三角形的重心、垂心、内心、外心

合集下载

三角形的外心内心垂心重心

三角形的外心内心垂心重心

三角形的外心内心垂心重心三角形的“四心所谓三角形的“四心”是指三角形的重心、垂心、外心及内心•当三角形是正三角形时,四心重合为一点,统称为三角形的中心.一、外心【定义】三角形三条中垂线的交点叫外心,即外接圆圆心.\ABC的重心一般用字母0表示.【性质】1・外心到三顶点等距,即OA = OB = 0C・2 •外心与三角形边的中点的连线垂直于三角形的这一边,即OD 丄BC,OEA.4C,OF丄/〃・3.ZJ = -ZBOC,ZB = L"OC,ZC = -ZAOB ・2 2 2二、内心【定义】三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心.MBC的内心一般用字母/表示.C【性质】1 •内心到三角形三边等距,且顶点与内心的连线平分顶角.2•三角形的面积=三角形的周长x内切圆的半径.23. AE = AF. BF = BD, CD = CE ;AE + BF±CD =三角形的周长的一半.44一90。

+存,8“90。

+护,W9O +"C・三、垂心【定义】三角形三条高的交点叫重心.\ABC的重心一般用字母H表示.1 •顶点与垂心连线必垂直对边,即AH丄BC、BH丄AC,CH丄AB.2.A ABH的垂心为C, NBHC的A 垂心为/\ACH的垂心为3 •【定义】三角形三条中线的交点叫重心・AJBC 的重心一般用字母G 表示. 【性质】1 •顶点与重心G 的连线必平分对边.2•重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍.即 GA = 2GD, GB = 2GE, GC = 2GF3 .重心的坐标是三顶点坐标的平均值. 即总二邑逬竺,儿=2^匕严4•向量性质:(1) GA + GB + GC = O ;三角形“四心”的向量形式:结论1:若点O 为\ABC 所在的平面内一点,满足OAOB = OBOC = OCOA t则点。

为MBC 的垂心.结论2:若点O 为AABC 所在的平面内一点,满足OA +~BC 2 =OB -}-CA =OC\7B~ f 则点 O 为\ABC 的垂心.结论3:若点G 满足GA + GB^GC = O f 则点G 为\ABC 的重心.结论4:若点G 为\ABC 所在的平面内一点,满足~OG = -(OA^OB + OC)t则点G 为\ABC 的重心.结论5:若点/为AJBC 所在的平面内一点,并且满足a H + b •用+ c •丘=6(其中a,b,c 为三角形的三边),则点/为AABC 的内心.结论6:若点O 为MBC 所在的平面内一点,满足(^ + OB) BA = (dB + OC) CB = (dc + OA) AC ,则点 O 为 \ABC 的夕卜心.结论7:设/lw(0,+oo),则向量仲=久(«+ <£■),则动点P 的轨迹过的 \AB\ \AC\■ •I ■ • I •I •(2) PG = -(PA + PB + PC),5・ S^GC = S^CG/l =S“GBMB内心.向量和“心”一、重心”的向量风采【命题1】 已知G 是厶ABC 所在平面上的一点,若"G B -GG0,则G 是△ ABC 的重心.如图⑴.定通过△ ABC 的重心.边上的中线所在直线的向量,所以动点 ⑵. P 的轨迹一定通过 △ ABC 的重心,如图二、垂心”的向量风采【命题3】 P 是厶ABC 所在平面上一点,若 PA P^PB P^ PC PA ,则P 是 △ ABC 的垂心. 【解析】由 况,韋「P "B ,P ^得(祚 L F ) C0即卩P"B ,UfO ,所以【命题4】 已知O 是平面上一定点,A, B C 是平面上不共线的三个点,动点【解析】由题意 AP 「(AB AC),当’(0::时,由于■ (AB AC)表示 BC图⑵(是平面上不共线的三个点,动点CA 同理可证P C ± A ,PALB C 二P 是厶ABC 的垂心.如图⑶.图⑶A BP 满足 OP =0A ■ (AB AC) , ■ ( 0 BBP 满足O?=OA+扎 1 A ----- +------ |,九匸(0,+°°),贝U 动点 P 的轨迹 疋AB cosB AC cosC |通过△ ABC 的垂心.的轨迹一定通过△ ABC 的垂心,如图⑷. 三、内心”的向量风采 【命题5】 已知IABC 所在平面上的一点,且AB 二cAC 二bBC 二a .若T i TaIA bIB cIC =0,贝U I 是厶ABC 的内心.【解析】 AB c o BAC c Cs,由于= 'BC'—'CB|=0,所以AP 表示垂直于BC 的向量,即P 点在过点A 且垂直于BC 的直线上,所以动点P二 AI由题意AC cosCAB BC AC ■ BC即岡盂+冋盂AC ••• bAB cACbc a b c分别为AB 和AC 方向上的单位向量,••• AI与/ BAC平分线共线,即AI平分.BAC .同理可证:BI 平分.ABC , CI 平分.ACB .从而I 是△ ABC 的内心,如图⑸.【命题6】 已知0是平面上一定点,A , B (是平面上不共线的三个点,动点的内心.则O 是厶ABC 的外心,如图⑺.【命题7】 已知O 是平面上的一定点,A B C 是平面上不共线的三个点,动轨迹一定通过△ ABC 的外心.A C——C 表示垂直于BC 的向量,所以P 在BC 垂直平分线上, o sC,川(0 +叱),则动点P 的轨迹一定通过 △ ABC,二当儿三(0 ■二时,AP 表示一 BAC 的平分线所在直线方向的向量,故动点 P 的轨迹一定通过△ ABC 的内心,如图⑹. 四、外心”的向量风采 【命题7】 已知0是△ ABC 所在平面上一点,若0V "0B =—0,则 o 是△ ABC 的外心.^^2 2 2【解析】 若O A = O B = 0,则 图⑻龙=用6=|二「. 0^=RB~0,C点P 满足OP 二(TT 3 IT :AB +ACACCOBc CsJ【解析】由于°-B —°过C BC 的中点,2P 满足【解析】由题意得APAC■OB OC .2人乏(0 + °°),则动点P 的A C动点P 的轨迹一定通过△ ABC 的外心,如图⑻练习:数.满足:AB • AC 二‘ AP ,则.的值为() 3A . 2B .C . 3D . 622.若.ABC 的外接圆的圆心为 0,半径为1,OA ,OB ・OC=0,贝U OA OB =()A . 1B . 0C . 12OA 2OB 2OC = 0,贝U ABC 面积与凹四边形 ABOC 面积之比是( )3 5A . 0B .C .— 2 40,若OH -OA OB OC ,贝U H 是 ABC 的(——2 ——2 ——■ 2 5.0是平面上一定点,A 、B 、C 是平面上不共线的三个点,若OA BC = 0B■ - 2 j 2 ■ 2CA =OC AB ,则 O 是 ABC 的( )A .外心B .内心C .重心 6^ ABC 的外接圆的圆心为0,两条边上的高的交点为H, OH = m (OA OB OC ),则实数m = ______ 7. (06陕西)已知非零向量AB 与AC 满足+AC ) BC=0且•— =2 ,|Afe| |AC| |Afe| |AC| 2A .外心B .内心C .重心D .垂心 1■已知 ABC 三个顶点A 、B 、C 及平面内一点P ,满足 PA PB PC3 .点O 在ABC 内部且满足 4. =ABC 的外接圆的圆心为 D .垂心则厶ABC为()A.三边均不相等的三角形C.等腰非等边三角形B.直角三角形D .等边三角形——2 ——————■ 一■ ——一■8.已知ABC 三个顶点A、B、C,若AB -AB AC AB CB BC CA,则ABC 为()A .等腰三角形C .直角三角形练习答案:C、D、C、D、D、B.等腰直角三角形D .既非等腰又非直角三角形1、D、C。

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

--WORD 格式--可编辑-----三角形的外心、内心、重心、垂心、旁心(五心定理 )序 名 定义号称三 三角形的三条边角的垂直平分线交形1于一点 ,这点称为 的三角形的外心 (外外 接圆圆心 )心三 三角形的三条内角角平分线交于一形 2点 ,这点称为三角 的形的内心 (内切圆内圆心 )心三角 三角形的三条中 3形 线交于一点 ,这点的 称为三角形的重重 心心 三角 三角形的三条高形4交于一点 ,这点称的 为三角形的垂心垂心图形AOBCAM FEKI BCD HAFEG BCDCED OAFBA性质1, 三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径;2, 锐角三角形的外心在三角形内;直角三角形的外心在斜边中点;钝角三角形的外心在三角形外1, 三角形的内心到三边的距离相等,都等于三角形内切圆半径;2, 直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一1, 三角形的重心到边的中点与到相应顶点的距离之比为1∶ 2;2, 重心和三角形 3 个顶点组成的 3 个三角形面积相等; 3, 重心到三角形 3 个顶点距离的平方和最小1,三角形任一顶点到垂心的距离,等于外心到对边的距离的 2 倍;锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的 2 倍;2,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上; 钝角三角形的垂心在三角形外 ;三 三角形的一条内 BD角角平分线与另两 C形 个外角平分线交 F1, 每个三角形都有三个旁心;2, 旁心到三边的距离相等5于一点 ,称为三角的 E旁 形的旁心 (旁切圆 I a心圆心 )附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

第 1 页,共 1 页。

三角形的内心,外心,重心,垂心,旁心及性质分别是指什么?

三角形的内心,外心,重心,垂心,旁心及性质分别是指什么?

三角形的内心,外心,重心,垂心,旁心及性质分别是指什么?1.垂心:〈1〉定义:是三角形三条高的交点。

〈2〉性质:[性质1]锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。

[性质2]三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心。

[性质3]垂心O关于三边的对称点,均在△ABC的外接圆圆上。

[性质4]△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,。

[性质5]O、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为--垂心组)。

[性质6]△ABC,△ABO,△BCO,△ACO的外接圆是等圆。

[性质7]三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

[性质8]设O、H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA.[性质9]锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍,即AH+BH+CH=2(r+R)。

[性质10]锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。

[性质11]设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB.上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3.[性质12]三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。

2.内心〈1〉定义:是三角形三条内角平分线的交点即内接圆的圆心。

交于点O,点O即为△ABC的内心。

〈2〉性质:[性质1]三角形的内心到三边的距离相等,都等于内切圆半径r. [性质2]∠BOC=90°+∠BAC/2。

[性质3]在Rt△ABC中,∠A=90°,三角形内切圆切BC于D,则S△ABC=BDxCD3.重心:〈1〉重心的定义:重心是三角形三条中线的交点。

三角形重心、外心、垂心、内心性质

三角形重心、外心、垂心、内心性质

三角形重心性质定理1三角形的重心将三角形的每条中线都分成1∶2两部分,其中重心到三角形某一顶点的距离是到该顶点对边中点距离的2倍。

2重心到顶点的距离与重心到对边中点的距离之比为2:1。

3重心和三角形3个顶点组成的3个三角形面积相等。

4重心到三角形3个顶点距离的平方和最小。

5在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/36重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。

7重心是三角形内到三边距离之积最大的点。

三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。

三角形的外心的性质1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。

3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合4.OA=OB=OC=R5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA6.S△ABC=abc/4R三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。

三角形的内心的性质1.三角形的三条角平分线交于一点,该点即为三角形的内心2.三角形的内心到三边的距离相等,都等于内切圆半径r3.r=2S/(a+b+c)4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/26.S△=[(a+b+c)r]/2 (r是内切圆半径)三角形的垂心是三角形三边上的高的交点(通常用H表示)。

三角形的垂心的性质1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心3. 垂心O关于三边的对称点,均在△ABC的外接圆上4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

三角形“四心”定义与性质

三角形“四心”定义与性质

三角形“四心”定义与性质所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形的中心。

一、三角形的外心定义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC的重心一般用字母O表示。

性质:1.外心到三顶点等距,即OA OB OC。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即OD BC,OE AC,OF AB.3. A 1BOC,B1AOC,C1AOB。

2 2 2二、三角形的内心定义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC的内心一般用字母I表示,它具有如下性质:性质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。

2.三角形的面积=1三角形的周长内切圆的半径.23. AEAF,BF BD,CD CE;AE BF CD三角形的周长的一半。

4. BIC1A,CIA1B,AIB1C。

90 90 902 2 2三、三角形的垂心定义:三角形三条高的交点叫重心。

ABC的重心一般用字母H表示。

性质:1.顶点与垂心连线必垂直对边,即AHBC,BHAC,CH AB。

2.△ABH的垂心为C,△BHC的垂心为A,△ACH的垂心为B。

四、三角形的“重心”:定义:三角形三条中线的交点叫重心。

ABC 的重心一般用字母G 表示。

性质:1. 顶点与重心G 的连线必平分对边。

2. 重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GA2GD,GB2GE,GC2GF3.重心的坐标是三顶点坐标的平均值.即x G x A x B xC,y Gy A y B yC .334.向量性质:(1)GAGB GC0 ;(2)PG 1(PAPB PC),31S5.S BGC SCGASAGBABC 。

3五、三角形“四心”的向量形式:结论1:若点O 为 ABC 所在的平面内一点,满足OAOB OBOC OCOA ,则点O 为 ABC 的垂心。

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

之巴公井开创作一、二、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

三角形的重心、外心、垂心、内心和旁心(五心定理).doc

三角形的重心、外心、垂心、内心和旁心(五心定理).doc

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称Z为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理, 旁心定理的总称。

、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离Z比为2 : 1o2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1 +X2+X3)/3, (Y1 +Y2+Y3)/3o二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:仁三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若0是ZXABC的外心,则ZB0C=2ZA ( ZA为锐角或宜角)或Z BOC=360°-2ZA (ZA 为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个顶点连向另外两个顶点向量的点乘od=d2d3, c2=d1d3, c3=d1d2; c=c1+c2+c3o 重心坐标:((c2+c3)/2c, (c1+c3)/2c, (c1+c2)/2c )o5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1>三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且0G : GH=1 : 2。

三角形重心垂心外心内心相关性质介绍

三角形重心垂心外心内心相关性质介绍

三 角 形 的“四 心”所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形的中心。

一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC ∆的重心一般用字母O 表示。

性 质:1.外心到三顶点等距,即OC OB OA ==。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,.3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。

二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC ∆的内心一般用字母I 表示,它具有如下性质:性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。

2.三角形的面积=⨯21三角形的周长⨯内切圆的半径. 3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。

4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。

三、三角形的垂心定 义:三角形三条高的交点叫重心。

ABC ∆的重心一般用字母H 表示。

性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。

2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。

四、三角形的“重心”:定 义:三角形三条中线的交点叫重心。

ABC ∆的重心一般用字母G 表示。

性 质:1.顶点与重心G 的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值. 即3,3C B AG C B A G y y y y x x x x ++=++=. 4.向量性质:(1)=++;(2))(31++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31。

垂心、重心、内心、外心、旁心的定义和性质

垂心、重心、内心、外心、旁心的定义和性质

垂心、重心、内心、外心、旁心的定义和性质1.定义垂心:三角形三条高的交点重心:三角形三条中线的交点内心:三角形三条内角平分线的交点即内接圆的圆心外心:三角形三条边的垂直平分线的交点即外接圆的圆心旁心:三角形两条外角平分线和一条内角平分线的交点注意:正三角形中重心、垂心、外心、内心重合,这个点叫中心。

2.性质垂心:1、锐角三角形垂心在三角形内部,直角三角形垂心在三角形直角顶点,钝角三角形垂心在三角形外部。

2、垂心H关于三边的对称点,均在△ABC的外接圆上。

3、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

4、从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

(西姆松线)重心:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

3、重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。

4、重心到三角形3个顶点距离的平方和最小。

5、重心是三角形内到三边距离之积最大的点。

6、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3内心:1、到三边的距离相等,都等于内切圆半径r。

2、内心都在三角形的内部。

3、设三角形的三个顶点坐标分别为A(x_1,y_1),B(x_2,y_2),C(x_3,y_3),其对边长分别为a,b,c,则内心坐标I((ax_1+bx_2+cx_3)/(a+b+c),(ay_1+by_2+cy_3)/(a+b+c))外心:1、到三角形三顶点的距离相等,都等于外接圆半径R。

2、直角三角形外心在斜边的中点,锐角三角形外心在内部,钝角三角形外心在外部。

旁心:1、旁心到三边的距离相等。

2、三角形有三个旁切圆,三个旁心。

三角形的重心、外心、垂心、内心和旁心(五心定理)(优选.)

三角形的重心、外心、垂心、内心和旁心(五心定理)(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

三角形外心内心重心垂心与向量性质

三角形外心内心重心垂心与向量性质

三 角 形 “四 心”所谓三角形“四心”是指三角形重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形中心。

一、三角形外心定 义:三角形三条中垂线交点叫外心,即外接圆圆心。

ABC ∆重心一般用字母O 表示。

性 质:1.外心到三顶点等距,即OC OB OA ==。

2.外心及三角形边中点连线垂直于三角形这一边,即AB OF AC OE BC OD ⊥⊥⊥,,.3.向量性质:若点O 为ABC ∆所在平面内一点,满足⋅+=⋅+=⋅+)()()(,则点O 为ABC ∆外心。

二、三角形内心定 义:三角形三条角平分线交点叫做三角形内心,即内切圆圆心。

ABC ∆内心一般用字母I 表示,它具有如下性质:性 质:1.内心到三角形三边等距,且顶点及内心连线平分顶角。

2.三角形面积=⨯21三角形周长⨯内切圆半径. 3.向量性质:设()+∞∈,0λ,则向量,则动点P 轨迹过ABC ∆内心。

三、三角形垂心定 义:三角形三条高交点叫重心。

ABC ∆重心一般用字母H 表示。

性 质:1.顶点及垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。

2.向量性质:结论1:若点O 为ABC ∆所在平面内一点,满足⋅=⋅=⋅,则点O 为ABC ∆垂心。

结论2:若点O 为△ABC所在平面内一点,满足222222+=+=+,则点O 为ABC ∆垂心。

四、三角形“重心”:定 义:三角形三条中线交点叫重心。

ABC ∆重心一般用字母G 表示。

性 质:1.顶点及重心G 连线必平分对边。

2.重心定理:三角形重心及顶点距离等于它及对边中点距离2倍。

即GF GC GE GB GD GA 2,2,2===3.重心坐标是三顶点坐标平均值. 即3,3C B AG C B A G y y y y x x x x ++=++=. 4.向量性质:(1)0=++GC GB GA ;(2))(31++=。

三角形的外心内心垂心重心

三角形的外心内心垂心重心

三角形的外心内心垂心重心三角形是几何学中最基本的图形之一,而与三角形相关的概念和定理也是几何学中的重要内容。

在本文中,我们将着重讨论三角形的外心、内心、垂心和重心,这四个点对于三角形的性质和特征有着重要的影响。

一、外心三角形的外心是三角形外接圆的圆心。

外接圆是能够同时经过三角形三个顶点的圆,它具有一些特殊的性质。

对于任意三角形ABC,我们可以找到一个唯一的外心O,使得OA、OB和OC分别是外接圆的半径。

这里需要注意的是,只有非退化三角形才存在外心,而退化三角形指的是三个顶点共线的情况。

当我们求解三角形的外心时,可以利用外接圆的性质进行推导。

假设三角形的三个顶点分别是A(x1, y1)、B(x2, y2)和C(x3, y3),我们可以通过求解垂直平分线的交点来确定外心的坐标(x, y)。

具体而言,我们可以得到以下方程组:(1) AB的垂直平分线:(x - (x1 + x2)/2)^2 + (y - (y1 + y2)/2)^2 = ((x2 - x1)^2 + (y2 - y1)^2)/4(2) BC的垂直平分线:(x - (x2 + x3)/2)^2 + (y - (y2 + y3)/2)^2 = ((x3 - x2)^2 + (y3 - y2)^2)/4(3) AC的垂直平分线:(x - (x1 + x3)/2)^2 + (y - (y1 + y3)/2)^2 = ((x3 - x1)^2 + (y3 - y1)^2)/4通过解方程组,我们可以求解出x和y的值,即为外心的坐标。

外心是三角形外部的一个点,它与三个顶点的连线都相等,因此具有一定的几何意义和应用价值。

二、内心与外心相比,内心是三角形内切圆的圆心。

内切圆是及时能够与三角形的三条边相切的圆,它也具有一些特殊的性质。

对于任意三角形ABC,我们可以找到一个唯一的内心I,使得AI、BI和CI分别是内切圆的半径。

同样地,我们可以通过一定的推导来求解三角形的内心坐标。

内心、外心、重心、垂心定义及性质总结

内心、外心、重心、垂心定义及性质总结

内心、外心、重心、垂心1、内心(1)定义:三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。

(2)三角形的内心的性质①三角形的三条角平分线交于一点,该点即为三角形的内心②三角形的内心到三边的距离相等,都等于内切圆半径r③s=(r是内切圆半径)④在Rt△ABC中,∠C=90°,r=(a+b-c)/2.⑤∠BOC = 90 °+∠A/2 ∠BOA = 90+∠C/2 ∠AOC = 90+∠B/22、外心(1)定义:三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。

(2)三角形的外心的性质①三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。

③锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合④OA=OB=OC=R⑤∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA⑥S△ABC=abc/4R3、重心(1)三角形的三条边的中线交于一点。

该点叫做三角形的重心。

(2)三角形的重心的性质①重心到顶点的距离与重心到对边中点的距离之比为2:1。

②重心和三角形3个顶点组成的3个三角形面积相等。

③重心到三角形3个顶点距离的平方和最小。

④在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3⑤重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。

⑥重心是三角形内到三边距离之积最大的点。

4、垂心(1)定义:三角形的垂心是三角形三边上的高的交点(通常用H表示)。

(2)三角形的垂心的性质①锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外②三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心③垂心O关于三边的对称点,均在△ABC的外接圆上④△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF⑤H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

三角形的内心外心重心垂心

三角形的内心外心重心垂心

三角形的内心外心重心垂心
三角形的内心是所有角平分线的交点。

它位于三角形的内部,并且是三角形的内切圆的圆心。

内切圆是与三角形的三边都相切的圆。

内心到三角形每条边的距离相等,这个距离称为内切圆的半径。

内心在三角形中具有对称性,它在三角形的几何性质中扮演着重要的角色。

三角形的外心
三角形的外心是所有中垂线的交点。

中垂线是连接三角形一边的中点与对边中点的线段,它垂直于这条边。

外心位于三角形的外部,并且是外接圆的圆心。

外接圆是经过三角形所有顶点的圆。

外心到三角形每个顶点的距离相等,这个距离称为外接圆的半径。

外心是三角形的几何中心,它在解决许多几何问题时非常有用。

三角形的重心
三角形的重心是所有中线的交点。

中线是连接三角形一个顶点与对边中点的线段。

重心将每条中线平分,也就是说,重心到顶点的距离是到对边中点距离的两倍。

重心在三角形的几何学中具有平衡性,它代表了三角形的质心,即如果三角形是由均匀材料制成,重心就是其重量的平衡点。

三角形的垂心
三角形的垂心是所有高线的交点。

高线是从一个顶点垂直于对边的线段。

垂心将每条高线平分,即垂心到顶点的距离是到对边中点距离的一半。

垂心在三角形的几何学中具有对称性,它在解决与垂直性相关的问题时非常有用。

这些特殊点不仅在理论几何学中具有重要性,而且在实际应用中也有广泛的用途,如在建筑设计、工程学、艺术和计算机图形学等领域。

了解这些点的性质和它们之间的关系,可以帮助我们解决更复杂的几何问题。

三角形的重心、垂心、内心、外心

三角形的重心、垂心、内心、外心

三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB 因此,垂心定理成立!四、三角形内心定理三角形内切圆的圆心,叫做三角形的内心。

三角形的几个心的定义及性质

三角形的几个心的定义及性质

三角形的个心的定义及性质
3. 内心(Incenter):三角形内切圆的圆心,用I表示。内心到三条边的距离相等,即 IA=IB=IC。内心是三角形三条角平分线的交点,也是三个顶点与内心连线的角平分线的交点。
4. 垂心(Orthocenter):三角形三条高的交点,用H表示。垂心是三角形三个顶点与对立 边的垂直线的交点。垂心到三个顶点的距离不相等,即HA≠HB≠HC。
三角形的几个心的定义及性质
性质: - 重心和内心、外心的连线互相垂直。 - 外心是三角形三个顶点与外心的连线的垂直平分线的交点,内心是三角形三个顶点与内 心的连线的角平分线的交点。 - 垂心到三个顶点的距离的乘积等于垂心到三条边的距离的乘积。 - 三角形的面积等于重心到三个顶点连线的距离的乘积的一半。 - 内心到三个顶点的距离的和等于内心到三条边的距离的和。 - 外心到三个顶点的距离的和等于外心到三条边的距离的和。
三角形的几个心的定义及性质
三角形的几个心是指三角形内部与三个顶点连线的交点,分别是重心、外心、内心和垂心。
1. 重心(Centroid):三角形三条中线的交点,用G表示。重心到三个顶点的距离相等,即 GA=GB=GC。重心将三角形分成六个小三角形,每个小三角形的重心都是G。
2. 外心(Circumcenter):三角形外接圆的圆心,用O表示。外心到三个顶点的距离相等, 即OA=OB=OC。外心是三角形三条垂直平分线的交点,也是三个顶点与外心连线的垂直平分线 的交点。

三角形重心垂心外心内心相关性质介绍

三角形重心垂心外心内心相关性质介绍

资料收集于网络,如有侵权请联系网站删除只供学习与交流
三角形的“四心”
所谓三角形的“四心”是指三角形的重心、
垂心、外心及内心。

当三角形是正三角形时,
四心重合为一点,统称为三角形的中心。

一、三角形的外心
定义:三角形三条中垂线的交点叫外心,
即外接圆圆心。

ABC的重心一般用字母0表示。

性质:
1.外心到三顶点等距,即OA OB 0C。

2.外心与三角形边的中点的连线垂直于三角形的这一
边,即OD BC,OE AC,OF AB.
1
3. A BOC, B
2
二、三角形的内心
定义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC的内心一
般用字母I表示,它具有如下性质:
性质:
1. 内心到三角形三边等距,且顶点与内心的连线平分顶角。

1
2. 三角形的面积= 三角形的周长内切圆的半径.
2
3. AE AF,BF BD,CD CE ;
AE BF CD 三角形的周长的一半。

1 1
4. BIC 90 — A, CIA 90 — B, AIB 90
2 2
三、三角形的垂心
定义:三角形三条高的交点叫重心。

性质:1. 顶点与垂心连线必垂直对边,即AH BC, BH AC,CH AB。

-AOC, C - AOB。

2 2
2. △ ABH的垂心为C , △ BHC的垂心为A , △ ACH的垂心为B。

ABC的重心一般用字母H表示。

只供学习与交流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理
三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

二、三角形外心定理
三角形外接圆的圆心,叫做三角形的外心。

外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等
三、三角形垂心定理
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB
证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB 因此,垂心定理成立!
四、三角形内心定理
三角形内切圆的圆心,叫做三角形的内心。

内心的性质:
1、三角形的三条内角平分线交于一点。

该点即为三角形的内心。

2、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

3、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC
4、(内角平分线分三边长度关系)
△ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
五、三角形旁心定理
三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。

旁心的性质:
1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。

2、每个三角形都有三个旁心。

3、旁心到三边的距离相等。

附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

有关三角形五心的诗歌
三角形五心歌(重外垂内旁)
三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.重心三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.
外心三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.
垂心三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.
内心三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.。

相关文档
最新文档