高考压轴题(5)——磁场(答案)
备战高考物理法拉第电磁感应定律-经典压轴题附详细答案
一、法拉第电磁感应定律1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.(1)求磁感应强度B的大小;(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1 T (2)0.3 m(3)0.3n J【解析】【详解】(1)当h=2L时,bc进入磁场时线框的速度===v gh gL222m/s此时金属框刚好做匀速运动,则有:mg=BIL又E BLv==IR R联立解得1mgR=BL v代入数据得:1TB=(2)当h>2L时,bc边第一次进入磁场时金属线框的速度022v gh gL =>即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。
2.两间距为L=1m 的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、 磁感应强度大小B=2T 的匀强磁场中.金属棒P 垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m 0未知),将重物由静止释放,经过一 段时间,将另一根完全相同的金属棒Q 垂直放在导轨上,重物立即向下做匀速直线运动,金 属棒Q 恰好处于静止状态.己知两金属棒的质量均为m=lkg 、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度g=l0m/s 2,sin 37°=0.6,cos37°=0.8.求:(1)金属棒Q 放上后,金属棒户的速度v 的大小;(2)金属棒Q 放上导轨之前,重物下降的加速度a 的大小(结果保留两位有效数字); (3)若平行直导轨足够长,金属棒Q 放上后,重物每下降h=lm 时,Q 棒产生的焦耳热.【答案】(1)3m/s v = (2)22.7m/s a = (3)3J 【解析】【详解】(1)金属棒Q 恰好处于静止时sin mg BIL θ=由电路分析可知E BLv = ,2E I R= , 代入数据得,3m/s v =(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得00sin ()m g mg m m a θ-=+代入数据得,22.7m/s a =(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知 Q 棒产生的焦耳热为3J 2Q Q ==总3.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④(2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E R⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m4.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mvI Rt-=5.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2mR grx =,两棒速度稳定之后,再经过一段时间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =2rhx ∆= (3) 12Q mgr =【解析】 【分析】 【详解】(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:2012mgr mv =解得a 棒沿圆弧轨道最低点M 时的速度02v gr 从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:012mv mv =解得两棒以相同的速度做匀速运动的速度0122grv v == (2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:2222A B L xI ILBt BL Rit R∆Φ===由动量定理:21A I mv mv --=解得22grv =由平抛运动规律得,两棒落到地面后的距离()122h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热:220111(2)22Q mv m v =- 解得:12Q mgr =6.如图所示足够长的光滑平行金属导轨MN 、PQ 组成的平面与水平面成37°放置,导轨宽度L=1m ,一匀强磁场垂直导轨平面向下,导轨上端M 与P 之间连接阻值R=0.3Ω的电阻,质量为m=0.4kg 、电阻r=0.1Ω的金属棒ab 始终紧贴在导轨上.现使金属导轨ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图像中的OA 段为曲线,AB 段为直线,导轨电阻不计.g=10m/s 2,忽略ab 棒在运动过程中对原磁场的影响.求:(1)磁感应强度B 的大小;(2)金属棒ab 在开始运动的2.0s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的2.0s 内,电阻R 产生的焦耳热. 【答案】(1)0.4B T = (2)6q C = (3) 5.4R Q J = 【解析】(1)导体棒在沿斜面方向的重力分力与安培力平衡:得sin mg BIL θ=导体棒切割磁感线产生的电动势为: E BLv =由闭合电路欧姆定律知:EI R r=+ 3.66/0.6x v m s t === 联立解得:0.4B T = (2)6()()()E BsLq It t t C R r t R r R r R r ∆Φ∆Φ======+∆+++ (3)由功能关系得:21sin 2mgx mv Q θ=+ 5.4R QQ R J R r==+ 综上所述本题答案是:(1)0.4T (2)6C (3)5.4J点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.7.现代人喜欢到健身房骑车锻炼,某同学根据所学知识设计了一个发电测速装置,如图所示。
高中物理【磁场】专题分类典型题(带解析)
高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。
历年高考真题分类汇编磁场部分
磁场历年高考真题汇总(解答题)1.(2022·江苏·高考真题)某装置用电场控制带电粒子运动,工作原理如图所示,矩形ABCD 区域内存在多层紧邻的匀强电场,每层的高度均为d ,电场强度大小均为E ,方向沿竖直方向交替变化,AB 边长为12d ,BC 边长为8d ,质量为m 、电荷量为q +的粒子流从装置左端中点射入电场,粒子初动能为k E ,入射角为θ,在纸面内运动,不计重力及粒子间的相互作用力。
(1)当0θθ=时,若粒子能从CD 边射出,求该粒子通过电场的时间t ;(2)当k 4E qEd =时,若粒子从CD 边射出电场时与轴线OO '的距离小于d ,求入射角θ的范围;(3)当k 83E qEd =,粒子在θ为22ππ-~范围内均匀射入电场,求从CD 边出射的粒子与入射粒子的数量之比0:N N 。
【答案】(1)0k 8cos 2d t E m θ=⋅;(2)3030θ︒︒-<<或66ππθ-<<;(3)05:0%N N = 【详解】(1)电场方向竖直向上,粒子所受电场力在竖直方向上,粒子在水平方向上做匀速直线运动,速度分解如图所示 粒子在水平方向的速度为0cos x v v θ=根据2k 12E mv =可知 k2E v m=解得0k88cos 2x d d m E t v θ==⋅(2)粒子进入电场时的初动能2k 0142E qEd mv ==粒子进入电场沿电场方向做减速运动,由牛顿第二定律可得qE ma =粒子从CD 边射出电场时与轴线OO '的距离小于d ,则要求 202(sin )ad v θ>解得 11sin 22θ-<<所以入射角的范围为3030θ︒︒-<<或66ππθ-<<(3)设粒子入射角为'θ时,粒子恰好从D 点射出,由于粒子进入电场时,在水平方向做匀速直线运动,在竖直方向反复做加速相同的减速运动,加速运动。
高考物理压轴题电磁场大全
1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。
一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。
⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。
求入射粒子的速度。
解:qB mv =v由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间t=d /v 0,在电场中竖直位移221tan 2t mqE d h ⋅⋅==φ,由以上各式可得3、如图所示,在第一象限有一均强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸面垂直。
一质量为m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场。
粒子在磁场中的运动轨迹与y 轴交于M 点。
已知OP=l ,l OQ 32=。
不计重力。
求(1)M 点与坐标原点O 间的距离;(2)粒子从P 点运动到M 点所用的时间。
【解析】(1)带电粒子在电场中做类平抛运动,在y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为a ;在x 轴正方向上做匀速直线运动,设速度为0v ,粒子从P 点运动到Q 点所用的时间为1t ,进入磁场时速度方向与x 轴正方向的夹角为θ,则qEa m=① 012y t a=② 001x v t =③ 其中0023,x l y l ==。
又有1tan at v θ= ④ 联立②③④式,得30θ=︒因为M O Q 、、点在圆周上,=90MOQ ∠︒,所以MQ 为直径。
从图中的几何关系可知。
23R l = ⑥ 6MO l = ⑦(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的时间为2t , 则有0 cos v v θ=⑧ 2Rt vπ= ⑨ 带电粒子自P 点出发到M 点所用的时间为t 为12+ t t t = ⑩联立①②③⑤⑥⑧⑨⑩式,并代入数据得32+ 1mlt qE π⎛⎫= ⎪ ⎪⎝⎭⑾4、如图所示,在0≤x≤a 、o≤y≤2a 2a范围内有垂直手xy 平面向外φOyEB A φC φd h xxy OP QMv 0的匀强磁场,磁感应强度大小为B 。
高考磁场原创压轴题含答案
1.在实验室中,需要控制某些带电粒子在某区域内的滞留时间,以达到预想的实验效果。
现设想在xOy的纸面内存在以下的匀强磁场区域,在O点到P点区域的x轴上方,磁感应强度为B,方向垂直纸面向外,在x轴下方,磁感应强度大小也为B,方向垂直纸面向里,OP两点距离为x0(如图所示)。
现在原点O处以恒定速度v0不断地向第一象限内发射氘核粒子。
(1)设粒子以与x轴成45°角从O点射出,第一次与x轴相交于A点,第n次与x轴交于P点,求氘核粒子的比荷q/m(用已知量B、x0、v0、n表示),并求OA段粒子运动轨迹的弧长(用已知量x0、v0、n表示)。
(2)求粒子从O点到A点所经历时间t1和从O点到P点所经历时间t(用已知量x0、v0、n表示)。
2如图所示,在一底边长为2L,θ=45°的等腰三角形区域内(O为底边中点)有垂直纸面向外的匀强磁场. 现有一质量为m,电量为q的带正电粒子从静止开始经过电势差为U的电场加速后,从O点垂直于AB进入磁场,不计重力与空气阻力的影响.(1)粒子经电场加速射入磁场时的速度?(2)磁感应强度B为多少时,粒子能以最大的圆周半径偏转后打到OA板?(3)增大B,可延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间.(不计粒子与AB板碰撞的作用时间,设粒子与AB板碰撞前后,电量保持不变并以相同的速率反弹)3.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E≪E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.4. 如图甲所示,两平行金属板A、B的板长l=0.20 m,板间距d=0.20 m,两金属板间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应.在金属板右侧有一方向垂直于纸面向里的匀强磁场,其左右宽度D=0.40 m,上下范围足够大,边界MN和PQ均与金属板垂直.匀强磁场的磁感应强度B=1.0×10-2 T.现从t=0开始,从两极板左端的中点O处以每秒钟1 000个的速率不停地释放出某种带正电的粒子,这些粒子均以v0=2.0×105 m/s的速度沿两板间的中线射入电场,已知带电粒子的比q/m=1.0×108C/kg,粒子的重力和粒子间的相互作用都忽略不计,在粒子通过电场区域的极短时间内极板间的电压可以看作不变.求:(1)t=0时刻进入的粒子,经边界MN射入磁场和射出磁场时两点间的距离;(2)当两金属板间的电压至少为多少时,带电粒子不能进入磁场;(3)u=3.14v时经边界MN射入磁场和射出磁场时两点间的距离;(4)粒子在磁场中运动最长时间与最短时间之比;(5)粒子在磁场中运动最长时间,此时A、B两极板所加的电压;(6)在电压变化的第一个周期内有多少个带电粒子能进入磁场.5.(16分)在如图所示的xoy坐标系中,y>0的区域内存在着沿y轴正方向、场强为E的匀强电场,y<0的区域内存在着垂直纸面向里、磁感应强度为B的匀强磁场.一带电粒子从y轴上的P(0,h)点以沿x轴正方向的初速度射出.己知带电粒子的质量为m,带电量为-q,D点坐标(d,0),不计重力的影响.(1)若粒子只在电场作用下直接通过D点,求粒子初速度的大小v(2)若粒子在第二次经过x轴时通过D点,求粒子初速度的大小v(3)若粒子在从电场进入磁场时通过D点,求粒子初速度的大小v;6.(12分)如图所示,在无限长的竖直边界AC和DE间,上、下部分分别充满方向垂直于ADEC平面向外的匀强磁场,上部分区域的磁感应强度大小为B0,OF为上、下磁场的水平分界线。
高考物理法拉第电磁感应定律-经典压轴题附答案解析
(2)在0~4s时间内通过电阻R的电荷量q;
(3)在0~5s时间内金属棒ab产生的焦耳热Q。
【答案】(1) (2) (3)
【解析】(1)棒进入磁场之前对ab受力分析由牛顿第二定律得
由匀变速直线位移与时间关系
则由匀变速直线运动速度与时间 Nhomakorabea系得金属棒受到的安培力
(2)由上知,棒进人磁场时 ,则金属棒作匀速运动,匀速运动时间
F安=BLI
根据闭合电路欧姆定律有:
I=
联立解得解得F安=4 N
所以克服安培力做功:
而Q=W安,故该过程中产生的焦耳热Q=3.2 J
(3)设线框出磁场区域的速度大小为v1,则根据运动学关系有:
而根据牛顿运动定律可知:
联立整理得:
(M+m)( -v2)=(M-m)g·2L
线框穿过磁场区域过程中,力F和安培力都是变力,根据动能定理有:
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
Ueb= E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
对棒2: 安
解得:
(2)对棒1和2的系统,动量守恒,则最后稳定时:
解得:
(3)对棒2,由动量定理: ,其中
解得:
(4)由 、 、
联立解得:
又
解得:
则稳定后两棒的距离:
8.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L=1m,导轨平面与水平面成 =30角,上端连接 的电阻.质量为m=0.2kg、阻值 的金属棒ab放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d=4m,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.
高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析
高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析一、带电粒子在磁场中的运动压轴题1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R OQ QC =+21v qvB m R =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
高考物理带电粒子在磁场中的运动压轴难题知识归纳总结含答案解析
高考物理带电粒子在磁场中的运动压轴难题知识归纳总结含答案解析一、带电粒子在磁场中的运动压轴题1.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O 、O 3、Q 共线且水平,粒子在两磁场中的半径分别为r 2、r 3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB =m 2v r 得r =mv qB易知r 3=4r 2且满足(r 2+r 3)2=(R 2-r 2)2+r 32解得r 2=34m ,r 3=3m 又由动能定理有qU =12mv 2 代入数据解得U =3×107V .(3)带电粒子从P 到Q 的运动时间为t 1,则t 1满足12v t 1=d 得t 1=10-9s 令∠QO 2O 3=θ,所以cos θ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T =2m qBπ 故粒子从Q 孔进入磁场到第一次到O 点所用的时间为8221372180532610360360m m t s qB qB ππ-⨯⨯⨯-=+= 考虑到周期性运动,t 总=t 1+t 2+k(2t 1+2t 2)=(6.1×10-8+12.2×10-8k)s (k =0,1,2,3,…).2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比. 【答案】22B qL E m=;2B E t t π= 【解析】【分析】【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有200v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R = 以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at = 竖直方向上:0E R v t =由以上各式,得 22B qL E m= 且E m t qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π== 所以2B E t t π=3.在平面直角坐标系x0y 中,第I 象限内存在垂直于坐标平面向里的匀强磁场,在A (L ,0)点有一粒子源,沿y 轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m ,电荷量为q .在B (0,L )、C (0,3L )、D (0,5L )放一个粒子接收器,B 点的接收器只能吸收来自y 轴右侧到达该点的粒子,C 、D 两点的接收器可以吸收沿任意方向到达该点的粒子.已知速率为υ的粒子恰好到达B 点并被吸收,不计粒子重力.(1)求第I 象限内磁场的磁感应强度B 1;(2)计算说明速率为5v 、9v 的粒子能否到达接收器;(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B 2的大小和方向.【答案】(1)1mv B qL =(2)故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收(3)2217'(173)m B qL=-(或2(17317)'4mv B qL +=),垂直坐标平面向外 【解析】【详解】(1)由几何关系知,速率为v 的粒子在第Ⅰ象限内运动的半径为R L =①由牛顿运动定律得21v qvB m R=② 得1mv B qL=③ (2)由(1)中关系式可得速率为v 5、9v 的粒子在磁场中的半径分别为5L 、9L . 设粒子与y 轴的交点到O 的距离为y ,将5R L =和9R L =分别代入下式222()R L y R -+=④得这两种粒子在y 轴上的交点到O 的距离分别为3L 、17L ⑤故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收.⑥(3)若速度为9v 的粒子能到达D 点的接收器,则所加磁场应垂直坐标平面向外⑦ 设离子在所加磁场中的运动半径为1R ,由几何关系有15172917L L R L L -=⑧ 又221(9)9v q vB m R ⋅=⑨ 解得2217(517)mv B qL=-(或2(51717)4mv B qL +=)⑩ 若粒子到达C 点的接收器,所加磁场应垂直于坐标平面向里同理:21732917L LR L L-= 222(9)9'v q vB m R ⋅= 解得2217'(173)m B qL=-(或2(17317)'4mv B qL +=)4.如图所示的xOy 坐标系中,Y 轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B ,方向垂直于xOy 平面向外.Q 1、Q 2两点的坐标分别为(0,L)、(0,-L),坐标为(-33L ,0)处的C 点固定一平行于y 轴放置的绝缘弹性挡板,C 为挡板中点.带电粒子与弹性绝缘挡板碰撞前后,沿y 轴方向分速度不变,沿x 轴方向分速度反向,大小不变.现有质量为m ,电量为+q 的粒子,在P 点沿PQ 1方向进入磁场,α=30°,不计粒子重力.(1)若粒子从点Q 1直接通过点Q 2,求:粒子初速度大小.(2)若粒子从点Q 1直接通过坐标原点O ,求粒子第一次经过x 轴的交点坐标.(3)若粒子与挡板碰撞两次并能回到P 点,求粒子初速度大小及挡板的最小长度.【答案】(123qBL (230L ,)(3)49L 【解析】(3)粒子初速度大小为,挡板的最小长度为试题分析:(1)由题意画出粒子运动轨迹如图甲所示,粒子在磁场中做圆周运动的半径大小为R1,由几何关系得R1cos30°=L (1)粒子磁场中做匀速圆周运动,有: (2)解得: (3)(2)由题意画出粒子运动轨迹如图乙所示,设其与x轴交点为M,横坐标为x M,由几何关系知:2R2cos30°=L (4)x M=2R2sin30° (5)则M点坐标为() (6)(3)由题意画出粒子运动轨迹如图丙所示,粒子在磁场中做圆周运动的半径大小为R3,偏转一次后在y负方向偏移量为△y1,由几何关系得:△y1=2R3cos30° (7)为保证粒子最终能回到P,粒子每次射出磁场时速度方向与PQ2连线平行,与挡板碰撞后,速度方向应与PQ1连线平行,每碰撞一次,粒子出进磁场在y轴上距离△y2(如图中A、E间距)可由题给条件得: (8)当粒子只碰二次,其几何条件是:3△y1﹣2△y2=2L (9)解得: (10)粒子磁场中做匀速圆周运动,有: (11)解得: (12)挡板的最小长度为: (13)解得: (14)5.如图所示,在xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y 轴向下.一电子以速度v 0从y 轴上的P 点垂直于y 轴向右飞入电场,经过x 轴上M 点进入磁场区域,又恰能从y 轴上的Q 点垂直于y 轴向左飞出磁场已知P 点坐标为(0,-L),M 点的坐标为(233L ,0).求 (1)电子飞出磁场时的速度大小v(2)电子在磁场中运动的时间t【答案】(1)02v v =;(2)2049L t v π=【解析】【详解】 (1)轨迹如图所示,设电子从电场进入磁场时速度方向与x 轴夹角为θ,(1)在电场中x 轴方向:01233L v t =,y 轴方向12y v L t =:,0tan 3y v v θ== 得60θ=,002cos v v v θ== (2)在磁场中,234sin 3L r L θ== 磁场中的偏转角度为23απ=202439rL t v v ππ==6.如图所示,平面直角坐标系xoy 的第二、三象限内有方向沿y 轴正向的匀强电场,第一、四象限内有圆形有界磁场,有界磁场的半径为当22L ,磁扬场的方向垂直于坐标平面向里,磁场边界与y 轴相切于O 点,在x 轴上坐标为(-L ,0)的P 点沿与x 轴正向成θ=45°方向射出一个速度大小为v 0的带电粒子,粒子的质量为m ,电荷量为q ,粒子经电场偏转垂直y 轴射出电场,粒子进人磁场后经磁场偏转以沿y 轴负方向的速度射出磁场,不计粒子的重力.求(1)粒子从y 轴上射出电场的位置坐标;(2)匀强电场电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P 点射出到出磁场运动的时间为多少?【答案】(1)(0,12L )(2)202mv E qL = 02mv B = (3)002(1)2L L t v v π+=+ 【解析】【分析】(1)粒子在电场中的运动为类平抛运动的逆过程,应用类平抛运动规律可以求出粒子出射位置坐标.(2)应用牛顿第二定律求出粒子在电场中的加速度,应用位移公式求出电场强度;粒子在磁场中做圆周运动,应用牛顿第二定律可以求出磁感应强度.(3)根据粒子运动过程,求出粒子在各阶段的运动时间,然后求出总的运动时间.【详解】(1)粒子在电场中的运动为类平抛运动的逆运动,水平方向:L=v 0cosθ•t 1,竖直方向:y=12v 0sinθ•t 1, 解得:y=12L , 粒子从y 轴上射出电场的位置为:(0,12L ); (2)粒子在电场中的加速度:a=qE m , 竖直分位移:y=12a t 12, 解得:202mv E qL= ; 粒子进入磁场后做匀速圆周运动,粒子以沿y 轴负方向的速度射出磁场,粒子运动轨迹运动轨迹如图所示,由几何知识得:AC 与竖直方向夹角为45°,22, 因此AAC 刚好为有界磁场边界圆的直径,粒子在磁场中做圆周运动的轨道半径:r=L ,粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m 2v r, 其中,粒子的速度:v=v 0cosθ,解得:022mv B qL=; (3)粒子在电场中的运动时间:1002L L t v cos θ==,粒子离开电场进入磁场前做匀速直线运动,位移:2122x L L =-, 粒子做运动直线运动的时间:20(22)2x L t v v -==, 粒子在磁场中做圆周运动的时间:301122442m L t T qB v ππ==⨯=, 粒子总的运动时间:t=t 1+t 2+t 3=()00212L L v v π++; 【点睛】 本题考查了带电粒子在磁场中运动的临界问题,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,分析好从电场射入磁场衔接点的速度大小和方向,运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.7.如图所示,在平面直角坐标系xOy 内,第一、四象限有与y 轴相切于O 点、圆心为O 1、半径一定的有界圆形区域,其内存在垂直于纸面匀强磁场,第二、三象限有平行y 轴的匀强电场.一带电粒子(重力不计)自P(-d ,32d )点以平行于x 轴的初速度v 0开始运动,粒子从O 点离开电场,经磁场偏转后又从y 轴上的Q 点(图中未画出)垂直于y 轴回到电场区域,并恰能返回到P 点.求:(1)粒子经过O 点时的速度;(2)电场强度E 和磁感应强度B 的比值.【答案】(1)2v 0(2)058E v B = 【解析】【详解】试题分析:(1)粒子从P 到O 的过程中做类平抛运动,设时间为t 1,经过O 点时的速度为v ,其在y 轴负方向的分速度为v y ,与y 轴负方向的夹角为θd=v 0t 11322x v d t = v 2=v 02+v y 20tan y θ=v v解得:v=2v 0θ=300(2)设粒子质量为m ,电荷量为q ,粒子在电场中运动的加速度为a :Eq=ma213122at = 粒子从Q 到P 的过程中,也做类平抛运动,设时间为t 2,Q 点的纵坐标为y Q22312Q y at = d=vt 2解得:538Q y d =设粒子由S 点离开磁场,粒子从O 到S 过程中做圆周运动,半径为r ,由几何关系有:r+rsinθ=y Q2v qvB m r =53r d =058E v B = 考点:带电粒子在电场及磁场中的运动 【点睛】【名师点睛】此题是带电粒子在电场及磁场中的运动问题;关键是搞清粒子的运动情况,画出粒子运动的轨迹图,结合平抛运动及匀速圆周运动的规律,并利用几何关系进行求解;此题难度中等,考查学生运用基础知识解决问题的能力.8.现代科学仪器常利用电场磁场控制带电粒子的运动,如图所示,真空中存在着多层紧密 相邻的匀强电场和匀强磁场,宽度均为d 电场强度为E ,方向水平向左;垂直纸面向里磁场的磁感应强度为B 1,垂直纸面向外磁场的磁感应强度为B 2,电场磁场的边界互相平行且与电场方向垂直.一个质量为、电荷量为的带正电粒子在第层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.(1)求粒子在第2层磁场中运动时速度2v 的大小与轨迹半径2r ;(2)粒子从第n 层磁场右侧边界穿出时,速度的方向与水平方向的夹角为n θ,试求sin n θ; (3)若粒子恰好不能从第n 层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n 层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之 【答案】(1); (2); (3)见解析;【解析】(1)粒子在进入第2层磁场时,经两次电场加速,中间穿过磁场时洛伦兹力不做功,由动能定理,有:解得:粒子在第2层磁场中受到的洛伦兹力充当向心力,有:联立解得:(2)设粒子在第n 层磁场中运动的速度为v n ,轨迹半径为r n (下标表示粒子所在层数),粒子进入到第n 层磁场时,速度的方向与水平方向的夹角为,从第n 层磁场右侧边界突出时速度方向与水平方向的夹角为,粒子在电场中运动时,垂直于电场线方向的速度分量不变,有:由图根据几何关系可以得到:联立可得:由此可看出,,…,为一等差数列,公差为d,可得:当n=1时,由下图可看出:联立可解得:(3)若粒子恰好不能从第n层磁场右侧边界穿出,则:,在其他条件不变的情况下,打印服务比荷更大的粒子,设其比荷为,假设通穿出第n 层磁场右侧边界,粒子穿出时速度方向与水平方向的夹角为,由于,则导致:说明不存在,即原假设不成立,所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.考点:带电粒子在电磁场中的运动9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,在竖直平面内有一直角坐标系xOy ,在直角坐标系中y 轴和x =L 之间有沿y 轴正方向的匀强电场,电场强度大小为E ,在电场的右侧以点(3L,0)为圆心、L 为半径的圆形区域内有垂直于坐标平面向里的匀强磁场,磁感应强度大小为B ,在y 轴上A 点(0,L )处沿x 轴正方向射出一质量为m 、电荷量为q 的带负电的粒子,粒子经电场偏转后,沿半径方向射入磁场,并恰好竖直向下射出磁场,粒子的重力忽略不计,求:(结果可含根式)(1)粒子的初速度大小; (2)匀强磁场的磁感应强度大小. 【答案】(152qELm(22910229050mEqL-【解析】 【详解】(1)粒子射入电场中并在电场中发生偏转,由于能沿半径方向进入磁场,因此其处电场 后的轨迹如图所示,出电场后的速度方向的反向延长线交于在电场运动的水平位移的中点:则由几何关系可知粒子在电场中的竖直位移y 满足122Ly L y L=- 解得15y L =竖直方向212y a t=水中方向0L t v =在电场中根据牛顿第二定律qE ma =联立可以得到032qELv m=(2)设粒子进磁场时的轨迹与磁场边界交点为C ,由于粒子出磁场时方向沿y 轴负方向,因此粒子在磁场中做圆周运动的圆心在2O 点,连接2O 和C 点,交x 轴与D 点,做2O F 垂直x 轴,垂直为F . 由几何关系452LCD L L=解得25CD L =由于21O F OC L ==,故2O FD ∆与1OCD ∆全等,可以得到 21O D O D =则1O D L ==因此粒子在磁场中做圆周运动的半径为2R O D CD =+=粒子出电场时速度沿y 轴负方向的分速度y v ==因此粒子进磁场时的速度为v ==粒子在磁场中做匀速圆周运动有2qvB m Rv =解得B ==点睛:本题考查了粒子在电场与磁场中的运动,分析清楚 粒子运动过程、作出粒子运动轨迹是解题的前提与关键,应用类平抛运动规律、牛顿第二定律即可解题.。
高考物理《磁场、磁感线、磁场的叠加》真题练习含答案
高考物理《磁场、磁感线、磁场的叠加》真题练习含答案1.[2024·浙江省湖州市月考]奥斯特通过实验证实了电流的周围存在着磁场.如图所示,闭合开关S后,位于螺线管右侧的小磁针和位于螺线管正上方的小磁针N极指向将分别是()A.向右,向左B.向左,向左C.向左,向右D.向右,向右答案:A解析:将通电螺线管等效成一条形磁铁,根据右手螺旋定则可知螺线管右侧为N极,左侧为S极,则位于螺线管右侧的小磁针N极指向右,位于螺线管正上方的小磁针N极指向左,A正确.2.安培曾经提出分子环形电流的假说来解释为什么磁体具有磁性,他认为在物质微粒的内部存在着一种环形的分子电流,分子电流会形成磁场,使分子相当于一个小磁体(如图甲所示).以下说法正确的是()A.这一假说能够说明磁可以生电B.这一假说能够说明磁现象产生的电本质C.用该假设解释地球的磁性,引起地磁场的环形电流方向如图乙所示D.用该假设解释地球的磁性,引起地磁场的环形电流方向如图丙所示答案:B解析:这一假说能够说明磁现象产生的电本质,即磁场都是由运动的电荷产生的,故B 正确,A错误;由右手螺旋定则可知,引起地磁场的环形电流方向应是与赤道平面平行的顺时针方向(俯视),C、D错误.3.[2024·江苏省无锡市、江阴市等四校联考]科考队进入某一磁矿区域后,发现指南针静止时,N 极指向为北偏东60°,如图虚线所示.设该位置地磁场磁感应强度的水平分量为B ,磁矿所产生的磁感应强度水平分量最小值为( )A .B 2 B .3B 2C .BD . 3 B 答案:B解析:磁矿所产生的磁场水平分量与地磁场水平分量垂直时,磁矿所产生的磁感应强度水平分量最小,为B′min =B cos 60°=32B ,B 正确.4.[2024·河北省邯郸市多校联考]如图所示为某磁场中部分磁感线的分布图,P 、Q 为磁场中的两点,下列说法正确的是( )A .P 点的磁感应强度小于Q 点的磁感应强度B .同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力C .同一线圈在P 点的磁通量一定大于在Q 点的磁通量D .同一线圈在P 点的磁通量一定小于在Q 点的磁通量 答案:B解析:磁感线的疏密程度表示磁感应强度的大小,由图可知,P 点的磁感应强度大于Q 点的磁感应强度,A 错误;电流元在磁场中的受力与放置方式有关,同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力,B 正确;磁通量大小不只与磁感应强度大小有关,还与线圈的放置方式有关,故同一线圈在P 、Q 两点的磁通量无法比较,C 、D 错误.5.[2024·陕西省西安市质检]在匀强磁场中,一根长为0.4 m 的通电导线中的电流为20 A ,这条导线与磁场方向垂直时,所受的磁场力为0.015 N ,则磁感应强度的大小为( )A .7.2×10-4 TB .3.75×10-3 TC .1.875×10-3 TD .1.5×10-3 T答案:C解析:根据安培力公式F =ILB ,代入数据求得B =F IL =0.0150.4×20 T =1.875×10-3 T ,C 正确.6.在磁感应强度为B 的匀强磁场中有一顺时针的环形电流,当环形电流所在平面平行于匀强磁场方向时,环心O 处的磁感应强度为B 1,如图甲所示;当环形电流所在平面垂直于匀强磁场方向时,环心O 处的磁感应强度为B 2,如图乙所示.已知B 1=22B 2,则环形电流在环心O 处产生的磁感应强度大小为( )A .12B B .BC .32 B D .2B答案:B解析:设环形电流中心轴线的磁感应强度大小为B′,根据安培定则可知其方向为垂直纸面向内,则有B 21 =B′2+B 2,B 2=B′+B ,解得环形电流在环心O 处产生的磁感应强度大小为B′=B ,B 项正确.7.如图所示,直角三角形abc 中,∠abc =30°,将一电流为I 、方向垂直纸面向外的长直导线放置在顶点a 处,则顶点c 处的磁感应强度大小为B 0.现再将一电流大小为4I 、方向垂直纸面向里的长直导线放置在顶点b 处.已知长直通电导线产生的磁场在其周围空间某点的磁感应强度大小B =k Ir ,其中I 表示电流大小,r 表示该点到导线的距离,k 为常量.则顶点c 处的磁感应强度( )A .大小为 3B 0,方向沿ac 向上 B .大小为B 0,方向垂直纸面向里C .大小为3B 0,方向沿∠abc 平分线向下D .大小为2B 0,方向垂直bc 向上 答案:A解析:令ac 间距为r ,根据几何知识可知bc 间距为2r ,由安培定则可知,a 点处电流产生的磁场在c 点处的磁感应强度方向垂直ac 向左,大小为B 0=k Ir .用安培定则判断通电直导线b 在c 点上所产生的磁场方向垂直于bc 斜向右上,大小为B b =k 4I 2r =2k Ir =2B 0.如图所示由几何知识可得θ=60°,根据矢量的合成法则,则有各通电导线在c 点的合磁感应强度,在水平方向上的分矢量B x =2B 0cos 60°-B 0=0在竖直方向上的分矢量B y =2B 0sin 60°= 3 B 0所以在c 点处的磁感应强度大小为 3 B 0,方向沿ac 向上.。
浙江省新高考压轴题磁场大题解析
浙江省新高考物理卷压轴题(“磁场”题)解析江苏省特级教师 戴儒京2016年开始,浙江省与上海市一起作为教育部新一轮高考改革的试点,全国的教师,都在关注,全国的物理教师,都在关注其物理试题。
在物理试题中,有一类试题特别受关注,那就是关于“带电粒子在电磁场中的圆周运动”的题目,为什么呢?因为它难,往往成为全国及各省市高考物理试卷的压轴题。
对于浙江新高考物理试卷,就是第23题(试卷的最后一题)或22题(试卷的倒数第2题)。
本文就把浙江省新高考物理卷压轴题解析下来,以供广大物理教师特别是高三物理教师参考。
本文包括浙江省新高考以来4年7题,除2016年4月卷22题,其余各卷均为23题。
除2019年外(2019年10月还未到),每年2卷,分别在4月和10月或11月。
所以本文包括4年7题。
1.2019年第23题 23.(10分【加试题】有一种质谱仪由静电分析器和磁分析器组成,其简化原理如图所示。
左侧静电分析器中有方向指向圆心O 、与O 点等距离各点的场强大小相同的径向电场,右侧的磁分析器中分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行,两者间距近似为零。
离子源发出两种速度均为v 0、电荷量均为q 、质量分别为m 和0.5m 的正离子束,从M 点垂直该点电场方向进入静电分析器。
在静电分析器中,质量为m 的离子沿半径为r 0的四分之一圆弧轨道做匀速圆周运动,从N 点水平射出,而质量为0.5m 的离子恰好从ON 连线的中点P 与水平方向成θ角射出,从静电分析器射出的这两束离子垂直磁场方向射入磁分析器中,最后打在放置于磁分析器左边界的探测板上,其中质量为m 的离子打在O 点正下方的Q 点。
已知OP=0.5r 0,OQ= r 0,N 、P 两点间的电势差,54cos =θ,不计重力和离子间相互作用。
(1)求静电分析器中半径为r 0处的电场强度E 0和磁分析器中的磁感应强度B 的大小;(2)求质量为0.5m 的离子到达探测板上的位置与O 点的距离l (用r 0表示); (3)若磁感应强度在(B —△B )到(B +△B )之间波动,要在探测板上完全分辨出质量为m 和0.5m 的两束离子,求的最大值【解析】(1) 径向电场力提供向心力0200r mv q E =20qr mv E =,00qr mv B = (2) 动能定理25.021mv ⨯-205.021mv ⨯=NP qUm qU v v NP 420+==50v ,0255.0r qB mv r == 05.0cos 2r r l -=θ 05.1r l =(3) 恰好能分辨的条件:-∆-B B r 120=∆+BB r 1cos 2θ20r %12417≈-=∆BB2. 2018年11月第23题23.(10分)【加试题】小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”。
高考磁场压轴题详析
高考磁场压轴题详析例1.如图甲,A 、B 两板间距为2L ,板间电势差为U ,C 、D 两板间距离和板长均为L ,两板间加一如图乙所示的电压.在S 处有一电量为q 、质量为m 的带电粒子,经A 、B 间电场加速又经C 、D 间电场偏转后进入一个垂直纸面向里的匀强磁场区域,磁感强度为B .不计重力影响,欲使该带电粒子经过某路径后能返回S 处.求:(1)匀强磁场的宽度L ′至少为多少?(2)该带电粒子周期性运动的周期T .(1)AB 加速阶段,由动能定理得:221mv qU =① 偏转阶段,带电粒子作类平抛运动偏转时间qU m L v L t 2/1== ② 侧移量2221212221L qU m L mL qU at y =⋅⋅== ③ 设在偏转电场中,偏转角为θ则1221=⋅===v L mL qU v at v v tg y θ 即θ= 4π ④ 由几何关系:Rcos45°+R=L′⑤ Rsin45°=2L ⑥ 则 L′=L 212+ ⑦ 注:L ′也可由下面方法求得:粒子从S 点射入到出偏转电场,电场力共做功为W=2qU ⑧设出电场时速度为v′,有qU v m 2212=' 解得v′=m qU /4 ⑨ 粒子在磁场中做圆周运动的半径:qBmqU qB v m R 2='= ∴qBmqU L )22(+=' ⑩(2)设粒子在加速电场中运动的时间为t2则t2=qU m L v L 2/2/2= ○11 带电粒子在磁场中做圆周运动的周期qB m T π2=' ○12 实际转过的角度α=2π-2θ=23π ○13 在磁场中运动时间t3=qBm T 2343π='' ○14 故粒子运动的周期T =2t2+2t1+t3=4LqB m qU m 232/π+○15 例2、一带电质点质量为m 电量为q ,以平行于ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。
高考物理电磁学知识点之磁场难题汇编及答案解析(5)
高考物理电磁学知识点之磁场难题汇编及答案解析(5)一、选择题1.如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a、b、c电荷量相等,质量分别为m a、m b、m c,已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动,下列选项正确的是()A.m a>m b>m c B.m b>m a>m cC.m c>m a>m b D.m c>m b>m a2.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( )A.轨迹为pb,至屏幕的时间将小于tB.轨迹为pc,至屏幕的时间将大于tC.轨迹为pa,至屏幕的时间将大于tD.轨迹为pb,至屏幕的时间将等于t3.如图所示,虚线为两磁场的边界,左侧磁场垂直纸面向里,右侧磁场垂直纸面向外,磁感应强度大小均为B。
一边长为L、电阻为R的单匝正方形导体线圈abcd,水平向右运动到图示位置时,速度大小为v,则()A.ab边受到的安培力向左,cd边受到的安培力向右B.ab边受到的安培力向右,cd边受到的安培力向左C.线圈受到的安培力的大小为22 2B L vRD.线圈受到的安培力的大小为22 4B L vR4.如图所示,一块长方体金属板材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B。
当通以从左到右的恒定电流I时,金属材料上、下表面电势分别为φ1、φ2。
该金属材料垂直电流方向的截面为长方形,其与磁场垂直的边长为a、与磁场平行的边长为b,金属材料单位体积内自由电子数为n,元电荷为e。
那么A.12IB enbϕϕ-=B.12IB enbϕϕ-=-C.12IB enaϕϕ-=D.12IB enaϕϕ-=-5.如图,一带电粒子在正交的匀强电场和匀强磁场中做匀速圆周运动。
高考物理电磁感应现象压轴难题综合题含答案解析
高考物理电磁感应现象压轴难题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。
高考物理压轴题之电磁学专题(5年)(含答案分析).
25.2014新课标2(19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水平外力作用下以速度ω绕O逆时针匀速转动、转动过程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大小为g.求:(1)通过电阻R的感应电流的方向和大小;(2)外力的功率.25.(19分)2013新课标1如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。
导轨上端接有一平行板电容器,电容为C。
导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。
在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系。
24.(14分)2013新课标2如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。
a、b为轨道直径的两端,该直径与电场方向平行。
一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。
24.(14分)2013新课标2如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。
a、b为轨道直径的两端,该直径与电场方向平行。
一电荷为q(q>0)的质点沿轨道内侧运动.经过a点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。
高考物理电磁感应现象压轴题试卷含答案解析
高考物理电磁感应现象压轴题试卷含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V BE Ld t tΦ=== 感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=-联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -= 解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=2.如图所示,两平行长直金属导轨(不计电阻)水平放置,间距为L ,有两根长度均为L 、电阻均为R 、质量均为m 的导体棒AB 、CD 平放在金属导轨上。
高考物理电磁场压轴题
以下是高考物理电磁场的压轴题:
1.带电粒子在电磁场中的运动
在一个匀强磁场中,有一个竖直向下的匀强电场。
一个带正电的粒子从A点以一定的初速度垂直射入这个电磁场中,粒子在电场力和洛伦兹力的共同作用下做运动。
已知粒子在A点的初速度为v₀,质量为m,电量为q,磁场的磁感应强度为B,电场强度为E,重力加速度为g。
若粒子能沿直线从A点运动到B点,求A、B两点间的距离。
2.电容器与电磁场的综合问题
真空中有一个竖直放置的平行板电容器,两极板间的距离为d,电容为C,上极板带正电。
现有一个质量为m、带电量为+q的小球,从小孔正上方h高度处由静止开始释放,小球穿过小孔到达下极板处速度恰好为零。
已知小球在运动过程中所受空气阻力的大小恒为f,静电力常量为k,重力加速度为g。
求:
(1) 小球到达下极板时的动能;
(2) 电容器的带电量。
3.电磁感应与电磁场的综合问题
在匀强磁场中,一矩形金属线圈两次分别以不同的转速,绕与磁感线垂直的轴匀速转动,产生的交变电动势的图象分别如甲、乙所示,则在两图中t₁和t₁时刻()
A. 甲图中线圈平面与磁感线平行,乙图中线圈平面与磁感线垂直
B. 甲图中线圈的转速小于乙图中线圈的转速
C. 甲、乙两图中交变电动势的有效值相等
D. 甲、乙两图中交变电动势的瞬时值表达式相同。
高中物理带电粒子在磁场中的运动压轴题综合题附答案解析
高中物理带电粒子在磁场中的运动压轴题综合题附答案解析一、带电粒子在磁场中的运动压轴题1.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r ;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.1,0.120R m m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m=粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.1R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径2.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qBv ππππ++=⨯==3.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+. 【解析】 【详解】(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y , 由运动学规律知32L =v 0t 1,L =2y v t 1可得t 1=032L v ,v y =43v 0故粒子在P 2的速度为v53v 0 设v 与x 成β角,则tan β=y v v =43,即β=53°; (2)粒子从P 1到P 2,根据动能定理知qEL =12mv 2-12mv 02可得 E =2089mv qL粒子在磁场中做匀速圆周运动,根据qvB =m 2v R解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos =52L =r故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯=037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158L v 则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.4.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒5.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0<y<d 的区域Ⅰ内的磁感应强度大小为B ,在y>d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q 的粒子以速度qBdm从O 点沿y 轴正方向射入区域Ⅰ.不计粒子重力.(1) 求粒子在区域Ⅰ中运动的轨道半径:(2) 若粒子射入区域Ⅰ时的速度为2qBdvm=,求粒子打在x轴上的位置坐标,并求出此过程中带电粒子运动的时间;(3) 若此粒子射入区域Ⅰ的速度qBdvm>,求该粒子打在x轴上位置坐标的最小值.【答案】(1)R d=(2)()43OP d=-23mtqBπ=(3)min3x d=【解析】【分析】【详解】(1)带电粒子在磁场中运动,洛仑磁力提供向心力:21vqv B mr=把qBdvm=,代入上式,解得:R d=(2) 当粒子射入区域Ⅰ时的速度为02v v=时,如图所示在OA段圆周运动的圆心在O1,半径为12R d=在AB段圆周运动的圆心在O 2,半径为R d=在BP段圆周运动的圆心在O3,半径为12R d=可以证明ABPO3为矩形,则图中30θ=,由几何知识可得:132cos303OO d d==所以:323OO d d=所以粒子打在x轴上的位置坐标(133243OP O O OO d=+=粒子在OA段运动的时间为:13023606m mtqB qBππ==粒子在AB 段运动的时间为2120236023m mt q B qBππ==粒子在BP 段运动的时间为313023606m mt t qB qBππ===在此过程中粒子的运动时间:12223mt t t qBπ=+=(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图可得粒子打在x 轴上位置坐标:()22222x R R d R d =--+-化简得:222340R Rx x d -++=把上式配方:222213033R x x d ⎛⎫--+= ⎪⎝⎭ 化简为:222213033R x x d ⎛⎫-=-≥ ⎪⎝⎭ 则当23R x =时,位置坐标x 取最小值:min 3x d =6.如图所示,在xoy 平面(纸面)内,存在一个半径为R=02.m 的圆形匀强磁场区域,磁感应强度大小为B=1.0T ,方向垂直纸面向里,该磁场区域的左边缘与y 轴相切于坐标原点O.在y 轴左侧、-0.1m≤x≤0的区域内,存在沿y 轴负方向的匀强电场(图中未标出),电场强度的大小为E=10×104N/C .一个质量为m=2.0×10-9kg 、电荷量为q=5.0×10-5C 的带正电粒子,以v 0=5.0×103m/s 的速度沿y 轴正方向、从P 点射入匀强磁场,P 点的坐标为(0.2m ,-0.2m),不计粒子重力.(1)求该带电粒子在磁场中做圆周运动的半径; (2)求该带电粒子离开电场时的位置坐标;(3)若在紧靠电场左侧加一垂直纸面的匀强磁场,该带电粒子能回到电场,在粒子回到电场前瞬间,立即将原电场的方向反向,粒子经电场偏转后,恰能回到坐标原点O ,求所加匀强磁场的磁感应强度大小. 【答案】(1)0.2r m = (2)()0.1,0.05m m -- (3)14B T = 【解析】 【分析】粒子进入电场后做类平抛运动,将射出电场的速度进行分解,根据沿电场方向上的速度,结合牛顿第二定律求出运动的时间,从而得出类平抛运动的水平位移和竖直位移,即得出射出电场的坐标.先求出粒子射出电场的速度,然后根据几何关系确定在磁场中的偏转半径,然后根据公式B mvqR=求得磁场强度 【详解】(1)带正电粒子在磁场中做匀速圆周运动,由牛顿第二定律有:200v qv B m r=解得:0.2r m =(2)由几何关系可知,带电粒子恰从O 点沿x 轴负方向进入电场,带电粒子在电场中做类平抛运动,设粒子在电场中的加速度为a ,到达电场边缘时,竖直方向的位移为y ,有:0L v t =,212y at =由牛顿第二定律有:qE ma = 联立解得:0.05y m =所以粒子射出电场时的位置坐标为()0.1,0.05m m -- (3)粒子分离电场时,沿电场方向的速度y v at = 解得:30 5.010/y v v m s ==⨯则粒子射出电场时的速度:02vv =设所加匀强磁场的磁感应强度大小为1B ,粒子磁场中做匀速圆周运动的半径为1r ,由几何关系可知:1220r m =由牛顿第二定律有:211v qvB m r =联立解得:14B T =7.如图甲所示,边长为L 的正方形ABCD 区域内(含边界)有垂直纸面向里的匀强磁场。
高考物理电磁学知识点之磁场难题汇编及答案(5)
高考物理电磁学知识点之磁场难题汇编及答案(5)一、选择题1.如图,边长为l ,质量为m 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向外的匀强磁场,其磁感应强度大小为B ,此时导线框处于静止状态,细线中的拉力为1F ;保持其他条件不变,现将虚线下方的磁场移至虚线上方,此时细线中拉力为2F 。
导线框中的电流大小为( )A .12F F Bl- B .21F F Bl- C .122()F F Bl-D .212()F F Bl- 2.质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是( )A .M 带正电,N 带负电B .M 的速率大于N 的速率C .洛伦磁力对M 、N 做正功D .M 的运行时间大于N 的运行时间3.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B 和2B 。
一带正电粒子(不计重力)以速度v 从磁场分界线MN 上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN 成60︒角,经过t 1时间后粒子进入到磁场区域Ⅱ,又经过t 2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则( )A .ω1∶ω2=1∶1B .ω1∶ω2=2∶1C .t 1∶t 2=1∶1D .t 1∶t 2=2∶14.如图甲是磁电式电流表的结构图,蹄形磁铁和铁芯间的磁场均匀辐向分布。
线圈中a 、b 两条导线长度均为l ,未通电流时,a 、b 处于图乙所示位置,两条导线所在处的磁感应强度大小均为B。
通电后,a导线中电流方向垂直纸面向外,大小为I,则()A.该磁场是匀强磁场B.线圈平面总与磁场方向垂直C.线圈将逆时针转动D.a导线受到的安培力大小始终为BI l5.电磁血流量计是基于法拉第电磁感应定律,运用在心血管手术和有创外科手术的精密监控仪器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考压轴题(5)——磁场一、安培力1.图是导轨式电磁炮实验装置示意图。
两根平行长直金属导轨沿水平方向固定,其间安放金属滑块(即实验用弹丸).滑块可沿导轨无摩擦滑行,且始终与导轨保持良好接触。
电源提供的强大电流从一根导轨流入,经过滑块,再从另一导轨流回电源。
滑块被导轨中的电流形成的磁场推动而发射。
在发射过程中,该磁场在滑块所在位置始终可以简化为匀强磁场,方向垂直于纸面,其强度与电流的关系为B=kI,比例常量k=2.5×10﹣6T/A.已知两导轨内侧间距l=1.5cm,滑块的质量m=30g,滑块沿导轨滑行5m后获得的发射速度v=3.0km/s(此过程视为匀加速运动).(1)求发射过程中电源提供的电流强度。
(2)若电源输出的能量有4%转换为滑块的动能,则发射过程中电源的输出功率和输出电压各是多大?(3)若此滑块射出后随即以速度v沿水平方向击中放在水平面上的砂箱,它嵌入砂箱的深度为s′.设砂箱质量为M,滑块质量为m,不计砂箱与水平面之间的摩擦。
求滑块对砂箱平均冲击力的表达式。
【解答】解:(1)由匀加速运动公式 a==9×105m/s2由安培力公式和牛顿第二定律,有F=IBl=kI2lF=ma因此I==8.5×105A即发射过程中电源提供的电流强度为8.5×105A。
(2)滑块获得的动能是电源输出能量的4%,即:P△t×4%=mv2发射过程中电源供电时间△t==×10﹣2s因而,所需的电源输出功率为P==1.0×109W由功率P=IU,解得输出电压:U==1.2×103V即发射过程中电源的输出功率为1.0×109W、输出电压为1.2×103V。
(3)分别对砂箱和滑块用动能定理,有fs M=MV2f's m=mV2﹣mv2由牛顿定律f=﹣f'和相对运动s m=s M+s'再由动量守恒定律mv=(m+M)V联立求得fs′=•mv2故平均冲击力f=•即滑块对砂箱平均冲击力为•。
2.为了降低潜艇噪音,提高其前进速度,可用电磁推进器替代螺旋桨.潜艇下方有左、右两组推进器,每组由6个相同的、用绝缘材料制成的直线通道推进器构成,其原理示意图如下.在直线通道内充满电阻率ρ=0.2Ω∙m的海水,通道中a×b×c=0.3m×0.4m×0.3m的空间内,存在由超导线圈产生的匀强磁场,其磁感应强度B=6.4T、方向垂直通道侧面向外.磁场区域上、下方各有a×b=0.3m×0.4m的金属板M、N,当其与推进器专用直流电源相连后,在两板之间的海水中产生了从N到M,大小恒为I=1.0×103A的电流,设电流只存在于磁场区域.不计电源内阻及导线电阻,海水密度ρm=1.0×103kg/m3.(1)求一个直线通道推进器内磁场对通电海水的作用力大小,并判断其方向;(2)在不改变潜艇结构的前提下,简述潜艇如何转弯?如何“倒车”?(3)当潜艇以恒定速度v0=30m/s前进时,海水在出口处相对于推进器的速度v=34m/s,思考专用直流电源所提供的电功率如何分配,求出相应功率的大小.【解答】解:(1)安培力的大小,F=BIL=6.4×1000×0.3=1.92×103N,根据左手定则可知,方向:垂直于BI平面向右;(2)开启或关闭不同个数的左、右两侧的直线通道推进器,实施转弯.改变电流方向,或改变磁场方向,可以改变海水所受磁场力的方向,实施“倒车”.(3)电源提供的电功率中的第一部分为牵引功率P1=F牵v0根据牛顿第三定律:F安=12BIL,当v0=30m/s时,代入数据得:P1=F牵v0=12×1.92×103×30W=6.9×105W电源提供的电功率中的第二部分为单位时间内海水的焦耳热功率推进器内海水的电阻=0.5ΩP2=12I2R=6×106W电源提供的电功率中的第三部分为单位时间内海水动能的增加量单位时间内通过推进器的水的质量为m=ρm bcv水对艇=1.0×103×0.4×0.3×34=4080kg单位时间内其动能增加为==391680W.答:(1)一个直线通道推进器内磁场对通电海水的作用力大小为1.92×103N,其方向为垂直于BI平面向右;(2)开启或关闭不同个数的左、右两侧的直线通道推进器,实施转弯.改变电流方向,或改变磁场方向,可以改变海水所受磁场力的方向,实施“倒车”.(3)当潜艇以恒定速度v0=30m/s前进时,海水在出口处相对于推进器的速度v=34m/s,电源提供的电功率中的第一部分为牵引功率,其大小6.9×105W;电源提供的电功率中的第二部分为单位时间内海水的焦耳热功率,其大小为6×106W;电源提供的电功率中的第三部分为单位时间内海水动能的增加量,其功率的大小为391680W.二、带电粒子在匀强磁场中运动3.如图(a)所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N1、N2构成,两盘面平行且与转轴垂直,相距为L,盘上各开一狭缝,两狭缝夹角θ可调(如图(b));右为水平放置的长为d 的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B.一小束速度不同、带正电的粒子沿水平方向射入N1,能通过N2的粒子经O点垂直进入磁场. O到感光板的距离为d/2,粒子电荷量为q,质量为m,不计重力.(1)若两狭缝平行且盘静止(如图(c)),某一粒子进入磁场后,竖直向下打在感光板中心点M上,求该粒子在磁场中运动的时间t;(2)若两狭缝夹角为θ0,盘匀速转动,转动方向如图(b).要使穿过N1、N2的粒子均打到感光板P1P2连线上.试分析盘转动角速度ω的取值范围(设通过N1的所有粒子在盘转一圈的时间内都能到达N2).【解答】解:(1)粒子运动半径为:R=…①由牛顿第二定律:Bqv=m…②匀速圆周运动周期:T=…③粒子在磁场中运动时间:t=…④(2)如图所示,设粒子运动临界半径分别为R1和R2…⑤由几何关系得:解得:…⑥设粒子临界速度分别为v1和v2,由②⑤⑥式,得…⑦…⑧若粒子通过两转盘,由题设可知…⑨联立⑦⑧⑨,得对应转盘的转速分别为粒子要打在感光板上,需满足条件答:(1)该粒子在磁场中运动的时间为;(2)盘转动角速度ω的取值范围为.4.在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响).(1)如果粒子恰好从A点射出磁场,求入射粒子的速度.(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图).求入射粒子的速度.【解答】解:(1)由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径.设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得:解得:(2)设O′是粒子在磁场中圆弧轨道的圆心,连接O′Q,设O′Q=R′.由几何关系得:∠OQO′=φ OO′=R′+R﹣d由余弦定理得:解得:设入射粒子的速度为v,由解出:答:(1)如果粒子恰好从A点射出磁场,入射粒子的速度为.(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图).入射粒子的速度为.5.如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:(1)点电荷a从射出到经过G点所用的时间;(2)点电荷b的速度大小.【解答】解;设点电荷a的速度为v,由牛顿第二定律得:解得:①设点电荷a作圆周运动的周期为T,则:②点电荷运动轨迹如图所示:设点电荷a从F点进入磁场后的偏转角为θ由几何关系得:θ=90° ③故a从开始运动到经过G点所用时间①②③联立得:④(2)设点电荷b的速度大小为v1,轨道半径为R1,b在磁场中偏转角为θ1,由题意得:⑤解得:⑥由于两轨道在G点相切,所以过G点的半径OG和O1G在同一条直线上,由几何关系得:θ1=60° ⑦R1=2R ⑧②③⑥⑦⑧联立得:答:(1)点电荷a从射出到经过G点所用的时间;(2)点电荷b的速度大小.6.如图,A、C两点分别位于x轴和y轴上,∠OCA=30°,OA的长度为L.在△OCA区域内有垂直于xOy 平面向里的匀强磁场。
质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场。
已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动的时间为t0.不计重力。
(1)求磁场的磁感应强度的大小;(2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和;(3)若粒子从某点射入磁场后,其运动轨迹与AC边相切,且在磁场内运动的时间为t0,求粒子此次入射速度的大小。
【解答】解:(1)粒子在磁场中做匀速圆周运动,在时间t0内其速度方向改变了90°,故其周期T=4t0①设磁感应强度大小为B,粒子速度为v,圆周运动的半径为r.由洛伦兹力公式和牛顿定律得②匀速圆周运动的速度满足③联立①②③式得B=④(2)设粒子从OA边两个不同位置射入磁场,能从OC边上的同一点P射出磁场,粒子在磁场中运动的轨迹如图所示。
设两轨迹所对应的圆心角分别为θ1和θ2.由几何关系有θ1=180°﹣θ 2 ⑤粒子两次在磁场中运动的时间分别为t1与t2,则t1+t2==2t0;⑥(3)如下图,由题给条件可知,该粒子在磁场区域中的轨迹圆弧对应的圆心角为150°.设O'为圆弧的圆心,圆弧的半径为r0,圆弧与AC相切与B点,从D点射出磁场,由几何关系和题给条件可知,此时有∠O O'D=∠B O'A=30°⑦r0cos∠OO′D+=L⑧设粒子此次入射速度的大小为v0,由圆周运动线速度公式,则有:v0=⑨联立①⑦⑧⑨式得v0=答:(1)磁场的磁感应强度的大小;(2)该粒子这两次在磁场中运动的时间之和2t0;(3)粒子此次入射速度的大小。