十字相乘法因式分解培优讲解训练

合集下载

(完整版)十字相乘法分解因式的讲解与练习

(完整版)十字相乘法分解因式的讲解与练习

十字相乘法分解因式一、学习目标 1、能记住十字相乘法2、会运用十字相乘法分解因式(重点) 二、知识复习1.二次三项式(1)多项式c bx ax ++2,称为字母 的二次三项式,其中 称为二次项, 为一次项, 为常数项.例如:322--x x 和652++x x 都是关于x 的二次三项式.(2)在多项式2286y xy x +-中,如果把 看作常数,就是关于 的二次三项式;如果把 看作常数,就是关于 的二次三项式.(3)在多项式37222+-ab b a 中,把 看作一个整体,即 ,就是关于- 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把 看作一个整体,就是关于 的二次三项式. 2.十字相乘法的依据和具体内容(1)对于二次项系数为1的二次三项式))(()(2b x a x ab x b a x ++=+++ 方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同; 当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同. (2)对于二次项系数不是1的二次三项式c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项; 常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同; 常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母. 三、典型例题[例1] 把下列各式因式分解。

(1)3722+-x x (2)5762--x x (3)22865y xy x -+解:(1))12)(3(3722--=+-x x x x1231--7)1(1)3(2-=-⨯+-⨯(2))53)(12(5762-+=--x x x x5312-713)5(2-=⨯+-⨯(3))45)(2(86522y x y x y xy x -+=-+yy4521-y y y 6)2(5)4(1=⨯+-⨯ 四、当堂检测1、把下列各式分解因式:(1)22157x x ++ (2) 2384a a -+- (3) 2576x x +- (4)261110y y -- (5)1032+--x x (6)652--m m二、分解因式1. 2252310a b ab +- 2. 222231710a b abxy x y -+ 3. 22712x xy y -+ 4.42718x x +- 5.22483m mn n ++。

因式分解--十字相乘法练习题(含答案)

因式分解--十字相乘法练习题(含答案)

因式分解--十字相乘法练习题(含答案)1、将题目格式修改为:十字相乘法因式分解练题(含答案)2、删除明显有问题的段落3、改写每段话:1.将第一个题目改写为:对于方程$x^2+3x+2=0$,使用十字相乘法进行因式分解。

2.将第二个题目改写为:对于方程$x^2-7x+6=0$,使用十字相乘法进行因式分解。

3.将第三个题目改写为:对于方程$x^2-4x-21=0$,使用十字相乘法进行因式分解。

4.将第四个题目改写为:对于方程$x^4+6x^2+8=0$,使用十字相乘法进行因式分解。

5.将第五个题目改写为:对于方程$x^2-3xy+2y^2=0$,使用十字相乘法进行因式分解。

6.将第六个题目改写为:对于方程$x^2+4x+3=0$,使用十字相乘法进行因式分解。

7.将第七个题目改写为:对于方程$y^2-7y+12=0$,使用十字相乘法进行因式分解。

8.将第八个题目改写为:对于方程$x^2+2x-15=0$,使用十字相乘法进行因式分解。

9.将第九个题目改写为:对于方程$(a+b)^2-4(a+b)+3=0$,使用十字相乘法进行因式分解。

10.将第十个题目改写为:对于方程$x^4-3x^3-28x^2=0$,使用十字相乘法进行因式分解。

11.将第十一个题目改写为:对于方程$a^2+7a+10=0$,使用十字相乘法进行因式分解。

12.将第十二个题目改写为:对于方程$q^2-6q+8=0$,使用十字相乘法进行因式分解。

13.将第十三个题目改写为:对于方程$x^2+x-20=0$,使用十字相乘法进行因式分解。

14.将第十四个题目改写为:对于方程$p^2-5p-36=0$,使用十字相乘法进行因式分解。

15.将第十五个题目改写为:对于方程$m^2+7m-18=0$,使用十字相乘法进行因式分解。

16.将第十六个题目改写为:对于方程$t^2-2t-8=0$,使用十字相乘法进行因式分解。

17.将第十七个题目改写为:对于方程$x^4-x^2-20=0$,使用十字相乘法进行因式分解。

部编数学八年级上册专题31十字相乘法因式分解(解析版)含答案

部编数学八年级上册专题31十字相乘法因式分解(解析版)含答案

专题31 十字相乘法因式分解1.下列式子中,因式分解正确的是( )A .2815(3)(5)x x x x -+=--B .2815(3)(5)x x x x -+=-+C .2815(3)(5)x x x x -+=++D .2815(3)(5)x x x x -+=+-【答案】A【分析】根据十字相乘法即可分解因式.【详解】解:2815(3)(5)x x x x -+=--.故选:A .【点睛】本题主要考查用十字相乘法分解因式,掌握分解因式的方法是解题的关键.2.将多项式x 2-2x -8分解因式,正确的是( )A .(x +2)(x -4)B .(x -2)(x -4)C .(x +2)(x +4)D .(x -2)(x +4)【答案】A【分析】利用十字相乘法分解即可.【详解】解:()()2-2-8=24x x x x +-,故选:A .【点睛】本题考查用十字相乘法进行因式分解,正确掌握十字相乘法是求解本题的关键.3.分解因式x 2-5x -14,正确的结果是( )A .(x -5)(x -14)B .(x -2)(x -7)C .(x -2)(x +7)D .(x +2)(x -7)【答案】D【分析】根据-14=-7×2,-5=-7+2,进行分解即可.【详解】解:x 2-5x -14=(x -7)(x +2),故选:D .【点睛】本题考查了因式分解-十字相乘法,熟练掌握因式分解-十字相乘法是解题的关键.4.把多项式256x x -+分解因式,下列结果正确的是( )A .(1)(6)x x -+B .(6)(1)x x -+C .(2)(3)x x ++D .(2)(3)x x --【答案】D【分析】利用公式2()()()x a b x ab x a x b +++=++即可得答案.【详解】解:256(2)(3)x x x x -+=--故选:D .【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握公式2()()()x a b x ab x a x b +++=++.5.如果x 2+kx ﹣10=(x ﹣5)(x +2),则k 应为( )A .﹣3B .3C .7D .﹣7【答案】A【分析】根据多项式乘以多项式把等号右边展开,即可得答案.【详解】解:(x -5)(x +2)=x 2-3x -10,则k =-3,故选:A .【点睛】本题主要考查了因式分解,关键是掌握x 2+(p +q )x +pq =(x +p )(x +q ).6.如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是( )A .2B .3C .4D .5【答案】C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x -+,不能用十字相乘法进行因式分解,不符合题意;B 、253x x -+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x -+=--,能用十字相乘法进行因式分解,符合题意;D 、255x x -+,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.7.因式分解22212x x --=_________【答案】()()223x x +-【分析】先提公因式再利用十字相乘法进行因式分解即可;【详解】解:()()22212=232x x x x ---+;故答案为:()()223x x +-.【点睛】本题考查分解因式.熟练掌握因式分解的方法是解题的关键.8.分解因式:2246a a --=______.【答案】()()231a a -+##()()213a a +-【分析】先提取公因数,再用十字相乘法分解因式即可;【详解】解:原式=()()()2223231a a a a --=-+;故答案为:()()231a a -+;【点睛】本题考查了十字相乘法分解因式:对于形如x 2+px +q 的二次三项式,若能找到两数a 、b ,使a •b =q 且a +b =p ,那么x 2+px +q = x 2+(a +b )x +a •b =(x +a )(x +b ).9.因式分解:289x x --=______________.【答案】()()19x x +-【分析】根据二次三项式的特征,采取十字相乘因式分解法直接分解即可.【详解】解:采取十字相乘因式分解法直接分解289x x --,289x x \--()()19x x =+-,故答案为:()()19x x +-.【点睛】本题考查十字相乘法因式分解,根据代数式特征选择恰当的因式分解方法是解决问题的关键.10.因式分解:2412x x --=_______.【答案】(6)(2)x x -+【分析】利用十字相乘法分解因式即可得.【详解】解:因为1262,624-=-´-+=-,且4-是x 的一次项的系数,所以2412(6)(2)--=-+x x x x ,故答案为:(6)(2)x x -+.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题关键.11.观察下列因式分解中的规律:①()()23212x x x x ++=++;②()()271025x x x x ++=++;③()()25623x x x x -+=--;④()()28422x x x x -=+--;利用上述系数特点分解因式26x x +-=__________.【答案】()()32x x +-【分析】利用十字相乘法分解因式即可.【详解】解:()()2632x x x x +-=+-,故答案为:()()32x x +-.【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:()()2()x a b x ab x a x b +++=++.12.分解因式:x 2﹣7xy ﹣18y 2=___.【答案】()()92x y x y -+【分析】根据十字相乘法因式分解即可.【详解】x 2﹣7xy ﹣18y 2()()92x y x y =-+,故答案为:()()92x y x y -+.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.三、解答题13.阅读材料:由多项式乘法:(x +a )(x +b )=x ²+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x ²+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x ²+(2+3)x +2×3=(x +2)(x +3). 请用上述方法分解因式:(1)x 2-3x -4;(2)x 2-7x +12.【答案】(1)()()14x x +-(2)()()34x x --【分析】(1)根据-4=1×(−4),1-4=-3即可分解因式;(2)根据-3×(-4)=12,-3-4=-7即可分解因式.(1)解:x 2−3x −4=x 2+(1-4)x +1×(−4)=(x +1)(x −4);(2)解:x 2−7x +12=x 2+(−3−4)x +(−3)×(−4)=(x −3)(x −4).【点睛】本题考查了十字相乘法,解题的关键是把常数项拆成两个数的积,而两个数的和正好等于一次项的系数.14.阅读理解题:由多项式乘法:()()()2x a x b x a b x ab ++=+++,将该式从右到左使用,即可进行因式分解的公式:()()()2x a b x ab x a x b +++=++.示例:分解因式:()()()2256232323x x x x x x ++=+++´=++.分解因式:()()()()222121212x x x x x x éùéùëû--=++-+´-=+û+ë.多项式()2x a b x ab +++的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和.(1)尝试:分解因式:()()268____________x x x x ++=++;(2)应用:请用上述方法将多项式:256x x -+、256x x --进行因式分解.【答案】(1)2,4(2)()()23x x --,()()16+-x x 【分析】(1)利用阅读材料的方法解答,即可求解;(2)利用阅读材料的方法解答,即可求解;(1)268x x ++()22424x x =+++´()()24x x =++;故答案为:2,4(2)解:256x x -+()()()()22323x x éùéùëû=+-+-+-´-ëû()()23x x =--;256x x --()()21616x x éùéùëû=++-+-ë´û()()16x x =+-【点睛】本题主要考查了多项式的因式分解,理解阅读材料的因式分解方法是解题的关键.15.阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=´,常数项3(1)3-=-´,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:223(1)(3)x x x x +-=-+.利用这种方法,将下列多项式分解因式:(1)2710x x ++=__________;(2)223x x --=__________;(3)2712y y -+=__________;(4)2718x x +-=__________.【答案】(1)()()25x x ++(2)()()31x x -+(3)()()34y y --(4)()()92x x +-【分析】(1)仿照题意求解即可;(2)仿照题意求解即可;(3)仿照题意求解即可;(4)仿照题意求解即可.(1)解:根据题意可知()()271025x x x x ++=++(2)解:根据题意可知()()22331x x x x --=-+(3)解:根据题意可知()()271234y y y y =---+(4)解:根据题意可知()()271892x x x x +-=+-【点睛】本题主要考查分解因式,正确理解题意是解题的关键.16.阅读下列材料:根据多项式的乘法,我们知道,()()225710x x x x --=-+.反过来,就得到2710x x -+的因式分解形式,即2710(2)(5)x x x x -+=--.把这个多项式的二次项系数1分解为11´,常数项10分解为(2)(5)-´-,先将分解的二次项系数1,1分别写在十字交叉线的左上角和左下角;再把2-,5-分别写在十字交叉线的右上角和右下角,我们发现,把它们交叉相乘,再求代数和,此时正好等于一次项系数7-(如图1).像上面这样,先分解二次项系数,把它们分别写在十字交叉线的左上角和左下角;再分解常数项,把它们分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其正好等于一次项系数,我们把这种借助“十字”方式,将一个二次三项式分解因式的方法,叫做十字相乘法.例如,将二次三项式243x x +-分解因式,它的“十字”如图2:所以,()()243143x x x x +-=+-.请你用十字相乘法将下列多项式分解因式:(1)256x x ++= ;(2)2273x x -+= ;(3)()222x m x m +--= .【答案】(1)(x +2)(x +3)(2)(2x -1)(x -3)(3)(x +2)(x -m )【分析】根据阅读材料中的十字相乘法即可得出答案.(1)解:由上图可知:x 2+5x +6=(x +2)(x +3),故答案为:(x +2)(x +3);(2)解:由上图可知:2x 2-7x +3=(2x -1)(x -3),故答案为:(2x -1)(x -3);(3)解:由上图可知:x2+(2-m)x-2m=(x+2)(x-m),故答案为:(x+2)(x-m).【点睛】本题考查了十字相乘法因式分解,关键是读懂材料掌握十字相乘的基本步骤.17.探究:如何把多项式x2+8x+15因式分解?(1)观察:上式能否可直接利用完全平方公式进行因式分解?答:________;(2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即:x2+(a+b)x+ab=(x+a)(x+b)此类多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和.猜想并填空:x2+8x+15=x2+[(_____)+(_____)]x+(___)×(___)=(x+____)(x+_____)(3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证.请写出验证过程.(4)请运用上述方法将下列多项式进行因式分解:x2-x-12【答案】(1)不能;(2)3;5;3;5;3;5;(3)x2+8x+15;(4)(x-4)(x+3)【分析】(1)根据完全平方公式的结构特征进行判断即可;(2)将x2+8x+15=x2+(3+5)x+(3×5)即可得出答案;(3)根据整式乘法计算(x+3)(x+5)的结果即可;(4)将x2+[3+(-4)]x+[3×(-4)]即可得出答案.【详解】解:(1)因为x2+8x+16=(x+4)2,所以x2+8x+15不是完全平方公式,故答案为:不能;(2)∵x2+8x+15=x2+(3+5)x+(3×5)∴x2+8x+15=x2+(3+5)x+(3×5)=(x+3)(x+5),故答案为:3,5,3,5,3,5;(3)∵(x+3)(x+5)=x2+5x+3x+15=x2+8x+15,∴x2+8x+15=(x+3)(x+5)因此多项式x2+8x+15的因式分解是符合题意的;(4)x2-x-12=x2+[3+(-4)]x+[3×(-4)]=(x+3)(x-4).【点睛】本题考查了十字相乘法分解因式,掌握x 2+(a +b )x +ab =(x +a )(x +b )的结构特征是正确应用的前提.18.由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3).(1)尝试:分解因式:x 2+6x +8=(x +____)(x +____);(2)应用:请用上述方法解方程:①x 2﹣3x ﹣4=0;②x 2﹣7x +12=0.【答案】(1)2,4;(2)①1x =-或4x =;②3x =或4x =【分析】(1)类比题干因式分解方法求解可得;(2)①利用十字相乘法将左边因式分解为()()41x x -´+后求解可得;②利用十字相乘法将左边因式分解()()43x x -´-后求解可得.【详解】解:(1)2268(24)24(2)(4)x x x x x x ++=+++´=++,故答案为:2,4;(2)①2340x x Q --=,2(41)(4)10x x +-++-´=,(4)(1)0x x \-+=,则10x +=或40x -=,解得:1x =-或4x =,②27120x x -+=Q ,2(34)(3)(4)0x x +--+-´-=,(3)(4)0x x \--=,则30x -=或40x -=,解得:3x =或4x =.【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法中的因式分解法.19.阅读材料:解方程22350x x +-=我们可以按下面的方法解答:(1)分解因式2235x x +-,①竖分二次项与常数项:2x x x =×,()()3557-=-´+.②交叉相乘,验一次项:57x x -+752x x x Þ-=.③横向写出两因式:()()223557x x x x +-=-+.(2)根据乘法原理:若0ab =,则0a =或0b =,则方程22350x x +-=可以这样求解22350x x +-=方程左边因式分解得()()570x x -+=所以原方程的解为15=x ,27x =-.试用上述方法和原理解下列方程:(1)2560x x ++=;(2)2670x x --=.【答案】(1)12x =-,23x =-;(2)11x =-,27x =【分析】(1)利用已知结合十字相乘法分解因式得出即可;(2)利用已知结合十字相乘法分解因式得出即可.【详解】解:(1)2560x x ++=,()()230x x ++=,20,30x x +=+=,12x =-,23x =-.(2)2670x x --=,()()170x x +-=,10,70x x +=-=,11x =-,27x =.【点睛】本题主要考查了十字相乘法分解因式的应用,解题的关键是正确利用十字相乘法分解因式.20.阅读下列材料:材料1:将一个形如x 2+px +q 的二次三项式因式分解时,如果能满足q =mn 且p =m +n ,则可以把x 2+px +q 因式分解成(x +m )(+n )的形式,如x 2+4x +3=(x +1)(x +3);x 2﹣4x ﹣12=(x ﹣6)(x +2)材料2:因式分解:(x +y )2+2(x +y )+1解:将“x +y ”看成一个整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2,再将“A ”还原,得原式=(x +y +1)2上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x 2﹣6x +8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x ﹣y )2+4(x ﹣y )+3【答案】(1)()()42x x --;(2)()()31x y x y -+-+【分析】(1)根据材料1的方法,满足()()()()842,642=-´--=-+-,进而进行因式分解即可;(2)根据材料1的方法,满足313,413=´=+,根据材料2将“x y -” 看成一个整体,进而因式分解即可【详解】(1)()()()()842,642=-´--=-+-Q \x 2﹣6x +8()()42x x =--(2)令x y A -=,313,413=´=+Q 则(x ﹣y )2+4(x ﹣y )+3(3)(1)A A =++\(x ﹣y )2+4(x ﹣y )+3=()()31x y x y -+-+【点睛】本题考查了因式分解,运用整体思想是解题的关键.。

十字相乘法 因式分解培优讲解训练

十字相乘法 因式分解培优讲解训练

十字相乘法因式分解培优讲解训练1、二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

2、二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++【例1】分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习: 分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y3、二次项系数为1的齐次多项式【例2】分解因式:221288b ab a -- 分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

1 8b1 -16b8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++ =)16)(8(b a b a -+练习:分解因式 (1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --4、二次项系数不为1的齐次多项式【例3】22672y xy x +- 2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习:分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222。

2022-2023学年初一数学第二学期培优专题训练31 十字相乘法因式分解

2022-2023学年初一数学第二学期培优专题训练31 十字相乘法因式分解

专题31 十字相乘法因式分解【例题讲解】(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式: ① 2257x x +-=__________;② 22672x xy y -+=__________. (3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq np b +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题: ① 分解因式2235294x xy y x y +-++-=__________;② 若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.【解答】(1)首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即63-=⨯(-2),所以26x x +-=(3)(2)x x +-.故答案为:(3)(2)x x +-. (2)①把二次项系数2写成212=⨯,717-=-⨯,满足17(1)25⨯+-⨯=,所以2257x x +-=(27)(1)x x +-.故答案为:(27)(1)x x +-.②把2x 项系数6写成623=⨯,把2y 项系数2写成212=-⨯-(),满足22(1)37-⨯+-⨯=-, 所以22672x xy y -+=(2)(32)x y x y --.故答案为:(2)(32)x y x y --.(3)①把2x 项系数3写成313=⨯,把2y 项系数-2写成221-=⨯-(),常数项-4写成41-=-⨯()4满足条件,所以2235294x xy y x y +-++-=(34)(21)x y x y -++-.②把2x 项系数1写成111=⨯,把2y 项系数-18写成1829-=-⨯,常数项-24写成243(-=⨯-8)或248-=-⨯()3满足条件,所以m =39(2)(8)43⨯+-⨯-=或m =9(8)(2)378⨯-+-⨯=-,故m 的值为43或-78.【综合解答】1.阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=⨯,常数项3(1)3-=-⨯,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:223(1)(3)x x x x +-=-+. 利用这种方法,将下列多项式分解因式: (1)2710x x ++=__________; (2)223x x --=__________; (3)2712y y -+=__________; (4)2718x x +-=__________.2.根据多项式乘法法则22()()()x p x q x px qx pq x p q x pq ++=+++=+++,因此2()()()x p q x pq x p x q +++=++,这种因式分解的方法称为十字相乘法,按照上面方法对下列式子进行因式分解(1)2710x x ++ (2)2718x x +- (3)2252x x -+ (4)262y y -- (5)2232253x xy y x y -+-+- 3.运用十字相乘法分解因式: (1)232x x --; (2)210218x x ++; (3)22121115x xy y --; (4)2()3()10x y x y +-+-. 4.用十字相乘法分解下列因式. (1)276x x -+ (2)2215y y -- (3)231110x x -+ (4)226a ab b -- (5)22121115x xy y -- (6)()()2310x y x y +-+- 5.分解因式 (1)2412x x --; (2)245x x --; (3)3222620x x y xy -+-;(4)231914x x --. 6.分解因式: (1)2 1016x x -+; (2)2 23x x --.7.在因式分解的学习中我们知道对二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++,用上述方法将下列各式因式分解:(1)2256x xy y +-=__________.(2)()224236x a x a a -+++=__________.(3)()2256x b x a b a ----=__________.(4)()22018201720191x x -⨯-=__________. 8.将下列各式分解因式:(1)256x x --; (2)21016x x -+; (3)2103x x --9.由多项式乘法:2()()()x a x b x a b x ab ++=+++,将该式从右到左进行运算,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++.如:分解因式:2256(23)23(2)(3)x x x x x x ++=+++⨯=++.(1)分解因式:268(___)(___)x x x x ++=++ (2)请用上述方法解方程:2340x x --= 10.分解因式: (1)22914x xy y ++ (2)2212x xy y -- (3)22295x xy y +- (4)22376x xy y -- (5)22328x xy y -- (6)225314x xy y -++ 11.分解因式: (1)2914x x ++ (2)212x x -- (3)2295x x +- (4)2376x x --(5)28103x x --- (6)210275x x --- 12.分解因式: (1)22914x xy y ++ (2)2212x xy y -- (3)22295x xy y +- (4)22376x xy y -- (5)228103x xy y ++ (6)2210275x xy y ++ 13.分解因式: (1)2710x x -+ (2)2918x x -+ (3)256x x -- (4)2922x x -- (5)232x x +- (6)234x x +- (7)2122512x x -+- (8)2310x x --+ (9)22x y x y --- (10)321x x x +++ (11)22494a a b +-+ (12)22424a b a b--+专题31 十字相乘法因式分解【例题讲解】(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式: ① 2257x x +-=__________;② 22672x xy y -+=__________. (3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq np b +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题: ① 分解因式2235294x xy y x y +-++-=__________;② 若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.【解答】(1)首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即63-=⨯(-2),所以26x x +-=(3)(2)x x +-.故答案为:(3)(2)x x +-.(2)①把二次项系数2写成212=⨯,717-=-⨯,满足17(1)25⨯+-⨯=,所以2257x x +-=(27)(1)x x +-.故答案为:(27)(1)x x +-.②把2x 项系数6写成623=⨯,把2y 项系数2写成212=-⨯-(),满足22(1)37-⨯+-⨯=-, 所以22672x xy y -+=(2)(32)x y x y --.故答案为:(2)(32)x y x y --.(3)①把2x 项系数3写成313=⨯,把2y 项系数-2写成221-=⨯-(),常数项-4写成41-=-⨯()4满足条件,所以2235294x xy y x y +-++-=(34)(21)x y x y -++-.②把2x 项系数1写成111=⨯,把2y 项系数-18写成1829-=-⨯,常数项-24写成243(-=⨯-8)或248-=-⨯()3满足条件,所以m =39(2)(8)43⨯+-⨯-=或m =9(8)(2)378⨯-+-⨯=-,故m 的值为43或-78.【综合解答】1.阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=⨯,常数项3(1)3-=-⨯,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写. 这样,我们就可以得到:223(1)(3)x x x x +-=-+. 利用这种方法,将下列多项式分解因式: (1)2710x x ++=__________; (2)223x x --=__________; (3)2712y y -+=__________; (4)2718x x +-=__________. 【答案】(1)()()25x x ++ (2)()()31x x -+ (3)()()34y y -- (4)()()92x x +-【分析】(1)仿照题意求解即可; (2)仿照题意求解即可; (3)仿照题意求解即可; (4)仿照题意求解即可.【解答】(1)解:根据题意可知()()271025x x x x ++=++ (2)解:根据题意可知()()22331x x x x --=-+(3)解:根据题意可知()()271234y y y y =---+ (4)解:根据题意可知()()271892x x x x +-=+-【点评】本题主要考查分解因式,正确理解题意是解题的关键.2.根据多项式乘法法则22()()()x p x q x px qx pq x p q x pq ++=+++=+++,因此2()()()x p q x pq x p x q +++=++,这种因式分解的方法称为十字相乘法,按照上面方法对下列式子进行因式分解(1)2710x x ++ (2)2718x x +- (3)2252x x -+ (4)262y y -- (5)2232253x xy y x y -+-+-【答案】(1) (x+2)(x+5);(2) (x+9)(x-2);(3) (2x-1)(x-2);(4) (2y+1)(3y-2);(5)(x-2y+1)(x-y-3). 【分析】(1)观察可知10=2×5,7=2+5,由此进行因式分解即可; (2)观察可知—18=-2×9,7=-2+9,由此进行因式分解即可;(3)观察可知二次项系数2=1×2,常数项2=(-1)×(-2),一次项系数-5=1×(-1)+2×(-2),据此进行因式分解即可;(4)观察可知二次项系数6=2×3,常数项-2=1×(-2),一次项系数-1=2×(-2)+3×1,据此进行因式分解即可;(5)原式前三项利用材料中的方法进行分解,然后变形为(x-2y)(x-y)+x-y-3x+6y-3,据此利用提公因式法继续进行分解即可得. 【解答】(1)原式=(x+2)(x+5); (2)原式=(x+9)(x-2); (3)原式=(2x-1)(x-2); (4)原式=(2y+1)(3y-2); (5)原式=(x-2y)(x-y)+x-y-3x+6y-3 =(x-2y)(x-y)+(x-y)-(3x-6y+3) =(x-y)(x-2y+1)-3(x-2y+1) =(x-2y+1)(x-y-3).【点评】本题考查了十字相乘法分解因式,分组分解法分解因式,提公因式法分解因式,其中第(5)小题有一定的难度,读懂材料中的解题方法是解题的关键. 3.运用十字相乘法分解因式: (1)232x x --; (2)210218x x ++; (3)22121115x xy y --; (4)2()3()10x y x y +-+-.【答案】(1)(32)(1)x x +-;(2)(21)(58)x x ++;(3)(35)(43)x y x y -+;(4)(5)(2)x y x y +-++. 【分析】(1)直接运用x 2+(p+q )x+pq=(x+p )(x+q )分解因式得出即可;(2)ax 2+bx+c (a≠0)型的式子的因式分解的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一次项b ,那么可以直接写成结果:ax 2+bx+c=(a 1x+c 1)(a 2x+c 2); (3)同(2);(4)把(x y +)当作一个整体,运用x 2+(p+q )x+pq=(x+p )(x+q )分解因式得出即可 【解答】(1)232(32)(1)x x x x --=+-. (2)210218(21)(58)x x x x ++=++. (3)22121115(35)(43)x xy y x y x y --=-+.(4)2()3()10[()5][()2](5)(2)x y x y x y x y x y x y +-+-=+-++=+-++.【点评】本题主要考查了十字相乘法分解因式;熟练掌握十字相乘法分解因式,正确分解常数项是解题关键.4.用十字相乘法分解下列因式. (1)276x x -+ (2)2215y y -- (3)231110x x -+ (4)226a ab b -- (5)22121115x xy y -- (6)()()2310x y x y +-+-【答案】(1)()()61x x --;(2)()()53y y -+;(3)()()235x x --;(4)()()32a b a b -+;(5)()()4335x y x y +-;(6)()()52x y x y +-++【分析】(1)把6分成-6与-1的积,利用十字相乘法分解因式得出答案即可; (2)把-15分成-5与3的积,利用十字相乘法分解因式得出答案即可;(3)把3分成1与的3积,把10分成-2与-5的积,利用十字相乘法分解因式得出答案即可; (4)把b 看作常数,把26b -分成-3b 与2b 的积,利用十字相乘法分解因式得出答案即可; (5)把y 看作常数,把12分成4与3的积,把215y -分成3y 与-5y 的积,利用十字相乘法分解因式得出答案即可;(6)把()x y +看作一个整体,把-10分成-5与2的积,利用十字相乘法分解因式得出答案即可. 【解答】解:(1)276x x -+ =()()61x x -- (2)2215y y -- =()()53y y -+ (3)231110x x -+ =()()235x x -- (4)226a ab b -- =()()32a b a b -+ (5)22121115x xy y -- =()()4335x y x y +- (6)()()2310x y x y +-+- =()()52x y x y +-++【点评】此题主要考查了十字相乘法分解因式,正确分解二次项系数及常数项是解题关键.有时要把某个字母看作常数或把某个多项式看作一个整体. 5.分解因式 (1)2412x x --; (2)245x x --; (3)3222620x x y xy -+-; (4)231914x x --. 【答案】(1)()()62x x -+ (2)()()51x x -+ (3)()()252x x y x y -+- (4)()()732x x -+【分析】(1)利用十字相乘法分解因式即可; (2)利用十字相乘法分解因式即可;(3)首先提取公因式,然后再用十字相乘法分解因式即可; (4)利用十字相乘法分解因式即可. 【解答】(1)解:2412x x --()()26262x x =+-++-⨯ ()()62x x =-+;(2)解:245x x --()()51x x =-+;(3)解:3222620x x y xy -+-()222310x x xy y =-+-()()252x x y x y =-+-;(4)解:231914x x --()()732x x =-+.【点评】本题考查了因式分解,解本题的关键在熟练掌握利用十字相乘法分解因式.6.分解因式:(1)2 1016x x -+;(2)2 23x x --.【答案】(1)()()82x x --(2)()()31x x -+【分析】(1)利用十字相乘法即可得出答案;(2)利用十字相乘法即可得出答案.【解答】(1)解:2 1016x x -+()()82x x =--;(2)解:2 23x x --()()31x x =-+.【点评】本题考查了十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.7.在因式分解的学习中我们知道对二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++,用上述方法将下列各式因式分解:(1)2256x xy y +-=__________.(2)()224236x a x a a -+++=__________.(3)()2256x b x a b a ----=__________.(4)()22018201720191x x -⨯-=__________.【答案】(1)(x -y )(x +6y )(2)(x -3a )(x -a -2)(3)(x +a -3b )(x -a -2b )(4)(20182x 2+1)(x -1)【分析】(1)将-6y 2改写成-y ·6,然后根据例题分解即可;(2)将3a 2+6a 改写成()()32a a --+⎡⎤⎣⎦,然后根据例题分解即可;(3)先化简,将226ab b a +-改写()()32b a b a -+--,然后根据例题分解即可;(4)将20172019⨯改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式=()2(6)6x y y x y y +-++-⋅=(x -y )(x +6y );(2)解:原式=()()()23232x a a x a a +--++--+⎡⎤⎡⎤⎣⎦⎣⎦=(x -3a )(x -a -2);(3)解:原式=22256x bx ab b a -++-=()()2532x bx b a b a -+-+=()()()()2+3+232x b a b a x b a b a -+--+-+--⎡⎤⎣⎦=(x +a -3b )(x -a -2b );(4)解:原式=()()()220182018-12018+11x x --=()22220182018-11x x --=()2222018+120181x x -- =(20182x +1)(x -1) .【点评】本题考查了十字相乘法因式分解,熟练掌握二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++是解答本题的关键.8.将下列各式分解因式:(1)256x x --; (2)21016x x -+; (3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)直接利用十字相乘法分解因式即可;(2)直接利用十字相乘法分解因式即可;(3)直接利用十字相乘法分解因式即可.【解答】解:(1)因为78x x ⨯-即78x x x -=-, 所以:原式=(7)(8)x x +-;(2)因为28x x ⨯--即2810x x x --=-, 所以:原式=(2)(8)x x --;(3)22103(310)x x x x --=-+-,因为52x x ⨯-即523x x x -=, 所以:原式=(5)(2)x x -+-.【点评】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上. 9.由多项式乘法:2()()()x a x b x a b x ab ++=+++,将该式从右到左进行运算,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++.如:分解因式:2256(23)23(2)(3)x x x x x x ++=+++⨯=++.(1)分解因式:268(___)(___)x x x x ++=++(2)请用上述方法解方程:2340x x --= 【答案】(1)2,4(或4,2);(2)14x =,21x =-【分析】(1)根据“十字相乘法”进行因式分解,即可得到答案;(2)先利用“十字相乘法”进行因式分解,进而即可求解.【解答】(1)()()26824x x x x ++=++故答案为:2,4(或4,2);(2)∵234(4)(1)0x x x x --=-+=,40x ∴-=或10x +=,解得:14x =,21x =-.【点评】本题主要考查分解因式以及解一元二次方程,熟练掌握“十字相乘法”进行因式分解,是解题的关键.10.分解因式:(1)22914x xy y ++(2)2212x xy y --(3)22295x xy y +-(4)22376x xy y --(5)22328x xy y --(6)225314x xy y -++【答案】(1)()()27x y x y ++;(2)()()43x y x y -+;(3)()()52x y x y +-;(4)()()332x y x y -+;(5)()()234x y x y -+;(6)()()257x y x y --+【分析】利用十字相乘法分解即可.【解答】解:(1)22914x xy y ++=()()27x y x y ++;(2)2212x xy y --=()()43x y x y -+;(3)22295x xy y +-=()()52x y x y +-;(4)22376x xy y --=()()332x y x y -+;(5)22328x xy y --=()()234x y x y -+;(6)225314x xy y -++=()225314x xy y ---=()()257x y x y --+【点评】本题考查了因式分解,熟练掌握十字相乘法是解此题的关键.11.分解因式:(1)2914x x ++(2)212x x --(3)2295x x +-(4)2376x x --(5)28103x x ---(6)210275x x --- 【答案】(1)()()27x x ++;(2)()()34x x +-;(3)()()215-+x x ;(4)()()323x x +-;(5)()()2143x x -++;(6)()()5125x x -++【分析】利用十字相乘法分解即可.【解答】解:(1)2914x x ++=()()27x x ++;(2)212x x --=()()34x x +-;(3)2295x x +-=()()215-+x x ;(4)2376x x --=()()323x x +-;(5)28103x x ---=()28103x x -++=()()2143x x -++;(6)210275x x ---=()210275x x -++ =()()5125x x -++【点评】本题考查了因式分解,熟练掌握十字相乘法是解此题的关键.12.分解因式:(1)22914x xy y ++(2)2212x xy y --(3)22295x xy y +-(4)22376x xy y --(5)228103x xy y ++(6)2210275x xy y ++ 【答案】(1)()()27x y x y ++;(2)()()43x y x y -+;(3)()()52x y x y +-;(4)()()332x y x y -+;(5)()()243x y x y ++;(6)()()255x y x y ++【分析】利用十字相乘法分解.【解答】解:(1)22914x xy y ++=()()27x y x y ++;(2)2212x xy y --=()()43x y x y -+;(3)22295x xy y +-=()()52x y x y +-;(4)22376x xy y --=()()332x y x y -+;(5)228103x xy y ++=()()243x y x y ++;(6)2210275x xy y ++=()()255x y x y ++【点评】本题考查了因式分解,熟练掌握十字相乘法是解此题的关键.13.分解因式:(1)2710x x -+(2)2918x x -+(3)256x x --(5)232x x +-(6)234x x +-(7)2122512x x -+-(8)2310x x --+(9)22x y x y ---(10)321x x x +++(11)22494a a b +-+(12)22424a b a b --+ 【答案】(1)()()25x x --;(2)()()36x x --;(3)()()16+-x x ;(4)()()211x x +-;(5)()()132x x +-;(6)()()134x x -+;(7)()()3443x x ---;(8)()()235x x -+-;(9)()()1x y x y +--;(10)()()211x x ++;(11)()()2323a b a b +++-;(12)()()222a b a b +--【分析】(1)(2)(3)(4)(5)(6)(7)(8)利用十字相乘法分解;(9)(10)(11)(12)利用分组分解法分解.【解答】解:(1)2710x x -+=()()25x x --;(2)2918x x -+=()()36x x --;(3)256x x --=()()16+-x x ;(4)2922x x --=()()211x x +-;(5)232x x +-=()()132x x +-;(6)234x x +-=()()134x x -+;(7)2122512x x -+-=()2122512x x --+=()()3443x x ---;(8)2310x x --+=()2310x x -+-=()()235x x -+-;=()()()x y x y x y +--+ =()()1x y x y +--; (10)321x x x +++ =()()211x x x +++=()()211x x ++;(11)22494a a b +-+ =22449a a b ++- =()2229a b +-=()()2323a b a b +++- (12)22424a b a b --+ =()22424a b a b --- =()()()2222a b a b a b +--- =()()222a b a b +--【点评】本题考查了因式分解,解题的关键是根据所给代数式的形式灵活选择方法.。

初二数学知识点专题讲解与练习3---因式分解的方法(培优版)

初二数学知识点专题讲解与练习3---因式分解的方法(培优版)

.分解因式: = . 3
a2 − b2 + 4a + 2b + 3 ____________________________
.多项式 与多项式 的公因式是 . 4
ax3 − 8a
x2 − 4x + 4
____________________
5.在 1~100 之间若存在整数n ,使 x2 + x − n 能分解为两个整系数一次式的乘积,这样的 n 有_______ 个.
ห้องสมุดไป่ตู้
10.已知二次三项式21x2 + ax −10 可分解成两个整系数的一次因式的积,那么( ).
A.a 一定是奇数 C.a 可为奇数也可为偶数 11.分解因式:
B.a 一定是偶数 D.a 一定是负数
( ) ; 1 (2x2 − 3x +1)2 − 22x2 + 33x −1
( ) ; 2 (x2 + 3x + 2)(4x2 + 8x + 3) − 90
【例 4】把多项式 x2 − y2 − 2x − 4y − 3因式分解后,正确的结果是( ).
. . A (x + y + 3)(x − y −1) B (x + y −1)(x − y + 3)
. . C (x + y − 3)(x − y +1) D (x + y +1)(x − y − 3) (“希望杯”邀请赛试题)
解题思路:直接分组分解困难,可考虑先将常数项拆成几个数的代数和,比如-3=-4+1.
【例 5】分解因式:
( ) ; 1 x5 + x +1 (扬州市竞赛题)

因式分解十字相乘法例题及解析

因式分解十字相乘法例题及解析

因式分解十字相乘法例题及解析算术中,十字相乘法是一种古老而又重要的乘法,它把复杂的乘法变成简单的因式分解乘法。

在这种乘法中,每一步都可以把乘积分解成两个小乘积。

通过把乘法看作分解,我们可以求出这样的乘积,而这些乘积的因式分解统称为十字相乘法。

一般来说,十字相乘法是指把乘积分解成两个因式的乘法,常见的叫法有:因式分解十字相乘法、十字相乘因式分解法等。

十字相乘法的求解方法比较简单,只要把乘积写成两个因式相乘,就可以把乘积写成因式分解式。

常见的例子有:例1:(x + y)(x - y) = x2 - y2由于x + y和x - y是两个因式,所以把它们相乘,可以得出乘积的因式分解式x2 - y2。

例2:(x + y)(y + z) = xy + xz + yz由于x + y和y + z是两个因式,所以把它们相乘,可以得出乘积的因式分解式xy + xz + yz。

由此可见,十字相乘法是一种简单、有效的乘法。

学习者要掌握它,就要先熟练地掌握所有乘法规律。

除了上述例子外,还有更多关于十字相乘法例题等。

下面分别以几道典型例题及其解析,来帮助大家熟悉十字相乘法的应用。

例题1:(x + 2y)(x - 4y) =解:按照十字相乘法的规则,把乘积写成两个因式相乘,即x + 2y和x - 4y,所以得出因式分解式:x2 - 2xy - 4xy + 8y2 = x2 -6xy + 8y2。

例题2:(2x + 3y)(3x - y) =解:按照十字相乘法的规则,把乘积写成两个因式相乘,即2x + 3y和3x - y,所以得出因式分解式:6x2 - y2 - 6xy + 3y2 = 6x2 - 3xy + y2。

例题3:(2a + 3b)(2b - 3a) =解:按照十字相乘法的规则,把乘积写成两个因式相乘,即2a + 3b和2b - 3a,所以得出因式分解式:4ab - 9a2 + 9b2 = 4ab - 9(a2 + b2)。

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)因式分解专题培优将一个多项式变形成几个整式的积的形式,这个变形过程称为因式分解。

初中阶段常用的因式分解方法如下:1.基本方法:提公因式法、公式法、十字相乘法、分组分解法。

2.常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法。

3.考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法。

一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现在可以反向使用它们来进行因式分解,例如:1) a^2 - b^2 = (a + b) (a - b)2) a^2 ± 2ab + b^2 = (a ± b)^23) a^3 + b^3 = (a + b) (a^2 - ab + b^2)4) a^3 - b^3 = (a - b) (a^2 + ab + b^2)以下是几个常用的公式:5) a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^26) a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)7) an - bn = (a - b) (an-1 + an-2b + an-3b^2 + … + abn-2 + bn-1),其中n为正整数;8) an - bn = (a + b) (an-1 - an-2b + an-3b^2 - … + abn-2 - bn-1),其中n为偶数;9) an + bn = (a + b) (an-1 - an-2b + an-3b^2 - … - abn-2 + bn-1),其中n为奇数。

在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。

例如:例题1:分解因式:-2x^5n-1yn+4x^3n-1yn+2-2xn-1yn+4;例题2:分解因式:a^3 + b^3 + c^3 - 3abc。

因式分解培优训练题(培优篇)+答案

因式分解培优训练题(培优篇)+答案

章节复习之因式分解(培优篇) 因式分解的方法一——基本方法知识要点:因式分解的基本方法有提公因式法、公式法、分组分解法和十字相乘法。

在对一个多项式进行因式分解时,应根据多项式的特点选择合理的分解方法。

A 卷一、填空题1、分解因式:_______________419122=+-+y x x n n . 2、(河南省竞赛题)分解因式:_______________63522=++++y y x xy x . 3、已知242--ax x 在整数范围内可以分解因式,则整数a 的可能取值为 .4、(2000年第16届“希望杯”竞赛题)分解因式:()()__________122=++-+b a b a ab . 5、(2005年第16届“希望杯”初二年级培训题)如果x 、y 是整数,且12005200422=-+y xy x ,那么_________=x ,_________=y .二、选择题6、如果多项式9142++kx x 是一个完全平方式,那么k 的值是( ) A 、6- B 、6 C 、32或32- D 、34或34- 7、(2005年第16届“希望杯”初二年级培训题)已知二次三项式c bx x ++22分解因式后为()()132+-x x ,则( )A 、3=b ,1-=cB 、6-=b ,2=cC 、6-=b ,4=cD 、4-=b ,6-=c8、(江苏省南通市2005年中等学校招生考试题)把多项式1222-+-b ab a 分解因式,结果为( )A 、()()11--+-b a b aB 、()()11-++-b a b aC 、()()11-+++b a b aD 、()()11--++b a b aB 卷一、填空题9、研究下列算式:252514321==+⨯⨯⨯;21112115432==+⨯⨯⨯;==+⨯⨯⨯36116543219;22984117654==+⨯⨯⨯,……用含n 的代数式表示此规律(n 为正整数)是 .二、选择题10、对于这5个多项式:①12222---b a b a ;②322327279a xa ax x -+-;③()x x 422+-;④()()m n n n m m -+-63;⑤()()b d c c b d y d c b x 222-+-----+其中在有理数范围内可以进行因式分解的有( )A 、①②⑤B 、②④⑤C 、③④⑤D 、①②④11、已知二次三项式10212-+ax x 可以分解成两个整系数的一次因式的积,那么( ) A 、a 一定是奇数 B 、a 一定是偶数 C 、a 可为奇数也可为偶数 D 、a 一定是负数 三、解答题 12、分解因式:(1)(2000年第12届“五羊杯”数学竞赛试题)分解因式:()()()33322y x y x -----(2)122229227131+++--n n n x x x (3)2222222ab x b b a abx bx x a ax +-+-+- (4)()222224b a abx x b a +--- (5)()()()b a c a c b c b a -+-+-222 (6)613622-++-+y x y xy xC 卷一、解答题13、n (1 n )名运动员参加乒乓球循环赛,每两人之间正好只进行一场比赛。

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列因式分解结果正确的是( ) A .32(1)x x x x -=-B .229(9)(9)x y x y x y -=+-C .232(3)2x x x x -+=-+D .()()22331x x x x --=-+2.分式 212x x x ---有意义, 则( ) A .2x ≠ B .1x ≠- C .2x ≠或1x ≠- D .2x ≠且1x ≠- 3.下列多项式中是多项式243x x -+的因式的是( )A .1x -B .xC .2x +D .3x +4.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x -,乙与丙相乘的积为26x x +-,则甲与丙相减的结果是( )A .5-B .5C .1D .1-5.将下列各式分解因式,结果不含因式()2x +的是( )A .22x x +B .24x -C .()()21211x x ++++D .3234x x x -+ 6.甲、乙两位同学在对多项式2x bx c ++分解因式时甲看错了b 的值,分解的结果是()()45x x -+,乙看错了c 的值,分解的结果是()()34x x +-,那么2x bx c ++分解因式正确的结果为( )A .()()54x x --B .()()45x x +-C .()()45x x -+D .()()45x x ++ 7.如果多项式432237x x ax x b -+++能被22x x +-整除,那么:a b 的值是( )A . 2-B . 3-C .3D .6 8.若分解因式()()2153x mx x x n +-=--则m 的值为( )A .5-B .5C .2-D .2二、填空题9.因式分解26a a +-的结果是 .三、解答题21424x x -+ 解:24(2)(12)=-⨯- (2)(12)14-+-=-21424(2)(12)x x x x ∴-+=-- 解:原式222277724x x =-⋅⋅+-+2(7)4924x =--+2(7)25x =-- (75)(75)x x =-+--(2)(12)x x =-- (1)按照材料一提供的方法分解因式:22075x x -+;(2)按照材料二提供的方法分解因式:21228x x +-.20.利用整式的乘法运算法则推导得出:()()()2ax b cx d acx ad bc x bd ++=+++.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可把()2acx ad bc x bd +++看作以x 为未知数,a 、b 、c 、d 为常数的二次三项式,此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式221112x x ++的二项式系数2与常数项12分别进行适当的分解,如图2,则()()221112423x x x x ++=++.根据阅读材料解决下列问题:(1)用十字相乘法分解因式:2627x x +-;(2)用十字相乘法分解因式:2673x x --;(3)结合本题知识,分解因式:220()7()6x y x y +++-.参考答案: 1.D【分析】本题考查了因式分解;根据因式分解-十字相乘法,提公因式法与公式法的综合运用,进行分解逐一判断即可. 【详解】解:A 、()()32(1)11x x x x x x x -=-=+-故本选项不符合题意;B 、229(3)(3)x y x y x y -=+-故本选项不符合题意;C 、()()23221x x x x -+=--故本选项不符合题意;D 、223(3)1)x x x x --=-+(故本选项符合题意; 故选:D .2.D【分析】本题考查的是分式有意义的条件,利用十字乘法分解因式,根据分式有意义的条件:分母不为零可得 ²20x x --≠,再解即可. 【详解】解:由题意得: ²20x x --≠ 210x x解得: 2x ≠且1x ≠-故选: D .3.A【分析】本题考查的是利用十字乘法分解因式,掌握十字乘法是解本题的关键.【详解】解:()()24313x x x x -+=--;∴1x -是多项式243x x -+的因式;故选A4.D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∴甲与乙相乘的积为29(3)(3)x x x -=+-,乙与丙相乘的积为()262(3)x x x x +-=-+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数 ∴甲为3x -,乙为3x +,丙为2x则甲与丙相减的差为:()(3)21x x ---=-;故选:D5.D【分析】本题主要考查了分解因式,正确把每个选项中的式子分解因式即可得到答案.【详解】解:A 、()222x x x x +=+故此选项不符合题意;B 、()()2422x x x -=+-故此选项不符合题意;C 、()()()()2221211112x x x x ++++=++=+故此选项不符合题意;D 、()()323441x x x x x x =+-+-故此选项符合题意; 故选:D .6.B【分析】本题主要考查了多项式乘以多项式以及因式分解,根据甲分解的结果求出c ,根据乙分解的结果求出b ,然后代入利用十字相乘法分解即可.【详解】解:∴()()24520x x x x -+=+-∴20c =-∴()()23412x x x x +-=--∴1b∴2x bx c ++220x x =--()()45x x =+-故选:B .7.A【分析】由于()()2221+-=+-x x x x ,而多项式432237x x ax x b -+++能被22x x +-整除,则432237x x ax x b -+++能被()()21x x +-整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x -+++=+-,则2x =-和1x =时4322370x x ax x b -+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值.【详解】解:∴()()2221+-=+-x x x x∴432237x x ax x b -+++能被()()21x x +-整除设商是A .则()()43223721x x ax x b A x x -+++=+-则2x =-和1x =时右边都等于0,所以左边也等于0.当2x =-时43223732244144420x x ax x b a b a b -+++=++-+=++= ∴当1x =时43223723760x x ax x b a b a b -+++=-+++=++= ∴-①②,得3360a +=∴12a =-∴66b a =--=.∴:12:62a b =-=-故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =-和1x =时原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.8.D【分析】已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 的值即可.【详解】解:已知等式整理得:()()()2215333x mx x x n x n x n +-=--=+--+可得3m n =-- 315n =-解得:2m = 5n =-故答案为:D .【点睛】此题考查了因式分解-十字相乘法,熟练掌握运算法则是解本题的关键. 9.(3)(2)a a +-【分析】解:本题考查了公式法进行因式分解,掌握2()()()x p q x pq x p x q +++=++进行因式分解是解题的关键.【详解】26(3)(2)a a a a +-=+-故答案为:(3)(2)a a +-.10.(2)(3)y y y --【分析】本题考查提公因式法,十字相乘法,掌握提公因式法以及2()()()x p q x pq x p x q +++=++是正确解答的关键.先提公因式y ,再利用十字相乘法进行因式分解即可.【详解】解:原式2(56)y y y =-+(2)(3)y y y =--.故答案为:(2)(3)y y y --.11.()()21a a a --/()()12a a a --【分析】先去括号合并后,直接提取公因式a ,再利用十字相乘法分解因式即可.本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止【详解】解:2(3)2a a a -+3232a a a -+=()232a a a =-+(2)(1)a a a =--.故答案为:(2)(1)a a a --.12.1±或5±【分析】此题考查因式分解—十字相乘法,解题关键在于理解()()()2x a b x ab x a x b +++=++.把6-分成3和2-,3-和2,6和1-,6-和1,进而得到答案.【详解】解:当()()2632x mx x x +-=+-时()321m =+-=当()()2632x mx x x +-=-+时321m =-+=-当()()2661x mx x x +-=-+时615m =-+=-当()()2661x mx x x +-=+-时615m =-=综上所述:m 的取值是1±或5±故答案为:1±或5±.13.6±【分析】本题考查十字相乘法进行因式分解,根据5可以分成15⨯或()()15-⨯-即可求解.【详解】解:155⨯= ()()155-⨯-=()()21565x x x x ++=++ ()()26515x x x x =---+∴如果关于x 的二次三项式25x kx ++可以用十字相乘法进行因式分解,那么整数k 等于6±. 故答案为:6±.14.()()21x x +-【分析】本题主要考查了根与系数的关系、十字相乘法因式分解的知识点,先根据根与系数的关系确定b 、c 的值,然后再运用十字相乘法因式分解即可.【详解】解:∴关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2- 根据根与系数的关系可得:()12b -=+- ()12c =⨯-∴1b = 2c =-∴()()22221x bx c x x x x ++=+-=+-故答案为:()()21x x +-.15.()()211x x --【分析】本题考查了一元二次方程的解及因式分解,将1x =代入原方程,求出m 的值,然后再进行因式分解是解决问题的关键.【详解】解:∴关于x 的一元二次方程2210x mx ++=有一个根是1∴把1x =代入,得210m ++=解得:3m =-.则()()2221231211x mx x x x x ++=-+=--故答案为:()()211x x --.16.()()23x x +-【分析】根据一元二次方程的根与系数的关系求出p q ,,再进行因式分解即可.【详解】解:∴方程20x px q ++=的两个根分别是2和3-∴23p -=- ()23q ⨯-=∴1,6p q ==-∴()()2623x x x x --=+-;故答案为()()23x x +-.【点睛】本题主要考查一元二次方程根与系数的关系,因式分解,熟练掌握一元二次方程根与系数的关系是解题的关键.17.(1)()()322x x x +-(2)()23y x y --(3)()()26x x +-【分析】本题考查因式分解的知识,解题的关键是掌握因式分解的方法:提公因式法,公式法和十字相乘法,即可.(1)先提公因式3x ,然后根据()()22a b a b a b -=+-,即可; (2)先提公因式y -,再根据()2222a b a ab b ±=±+,即可;(3)根据十字相乘法,进行因式分解,即可.【详解】(1)3312x x -()234x x =- ()()322x x x =+-;(2)22369xy x y y --()2269y xy x y =--++()2296y x xy y =--+ ()23y x y =--; (3)2412x x --()()26x x =+-.18.3a b += 2ab =.【详解】解:因为()()()2x a x b x a b x ab ++=+++,且232x x ++因式分解的结果是()()x a x b ++所以3a b += 2ab =.19.(1)(5)(15)x x --(2)(14)(2)x x +-【分析】本题考查了因式分解,解答本题的关键是理解题意,明确题目中的分解方法. (1)仿照题目中的例子进行分解即可得出答案;(2)仿照题目中的例子进行分解即可得出答案.【详解】(1)解:75(5)(15)=-⨯- (5)(15)20-+-=-22075(5)(15)x x x x ∴-+=--;(2)解:原式222266628x x =+⋅⋅+--2(6)3628x =+--2(6)64x =+-(68)(68)x x =+++-(14)(2)x x =+-.20.(1)()()39x x -+(2)()()2331x x -+(3)()()443552x y x y +++-【分析】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.【详解】(1)解:2627x x +-第 11 页 共 11 页 ()()39x x =-+;(2)解:2673x x -- ()()2331x x =-+;(3)解:220()7()6x y x y +++- ()()4352x y x y ⎡⎤⎡⎤=+++-⎣⎦⎣⎦ ()()443552x y x y =+++-.。

初中数学因式分解公式法十字相乘法知识点的讲解和练习

初中数学因式分解公式法十字相乘法知识点的讲解和练习

由此可见, 5、中考点拨: 例 1:因式分解: 解:
一定是 8 的倍数。
________。
说明 : 因式分解时,先看有没有公因式。此题应先提取公因式,再用平方差公式分解彻 底。 例 2:分解因式: 解: 说明:先提取公因式,再用完全平方公式分解彻底。 题型展示: 例 1. 已 知 : 的值。 解: , 求 _________。
将它与原式的各项系数进行对比,得:
7
解得: 此时,原式 (2)设原式分解为 ,其中 c、d 为整数,去括号,得:
将它与原式的各项系数进行对比,得:
解得: 此时,原式 2. 在几何学中的应用 例. 已知:长方形的长、宽为 x、y,周长为 16cm,且满足 ,求长方形的面积。 分析:要求长方形的面积,需借助题目中的条件求出长方形的长和宽。 解:
或 又
解得:

∴长方形的面积为 15cm2 或 3、在代数证明题中的应用
8
例. 证明:若 数。
是 7 的倍数,其中 x,y 都是整数,则
是 49 的倍
分析:要证明原式是 49 的倍数,必将原式分解成 49 与一个整数的乘积的形式。 证明一:
∵ ∴
是 7 的倍数,7y 也是 7 的倍数(y 是整数) 是 7 的倍数 是 7 的倍数,所以 (m 是整数) 是 49 的倍数。
是三角 形三边


5
4. 解 ,即 5. 分析与解答:(1)由因式分解可知
故需考虑
值的情况,
(2)所求代数式较复杂,考虑恒等变形。 解:(1) 又
而 不全相等
(2) 原式 而 ,即
原式
说明:因式分解与配方法是在代数式的化简与求值中常用的方法。 5、用十字相乘法把二次三项式分解因式 【知识精读】 对于首项系数是 1 的二次三项式的十字相乘法,重点是运用公式 进行因式分解。 掌握这种方法的关键是确定适合条件的

十字相乘法因式分解练习题

十字相乘法因式分解练习题

十字相乘法因式分解练习题在代数学中,因式分解是将一个多项式拆分为两个或多个因数相乘的过程。

而十字相乘法是一种常用的因式分解方法,适用于处理二次三项式以及一些简单的多次方项式。

本文将为你呈现一些十字相乘法的因式分解练习题,帮助你巩固相关概念和技巧。

1. 练习题一:给定多项式 P(x) = x^2 - 5x + 6,使用十字相乘法进行因式分解。

解答:首先,观察多项式的首项系数为 1,结合十字相乘法的原则,可知因式分解形式为:P(x) = (x - a)(x - b),其中 a 和 b 分别为两个因式的根。

现在我们需要找到 a 和 b 的值,通过观察多项式的常数项为 6,根据十字相乘法的原则,可知 a 和 b 的乘积应为 6。

考虑到 -5x 的系数为负数,因此 a 和 b 的和应为 -5,同时由于 6 的因子有 (1, 6), (-1, -6), (2, 3), (-2, -3),我们可以进行尝试找到对应的 a 和 b 的值。

经过计算,我们得到 (x - 2)(x - 3) = x^2 - 5x + 6,因此多项式 P(x)可以因式分解为 (x - 2)(x - 3)。

2. 练习题二:给定多项式 Q(x) = 2x^2 + 7x - 3,使用十字相乘法进行因式分解。

解答:同样地,观察多项式 Q(x) 的首项系数为 2,因此因式分解形式为Q(x) = (2x + a)(x + b),其中 a 和 b 分别为两个因式的根。

我们需要找到 a 和 b 的值,通过观察多项式的常数项为 -3,根据十字相乘法的原则,可知 a 和 b 的乘积应为 -3。

考虑到 7x 的系数为正数,因此 a 和 b 的和应为 7,同时 -3 的因子有 (1, -3), (-1, 3),我们可以进行尝试找到对应的 a 和 b 的值。

经过计算,我们得到 (2x - 1)(x + 3) = 2x^2 + 7x - 3,因此多项式 Q(x) 可以因式分解为 (2x - 1)(x + 3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考:分解因式: abcx2 (a2b 2 c 2 )x abc
十字相乘法因式分解培优讲解训练
1、二次项系数为 1 的二次三项式
直接利用公式—— x2 ( p q)x pq ( x p)( x q) 进行分解。
2、二次项系数不为 1 的二次三项式—— ax 2 bx c
条件:( 1) a a1a2
a1
c1
( 2) c c1c2
a2
c2
( 3) b a1c2 a2c1
= (a 8b)(a 16b)
练习:分解因式 (1) x2 3xy 2y 2
(2) m 2 6mn 8n 2
(3) a 2 ab 6b 2
4、二次项系数不为 1 的齐次多项式
【例 3】 2x2 7 xy 6 y 2
1
-2y
2
-3y
(-3y)+(-4y)= -7y
x2 y 2 3xy 2
把 xy 看作一个整体 1
-1
1
-2
(-1)+(-2)= -3
解:原式 = (x 2 y)( 2x 3y)
解:原式 = ( xy 1)( xy 2)
练习:分解因式: ( 1) 15x2 7xy 4 y2
( 2) a 2 x2 6 ax 8
综合练习( 1) 8 x6 7 x3 1
( 2) 12x2 11xy 15 y2
(3) ( x y) 2 3( x y) 10
(3) 10 x2 17 x 3
( 4) 6 y2 11y 10
3、二次项系数为 1 的齐次多项式
【例 2】分解因式: a 2 8ab 128b 2
分析:将 b 看成常数,把原多项式看成关于 a的二次三项式,利用十字相乘法进行分解。
1
8b
1
-16b
8b+(-16b)= -8b
解: a 2 8ab 128b2 = a 2 [ 8b ( 16b)]a 8b ( 16b)
b a1c2 a2c1
分解结果: ax 2 bx c = (a1x c1)(a2 x c2 ) 【例 1】分解因式: 3x 2 11x 10
分析:
1ห้องสมุดไป่ตู้
-2
3
-5
( -6) +(-5) = -11
解: 3x 2 11x 10 = (x 2)( 3x 5)
练习: 分解因式: (1) 5 x 2 7x 6
(2) 3x2 7x 2
( 4) (a b) 2 4a 4b 3
(5) x2 y2 5x2 y 6x2
( 6) m 2 4mn 4n2 3m 6n 2
(7) x2 4xy 4 y 2 2x 4 y 3( 8) 5(a b) 2 23(a 2 b2 ) 10( a b) 2
(9) 4x 2 4xy 6 x 3y y 2 10 ( 10) 12(x y) 2 11( x 2 y 2 ) 2( x y) 2
相关文档
最新文档