最新高中数学必修5__解三角形知识点总结与练习优秀名师资料
必修五第一章解三角形知识点总结及经典习题
必修五第一章解三角形知识点总结及经典习题(数学教研组)一、知识点总结1.正弦定理:2sin sin sin a b c R A B C=== (R:外接圆半径) 或变形:::sin :sin :sin a b c A B C =.结论:①定理:在三角形中,α、β为其内角,则α≤β⇔sin sin αβ≤,等号当且当α=β时成立。
②判断三角形大小关系时,可以利用如下原理:sin A > sin B ⇔ A > B ⇔ a > bcos cos A B A B >⇔<⇔a < b③三角形的面积公式: ∆S =21ab sin C =21bc sin A =21ac sin B2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩. 3.利用正弦定理和余弦定理分别能解决的问题:(1)正弦定理:1、已知两角和一边(如A 、B 、c ),由A +B +C =π求C ,由正弦定理求a 、b .(ASA 或AAS)2、已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.(SSA)(2)余弦定理:1、已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C .(SSS)2、已知两边和夹角(如a 、b 、C ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C =π,求另一角.(SAS)主流思想:利用正、余弦定理实现边角转化,统一成边的形式或角的形式.5.三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 6. 求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;(3)求解:正确运用正、余弦定理求解; (4)检验:检验上述所求是否符合实际意义。
高中数学必修五第一章《解三角形》知识点知识讲解
高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
最新高中数学必修五第一章《解三角形》知识点
高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B .5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
高中数学必修五 第一章 解三角形知识点归纳
高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++===4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >. 11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等)12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。
解三角形数列知识点总结
必修5第一章《解三角形》知识点归纳1. 高线定理:△ABC 中,a 边上的高B c C b h a sin sin ==2. 正弦定理:△ABC 中,A a sin =B b sin =Ccsin =2R ,推论c b a C B A ::sin :sin :sin = 3. 余弦定理:△ABC 中,a 2=b 2+c 2-2bc cos A ,推论 cos A =bcac b 2222-+4. 三角形的面积公式:△ABC 的面积C ab B ac A bc S sin 21sin 21sin 21===5. 解三角形的四种基本类型:(1)已知三边(SSS 型)----用余弦定理推论求三角(2)已知两边和它们的夹角(SAS 型)----用余弦定理求第三边(3)已知两角和任一边(AAS 型)----用内角和定理求第三角,用正弦定理求另两边 (4)已知两边和其中一边的对角(SSA 型)----用正弦定理求另一边的对角 注1:SSS 型,SAS 型,AAS 型至多有一解. 注2:SSA 型解情况复杂:若正弦值小于1,则用大边对大角判定角范围,可能一解或两解;若正弦值大于1,则无解.若已知角为锐角,则可能一解或两解;若已知角为钝角,则至多一解.注3:SSA 型也可以用余弦定理求第三边,通过一元二次方程解的情况判断三角形解的情况!!! 6. 应用举例:(1)求河两岸两点的水平距离(一点可达,另一点不可达). (2)求河对岸两点的水平距离(两点均不可达).(3)求底部不可达的建筑物的竖直高度(即两点的垂直距离)(注意取测量点的两种方法). (4)求航行距离与航向(方向角或方位角). 7. 常用方法:(1)边角混合式的处理方法!!!(2)韦达定理、降次公式、二倍角公式、和差角公式、辅助角公式的运用方法!!! (3)平面向量的数量积定义与坐标运算公式、两个向量夹角公式的运用方法!!!8. 其他有关结论:在△ABC 中, 下列结论也应熟记:B A B A <⇔<sin sinπ=+=⇔=B A B A B A 22222sin 2sin 或sin(A+B)=sinCcos(A+B) -cosCtan(A+B) -tanC ==2cos 2sinC B A =+ 2sin 2cos CB A =+ 12tan 2tan =+C B A tan tan tan tan tan tan A B C A B C ++=⋅⋅【典型题目】(学案)必修5第二章《数列》知识点归纳1. 等差数列与等比数列知识点类比:2. 等差数列与等比数列有关公式的推导方法:等差数列通项公式推导方法----累差法,等比数列通项公式推导方法----累商法;等差数列前n项和公式推导方法----倒序相加法,等比数列前n项和公式推导方法----乘公比错位相减法.3. 等差数列与等比数列的函数特征:等差数列通项公式是关于n的一次函数,等比数列通项公式是关于n的指数型函数;等差数列前n项和公式是关于n的二次函数,且常数项为零;等比数列前n 项和公式形如)1(nqA -,其中1,0≠≠q A .4. 证明一个数列是等差数列或等比数列的方法!!!5. 求等差数列前n 项和S n 最值的方法------对称轴法与变号项法!!!6. 形如}{n nb a +的数列求前n 项和S n 的方法-----拆项重组法!!!(其中}{n a }{n b 为等差或等比数列)7. 形如}1{1+⋅n n a a 的数列求前n 项和S n 的方法-----裂项相消法!!!(其中}{n a 为等差数列)8. 形如}{n nb a ⋅的数列求前n 项和S n 的方法-----乘公比错位相减法!!!(其中}{n a 为等差,}{n b 等比)9. 由S n 求a n 的方法!!!10. 处理S n 与a n 混合式的方法!!!11. 求等差数列的绝对值数列的前n 项和S n 的方法. 12. 判断一个数列单调性的方法.13. 等差数列的单调性与什么量有关?有什么关系?!!! 14. 等比数列的单调性与什么量有关?有什么关系?!!! **15. 求两个等差数列的公共项的方法.**16. 求一个等差数列与一个等比数列的公共项的方法.【典型题目】(学案)。
高中数学必修5__第一章_解三角形复习知识点总结与练习
高中数学必修5__第一章_解三角形复习知识点总结与练习高中数学必修5第一章解三角形复习一、知识点总结【正弦定理】1.正弦定理:ainAbinBcinC2RR为三角形外接圆的半径2正弦定理的一些变式:iabcinAinBinC;iiinAa2R,inBb2R,inCc2R;2Riiia2RinA,b2RinB,b2RinC;(4)3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角abcinAinBinC(2)已知两边和其中一边的对角,求其他边角(可能有一解,两解,无解)中,已知a,b及A时,解得情况:解法一:利用正弦定理计算解法二:图形一解两解一解一解无解A 为锐角A为钝角或直角关系式解的个数【余弦定理】a2b2c22bccoA2221.余弦定理:bac2accoB2推论:设a、b、c是C的角、、C的对边,则:①若abc,则C90;②若abc,则C90;③若abc,则C90.3两类余弦定理解三角形的问题:(1)已知三边求三角(2)已知两边和他们的夹角,求第三边和其他两角12222222【面积公式】已知三角形的三边为a,b,c,1.S1aha1abinC1rabc(其中r为三角形内切圆半径)12abc,S/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时到达C点观测灯塔A的方位角是65°,则货轮到达C点时,与灯塔A的距离是多少?扩展阅读:高中数学必修5第一章解三角形知识点复习及经典练习高中数学必修五第一章解三角形知识点复习及经典练习一、知识点总结abc2R或变形:a:b:cinA:inB:inC1.正弦定理:inAinBinC推论:①定理:若α、β>0,且αβ<,则α≤βinin,等号当且当α=β时成立。
②判断三角解时,可以利用如下原理:inA>inBA>Ba>bcoAcoBAB(co在0,上单调递减)b2c2a2coA2bca2b2c22bccoA2a2c2b2222.余弦定理:bac2accoB或coB2acc2b2a22bacoCb2a2c2coC2ab3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题:1、已知三边求三角2、已知两边和他们的夹角,求第三边和其他两角4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5.三角形中的基本关系:inABinC,coABcoC,tanABtanC,in已知条件一边和两角(如a、B、C)ABCABCABCco,coin,tancot222222一般解法由ABC=180,求角A,由正弦定理求出b与c,在有解时有一解。
高中数学必修五--第一章---解三角形知识点归纳
- 1 - 高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++===4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc +-A =等, 8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
②已知三边求角)9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ;②若222a b c +>,则90C < ;③若222a b c +<,则90C > .11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等)12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。
最新必修5-解三角形知识点归纳总结
第一章 解三角形一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。
如:①已知32,2,60===O b a A ,求B (有一个解)②已知32,2,60===O a b A ,求B (有两个解)注意:由正弦定理求角时,注意解的个数。
最新数学必修五复习提纲——解三角形
第一章 解三角形一、知识点总结1.正弦定理:2sin sin sin ===a b cRA B C变形:2.余弦定理:3.三角形面积公式:4.射影定理(了解):a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA5.三角形中的常用结论:二、常见题型 2sin ,2sin ,2sin sin =,sin ,sin 222::sin :sin :sin ++=2sin sin sin sin +sin +sin sin sin sin A B C a b a R A b R B c R C a b cA B C R R R a b c A B Ca b c a b c R A B A B C C C A B c >===⎫⎪⎬==>⇔>>⇔>>⎪⎭====边角互化(大角对大边:)①②③④2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos 2cos 2cos 2⎧+-=⎪⎪+-⎪⇒=⎨⎪⎪+-=⎪⎩b c a A bc a c b B ac b a c C ab 111222∆===ABC a b c S ah bh ch 111sin sin sin =2224ABC abc S ab C bc A ac B R∆===或(1),(+>-<a b c a b c 即两边之和大于第三边,两边之差小于第三边)(2)sin sin cos cos ∆>⇔>⇔>⇔<ABC A B a b A B A B在中,(3)sin cos .0sin()sin cos sin 2222(4) C >,sin cos .20sin sin()sin cos 2222(5)A B A B A B B A B A B A A B A B A B A B A Bπππππππππ>+>⇒<-<<⇒-<⇒<<+<⇒<<-<⇒<-⇒<在锐角三角形中,和是任意两个角,则 理由:在 (文字说明:锐角三角形中,任一角的钝角三角形中,若正则弦值大于其他角的 理由:在一般三余弦值)角形中,cos cos 00cos cos()cos cos cos cos 0A B A B A B A B A B A B ππππ+>+<⇒<<-<⇒>-⇒>-⇒+> 理由:(6)222sin()sin ,cos()cos tan()tan ,A B CA B C A B C A B C A B C A B C πππ+++=⇒⇒=-+=+=-+=-+=-三角形中的诱导公式:,1、解三角形利用正弦定理:①已知两角和任意一边(AAS 、ASA ),求其他的两边及一角(只有一解) ②已知两边和其中一边的对角(SSA ),求其他边角(无解,一解,两解) 利用余弦定理:①已知三边(SSS )求三角(只有一解)②已知两边及夹角(SAS ),求第三边和其他两角(只有一解)③已知两边和其中一边的对角(SSA ),求其他边角(无解,一解,两解) 已知“SSA ”利用正弦定理与余弦定理求解的区别:2、判断三角形形状或求值方法一:确定最大角(只要知道三边的关系,就可以利用余弦定理的推论求出角) 方法二:边化角(统一化成角)方法三:角化边(统一化成边)❖ 常见的形式:2222222sin ,2sin ,2sin ,2cos sin sin sin 2sin sin cos a R A b R B c R C a b c bc A A B C B C A====+-⇒=+-⋅①常用公式:222222222sin ,sin ,sin ,222cos ,cos ,cos ,222a b cA B C R R R b c a a c b a b c A B C bc ac ab===+-+-+-===①常用公式:sin =sin ()(sin sin +22)sin 2=sin 2()()2A B A B k k A B A B A B αβαβπαπβππ⇒=⎫⎪=⇔==-+⎬⇒=+=⎪⎭②常见结论:等腰三角形原理:或等腰三角形或直角三角形2222222222222229090a b c A a b c A a b c b a c c a bo o >+⇒>=+⇒=⎧<+⎪<+⇒⎨⎪<+⎩②常见结论:(钝角三角形)(直角三角形)锐角三角形3、构成三角形三边的问题4、周长面积问题(记得同时利用两个公式:余弦定理和完全平方公式)cos cos ()()cos cos cos cos ()sin 2sin cos ())()3,sin 2sin cos ()a Ab B a bc A B C b a C A B C a b c b c a bc A B C =====+++-==①等腰三角形或直角三角形②等边三角形③直角三角形④等腰三角形⑤(且等边三角形()()222121,,21.2121,2821(12)a a a a a a a a a a a a +-⎧+>+-⎪∴<<⎨+->+⎪⎩【例】设为钝角三角形的三边,求实数的取值范围解考虑最大角:依题意,,即为钝角和两边之和大的取值范围为(于第三边2,8)2222222,3,23,32x x x x x x⎧<+⎪<<⎨<+⎪⎩【例2】已知锐角三角形边长分别为,求的取值范围.解:依题意,即的取值范围是(考虑三个角都是锐角)()22222cos =2a bc Abc b bc c++=+-()()22222220601sin ,402=20,20,2cos 220120,77.ABC A BC S bc A bc a b c b c a a b c bc A b c bc bc a a a BC ∆∠=︒=∴=++∴+=-∴=+-=+--∴=--∴=【例3】在的周长等于,面积是,边的长。
(完整版)高中数学-解三角形知识点归纳和分类习题测试,推荐文档
必修五:解三角形知识点一:正弦定理和余弦定理1.正弦定理a b c:si nAsin B si nC J'或变形:a: b:c s iri A:sin B:sin CcosAb 2 2 c2a2bc2 222a2 2b c2bccos AcosB ac b2acb 22 2 a c2accosBcosCb 2 2 a 2 c2 c 2 2 b a 2 •余弦定理:2bacosC 或2ab3. ( 1)两类正弦定理解三角形的问题: 1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题: 1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式运算 女口. sin(A B) sinC,cos(A B)A B C ABC AB C sincos ,cossin ,ta n cot — 2 2 22 225 •解题中利用 ABC 中A B C,以及由此推得的一些基本关系式进行三角变换的cosC, tan(A B) tanC,1.若ABC 的三个内角满足si nA:si nB:si nC 5:11:13,贝U ABC 是( )A. 锐角三角形B•钝角三角形C.直角三角形D.可能是锐角三角形,也可能是钝角三角形•2 .在厶ABC中,角A, B, C所对的边分别为a, b, c,若a2b=2,sinB+cosB= 、 2 ,则角A的大小为( )A - B. _ C - D.—2 3 463.在厶ABC中,a 7,b 4、.3,c.13 ,则最小角为A—B、一 C 、— D 、364124.已知ABC中,AB 4, AC 3, BAC60,则BC ()A. 13B. 13C.5D.10 5•在锐角ABC中,若C 2B,则c的范围()bA. 2, 3 B . 3,2 C . 0,2 D. 2,26.在ABC中,A、B、C所对的边分别是a、b、c,已知a2b2c2-、°ab,则C ()23A. 2B.4C.3D.47.在厶ABC中,A60o,b16,面积S220 .. 3,则cA 10、6 B、75C、55D、4 98.在厶ABC中,(a c)(a c) b(b c), 则AA 30o B、60o C、120o D、150o9.已知ABC中,AB 4,BAC45AC 3.2则ABC的面积为cosB b10.在ABC中,a,b,c分别是角A,B,C的对边,且cosC 2a c ,则角B的大小为11.已知锐角三角形的边长分别是23 x,则x的取值范围是A、1 X 5 B 、、5 x ^13 C 、0 x .5 D 、13x512 . ABC中,AB 1,BC 2则角C的取值范围是__________________知识点二:判断三角形的形状问题C1.在ABC 中,若cos A cos B sin2—,则ABC 是()2A.等边三角形B •等腰三角形C .锐角三角形D.直角三角形A、一定是直角三角形C、可能是锐角三角形tan A3. 已知在△ABC中,tan B a b4. 在ABC 中,若cosA cosBA .等腰直角三角形5. 在△ ABC 中,若2cosBsinA = sinC,y^ ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形6. △ ABC 中,B 60°, b2 ac,则厶ABC - -定是( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形7. 若(a+b+c)(b+c —a)=3abc,且sinA=2sinBcosC,那么△ ABC 是()A .直角三角形B.等边三角形C.等腰三角形 D . 等腰直角三角形8.在厶ABC中,已知2ab c2sin A sin BsinC,试判断厶ABC的形状。
必修5-解三角形知识要点
《解三角形》知识要点1.内角和定理A B C π++= 2.正弦定理2sin sin sin a b c R A B C===(R 为三角形外接圆的半径⑴变形公式:(1)2sin ,2sin ,2sin (2)sin ,sin ,sin 222(3)::sin :sin :sin a R A b R B c R Ca b c A B C R R Ra b c A B C======= ⑵应用①已知两边和其中一边的对角,求另一边的对角 ②已知两角和任一边,求其它两边和角 (3)注意:已知三角形两边及一边对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.3.余弦定理22222222222222222222()2cos cos 1222cos cos 22cos cos 2b c a b c a a b c bc A A bc bc c a b b c a ca B B ca a b cc a b ab C C ab +-+-=+-⇔==-+-=+-⇔=+-=+-⇔=应用:①已知两边与它们的夹角,求第三边和其它两角 ②已知三边,求三角4.三角形面积公式 1(1)2111(2)sin sin 2221(3)()2(4),()(5)4aS ah S ab C bc A casimBS p a b c S pr r abcS R======++==是内切圆的半径.6.ABC ∆形状的判定(1)锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.(2)直角三角形⇔有一角等于090⇔有一角的余弦值为零⇔勾股定理(3)钝角三角形⇔有一角090> ⇔有一角的余弦值0<⇔任意两边的平方和小于第三边的平方. (4)等腰三角形⇔有两边相等或两角相等 (5)利用余弦定理判定①锐角三角形222222222a b c b c a c a b ⎧+>⎪⇔+>⎨⎪+>⎩②直角三角形222a b c ⇔+=或222a cb +=或222b c a += ③钝角三角形222a b c ⇔+<或222a c b +<,或222b c a +< 总之,求最大的角α的余弦值 cos α0>⇔锐角三角形;cos 0α<⇔钝角三角形; cos 0α=⇔直角三角形.7.在ABC ∆中,有以下常用结论⑴三角恒等变形:22sin cos 1αα+=⑵两角和差公式:sin()sin cos cos sin cos()cos cos sin sin αβαβαβαβαβαβ±=±±=⑶0000sin15cos 7575sin105cos15===== ⑷sin sin sin a b c A B C A B C >>⇔>>⇔>>⑸sin sin(),sin sin(),sin sin()A B C B A C C A B =+=+=+⑹sin cos ,cos sin2222A B C A B C ++== ⑺tan tan tan tan tan tan A B C A B C ++= ⑻sin sin a b A B A B =⇔=⇔=⑼ABC ∆中三内角,,A B C 成等差数列060B ⇔=⑽锐角三角形中任两角之和090>8.在实际问题中的有关术语⑴仰角与俯角:在同一铅直平面(与水平面或海平面垂直的平面)内,视线与水平线的夹角.视线在水平线之上时,称为仰角;视线在水平线之下时,称为俯角⑵方向角:从指定方向线到目标方向线的水平角,如北偏东030. ⑶坡角:坡面与水平面的夹角,坡角α的正切值叫坡度tan α.9. 解三角形的应用⑴距离问题 ⑵高度问题 ⑶角度问题10.2011年江西高考题在ABC ∆中,C B A ,,的对边分别是c b a ,,,已知C b B c A a cos cos cos 3+=.(1)求A cos 的值; (2)若332cos cos ,1=+=C B a ,求边c 的值. 解:(1)由 C b B c A a cos cos cos 3+=,正弦定理得:)sin(cos sin cos sin cos sin 3C B C B B C A A +=+=sin A =, 所以31cos =A 。
最新高中数学必修五知识点公式总结优秀名师资料
高中数学必修五知识点公式总结必修五数学公式概念第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理abc1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即. ,,sinsinsinABCabc 正弦定理推论:?(为三角形外接圆的半径) ,,,2RRsinsinsinABCaAbBaAsinsinsin ? ? ,,,,,aRAbRBcRC,,,2sin,2sin,2sinbBcCcCsinsinsin abcabc,,abcABC::sin:sin:sin,,,, ? ? sinsinsinsinsinsinABCABC,,2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。
任何一个三角形都有六个元素:三条边和三个内角.在三角形中,已知三(a,b,c)(A,B,C)角形的几个元素求其他元素的过程叫做解三角形。
、正弦定理确定三角形解的情况 3图形关系式解的个数abA,sin? 一解 ? ab,A为两解 bAabsin,, 锐角无解 abA,sinA为一解 a,b钝角或直无解 a,b角4、任意三角形面积公式为:1 必修五数学111abcSbcAacBabC,,,,sinsinsin ABC2224Rr2,,,,,,,,ppapbpcabcRABC()()()()2sinsinsin21.1.2 余弦定理5、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即222222222 ,,cababC,,,2cos. abcbcA,,,2cosbaccaB,,,2cos222222222abc,,bca,,acb,,cosA,cosB,cosC, 余弦定理推论:,,2bc2ac2ab6、不常用的三角函数值15? 75? 105? 165?6,26,26,26,2sin, 4444,6,26,26,26,2 cos, ,4444tan,2,32,3,2,3,2,31.2 应用举例1、方位角:如图1,从正北方向顺时针转到目标方向线的水平角。
高中数学必修5--第一章-解三角形复习知识点总结与练习(老师版)
高中数学必修5 第一章 解三角形复习一、知识点总结【正弦定理】1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径). 2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R==2cR =; ()2sin ,2sin ,2sin iii a R A b R B b R C ===;〔iv 〕R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:〔1〕已知两角和任意一边,求其他的两边及一角.〔2〕已知两边和其中一边的对角,求其他边角.〔可能有一解,两解,无解〕【余弦定理】1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.两类余弦定理解三角形的问题:〔1〕已知三边求三角.〔2〕已知两边和他们的夹角,求第三边和其他两角.【面积公式】已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a bc ===++= Rabc 4=2R 2sinAsinBsinC 〔其中r 为三角形内切圆半径〕2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)【三角形中的常见结论】〔1〕π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+; 〔3〕假设⇒>>C B A c b a >>⇒C B A sin sin sin >>假设C B A sin sin sin >>⇒c b a >>⇒C B A >>〔大边对大角,小边对小角〕 〔4〕三角形中两边之和大于第三边,两边之差小于第三边(5) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 〔6〕C ∆AB 中,A,B,C 成等差数列的充要条件是60=B .(7) C ∆AB 为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总题型1【判定三角形形状】判断三角形的类型〔1〕利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.〔2〕在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆〔注意:是锐角A ⇔ABC 是锐角三角形∆〕(3) 假设B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2【解三角形及求面积】一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. 例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .〔Ⅰ〕假设ABC ∆的面积等于3,求b a ,;〔Ⅱ〕假设A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3【证明等式成立】证明等式成立的方法:〔1〕左⇒右,〔2〕右⇒左,〔3〕左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4【解三角形在实际中的应用】实际问题中的有关概念:仰角俯角方位角方向角(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图2).(3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.例5.如下图,货轮在海上以40km/h的速度沿着方位角〔从指北方向顺时针转到目标方向线的水平转角〕为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时到达C点观测灯塔A的方位角是65°,则货轮到达C点时,与灯塔A的距离是多少?解三角形高考题精选1.ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2B CA ++取得最大值,并求出这个最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修5__解三角形知识点总结与练习解三角形
一、知识点总结
1( 内角和定理:
,ABCABC,,,sinC,cosC在中,;;; ,sin()AB,,cos()AB,,
ABCABCABC,,,. sincoscossintancot,,,;;222222
1112(面积公式: = SabC,,bcAsincaBsinsin,ABC222
3(正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.
abcabcABC::sin:sin:sin,形式一:或变形: (解三角形的重要工
具) ,,,2RsinAsinBsinC
a,2RsinA,
,形式二: (边角转化的重要工具) b,2RsinB,
,c,2RsinC,
4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它
们夹角的余弦的积的两
倍..
222形式一:abcbcA,,,2cos
222bcacaB,,,2cos (解三角形的重要工具)
222cababC,,,2cos
222222222bcacababc,,,,,,cosA,cosB,形式二: ; ; cosC= 2bc2ca2ab5((1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.
2、已知两角和其中一边的对角,求其他边角.
(2)两类余弦定理解三角形的问题:1、已知三边求三角.
2、已知两边和他们的夹角,求第三边和其他两角. 6(判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 7( 已知条件定理应用一般解法
一边和两角正弦定理由A+B+C=180?,求角A,由正弦定理求出b与c,在有解时
(如a、B、C) 有一解。
两边和夹角余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再
(如a、b、c) 由A+B+C=180?求出另一角,在有解时有一解。
三边余弦定理由余弦定理求出角A、B,再利用A+B+C=180?,求出角C (如a、b、c) 在有解时只有一解。
解三角形巩固练习
一、选择题
1、ΔABC中,a=1,b=, ?A=30?,则?B等于 ( ) 3
A(60? B(60?或120? C(30?或150? D(120?
2、符合下列条件的三角形有且只有一个的是 ( )
A(a=1,b=2 ,c=3 B(a=1,b= ,?A=30? 2
C(a=1,b=2,?A=100? C(b=c=1, ?B=45?
3、在锐角三角形ABC中,有 ( )
A(cosA>sinB且cosB>sinA B(cosA<sinB且cosB<sinA
C(cosA>sinB且cosB<sinA D(cosA<sinB且cosB>sinA
经典例题讲解
1 在?ABC中,,则等于( )
A B C D
00c,b2. 在?ABC中,若,则等于( ) C,90,a,6,B,30
,1,23123A B C D
,ABCbCa,2bcosCAB3.在中,,,分别为角,,所对边,若,则此三角形一定是( ) ac
A.等腰直角三角形
B. 直角三角形
C. 等腰三角形
D. 等腰或直角三角形
4.在?ABC中,A,60?,B,75?,a,10,则c等于_________.
5.在?ABC中,a,3,b,1,c,2,则A等于________(
3ABC中,若?B=30?,AB=26.?,AC=2,则?ABC的面积为___ _.
abc,,7.根据所给条件,判断?ABC的形状. ( cosAcosBcosC
ABCc,2A,B,Ca,b,c8(已知?的内角的对边分别为,其中,
,(1,cosC),(cosC,1)又向量m?n=1 nm,,(
A,:45a(1)若,求的值;
a,b,4ABC(2)若,求?的面积(
9(根据所给条件,判断?ABC的形状. acosA=bcosB;
1C,ABCb10.已知cosBcosC,sinBsinC,、、为的三内角,且其对边分别为、、,若( ABac2
(?)求; A
,ABC (?)若,求的面积( a,23,b,c,4。