∶12∶3 9.刚刚喜迁新居的赵伟为估计今年4月份(30天)的家庭用电量,在4月上旬连续8天A.1 297.5千瓦时B.1 482.9千瓦时C.131.25千瓦时D.150千瓦时10.如图是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户家庭教育支出占全年总支出的百分比作出的判断中,正确的是(B)A.甲户比乙户大B.乙户比甲户大C.甲乙两户一样大D.无法确定哪一户大11.“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片吗?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是(B)A.60张B.80张C.90张D.110张12.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为(B)A.1 000只B.10 000只C.5 000只D.50 000只第Ⅱ卷(非选择题共84分)二、填空题(每小题3分,共18分)13.某市教育局为了解该市2018年九年级学生的身体素质情况,随机抽取了1 000名九年级学生进行检测,身体素质达标率为95%.请你估计该市12万名九年级学生中,身体素质达标的大约有11.4 万人.14.甲、乙两台机器分别灌装每瓶质量为500克的酸奶,从甲、乙灌装的酸奶中分别随机抽取了30瓶,测得它们实际质量的方差是s2甲=4.8,s2乙=3.6,那么乙(填“甲”或“乙”)机器灌装的酸奶质量较稳定.15.为了解某市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是③(填序号).①100位女性老人②全国内100位老人③在城市和乡镇各选10个点,每个点任选10位老人16.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280 人.17.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定.根据图中的信息,估计这两人中的新手是小李.第17题图第18题图18.我国2010~2015年高铁运营里程情况统计如图所示,根据统计图提供的信息,预估2016年我国高铁运营里程约为 2.2 万公里,你的预估理由是每年平均增长量近似相等.三、解答题(共66分)19.(6分)(1)计算20(2)如果该小区有500户家庭,根据上面的计算结果,估计这500户家庭该月共用水多少立方米?解:(1)20户家庭的月平均用水量为4× 2+5× 3+6× 7+8× 5+9× 2+11× 120=6.7立方米.(2)这500户家庭该月共用水6.7× 500=3 350立方米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年下期九年级上册数学基础知识竞赛试卷
一、选择题(每小题3分,共24分)
1.用配方法解一元二次方程2430x x -+=时可配方得( )
A.2(2)7x -=
B.2(2)1x -=
C.2(2)1x +=
D.2(2)2x += 2.在△ABC 中,a=2 ,b=6 ,c=22 ,则最长边上的中线长为( ) A.2 B.
3 C.2 D.以上都不对
3.若20 10
a b b c ==,,则a b
b c ++的值为( ).
(A )1121 (B )2111 (C )11021 (D )21011
4.如图,是一块三角形草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边 的距离相等,凉亭的位置应选在( )
A.三角形的三条中线的交点
B.三角形三边的垂直平分线的交点
C.三角形三条角平分线的交点
D.三角形三条高所在直线的交点 3
y x
=
5.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线(0x >)
上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( )
A.逐渐增大
B. 逐渐减小
C.不变
D.先增大后减小
6.如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC ⊥BC ,∠B=60°,BC=2cm , 则梯形ABCD 的面积为( )
A .33cm 2 B. 6cm 2 C. 63cm 2 D.12cm 2
7.将抛物线2
21216y x x =-+绕它的顶点旋转180°,所得抛物线的
解析式是( ).
A .2
21216y x x =--+ B .2
21216y x x =-+-
C .221219y x x =-+-
D .
221220y x x =-+-
8.若实数a ,b 满足21
20
2a ab b -++=,则a 的取值范围是 ( ).
(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4
二、填空题(每小题3分,共21分)
9.“等腰三角形两腰上的高相等”,这个命题的逆命题是 . 10.方程x(x-1)=2(x-1)的解为 .
11.如图,在△ABC 中,BC=8cm ,AB 的垂直平分线交AB 于点D,交边 AC 于点E ,△BCE 的周长等于18 cm ,则AC 的长等于 cm .
12.在正方形ABCD 中有一点E ,△EAB 是等边三角形,则∠CED 为 .
13一个函数的图像关于y 轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数2
4
y x bx =+-是“偶函数”,该函数的图像与x 轴交于点A 和点B ,顶点为P ,那么△ABP 的面积是 14.如图,在△ABC 中,AB =AC =1,点D 、E 在直线BC 上运 动,设BD =x ,CE =y.如果∠BAC =30°,∠DAE =105°, 则y 与x 之间的函数关系式为 .
15.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5
分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .
三、解答题(共55分) 16.计算:
00203tan 60|3sin 30|cos 45+-- (6分)
17.在国家的宏观调控下,某市的商品房成交价由今年3月份的14000元/平方米下降到5 月份的12600元/平方米.
(1)问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)
(2)如果房价继续回落,按照此前降价的百分率,你预测到7月份该市的商品房成交价是 否会跌破10000元/平方米?请说明理由。
(8分)
18.如图,某电信公司计划修建一条连接B 、C 两地的电缆.测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 处测得C 地的仰角为60°,已知C 地比A 地高200m , 求电缆BC 的长(结果保留根号).(10分)
班级: 姓名:
19.如图,在直角坐标系中,△OBA ∽△DOC ,边OA 、OC 都在x 轴的正半轴上,点B 的坐标 为(6,8),∠BAO =∠OCD =90°,OD =5.反比例函数(0)k
y x x
=>的图象经过点D ,交 AB 边于点E .(10分) (1)求k 的值; (2)
求
B E 的长.
20.如图,在平行四边形ABCD 内有一点E 满足ED ⊥AD 于D ,∠EBC =∠EDC ,∠ECB =45º, 请在图中找出与BE 相等的一条线段,并予以证明.(8分)
21.如图,在△ABD 中,AB=AD,AO 平分∠BAD,过点D 作AB 的平行线交 AO 的延长线于点C,连接BC.
(1)求证:四边形ABCD 是菱形.(4分)
(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程
2712
0x x 的两根,求AB
的长以及菱形ABCD 的面积.(4分)
(3)在(2)的条件下,若动点P 从A 出发,沿AC 以2米/秒的速度匀速直线运动到点C ,动点Q 从B 出发,沿BD 以1米/秒的速度匀速直线运动到点D ,当P 运动到C 点时运动 停止.若P 、Q 同时出发,问出发
几秒钟后,△POQ 的面积为1
4米2?(5分)
参考答案:
一、1、B ;2、A ;3、D ;4、C ;5、B ;6、A ;7、D ;8、C ; 二、9、有两条边上的高相等的三角形是等腰三角形;10、x 1=1;x 2=2;
11、10;12、150°;13、8;14、1
y x =
;15、15分钟;
三、16、原式=4;
17、(1)设降价百分率为x ,得:14000(1-x )2=12600,得:x ≈5﹪. (2)不会。
因为:12600(1-5﹪)>10000 18、BC=200(31)-m 19、(1)k=12,(2)BE=6;
20、提示:延长DE 交BC 于点F ,则易得:∠BFD =90°,再证△BEF ≌△DCF , 得出:DC=BE=AB 。
(其他方法,只要合理,即可得分) 21、(1)提示:通过证四边相等,结论得证。
(2)解方程得:AB=5m ,从而求得:S 菱形ABCD =24m 2
(3)设出发t 秒钟后,△POQ 的面积(S)为1
4米2
则:当0≤t <2, 11
(42)(3)2
4t t --=
,得:1522t -=,2522t +=(舍去) 当2<t <3, 11
(24)(3)24t t --=
,得:5522t ±=,(均不合题意,舍去) 当3<t ≤4, 11
(24)(3)2
4t t --=
,得:1522t +=,2522t -=(舍去)
综上所述,当出发52秒钟后,△POQ 的面积(S)为1
4米2。