有限元分析的一般过程
abaqus有限元分析过程
一、有限单元法的基本原理有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。
它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。
有限元方法的基本思路是:化整为零,积零为整。
即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。
由位移求出应变, 由应变求出应力二、ABAQUS有限元分析过程有限元分析过程可以分为以下几个阶段1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是结构离散,即划分网格。
但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。
2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。
“Part(部件)用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。
有限元的分析过程2
柱塞的有限元分析为例完整地讲述有限元的分析过程。
一、有限元模型的建立(1)启动UG NX系统后,单击主菜单“打开”图标或下拉菜单“文件”一“打开”。
对话框中选择目标实体目录路径和模型名称:zhusai. prt。
单击“OK”,在UG NX系统中打开目标模型,见图1-1。
图1-1 目标模型(2)单击“开始”下拉菜单“高级仿真”图标,进入高级仿真界面。
(3)单击屏幕左侧“仿真导航器”,进入仿真导航器界面并选中模型名称,单击右键,在弹出的下拉菜单中选择“新建FEM和仿真”,弹出“新建FEM和仿真”对话框如图所示,接受系统各选项,单击“确认”按钮,弹出如图所示“创建解算方案”对话框。
图1-2仿真导航器 图1-3新建FEM 和仿真 图1-4创建解算方案(4)进入有限元分析截面。
根据需要在材料列表中选择材料,这里指定材料为钢,单击“确定”按钮。
若材料列表中无需求的材料,可以直接在“指派材料”对话框中设置材料各参数。
图1-7窗口图1-8指派材料图1-9选择位置选择体(5)在屏幕上选择模型,将在图中选择的材料赋予该模型,单击“确定”按钮,完成材料设置。
(6)单击“有限元模型”工具栏“四面体网格”图标.或下拉菜单“插入”—网 格”—3D 四面体网格”,弹出如图所示“3D 四面体网格”对话框。
选择屏幕中需划分网格模型,基活“3D 网格”对话框各选项,设置各选项,单击“确定”按钮,开始划分网格。
生成如图所示有限元模型。
图1-10四面体网格 图1-11选择位置 图1-12结果显示 (7)单击屏幕左侧“仿真导航器”,进入仿真导航器界面并选中名称为“zhusai_Siml”的结点,单击右键,并选择“设为显示部件”,激活屏幕中”高级仿真”工具栏,进入仿真模型界面。
选择体图1-13窗口 图1-14约束类型工具条 (8)单击“约束类型”下拉菜单并选择“固定约束”,弹出如图所示“固定约束”对话框。
在屏幕中选择需要施加约束的模型面,如图所示,单击“确定”,完成约束的设置。
第三讲 有限元分析过程及例题讲解
→
Q2
Ke 23
→
K25
注意要用累加运算!
K25
=
K25
+
Ke 23
累加前总刚要清零!
长安大学汽车学院车辆工程系 王童
⎡ K11 K12
⎢ ⎢
K21
K22
⎢ K31 K32
⎢ ⎢
K41
K42
⎢ ⎢ ⎢
K51 K61
K52 K62
⎢ ⎢ ⎣
K71 K81
K72 K82
Tel:17792594186
K13 K14 K15 K16 K17 K18 ⎤
Ve
Ve
Ve
令: {Pbe}= ∫∫∫ [N ]T {Fb}⋅ dV 称单元等效体力载荷向量 Ve
{ } { } 单元体力虚功可以表示为: Wbe = Qe T Pbe
2)表面力虚功
W
e s
=
∫∫
{u}T {Fs }⋅ dA
=
∫∫
{Q e }T
[N ]T {Fs }⋅ dA
=
{Q e }T
∫∫
[N
]T {Fs }⋅ dA
y
Q6
③
Q5
3
4
Q7
①
Q2
②
④
Q4
1
Q1
2
Q3
x
长安大学汽车学院车辆工程系 王童 Tel:17792594186 Email:wangtong@
以单元①为例
①
Qe 2
Qe 1
Qe 4
Qe 3
⎧Q1e → Q1
局部自由度与整体自由 度的对应关系为
⎪⎪⎪⎨QQ32ee
→ →
有限元法的分析过程
有限元法的分析过程有限元法是一种数值分析方法,用于求解实际问题的物理场或结构的数学模型。
它将连续的实体分割成离散的小单元,通过建立节点和单元之间的关系,对物理问题进行逼近和求解。
以下是一般的有限元法分析过程。
1.问题建模和离散化在有限元分析中,首先需要对实际问题进行建模,确定物理场或结构的几何形状和边界条件。
然后,将几何形状分割成一系列小单元,例如三角形、四边形或四面体等。
2.网格生成根据问题的几何形状和离散化方式,生成网格。
网格是由一系列节点和单元组成的结构,节点用于描述问题的几何形状,单元用于划分问题域。
通常,节点和单元的位置和数量会直接影响有限元法的精度和计算效率。
3.插值函数和基函数的选择有限元法中的节点通常表示问题域中的几何点,而节点之间的关系由插值函数或基函数来描述。
插值函数用于建立节点和单元之间的关系,基函数用于对物理场进行逼近。
选择适当的插值函数和基函数是有限元法分析的关键。
4.定义系统参数和边界条件确定相关物理参数和材料性质,并将其转化为数值形式。
在有限元分析中,还需要定义边界条件,包括约束条件和加载条件。
5.定义数学模型和方程根据问题的物理场或结构和所选择的基函数,建立数学模型和方程。
有限元方法可以用来建立线性方程、非线性方程、静态问题、动态问题等。
具体建立数学模型和方程的过程需要根据问题的特点进行。
6.组装刚度矩阵和力载荷向量根据离散化的节点和单元,组装刚度矩阵和力载荷向量。
刚度矩阵描述节点之间的刚度关系,力载荷向量描述外部加载的作用力。
7.求解代数方程通过求解代数方程,确定节点的位移或物理场的数值解。
通常,使用迭代方法或直接求解线性方程组的方法来求解。
8.后处理和分析得到数值解后,可以进行后处理和分析。
包括计算节点和单元的应变、应力等物理量,进行矫正和验证计算结果的正确性。
还可以通过有限元法的网格适应性来优化问题的计算效率和精度。
以上是一般的有限元法分析过程,具体的步骤和方法可能会因不同的问题而有所不同。
机械设计中的力学分析方法
机械设计中的力学分析方法在机械设计领域,力学分析方法是一种重要的工具和技术,用于评估和预测机械系统的性能、耐久性和可靠性。
通过力学分析,工程师可以更好地理解机械系统的力学行为,优化设计,并确保产品的安全运行。
本文将介绍机械设计中几种常用的力学分析方法。
一、静力学分析静力学分析是机械设计中最基本的分析方法之一。
它主要用于研究静态平衡条件下机械系统的力学行为。
在静力学分析中,工程师通过分析物体受力平衡的原理,计算系统中各个部件的力及其分布情况。
这对于确定机械系统的强度、稳定性和结构设计至关重要。
静力学分析通常需要考虑以下几个关键因素:1. 受力分析:确定各个部件受力情况,包括内力和外力的作用。
2. 应力分析:计算部件所受到的应力大小,以确定其强度是否满足设计要求。
3. 变形分析:评估部件在受力下的变形情况,以确定系统的稳定性和结构设计是否合理。
二、动力学分析动力学分析是研究机械系统在动态载荷下的力学行为。
与静力学分析不同,动力学分析考虑了物体在运动过程中的力学特性,如加速度、速度和位移。
动力学分析对于评估机械系统的可靠性和振动特性至关重要。
在进行动力学分析时,工程师通常需要注意以下几个方面:1. 运动学分析:分析物体在运动过程中的加速度、速度和位移等物理量,可通过微分方程求解。
2. 动力分析:计算物体所受到的各种动力(如惯性力、惯性矩等),以决定系统的动态响应。
3. 振动分析:评估机械系统在运动中的振动特性,包括共振频率、振动幅度等。
三、有限元分析有限元分析是一种基于数值计算的力学分析方法,广泛应用于机械设计领域。
它通过将连续介质分割为有限数量的小单元,利用数值计算方法求解每个小单元的力学方程,从而得到整个系统的力学行为。
有限元分析可以用来研究机械系统的强度、刚度、模态等性能指标。
有限元分析的过程通常包括以下几个步骤:1. 离散化:将连续介质离散为有限数量的小单元,如三角形单元、四边形单元等。
2. 单元属性定义:根据物体的材料特性和几何特性,为每个小单元定义属性,如材料参数、截面参数等。
solidworks进行有限元分析的一般步骤
1.软件形式:㈠. SolidWorks的内置形式:◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。
㈡. SolidWorks的插件形式:◆COSMOSWorks Designer——对零件或装配体的静态分析。
◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。
;◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。
㈢. 单独发行形式:◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。
2.使用FEA的一般步骤:FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法…①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要,)(即从CAD几何体→FEA几何体),共有下列三法:▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。
▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。
▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。
如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。
材料力学中的有限元方法分析
材料力学中的有限元方法分析材料力学是研究物质初始状态至最终破坏状态之间的力学行为及其规律的科学。
有限元分析是一种数值计算方法,可以求解各种工程问题的数学模型。
有限元方法在材料力学研究中有着重要的应用,本文将从有限元方法的基本原理、材料力学中的有限元分析、有限元模拟在材料力学中的应用等方面进行分析。
一、有限元方法的基本原理有限元方法是一种通过建立复杂结构的有限元模型,将一个复杂的连续问题转化为离散问题来求解的方法。
其基本思想是将一个连续物体分割成很多小的单元,使用一些简单的解析方法求解每个小单元内的力学问题,然后将所有小单元的解组合在一起来求解整体力学问题。
有限元方法求解的过程分为以下基本步骤:1.建立有限元模型2.离散化3.施加约束4.建立刚度矩阵和荷载向量5.求解未知量二、材料力学中的有限元分析材料力学中的有限元分析是指通过有限元方法对材料力学问题进行分析、计算和评估的方法。
材料力学问题中的目标是通过施加荷载或外界力,来得到物体内部的应力和应变状态,以及其随时间和载荷变化的规律。
在建立材料力学有限元模型时,需要考虑以下因素:1.应力集中和应变集中的位置和程度2.物理边界和几何结构3.材料的力学性质和力学参数材料力学中的有限元分析包含以下几个方面:1.静态分析:研究物体在静态等效荷载下的应力状态,计算物体的静态变形。
2.动态分析:研究物体在动态载荷下的应力和应变状态,计算物体的动力响应。
3.疲劳分析:研究物体在周期性载荷下的损伤状态、损伤机理和寿命预估。
4.热力耦合分析:研究物体在温度场和应力场的共同作用下的应力和应变状态。
5.多物理场分析:研究物体在电、磁、声、液、气、红外、光、辐射等多个物理场的共同作用下的应力和应变状态。
三、有限元模拟在材料力学中的应用有限元模拟在材料力学中的应用范围非常广泛,包括了以下几个方面:1.材料的结构设计和分析2.材料的性质和参数的测试和评估3.材料的制造和加工工艺的模拟4.材料的破坏和损伤机理的研究5.材料的寿命评估和振动疲劳分析最终,有限元分析的结果可以在材料设计、材料优化和制造流程等方面提供准确的数据支持,帮助人们更好地理解材料的力学行为和性质,促进材料科学的发展。
有限元分析及应用习题答案
有限元分析及应用习题答案有限元分析及应用习题答案有限元分析是一种广泛应用于工程领域的数值计算方法,可以用来解决各种结构力学问题。
在学习有限元分析的过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高应用能力。
本文将给出一些有限元分析及应用的习题答案,希望对读者有所帮助。
1. 什么是有限元分析?有限元分析的基本步骤是什么?有限元分析是一种通过将结构划分为有限数量的子域,然后对每个子域进行数值计算,最终得到整个结构的应力、应变等力学参数的方法。
其基本步骤包括:建立有限元模型、选择适当的数学模型、进行数值计算、分析计算结果。
2. 有限元分析的优点是什么?有限元分析具有以下优点:- 可以处理任意形状的结构,适用范围广。
- 可以考虑材料非线性、几何非线性等复杂情况。
- 可以对结构进行优化设计,提高结构的性能。
- 可以得到结构的应力、应变等力学参数分布,为工程实际应用提供参考。
3. 有限元分析中的单元是什么?常见的有哪些类型?有限元分析中的单元是指将结构划分为有限数量的子域,每个子域称为一个单元。
常见的单元类型有:- 一维单元:如梁单元、杆单元等,适用于解决一维结构问题。
- 二维单元:如三角形单元、四边形单元等,适用于解决平面或轴对称问题。
- 三维单元:如四面体单元、六面体单元等,适用于解决立体结构问题。
4. 如何选择适当的单元类型?选择适当的单元类型需要考虑结构的几何形状、边界条件、材料性质等因素。
一般来说,对于简单的结构,可以选择较简单的单元类型;对于复杂的结构,需要选择更复杂的单元类型。
此外,还需要根据具体问题的要求和计算资源的限制进行选择。
5. 有限元分析中的边界条件有哪些类型?有限元分析中的边界条件包括:- 位移边界条件:指定某些节点的位移或位移的导数。
- 力边界条件:施加在结构上的外力或力矩。
- 约束边界条件:限制某些节点的位移或位移的导数为零。
6. 有限元分析中的材料模型有哪些?有限元分析中常用的材料模型有:- 线性弹性模型:假设材料的应力与应变之间存在线性关系。
有限元求解一般过程
实用标准文案
有限元求解问题的基本步骤通常为:
第一步:问题及求解域定义
第二步:求解域离散化
第三步:确定状态变量及控制方法
第四步:单元推导:对单元构造一个适合的近似解
第五步:总装求解
第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。
简言之,有限元分析可分成三个阶段,前处理、处理和后处理。
前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
精彩文档。
第3章 有限元分析的数学求解原理-三大步骤
U x x y y z z xy xy yz yz zx zx dV
X u Y v Z w dV X u Y v Z w d W
V V
用 * 表示;引起的虚 应变分量用 * 表示
j Vj
Ui
i Vi
0 X
y
¼ 1-9 Í
ui* * vi wi* * * u j , v* j w*j
x* * y * z * * xy *yz * 18 zx
19
7.间接解法:最小势能原理
20
最小势能原理
W U 0
最小势能原理就是说当一个体系的势能最小时,系统会处于稳定 平衡状态。或者说在所有几何可能位移中,真实位移使得总势能取最小值
0 表明在满足位移边界条件的所有可能位移 最小势能原理: 中,实际发生的位移使弹性体的势能最小。即对于稳定平衡状态,实 际发生的位移使弹性体总势能取极小值。显然,最小势能原理与虚功 原理完全等价。 n m
虚功原理的矩阵表示
在虚位移发生时,外力在虚位移上的虚功是:
* 式中
U i u i* V i v i* W i w i* U j u *j V j v *j W j w *j
* 是 的转置矩阵。
T
*
F
T
同样,在虚位移发生时,在弹性体单位体积内,应力在虚应变上的虚 功是: * * * * * * * T x x y y z z xy xy yz yz zx zx
27
⑴解析法
有限元分析过程
有限元分析过程有限元分析过程可以分为以下三个阶段:1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是结构离散,即划分网格。
但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。
2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。
3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。
首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。
原始数据的计算模型,模型中一般包括以下三类数据:1.节点数据: 包括每个节点的编号、坐标值等;2.单元数据:a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.建立有限元模型的一般过程:1.分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。
有限元分析过程
有限元分析过程:一,结构离散化1.选择单元类型2.单元划分;二,单元分析1.选择位移函数2.分析单元力学特性;三,整体分析1.集成整体结点载荷向量2.集成整体刚度方程3.引进边界约束条件,解总体刚度方程求出结点位移分量。
位移模式应满足下列收敛性条件:完备性 1.位移模式必须包含单元的常应变状态;2.位移模式必须包含单元的刚体位移;协调性 3.位移模式应尽可能反映位移的连续性。
单元刚度矩阵的性质:1.对称性;2.单元刚度矩阵与单元位置无关;3.奇异性。
总体刚度矩阵的性质:1.稀疏性;2.带状性;3.奇异性与对称性。
由单元刚度方程组集总纲时应满足的原则:1各单元在公共节点上协调地彼此连接,即在公共结点处具有相同的位移2结构的各节点离散出来后应满足平衡条件提高单元精度的方法:1增加结点数即提高位移模式的阶次2建立等参单元进行等参数变换等参数变换、等参数单元、等参单元具有哪些优越性?:1将局部坐标中几何形状的单元转换成总体坐标中几何形状复杂的单元且这种坐标变换和函数插值采用了相同数目的结点数参数和相同的插值函数2采用等参数变换的单元称为等参数单元3优点:可以很方便地用来离散具有复杂性体的结构。
由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,边界条件:位移边界条件和应力边界条件引进位移边界条件的方法:对角元素改一和乘大数弹性力学中求解力学位移的方法:解析法或半解析法、数值法弹性力学的基本方程:平衡方程(静力平衡关系)、几何方程(应变分量与位移间的关系)、物理方程(应力分量与应变分量之间的关系)什么叫结点力和结点载荷?两者有什么不同?为什么应保留结点力的概念?:①结点力:结点对单元的作用力。
结点载荷:包括集中力和将体力、面力按静力等效原则移植到节点形成的等效载荷,原荷载和移植后的荷载在虚位移上的虚功相等②相对于整体结构来说,节点力是内力,结点载荷是外力③节点力的概念在建立单元刚度方程的时候需要用到在薄板弯曲理论中做了哪些假设?解:①板厚方向的挤压变形可忽略不计。
有限元分析过程概要ppt
有限元分析过程概要
4、有限元分析的特点
有限元分析的最大特点就是标准化 规范化 标准化和规范化 标准化 规范化,这种特点使得大规模分 析和计算成为可能,当采用了现代化的计算机以及所编制的软件作为实现 平台时,则复杂工程问题的大规模分析成为可能。 实现有限元分析标准化和规范化的载体就是单元 单元,这就需要我们构建 单元 起各种各样的具有代表性的单元,一旦有了这些单元,就好像建筑施工中 有了一些标准的预制构件(如梁、楼板等),可以按设计要求搭建出各种各 样的复杂结构,如图2-11所示
同时根据作用力与反作用力的关系,有
,进而有:
有限元分析过程概要
对于等截面杆受拉伸的情况,杆件①、 ②的应力分别为:
由虎克定律(Hooke law)得杆件①、②的应变分别为:
有限元分析过程概要
杆件①、②的相对伸长量分别为
由于左端A为固定,则该点沿x方向的位移为零,而B点的位移 则为杆件①的伸长量,C点的位移为杆件①和②的总伸长量, 则归纳为以上结果,有完整的解答:
有限元分析过程概要
将节点A、B、C的平衡关系写成一个方程组,有
矩 阵 形 式
(3-1)
有限元分析过程概要
将材料弹性模量和结构尺寸代入方程中,有以下方程
由于左端点为固定,即 解该方程,有
,该方程的未知量为
,求
有限元分析过程概要
下面就很容易求解出杆①和②中的其它力学量,即
可见通过这种方法得到的结果与材料力学方法完全一致
有限元分析过程概要
1、有限元分析的目的和概念 、
(1)位移 位移(displacement):构件中因承载在任意位置上所引起的移动; 位移 (2)应变 应变(strain):构件中因承载在任意位置上所引起的变形状态; 应变 (3)应力 应力(stress):构件中因承载在任意位置上所引起的受力状态; 应力 有限元分析的目的: 有限元分析的目的:针对具有任意复杂几何形状变形体,完整获 取在复杂外力作用下它内部的准确力学信息,即求取该变形体的 三类力学信息(位移、应变、应力)。从而进行强度(strength)、刚 度(stiffness)等方面的评判,优化设计方案。
有限元分析FEA
有限元分析FEA有限元分析(Finite Element Analysis,FEA)是一种数值分析方法,广泛应用于工程领域,用于估算结构在特定工况下的力学性能。
FEA 将复杂的实际结构抽象为有限数量的简单几何形状,然后通过对这些几何形状进行分割,建立一个离散的节点网格,进而利用数学方法对节点网格上的几何、力学和材料性能进行模拟和计算,通过求解节点间的方程组,得到结构的应力、应变、位移等结果。
1.建立几何模型:通过计算机辅助设计软件建立结构的几何模型。
模型可以是二维或三维的,包括各种几何形状,如线段、矩形、圆形等,并包含结构的尺寸和几何特征。
2.网格划分:将几何模型划分为离散的节点网格,并在节点上分配适当的节点元素。
节点元素可以是线元素、平面元素或体元素,将结构的连续性转化为离散点之间的连接关系。
3.建立力学模型:根据所要研究的问题和加载条件,确定边界条件、加载情况和材料性能等。
边界条件包括约束和加载,在节点和元素上分配适当的约束和加载。
4.建立单元刚度矩阵:根据单元的几何形状和材料特性,建立单元的刚度矩阵。
刚度矩阵包含单元的弹性刚度、几何刚度和材料刚度。
5.组装刚度矩阵:将所有单元的刚度矩阵根据节点的连接关系进行组装,得到总体的刚度矩阵。
组装的过程包括将单元刚度矩阵映射到全局坐标系、考虑边界条件和加载等。
6.求解方程组:建立节点的位移和约束条件之间的关系,得到结构的位移、应力和应变等结果。
可以通过直接解方程组或迭代求解的方法得到最终结果。
7.后处理:根据具体问题的要求,对结果进行分析和解释。
可以绘制位移云图、应力云图、应变云图等,进行结构的评估和优化。
FEA有以下几个主要特点和优势:1.可适用于各种工程领域:FEA可以用于解决结构和材料的强度、稳定性、疲劳、振动、热传导、电磁等多种问题,广泛应用于航空航天、汽车、能源、建筑和机械制造等领域。
2.具有高精度:通过适当的剖分和合理的力学模型,能够在相对较短的时间内提供较准确的结果,并对结构进行合理和有效的评估。
有限元分析的基本步骤
一个典型的AN SY S分析过程可分为以下6个步骤:1定义参数2创建几何模型3划分网格4加载数据5求解6结果分析1定义参数1.1指定工程名和分析标题启动ANSYS软件,选择File→ChangeJobname命令选择File→Change Title菜单命令1.2定义单位(2) 设置计算类型ANSYS Main Menu: Prefere nce→Materia l Props →Materia l Models→Structu ral →OK(3) 定义分析类型ANSYS Main Menu: Preproc essor→Loads →Analysi s Type →New Analysi s→STATIC→OK1.3定义单元类型选择MainMenu→Preprocessor→Element Type→Add/Edit/Delete命令单击[Options]按钮,在[Element behavio r]下拉列表中选择[Plane strs w/thk]选项,单击确定1.4定义单元常数在ANSYS程序主界面中选择MainMenu→Preprocessor→Real Constan ts→Add/Edit/Delete命令单击[Add]按钮,进行下一个[ChooseElement Type]对话框1.5定义材料参数在ANSYS程序主界面,选择MainMenu→Preprocessor→Materia l Props→Materia l Models命令(1)选择对话框右侧S truct ural→Linear→Elastic→Isotropi c命令,并单击[Isotropi c]选项,接着弹出如下所示[LinearIsotropi c Properti es for Materia l Number 1]对话框。
有限元分析-详解
C、棱柱铰约束(Slider)
该约束只能施加于虚件之上,仅允许被约束的 对象沿指定放松的轴平移滑动,限制其它五个自由 度。一般施加过程为:单击 按钮,弹出图示对话 框。选择虚件加于Supports 栏,选择使用的坐标系, 并在需要放松的轴线方向输入1。单击确定完成定义。 如针对如图所示接触虚件示例,用加于虚件的取代 施加于Point1 的高级约束,结果相同。
Element Type 决定采用linear 线性直边单元亦或采 用parabolic 抛物线棱边单元,抛物线棱边单元能带 来更好的精度。
此外还可以通过如图所示对话框中的Local 卡片,通 过添加(Add)sage和sag来调整局部网格细密程度 和,带来更合适的分析精度。(注:全局网格划分越 细密或采用抛物线棱边单元同样能提高精度,但同时 计算耗时增加)。
网格和属性还可以通过模型管理工具条 来自行定义。其中:
图标用于给实体Solid 模型定义四面体单元;
图标用于给曲面surface 模型定义三角形单元,如 果用户决定把实体模型当作薄壳模型来处理,也可 以用于实体模型;
图标表示对线框wireframe 几何进行梁单元网格划 分,要求对象是在Generative Shape Design 或 Wireframe and Surface Design 中生成的部件, 或者在Structure Design 环境下生成的梁(不能对 Sketch 对象进行网格划分),且划分出的网格是一 维的。
CATIA有限元分析
有限元分析是实现安全设计的重要部分, 在日常设计工作中也经常得到应用。
一 、零件体有限元分析
零件体有限元分析的一般步骤为:
(1):建立零件模型并导入分析模块;
有限元基础理论复习资料--郎以墨
有限元基础理论考试复习资料1.有限元分析的步骤是怎样的?答:(1)力学模型的确定,建立积分方程。
(2)将结构进行离散化,包括单元划分、结点编号、单元编号、结点坐标计算、位移约束条件确定。
(3)单元函数确定,等效结点力的计算。
(4)单元分析,刚度矩阵的计算,先逐个计算单元刚度,再组装成整体刚度矩阵。
(5)总体分析,建立整体平衡方程,引入约束条件,求解结点位移。
(6)由结点位移计算单元应变及应力。
2.有限元(FEM)离散化体现在哪几个方面?答:1.物体本身离散化2.边界条件离散化3.载荷离散化3.有限单元法的基本思想是什么?答:有限单元法的基本思想是将物体(即连续的求解域)离散成有限个且按一定方式相互联结在一起的单元的组合,来模拟或逼近原来的物体,从而将一个连续的无限自由度问题简化为离散的有限自由度问题求解的一种数值分析法。
4.什么是单元离散化?答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。
每个部分称为一个单元,连接点称为结点。
5.连续体结构分析有哪几种基本假定?答:(1)连续性假设;(2)完全弹性假设;(3)均匀性假设;(4)各向同性假设;(5)小变形假设。
6.形函数是什么?有什么性质?答:反映单元内位移分布状态,称为位移的形态函数,简称形函数。
其有如下性质:1)形函数在各单元节点上的值,具有“本点是1、他点我零”的性质。
2)在单元内任意一点上,三个形函数之和等于1。
3)三角形单元任意一条边上的形函数,仅与该边的两端点坐标有关。
7.什么是单元,节点,节点力,节点位移,节点载荷,体力,载荷,面力,集中力,位移,应力,应变?答:单元:即原始结构离散后,满足一定几何特性和物理特性的最小结构域。
节点:定义于单元上的特殊点,或单元之间的联系点。
节点力:单元与单元间通过节点的相互作用力。
节点位移:在节点处度量的结构位移。
节点载荷:作用于节点上的外载(等效)。
体力:分布于整个弹性体体积内的外力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析的一般过程
一、结构的离散化
将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。
这一步要解决以下几个方面的问题:
1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。
2、根据结构的特点,选择不同类型的单元。
对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。
3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。
4、根据工程需要,确定分析类型和计算工况。
要考虑参数区间及确定最危险工况等问题。
5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。
二、选择位移插值函数
1、位移插值函数的要求
在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。
位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。
但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。
2、位移插值函数的收敛性(完备性)要求:
1)位移插值函数必须包含常应变状态。
2)位移插值函数必须包含刚体位移。
3、复杂单元形函数的构造
对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。
因此在实际应用中更多的情况下是利用形函数的性质来构造形函数。
形函数的性质:
1)相关节点处的值为 1,不相关节点处的值为 0。
2)形函数之和恒等于 1。
1、建立数学模型(特征消隐,理想化,清除)((即从 CAD 几何体→FEA 几何体),共
有下列三法:▲ 特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。
▲ 理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理▲ 清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。
)
2、建立有限元模型:(选择网格种类及定义分析类型;添加材料属性;施加约束;定义
载荷;网格划分)
3、求解有限元模型:再在此基础上计算应变和应力等其它物理量;在热分析中,FEA 首
先计算的是网格中每个节点的温度(标量),再在此基础上计算温度梯度和热流等其它物理量. 一般如果模型可划分网格,那么它就可以求解,但如果没有定义材料或载荷,则求解会终止。
4、结果分析:材料线性假设、小变形假设、静态载荷假设等等。
这里我们称为的相关节点,为的相关节点,其它点均为不相关节点。
三、单元分析
目的:计算单元弹性应变能和外力虚功。
使用最小势能原理,需要计算结构势能,由弹性应变能和外力虚功两部分构成。
结构已经被离散,弹性应变能可以由单元弹性应变能叠加得到,外力虚功中的体力、面力都是分布在单元上的,也可以采用叠加计算。
2、计算单元外力功
从前面推导可以看出:
单元弹性应变能可计算的部分只有单元刚度矩阵,单元外力虚功可计算的部分只有单元等效体力载荷向量和等效面力载荷向量。
在实际分析时并不需要进行上述推导,只需要将假定的位移插值函数代入本节推导得出的单元刚度矩阵、等效体力载荷向量和等效面力载荷向量的计算公式即可。
所以我们说有限元分析的第三步是计算单元刚度矩阵、等效体力载荷向量和等效面力载荷向量。
几点说明:
1)单元刚度矩阵具有正定性、奇异性和对称性三各重要特性。
所谓正定性指所有对角线元素都是正数,其物理意义是位移方向与载荷方向一致;奇异性是说单元刚度矩阵不满秩是奇异矩阵,其物理意义是单元含有刚体位移;对称性是说单元刚度矩阵是对称矩阵,程序设计时可以充分利用。
2)按照本节公式计算的单元等效体力载荷向量和等效面力载荷向量称为一致载荷向量。
实际分析时有时也采用静力学原理计算单元等效体力载荷向量和等效面力载荷向量,实际应用表明在大多数情况下,这样做可以简化计算,同时又基本上不影响分析结果。
文章来源:元计算科技发展有限公司。