传教士(牧师)与野人问题-模拟人工智能实验_CSDN博客_传教士与野人问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传教士(牧师)与野人问题-模拟人工智能实验_结缘缘的博客-CSDN博客_传教士与野人

问题

题目

有n个牧师和n个野人准备渡河但只有一条能容纳c

个人的小船为了防止野人侵犯牧师要求无论在何处牧师的人数不得少于野人的人数(除非牧师人数为0) 且假定野人与牧师都会划船试设计一个算法确定他们能否渡过河去

若能则给出小船来回次数最少的最佳方案。

实验步骤

输入牧师人数(即野人人数) n 小船一次最多载人量c。输出若问题无解则显示Failed 否则显示Successed输出所有可行方案并标注哪一组是最佳方案。用三元组(X1, X2, X3)表示渡河过程中的状态。并用箭头连接相邻状态以表示迁移过程初始状态- 中间状态- 目标状态。例当输入n 2 c 2时输出221- 200- 211- 010- 021- 000 其中X1表示起始岸上的牧师人数X2表示起始岸上的野人人数X3表示小船现在位置(1表示起始岸0表示目的岸)。要求写出算法的设计思想和源程序并有用户界面实现人机交互控制台或者窗口

都可以进行输入和输出结果如Please input n: 2 Please input c: 2 Optimal Procedure: 221- 200- 211- 010- 021- 000

Successed or Failed?: Successed

实现代码#include stdio.h #include iostream #include stdlib.h using namespace std;struct State { int Lsavage; int Lgodfather; int Rsavage; int Rgodfather; int boat; //boat at left 0 ; boat at right struct State *States new State[150];struct routesave { int savage; int godfather;struct routesave* routesaves new routesave[150];int godfather, savage, boatnum;void init(State m) { cout 请输入野人和牧师的人数n 以及船的最大载量c endl; int n, c; cin n c; m.Rgodfather n; m.Rsavage n; godfather n, savage n; boatnum c; m.Lgodfather m.Lsavage 0; m.boat 1;void boaloading(int i, int s, int g) { //s个野人和g个传教士if (States[i].boat 0) { routesaves[i].savage s*-1; //左边到右边是负数个野人routesaves[i].godfather g * -1; //左边到右边负数个传教士States[i 1].Lsavage

States[i].Lsavage - s; States[i 1].Lgodfather States[i].Lgodfather - g; States[i 1].Rsavage States[i].Rsavage s; States[i 1].Rgodfather States[i].Rgodfather g; States[i 1].boat 1; else

{ routesaves[i].savage s; //右边到左边是正数个野人routesaves[i].godfather g; //右边到左边正数个传教士States[i 1].Rsavage States[i].Rsavage-s; States[i 1].Rgodfather

States[i].Rgodfather - g; States[i 1].Lsavage States[i].Lsavage s; States[i 1].Lgodfather States[i].Lgodfather g; States[i 1].boat

0;bool checkState(State m) { if (m.Rgodfather 0 m.Rgodfather m.Rsavage) return false; if (m.Lgodfather 0 m.Lgodfather

m.Lsavage) return false; else return true;void showSolution(int i) { cout 问题解决解决路径为endl; for (int c 0; c i; c ) { if (routesaves[c].savage 0) cout 第c 1 步routesaves[c].savage 个野人和routesaves[c].godfather 个传教士乘船去左边endl; else cout 第c 1 步routesaves[c].savage * -1 个野人和routesaves[c].godfather * -1 个传教士乘船去有右边endl; void nextstep(int i) { int c; if (i 150) cout 试探路径过大无法

计算; exit(0); for (c 0; c i; c ) /*if the current state is same to previous,retrospect*/ if (States[c].Lsavage States[i].Lsavage States[c].Lgodfather States[i].Lgodfather States[c].Rsavage States[i].Rsavage States[c].Rgodfather States[i].Rgodfather States[c].boat States[i].boat) goto a; if (States[i].Rsavage 0 States[i].Rgodfather 0 States[i].boat 0) { showSolution(i); exit(0); if (States[i].boat 1) { //船在右边for (int s 1; s boatnum s States[i].Rsavage; s ) {//g 0 int g 0; boaloading(i, s, g); if (checkState(States[i 1])) { nextstep(i 1); for (int g 1; g boatnum g States[i].Rgodfather; g ) { //g! 0 for (int s 0; s boatnum - g s States[i].Rsavage s g; s ) { boaloading(i, s, g); if

(checkState(States[i 1])) { nextstep(i 1); if (States[i].boat 0) { //

船在左边for (int s 1; s boatnum s States[i].Lsavage; s ) {//g 0

相关文档
最新文档