山东省2022年冬季普通高中学业水平合格考试(1)数学试卷(含解析)
2022年山东省青岛市中考数学试题(含答案解析)
2022年青岛市初中学业水平考试数学试题(考试时间:100 分钟满分:90 分)说明:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分,共25题。
第Ⅰ卷为选择题,共8小题,共24分;第Ⅱ卷为填空题、作图题解答题,共17小题,共96分。
2.所有题目均在答题卡...上作答,在试题上作答无效。
第Ⅰ卷(共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.我国古代数学家祖冲之推算出π的近似值为355,它与π的误差小于0.0000003.113将0.0000003用科学记数法可以表示为A.3×10﹣7B.0.3×10﹣6C.3×10﹣6D.3×1072.北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是A.B.C.D.3.计算(√27−√12)×√1的结果是3A.√3B.13C.√5D.34.如图①,用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是A.B.C.D.̂上,则∠CME5.如图,正六边形ABCDEF内接于⊙O,点M在AB的度数为A.30°B.36°C.45°D.60°6.如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是A.(2,0)B.(﹣2,﹣3)C.(﹣1,﹣3)D.(﹣3,﹣1)7.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE 的长度为A.√62B.√6C.2√2D.2√38.已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=﹣1,且经过点(﹣3,0),则下列结论正确的是()A.b>0B.c<0C.a+b+c>0D.3a+c=0二、填空题(本大题共6小题,每小题3分,共18分)9.−1的绝对值是.210.小明参加“建团百年,我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项分别是9分、8分、8分.若将三项得分依次按3:4:3的比例确定最终成绩,则小明的最终比赛成绩为分.11.为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为.12.图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是°.13.如图,AB是⊙O的切线,B为切点,OA与⊙O交于点C,以点A为圆心、以OC的长̂,分别交AB,AC于点E,F.若OC=2,AB=4,则图中阴影部分的面积为半径作EF为.14.如图,已知△ABC ,AB =AC ,BC =16,AD ⊥BC ,∠ABC 的平分线交AD 于点E ,且DE =4.将∠C 沿GM 折叠使点C 与点E 恰好重合.下列结论正确的有: .(填 写序号) ①BD =8②点E 到AC 的距离为3 ③EM =103④EM ∥AC三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹. 15.(4分)已知:Rt △ABC ,∠B =90°.求作:点P ,使点P 在△ABC 内部.且PB =PC ,∠PBC =45°.四、解答题(本大题共10小题,共74分) 16.(8分)(1)计算:a−1a 2−4a+4÷(1+1a−2); (2)解不等式组:{2x ≥3(x −1),2−x2<1. 17.(6分)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互 配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.19.(6分)如图,AB为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活•绿色出行”健步走公益活动,小宇在点A处时,某艘海上观光船位于小宇北偏东68°的点C处,观光船到滨海大道的距离CB为200米.当小宇沿滨海大道向东步行200米到达点E时,观光船沿北偏西40°的方向航行至点D处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)孔子曾说:“知之者不如好之者,好之者不如乐之者”兴趣是最好的老师.阅读、书法、绘画、手工、烹饪、运动、音乐…各种兴趣爱好是打开创新之门的金钥匙.某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校2200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长,对这项调查结果使用画“正”字的方法进行初步统计,得到下表:学生每周自主发展兴趣爱好时长分布统计表组别时长t(单位:h)人数累计人数第一组1≤t<2正正正正正正3060第二组2≤t<3正正正正正正正正正正正正70第三组3≤t<4正正正正正正正正正正正正正正第四组4≤t<5正正正正正正正正40根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第组;(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为,对应的扇形圆心角的度数为°;(4)学校倡议学生每周自主发展兴趣爱好时长应不少于2h,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间?【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC 和△A 'B 'C '中,AD ,A 'D '分别是BC 和B 'C '边上的高线,且AD =A 'D '、则△ABC 和△A 'B 'C '是等高三角形.【性质探究】如图①,用S △ABC ,S △A 'B 'C ′分别表示△ABC 和△A ′B ′C ′的面积, 则S △ABC =12BC •AD ,S △A 'B 'C ′=12B ′C ′•A ′D ′, ∵AD =A ′D ′∴S △ABC :S △A 'B 'C ′=BC :B 'C '. 【性质应用】(1)如图②,D 是△ABC 的边BC 上的一点.若BD =3,DC =4,则S △ABD :S △ADC = ; (2)如图③,在△ABC 中,D ,E 分别是BC 和AB 边上的点.若BE :AB =1:2,CD :BC =1:3,S △ABC =1,则S △BEC = ,S △CDE = ;(3)如图③,在△ABC 中,D ,E 分别是BC 和AB 边上的点.若BE :AB =1:m ,CD :BC =1:n ,S △ABC =a ,则S △CDE = .22.(8分)如图,一次函数y =kx +b 的图象与x 轴正半轴相交于点C ,与反比例函数y =−2x 的图象在第二象限相交于点A (﹣1,m ),过点A 作AD ⊥x 轴,垂足为D ,AD =CD .(1)求一次函数的表达式;(2)已知点E (a ,0)满足CE =CA ,求a 的值.如图,在四边形ABCD中,AB∥CD,点E,F在对角线BD上,BE=EF=FD,∠BAF=∠DCE=90°.(1)求证:△ABF≌△CDE;(2)连接AE,CF,已知(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.条件①:∠ABD=30°;条件②:AB=BC.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)24.(10分)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动、速度为1cm/s;同时,点Q从点A出发,沿AD方向匀速运动,速度为1cm/s.PQ交AC于点F,连接CP,EQ,设运动时间为t(s)(0<t<5).解答下列问题:(1)当EQ⊥AD时,求t的值;(2)设四边形PCDQ的面积为S(cm2),求S与t之间的函数关系式;(3)是否存在某一时刻t,使PQ∥CD?若存在,求出t的值;若不存在,请说明理由.2022年青岛市初中学业水平考试数学参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.A 2.C 3.B 4.C 5.D6.C7.B8.D二、填空题(本大题共6小题,每小题3分,共18分)9.1210.8.3 11.3 12.6013.4﹣π14.①④三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹. 15.(4分)解:①先作出线段BC 的垂直平分线EF ;②再作出∠ABC 的角平分线BM ,EF 与BM 的交点为P ;四、解答题(本大题共10小题,共74分) 16.(8分) 解:(1)原式=a−1a 2−4a+4÷a−2+1a−2 =a−1(a−2)2•a−2a−1=1a−2; (2){2x ≥3(x −1)①2−x2<1②, 解不等式①得:x ≤3, 解不等式②得:x >2,∴不等式组的解集为:2<x ≤3.17.(6分)解:所有可能的结果如下:∴共有10种等可能的结果,其中两球编号之和为奇数的有5种结果,两球编号之和为偶数的有5种结果,∴P(小冰获胜)=510=12,P(小雪获胜)=510=12,∵P(小冰获胜)=P(小雪获胜),∴游戏对双方都公平.18.(6分)解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.19.(6分)解:过点C作CF⊥DE于F,由题意得,∠D=40°,∠ACB=68°,在Rt△ABC中,∠CBA=90°,∵tan∠ACB=AB CB,∴AB=CB×tan68°≈200×2.48=496(m),∴BE=AB﹣AE=496﹣200=296(m),∵∠CFE=∠FEB=∠CBE=90°,∴四边形FEBC为矩形,∴CF=BE=296m,在Rt△CDF中,∠DFC=90°,∵sin∠D=CF CD,∴CD≈2960.64=462.5(m),答:观光船从C处航行到D处的距离约为462.5m.20.(6分)解:(1)补全频数分布直方图如下:(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第三组,故答案为:三;(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为:60200×100%=30%;对应的扇形圆心角的度数为:360°×30%=108°,故答案为:30%;108;(4)2200×30200=330(人),答:估计该校学生中有330人需要增加自主发展兴趣爱好时间.21.(6分)解:(1)∵BD=3,DC=4,∴S△ABD:S△ADC=BD:DC=3:4,故答案为:3:4;(2)∵BE:AB=1:2,∴S△BEC:S△ABC=BE:AB=1:2,∵S△ABC=1,∴S△BEC=1 2;∵CD :BC =1:3,∴S △CDE :S △BEC =CD :BC =1:3,∴S △CDE =13S △BEC =13×12=16; 故答案为:12,16; (3)∵BE :AB =1:m ,∴S △BEC :S △ABC =BE :AB =1:m ,∵S △ABC =a ,∴S △BEC =1m S △ABC =a m ;∵CD :BC =1:n ,∴S △CDE :S △BEC =CD :BC =1:n ,∴S △CDE =1n S △BEC =1n •a m =a mn , 故答案为:a mn .22.(8分)解:(1)∵点A (﹣1,m )在反比例函数y =−2x 的图象上,∴﹣m =﹣2,解得:m =2,∴A (﹣1,2),∵AD ⊥x 轴,∴AD =2,OD =1,∴CD =AD =2,∴OC =CD ﹣OD =1,∴C (1,0)把点A (﹣1,2),C (1,0)代入y =kx +b 中,{−k +b =2k +b =0, 解得{k =−1b =1, ∴一次函数的表达式为y =﹣x +1;(2)在Rt △ADC 中,AC =√AD 2+CD 2=2√2,∴AC =CE =2√2,当点E 在点C 的左侧时,a =1﹣2√2,当点E 在点C 的右侧时,a =1+2√2,∴a 的值为1±2√2.23.(8分)(1)证明:∵BE =FD ,∴BE +EF =FD +EF ,∴BF =DE ,∵AB ∥CD ,∴∠ABF =∠CDE ,在△ABF 和△CDE 中,{∠ABF =∠CDE∠BAF =∠DCE BF =DE∴△ABF ≌△CDE (AAS );(2)解:若选择条件①:四边形AECF 是菱形,理由如下:由(1)得,△ABF ≌△CDE ,∴AF =CE ,∠AFB =∠CED ,∴AF ∥CE ,∴四边形AECF 是平行四边形,∵∠BAF =90°,BE =EF ,∴AE =12BF ,∵∠BAF =90°,∠ABD =30°,∴AF =12BF ,∴AE =AF ,∴▱AECF 是菱形;若选择条件②:四边形AECF是菱形,理由如下:连接AC交BD于点O,由①得:△ABF≌△CDE,∴AF=CE,∠AFB=∠CED,∴AF∥CE,∴四边形AECF是平行四边形,∴AO=CO,∵AB=BC,∴BO⊥AC,即EF⊥AC,∴▱AECF是菱形.故答案为:①(答案不唯一).24.(10分)解:(1)根据题意得:y=8.2﹣0.2(x﹣1)=﹣0.2x+8.4,答:这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式为y=﹣0.2x+8.4;(2)设李大爷每天所获利润是w元,由题意得:w=[12﹣0.5(x﹣1)﹣(﹣0.2x+8.4)]×10x=﹣3x2+41x=﹣3(x−416)2+168112,∵﹣3<0,x为正整数,且|6−416|>|7−416|,∴x=7时,w取最大值,最大值为﹣3×(7−416)2+168112=140(元),答:李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元.25.(10分)解:(1)如图:在Rt △ABC 中,AC =√AB 2−BC 2=√52−32=4,∵将△ABC 绕点A 按逆时针方向旋转90°得到△ADE ,∴AD =AB =5,DE =BC =3,AE =AC =4,∠AED =∠ACB =90°, ∵EQ ⊥AD ,∴∠AQE =∠AED =90°,∵∠EAQ =∠DAE ,∴△AQE ∽△AED ,∴AQ AE =AE AD ,即AQ 4=45, ∴AQ =165,∴t =AQ 1=165; 答:t 的值为165;(2)过P 作PN ⊥BC 于N ,过C 作CM ⊥AD 于M ,如图:∵将△ABC 绕点A 按逆时针方向旋转90°得到△ADE ,∴∠BAD =90°,即∠BAC +∠CAM =90°,∵∠B +∠BAC =90°,∴∠B =∠CAM ,∵∠ACB =90°=∠AMC ,∴△ABC ∽△CAM ,∴AC CM =AB AC ,即4CM =54,∴CM=16 5,∴S△ACD=12AD•CM=12×5×165=8,∴S四边形ABCD=S△ABC+S△ACD=12×3×4+8=14,∵∠PBN=∠ABC,∠PNB=90°=∠ACB,∴△PBN∽△ABC,∴ABPB=ACPN,即5t=4PN,∴PN=45t,∴S△BCP=12BC•PN=12×3×45t=65t,∴S=S四边形ABCD﹣S△BCP﹣S△APQ=14−65t−12(5﹣t)•t=12t2−3710t+14;答:S与t之间的函数关系式是S=12t2−3710t+14;(3)存在某一时刻t,使PQ∥CD,理由如下:过C作CM⊥AD于M,如图:由(2)知CM=16 5,∴AM=√AC2−CM2=√42−(165)2=125,∴DM=AD﹣AM=5−125=135,∵PQ∥CD,∴∠AQP=∠MDC,∵∠P AQ=∠CMD=90°,∴△APQ∽△MCD,∴APCM=AQDM,即5−t165=t135,解得t=65 29,答:存在时刻t=6529,使PQ∥CD.。
2022年版数学新课标考试题(含答案)
2022年版数学新课标考试题(含答案)一、填空题。
1.数学是研究(数量关系)和(空间形式)的科学。
2.(数学素养)是现代社会每一个公民应当具备的基本素养。
数学教育承载着落实(立德树人)根本任务,实施素质教育的功能。
3.义务教育数学课程具有(基础性)、(普及性)和(发展性)。
4.学生通过数学课程的学习,掌握适应现代生活及进一步学习必备的(基础知识)、(基本技能)、(基本思想)和(基本活动经验)激发学习数学的兴趣,养成独立思考的习惯和合作交流的意愿;发展实践能力和创新精神,形成和发展核心素养。
5. 数学源于对(现实世界)的抽象,通过对数量和数量关系、图形和图形关系的抽象,得到数学的研究对象及其关系;基于抽象结构,通过对研究对象的符号运算、形式推理、模型构建等,形成数学的结论和方法,帮助人们认识、理解和表达现实世界的本质、关系和规律。
6. 义务教育数学课程致力于实现义务教育阶段的培养目标,使得(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展),逐步形成适应终身发展需要的核心素养。
7.义务教育数学课程五大核心理念包括(确立核心素养导向的课程目标)、(设计体现结构化特征的课程内容)、(实施促进学生发展的教学活动)、(探索激励学习和改进教学的评价)、(促进信息技术与数学课程融合)。
8. 课程目标以学生发展为本,以核心素养为导向,进一步强调使学生获得数学“四基”即(基础知识)、(基本技能)、(基本思想)和(基本活动经验)发展,发展运用数学知识与方法“四能”即(发现问题的能力)、(提出问题的能力)、(分析问题的能力)和(解决问题的能力),形成正确的(情感、态度和价值观)。
9. 改变单一讲授式教学方式,注重(启发式)、(探究式)、(参与式)、(互动式)等,探索(大单元)教学,积极开展(跨学科的主题式学习)和(项目式学习)等综合性教学活动。
10.课程内容组织的重点应是对内容进行(结构化整合),探索发展学生(核心素养)的路径。
2022年普通高等学校招生全国统一考试(新高考1卷)数学含答案解析(原卷版)
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生全国统一考试(新高考1卷)数学副标题学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 四 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合M ={x|√x <4},N ={x|3x ≥1},则M ∩N =( ) A. {x|0≤x <2} B. {x|13≤x <2} C. {x|3≤x <16}D. {x|13≤x <16}2. 若i(1−z)=1,则z +z = A. −2B. −1C. 1D. 23. 在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =n ⃗ ,则CB ⃗⃗⃗⃗⃗ =( ) A. 3m⃗⃗⃗ −2n ⃗ B. −2m⃗⃗⃗ +3n ⃗ C. 3m⃗⃗⃗ +2n ⃗ D. 2m⃗⃗⃗ +3n ⃗ 4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( )A. 1.0×109m 3B. 1.2×109m 3C. 1.4×109m 3D. 1.6×109m 35. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A. 16B. 13C. 12D. 236. 记函数f(x)=sin(ωx +π4)+b(ω>0)的最小正周期为T.若2π3<T <π,且y =f(x)的图像关于点 (3π2,2)中心对称,则f(π2)=( )A. 1B. 32C. 52D. 37. 设a =0.1e 0.1,b =19,c =−ln0.9,则( ) A. a <b <cB. c <b <aC. c <a <bD. a <c <b8. 已知正四棱锥的侧棱长为l ,其各顶点都在同一个球面上,若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( )A. [18,814]B. [274,814]C. [274,643]D. [18,27]二、多选题(本大题共4小题,共20.0分。
2022-2023学年山东省高青县数学八年级第一学期期末学业质量监测试题含解析
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.如图,在ABC ∆中,AB AC =,BE CD =,BD CF =,则EDF ∠的度数为( )A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠2.如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP =2,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于2,则α=( )A .30°B .45°C .60°D .15°3.下列命题中是真命题的是( )A .平面内,过一点有且只有一条直线与已知直线平行B 1227,3.14,π,0.301001…等五个数都是无理数 C .若0m <,则点()5P m -,在第二象限 D .若三角形的边a 、b 、c 满足: ()()2a b c a b c ab +-++=,则该三角形是直角三角形4.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .5.点(2,-3)关于y 轴的对称点是( ) A .()2,3-B .()2,3C .()2,3--D .()2,3-6.A B 、两地相距200千米,甲车和乙车的平均速度之比为5:6,两辆车同时从A 地出发到B 地,乙车比甲车早到30分钟,设甲车平均速度为5x 千米/小时,则根据题意所列方程是( )A .2002003056x x -= B .2002001562x x -= C .2002001652x x -= D .2002003056x x+= 7.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .1902822x y x y +=⎧⎨⨯=⎩B .1902228x y y x +=⎧⎨⨯=⎩C .2190822y x x y +=⎧⎨=⎩D .21902822y x x y+=⎧⎨⨯=⎩8.以下关于直线24y x =-的说法正确的是( ) A .直线24y x =-与x 轴的交点的坐标为(0,-4) B .坐标为(3,3)的点不在直线24y x =-上 C .直线24y x =-不经过第四象限 D .函数24y x =-的值随x 的增大而减小 9.下列因式分解结果正确的是( ) A .24(4)x x x x -+=-+ B .224(4)(4)x y x y x y -=+-C .222(1)x y xy y y x -+=-D .234(1)(4)x x x x --=-+10.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B′处,则∠ADB′等于( )A .25°B .30°C .35°D .40°11.如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A .23B .1C .32D .212.如图,设k =乙图中阴影部分面积甲图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2C .112k << D .102k <<二、填空题(每题4分,共24分)13.分式3221x x -+的值为零,则x 的值是_____________________. 14.要使分式22xx -有意义,则x 的取值范围是_______________.15()22144x x +-+的最小值,小明运用了“数形结合”的思想:如图所示,在平面直角坐标系中,取点()01A ,,点()4B ,-2,设点()P x ,0.那么21AP x =+()244BP x =-+借助上述信息,()22144x x +-+最小值为__________.16.三角形两边长分别是2,4,第三边长为偶数,第三边长为_______ 17.若方程组3(31)2y kx y k x =+⎧⎨=++⎩无解,则y =kx ﹣2图象不经过第_____象限.18.如图,在△ABC 中,∠ACB=90°, AC=6cm , BC=8cm ,动点P 从点C 出发,按C→B→A 的路径,以2cm 每秒的速度运动,设运动时间为t 秒.(1)当t=_____.时,线段AP 是∠CAB 的平分线;(2)当t=_____时,△ACP 是以AC 为腰的等腰三角形.三、解答题(共78分)19.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?20.(8分)如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (﹣1,a ),l 1与y 轴交于点C ,l 2与x 轴交于点A .(1)求a 的值及直线l 1的解析式. (2)求四边形PAOC 的面积.(3)在x 轴上方有一动直线平行于x 轴,分别与l 1,l 2交于点M ,N ,且点M 在点N 的右侧,x 轴上是否存在点Q ,使△MNQ 为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由.21.(8分)材料:数学兴趣一小组的同学对完全平方公式进行研究:因()20a b -≥,将左边展开得到2220a ab b -+≥,移项可得:222a b ab +≥.数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m 、n ,都存在2m n mn +≥,并进一步发现,两个非负数m 、n 的和一定存在着一个最小值. 根据材料,解答下列问题: (1)()()2225x y +≥__________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭___________(0x >); (2)求()5602x x x+>的最小值; (3)已知3x >,当x 为何值时,代数式92200726x x ++-有最小值,并求出这个最小值.22.(10分)如图,在平面直角坐标系xOy 中,点 A ,B ,C 都在小正方形的顶点上,且每个小正方形的边长为1.(1)分别写出A ,B ,C 三点的坐标.(2)在图中作出ABC ∆关于y 轴的对称图形'''A B C ∆. (3)求出ABC ∆的面积.(直接写出结果)23.(10分) [建立模型](1)如图1.等腰Rt ABC 中, 90ACB ∠=︒, CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,求证: BEC CDA ≌; [模型应用](2)如图2.已知直线13:32l y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕点A 逆时针旋转45'°至直线2l ,求直线2l 的函数表达式:(3)如图3,平面直角坐标系内有一点()3,4B -,过点B 作BA x ⊥轴于点A ,BC ⊥y BC y ⊥轴于点C ,点P 是线段AB 上的动点,点D 是直线21y x =-+上的动点且在第四象限内.试探究CPD △能否成为等腰直角三角形?若能,求出点D 的坐标,若不能,请说明理由.24.(10分)如图,在平面直角坐标系中,直线4:3AB y x b=-+交y轴于点()0,4A,交x轴于点B,以AB为边作正方形ABCD,请解决下列问题:(1)求点B和点D的坐标;(2)求直线BC的解析式;(3)在直线BC上是否存在点P,使PCD∆为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.25.(12分)如图,在平面直角坐标系中,已知A(a,1),B(b,1),其中a,b满足|a+2|+(b﹣4)2=1.(1)填空:a=_____,b=_____;(2)如果在第三象限内有一点M(﹣3,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣3时,在y轴上有一点P,使得△ABP的面积与△ABM 的面积相等,请求出点P的坐标.26.尺规作图:如图,已知ABC∆.(1)作A∠的平分线;(2)作边AC 的垂直平分线,垂足为E .(要求:不写作法,保留作图痕迹) .参考答案一、选择题(每题4分,共48分) 1、B【分析】由题中条件可得BDE CFD ∆≅∆,即∠=∠BDE CFD ,EDF ∠可由180︒与BDE ∠、CDF ∠的差表示,进而求解即可.【详解】∵AB AC =, ∴B C ∠=∠, 在BDE ∆和CFD ∆中BD CF B C BE CD =⎧⎪∠=∠⎨⎪=⎩∴BDE CFD ∆≅∆(SAS ), ∴∠=∠BDE CFD ,()180EDF BDE CDF ∠=︒-∠+∠()()180180180CFD CDF C =︒-∠+∠=︒-︒-∠C =∠,∵180A B C ∠+∠+∠=︒. ∴2180A EDF ∠+∠=︒, ∴1902EDF A ∠=︒-∠. 故选B . 【点睛】考查了全等三角形的判定及性质,解题关键是熟记其判定和性质,并灵活运用解题问题. 2、A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=2可求出α的度数.【详解】如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA 于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=2,∴OC=OD=CD=2,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选A.【点睛】本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.3、D【分析】根据平行公理、无理数的概念、点坐标特征、勾股定理的逆定理判断即可. 【详解】解:A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,本选项说法是假命题;B1227,3.14,π,0.301001…中只有π,0.301001…两个数是无理数,本选项说法是假命题;C 、若0m <,则点()5P m -,在第一象限,本选项说法是假命题; D 、()()2a b c a b c ab +-++=,化简得222=a b c +,则该三角形是直角三角形,本选项说法是真命题; 故选D. 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 4、B【分析】结合轴对称图形的概念进行求解即可. 【详解】解:根据轴对称图形的概念可知: A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项错误; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项正确. 故选B . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 5、C【解析】让两点的横坐标互为相反数,纵坐标不变可得所求点的坐标. 【详解】解:∵所求点与点A (2,–3)关于y 轴对称, ∴所求点的横坐标为–2,纵坐标为–3,∴点A (2,–3)关于y 轴的对称点是(–2,–3). 故选C . 【点睛】本题考查两点关于y 轴对称的知识;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标相同. 6、B【分析】设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【详解】解:设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据题意得2002001562x x-=.故选B.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.7、A【分析】此题中的等量关系有:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案.【详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为190 2822x yx y+=⎧⎨⨯=⎩.故选:A.【点睛】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键.8、B【分析】利用一次函数图象上点的坐标特征可得出结论A错误,把(3,3)代入函数解析式可得结论B正确;利用一次函数图象与系数的关系可得出结论C错误;利用一次函数的性质可得出结论D错误.【详解】解:A、当y=0时,2x-4=0,解得:x=2,∴直线y=2x-4与x轴的交点的坐标为(2,0),选项A不符合题意;B、当x=3时,y=2x-4=2,∴坐标为(3,3)的点不在直线y=2x-4上,选项B符合题意;C、∵k=2>0,b=-4<0,∴直线y=2x-4经过第一、三、四象限,选项C不符合题意;D、∵k=2>0,∴函数y=2x-4的值随x的增大而增大,选项D不符合题意.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系以及一次函数的性质,逐一判定四个选项的正误是解题的关键.9、C【分析】根据因式分解的概念,用提公因式法,公式法,十字相乘法,把整式的加减化为整式的乘法运算.【详解】A. 24(4)x x x x -+=--,故此选项错误,B. 224(2)(2)x y x y x y -=+-,故此选项错误,C. 222(1)x y xy y y x -+=-,故此选项正确,D. 234(1)(4)x x x x --=+-,故此选项错误.故选:C .【点睛】考查因式分解的方法,有提公因式法,公式法,十字相乘法,熟记这些方法步骤是解题的关键.10、D【解析】∵在Rt △ACB 中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB 反折而成,∴∠CB′D=∠B=65°.∵∠CB′D 是△AB′D 的外角,∴∠ADB′=∠CB′D ﹣∠A=65°﹣25°=40°.故选D .11、B【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论.【详解】∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.12、C 【解析】由题意可得:22()()()()a a b a a b a k a b a b a b a b--===-+-+, ∴11a b b k a a+==+, 又∵0a b >>, ∴112k<<, ∴12k k <<,即112k <<. 故选C.二、填空题(每题4分,共24分)13、23【分析】根据分式值为0的条件:分子为0,分母不为0可得关于x 的方程,解方程即得答案.【详解】解:根据题意,得:320x -=且210x +≠,解得:23x =. 故答案为:23. 【点睛】本题考查了分式值为0的条件,属于基础题型,熟练掌握基本知识是解题关键. 14、2x ≠【解析】根据分式有意义的条件,则:20.x -≠解得: 2.x ≠故答案为 2.x ≠【点睛】分式有意义的条件:分母不为零.15、5【分析】要求出()22144x x ++-+最小值,即求AP+PB 长度的最小值;根据两点之间线段最短可知AP+PB 的最小值就是线段AB 的长度,求出线段AB 长即可.【详解】连接AB ,如图:由题意可知:点()01A ,,点()4B ,-2,点()P x ,0∴21x +,()244x -+ ()22144x x +-+最小值,即求AP PB +长度的最小值,据两点之间线段最短可知求AP PB +的最小值就是线段AB 的长度.()0A ,1,点()42B -,,22435AB ∴=+=.故答案为:5.【点睛】本题主要考查了最短路线问题、两点间的距离公式以及勾股定理应用,利用了数形结合的思想,利用两点间的距离公式求解是解题关键.16、2【解析】试题解析:设第三边为a ,根据三角形的三边关系知,2-1<a <2+1. 即1<a <6,由周长为偶数,则a 为2.17、一【分析】根据两直线平行没有公共点得到k =3k +1,解得k =﹣12,则一次函数y =kx ﹣2为y =﹣12x ﹣2,然后根据一次函数的性质解决问题. 【详解】解:∵方程组()3312y kx y k x =+⎧⎪⎨=++⎪⎩无解, ∴k =3k +1,解得k =﹣12,∴一次函数y =kx ﹣2为y =﹣12x ﹣2, 一次函数y =﹣12x ﹣2经过第二、三、四象限,不经过第一象限. 故答案为一.【点睛】 本题考查一次函数与二元一次方程组的关系、一次函数图像与系数的关系,解题的关键是求出k 的值.18、32s , 3或275s 或6s 【分析】(1)过P 作PE ⊥AB 于E ,根据角平分线的性质可得PE=CP=2t ,AE=AC=6,进而求得BE 、BP ,再根据勾股定理列方程即可解答;(2)根据题意分AC=CP 、AC=AP 情况进行讨论求解.【详解】(1)在△ABC 中,∵∠ACB=90°, AC=6cm , BC=8cm ,∴AB=10cm ,如图,过P 作PE ⊥AB 于E ,∵线段AP 是∠CAB 的平分线,∠ACB=90°,∴PE=CP=2t,AE=AC=6cm ,∴BP=(8-2t)cm ,BE=10-6=4cm ,在Rt △PEB 中,由勾股定理得:222(82)(2)4t t -=+, 解得:t=32, 故答案为:32s ;(2)∵△ACP 是以AC 为腰的等腰三角形,∴分下列情况讨论,当AC=CP=6时,如图1,t=62=3s ; 当AC=CP=6时,如图2,过C 作CM ⊥AB 于M ,则AM=PM ,CM=6824105⨯=, ∵AP=10+8-2t=18-2t ,∴AM=12AP=9-t , 在Rt △AMC 中,由勾股定理得:222246()(9)5t =+-, 解得:t=275s 或t=635s , ∵0﹤2t ﹤8+10=18,∴0﹤t ﹤9,∴t=275s ; 当AC=AP=6时,如图3,PB=10-6=4,t=842+=6s , 故答案为:3s 或275s 或6s .【点睛】本题考查了角平分线的性质、等腰三角形的判定与性质、勾股定理,难度适中,熟练掌握角平分线的性质,利用分类讨论的思想是解答的关键,三、解答题(共78分)19、规定日期是6天. 【解析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需x+3天,根据题意列方程得1122133x x x x -⎛⎫++= ⎪++⎝⎭解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.20、(1)a =2,y =﹣x +1;(2)四边形PAOC 的面积为52;(3)点Q 的坐标为7,05⎛⎫- ⎪⎝⎭或1,05⎛⎫- ⎪⎝⎭或(﹣67,0).【分析】(1)将点P的坐标代入直线l2解析式,即可得出a的值,然后将点B和点P 的坐标代入直线l1的解析式即可得解;(2)作PE⊥OA于点E,作PF⊥y轴,然后由△PAB和△OBC的面积即可得出四边形PAOC的面积;(3)分类讨论:①当MN=NQ时,②当MN=MQ时,③当MQ=NQ时,分别根据等腰直角三角形的性质,结合坐标即可得解.【详解】(1)∵y=2x+4过点P(﹣1,a),∴a=2,∵直线l1过点B(1,0)和点P(﹣1,2),设线段BP所表示的函数表达式y=kx+b并解得:函数的表达式y=﹣x+1;(2)过点P作PE⊥OA于点E,作PF⊥y轴交y轴于点F,由(1)知,AB=3,PE=2,OB=1,点C在直线l1上,∴点C坐标为(0,1),∴OC=1则1153211222 PAB OBCS S S=-=⨯⨯-⨯⨯=;(3)存在,理由如下:假设存在,如图,设M(1﹣a,a),点N4,2aa-⎛⎫ ⎪⎝⎭,①当MN =NQ 时,412a a a ---= ∴65a = ∴17,05Q ⎛⎫- ⎪⎝⎭, ②当MN =MQ 时, ∴611155a -=-=- ∴21,05Q ⎛⎫- ⎪⎝⎭,③当MQ =NQ 时,4122a a a ---=, ∴67a =, ∴36,07Q ⎛⎫- ⎪⎝⎭. 综上,点Q 的坐标为:7,05⎛⎫-⎪⎝⎭或1,05⎛⎫- ⎪⎝⎭或(﹣67,0). 【点睛】此题主要考查一次函数的几何问题、解析式求解以及动直线的综合应用,熟练掌握,即可解题.21、(1)20xy ,2;(2)15(3)当92x =时,代数式92200726x x ++-的最小值为1.【分析】(1)根据阅读材料即可得出结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变为926201326x x -++-,再利用阅读材料介绍的方法,即可得到结论.【详解】(1)∵0x >,0y >,∴()()222522520x y x y xy +≥⨯⋅=,∵0x >, ∴221122x x x x ⎛⎫+≥⋅= ⎪⎝⎭; (2)当x 0>时,2x ,52x均为正数,∴562x x +≥=所以,562x x+的最小值为 (3)当x 3>时,2x ,926x -,2x-6均为正数, ∴92200726x x ++- 92x 6201326x =-++-20132013≥= 2019= 由()20a b -≥可知,当且仅当a b =时,22a b +取最小值, ∴当92626x x -=-,即92x =时,有最小值. ∵x 3> 故当92x =时,代数式92200726x x ++-的最小值为1. 【点睛】本题考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.22、(1)A (1,4),B (-1,0),C (3,2);(2)作图见解析;(3)2.【分析】(1)根据点在坐标系中的位置即可写出坐标;(2)作出A 、B 、C 关于y 轴对称点A '、B ′、C '即可;(3)理由分割法求ABC ∆的面积即可;【详解】(1)由图象可知A (1,4),B (-1,0),C (3,2);(2)如图△A'B'C'即为所求;(3)S △ABC =12-12×4×2-12×2×2-12×2×4=2. 【点睛】 本题考查轴对称变换,解题时根据是理解题意,熟练掌握基本知识,属于中考常考题型.23、(1)见解析;(2)直线l 2的函数表达式为:y =−5x−10;(3)点D 的坐标为(113,193-)或(4,−7)或(83,133-). 【解析】(1)由垂直的定义得∠ADC =∠CEB =90°,由同角的余角的相等得∠DAC =∠ECB ,然后利用角角边证明△BEC ≌△CDA 即可;(2)过点B 作BC ⊥AB 交AC 于点C ,CD ⊥y 轴交y 轴于点D ,由(1)可得△ABO ≌△BCD(AAS ),求出点C 的坐标为(−3,5),然后利用待定系数法求直线l 2的解析式即可; (3)分情况讨论:①若点P 为直角时,②若点C 为直角时,③若点D 为直角时,分别建立(1)中全等三角形模型,表示出点D 坐标,然后根据点D 在直线y =−2x +1上进行求解.【详解】解:(1)∵AD ⊥ED ,BE ⊥ED ,∴∠ADC =∠CEB =90°,∵∠ACB =90°,∴∠ACD +∠ECB =∠ACD +∠DAC =90°,∴∠DAC =∠ECB ,在△CDA 和△BEC 中,ADC CEB DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△CDA (AAS );(2)过点B 作BC ⊥AB 交AC 于点C ,CD ⊥y 轴交y 轴于点D ,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:332y x=+与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:20 35k bk b-+=⎧⎨-+=⎩解得:510 kb=-⎧⎨=-⎩,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=103 -,∴点D的坐标为(113,193-);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=12k,∴点D的坐标为(72k,72k),又∵点D在直线y=−2x+1上,∴772122k k,解得:k=53 -,∴点D的坐标为(83,133-);综合所述,点D的坐标为(113,193-)或(4,−7)或(83,133-).【点睛】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.24、(1)点()3,0B ,点()4,7D ;(2)3944y x =-;(3)点()13,0P ,点()211,6P . 【分析】(1)根据待定系数法,可得直线AB 的解析式是:443y x =-+,进而求出()3,0B ,过点D 作DE y ⊥轴于点E ,易证()DAE ABO AAS ∆≅∆,从而求出点D 的坐标;(2)过点C 作CM x ⊥轴于点M ,证得:BCM ABO ∆≅∆,进而得()7,3C ,根据待定系数法,即可得到答案;(3)分两种情况:点P 与点B 重合时, 点P 与点B 关于点C 中心对称时,分别求出点P 的坐标,即可.【详解】(1)43y x b =-+经过点()0,4A , 4b ∴=,∴直线AB 的解析式是:443y x =-+, 当0y =时,4043x =-+,解得:3x =, ∴点()3,0B ,过点D 作DE y ⊥轴于点E ,在正方形ABCD 中,AD AB =,90DAB ∠=︒,DAE AB ∠+∠O =90︒,∠ABO +∠OAB =90︒,ABO DAE ∴∠=∠,DE AE ⊥,90AED AOB ∴=︒=∠,在DAE ∆和ABO ∆中,∵90ABO DAE AED ABO AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()DAE ABO AAS ∴∆≅∆∴43DE OA AE OB ====,,,7OE ∴=,∴点()4,7D ;(2)过点C 作CM x ⊥轴于点M ,同上可证得:BCM ABO ∆≅∆,∴CM=OB=3,BM=OA=4,OB=3+4=7,∴()7,3C ,设直线BC 得解析式为:y kx b =+(0,,k k b ≠为常数),代入点()()3,0,7,3B C 得:7330k b k b +=⎧⎨+=⎩,解得:3494k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线BC 的解析式是:3944y x =-; (3)存在,理由如下:点P 与点B 重合时,点()3,0P ;点P 与点B 关于点C 中心对称时,过点P 作PN ⊥x 轴,则点C 是BP 的中点,CM //PN ,∴CM 是BPN △的中位线,∴PN=2CM=6,BN=2BM=8,∴ON=3+8=11,∴点()11,6P综上所述:在直线BC 上存在点P ,使PCD ∆为等腰三角形,坐标为:()13,0P ,()211,6P .【点睛】本题主要考查一次函数与几何图形的综合,添加辅助线,构造全等三角形,是解题的关键,体现了数形结合思想.25、(1).﹣2,4; (2).﹣3m ;(3).(1,﹣3)或(1,3).【分析】(1)由绝对值和平方的非负性可求得a+2=1,b﹣4=1,即可求出a、b的值;(2)作MC⊥x轴交x轴于点C,,分别求出AB、MC的长度,由三角形面积公式表示出△ABM的面积即可;(3)求出当m=﹣3时,△ABM的面积,设P(1,a),将△ABP 的面积表示出来,列方程求解即可.【详解】(1)由题意得:a+2=1,b﹣4=4,∴a=﹣2,b=4;(2)作MC⊥x轴交x轴于点C,∵A(﹣2,1),B(4,1),∴AB=6,∵MC=﹣m,∴S△ABM=12AB·MC=12×6×(﹣m)=﹣3m;(3)m=﹣3时,S△ABM=﹣3×(﹣3)=9,设P(1,a),OP= |a|,∴S△ABP=12AB·OP=12×6×|a|=3 |a|,∴3 |a|=9,解得a=±3,∴P(1,3)或(1,﹣3).【点睛】本题主要考查非负数的性质、点的坐标以及三角形的面积公式,点的坐标转化为点到坐标轴的距离时注意符号问题.26、(1)图见解析;(2)图见解析【分析】(1)根据角平分线的尺规作图方法即可;(2)根据线段垂直平分线的尺规作图方法即可.【详解】(1)AF为∠BAC的平分线;(2)MN为AC的垂直平分线,点E为垂足.【点睛】本题考查了角平分线及线段垂直平分线的尺规作图方法,解题的关键是掌握相应的尺规作图.。
2022年高考全国甲卷数学(理)真题含答案解析
绝密★启用前2022年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若1z =-+,则1zzz =-( )A. 1-+B. 1-C. 13-+ D. 13--【答案】C 【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】1(1113 4.z zz =-=-+-=+=113z zz ==--故选 :C2. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.3. 设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B ⋃=ð( )A {1,3}B. {0,3}C. {2,1}-D. {2,0}-【答案】D.【解析】【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.4. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 20【答案】B 【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=⨯⨯=.故选:B.5. 函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A. B.C. D.【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.6. 当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A. 1- B. 12-C.12D. 1【答案】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.7. 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则( )A. 2AB AD = B. AB 与平面11AB C D 所成的角为30°C. 1AC CB = D. 1B D 与平面11BB C C 所成的角为45︒【答案】D 【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为tan c BAE a ∠==30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,11sin 2CD a DB C B D c ∠===1090DB C <∠< ,所以145DB C ∠= .D 正确.故选:D .8. 沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,»AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在»AB 上,CD AB ⊥.“会圆术”给出»AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A.B.C.D.【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB ∠=︒,所以2AB OA OB ===,则OC =2CD =所以22CD s AB OA=+==故选:B .9. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( )A.B.C.D.【答案】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r ππ===甲乙,所以122r r =,又12222r r l lπππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以2112221313r h V V r h ππ===甲乙故选:C.10. 椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ的斜率之积为14,则C 的离心率为( )A.B.C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】[方法一]:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a-=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a =所以椭圆C的离心率c e a === A.11. 设函数π()sin 3f x x ω⎛⎫=+⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A. 513,36⎫⎡⎪⎢⎣⎭ B. 519,36⎡⎫⎪⎢⎣⎭C. 138,63⎛⎤⎥⎝⎦ D. 1319,66⎛⎤⎥⎝⎦【答案】C 【解析】【分析】由x 的取值范围得到3x πω+的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0>ω,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .12. 已知3111,cos ,4sin 3244a b c ===,则( )A. c b a >> B. b a c>> C. a b c>> D. a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数()()21cos 1,0,2f x x x x ∞=+-∈+,利用导数可得b a >,即可得解.【详解】[方法一]:构造函数因为当π0,,tan 2x x x ⎛⎫∈< ⎪⎝⎭故14tan 14c b =>,故1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,故1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选A [方法二]:不等式放缩因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x =得:2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a>1114sin cos 444ϕ⎛⎫+=+ ⎪⎝⎭,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,且sin ϕϕ==当114sin cos 44+=142πϕ+=,及124πϕ=-此时1sin cos 4ϕ==,1cos sin 4ϕ==故1cos 4=11sin 4sin 44<=<,故b c <所以b a >,所以c b a >>,故选A[方法三]:泰勒展开设0.25x =,则2310.251322a ==-,2410.250.25cos 1424!b =≈-+,241sin 10.250.2544sin1143!5!4c ==≈-+,计算得c b a >>,故选A.[方法四]:构造函数因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A .[方法五]:【最优解】不等式放缩因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x =得2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >,所以c b a >>.故选:A .【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;方法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭放缩,即可得出大小关系,属于最优解.二、填空题:本题共4小题,每小题5分,共20分.13. 设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= _________.【答案】11【解析】【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅ ,最后根据数量积的运算律计算可得.【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= ,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= .故答案为:11.14. 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.【解析】【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m -=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =..15. 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635.16. 已知ABC V 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________.1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB后,结合基本不等式即可得解.【详解】[方法一]:余弦定理设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++44≥=-,当且仅当311mm +=+即1m =-时,等号成立,所以当AC AB取最小值时,1m =.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系.则C (2t,0),A (1),B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD -+-+∴===-≥-++++++++==-当且仅当即时等号成立。
2022年山东省威海市中考数学试卷(含解析)
2022年山东省威海市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.−5的相反数是( )A. 5B. 15C. −15D. −52.如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是( )A. B.C. D.3.一个不透明的袋子中装有2个红球、3个白球和4个黄球,每个球除颜色外都相同.从中任意摸出1个球,摸到红球的概率是( )A. 29B. 13C. 49D. 124.下列计算正确的是( )A. a3⋅a3=a9B. (a3)3=a6C. a6÷a3=a2D. a3+a3=2a35.图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A. A点B. B点C. C点D. D点6.如图,在方格纸中,点P,Q,M的坐标分别记为(0,2),(3,0),(1,4).若MN//PQ,则点N的坐标可能是( )A. (2,3)B. (3,3)C. (4,2)D. (5,1)7.试卷上一个正确的式子(1a+b +1a−b)÷★=2a+b被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A. aa−b B. a−baC. aa+bD. 4aa2−b28.如图,二次函数y=ax2+bx(a≠0)的图象过点(2,0),下列结论错误的是( )A. b>0B. a+b>0C. x=2是关于x的方程ax2+bx=0(a≠0)的一个根D. 点(x1,y1),(x2,y2)在二次函数的图象上,当x1>x2>2时,y2<y1<09.过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是( )A.B.C.D.10. 由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =⋯=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A. (43)3B. (43)7C. (43)6D. (34)6二、填空题(本大题共6小题,共18分) 11. 因式分解:ax 2−4a = ______ .12. 若关于x 的一元二次方程x 2−4x +m −1=0有两个不相等的实数根,则m 的取值范围是______.13. 某小组6名学生的平均身高为a cm ,规定超过a cm 的部分记为正数,不足a cm 的部分记为负数,他们的身高与平均身高的差值情况记录如下表:学生序号 1 2 3 4 5 6 身高差值(cm)+2x+3−1−4−1据此判断,2号学生的身高为______cm .14.按照如图所示的程序计算,若输出y的值是2,则输入x的值是______.15.正方形ABCD在平面直角坐标系中的位置如图所示,点A的坐标为(2,0),点B的坐标(k≠0)的图象经过点C,则k的值为______.为(0,4).若反比例函数y=kx16.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则m n=______.三、解答题(本大题共8小题,共72分) 17. 解不等式组,并把解集在数轴上表示出来. 18. {4x −2≤3(x +1)1−x−12<x 4.19. 小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A ,B 两个观测点,然后选定对岸河边的一棵树记为点M.测得AB =50m ,∠MAB =22°,∠MBA =67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m).20. 参考数据:sin22°≈38,cos22°≈1516,tan22°≈25,sin67°≈1213,cos67°≈513,tan67°≈125.21. 某学校开展“家国情⋅诵经典”读书活动.为了解学生的参与程度,从全校学生中随机抽取200人进行问卷调查,获取了他们每人平均每天阅读时间的数据(m/分钟). 22. 将收集的数据分为A ,B ,C ,D ,E 五个等级,绘制成如下统计图表(尚不完整): 23. 平均每天阅读时间统计表等级人数(频数)A(10≤m <20) 5 B(20≤m <30) 10 C(30≤m <40) x D(40≤m <50) 80 E(50≤m ≤60)y请根据图表中的信息,解答下列问题: (1)求x 的值;(2)这组数据的中位数所在的等级是______;(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“阅读达人”予以表扬.若全校学生以1800人计算,估计受表扬的学生人数.24.如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.25.(1)若AB=AC,求证:∠ADB=∠ADE;26.(2)若BC=3,⊙O的半径为2,求sin∠BAC.27.某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.28.(1)将两张长为8,宽为4的矩形纸片如图1叠放.29.①判断四边形AGCH的形状,并说明理由;30.②求四边形AGCH的面积.31.(2)如图2,在矩形ABCD和矩形AFCE中,AB=2√5,BC=7,CF=√5,求四边形AGCH的面积.32.探索发现33.(1)在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(−3,0),B(1,0),与y轴交于点C,顶点为点D,连接AD.34.①如图1,直线DC交直线x=1于点E,连接OE.求证:AD//OE;35.②如图2,点P(2,−5)为抛物线y=ax2+bx+3(a≠0)上一点,过点P作PG⊥x轴,垂足为点G.直线DP交直线x=1于点H,连接HG.求证:AD//HG;36.归纳概括37.(2)通过上述两种特殊情况的证明,你是否有所发现?请仿照(1)写出你的猜想,并在图3上画出草图.38.在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(−3,0),B(1,0),顶点为点D.点M为该抛物线上一动点(不与点A,B,D重合),______.39.回顾:用数学的思维思考40.(1)如图1,在△ABC中,AB=AC.41.①BD,CE是△ABC的角平分线.求证:BD=CE.42.②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.43.(从①②两题中选择一题加以证明)44.猜想:用数学的眼光观察45.经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:46.(2)如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.47.探究:用数学的语言表达48.(3)如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.答案和解析1.【答案】A【解析】解:−5的相反数是5.故选:A.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.【答案】B【解析】解:从上面看,底层左边是一个小正方形,上层是三个小正方形,故选:B.根据三视图的定义解答即可.本题主要考查了三视图,熟练掌握从上面看到的图形是俯视图是解答本题的关键.3.【答案】A【解析】解:∵一个不透明的袋子中装有2个红球、3个白球和4个黄球,∴从中任意摸出1个球,一共有9种可能性,其中摸到红球的可能性有2种,∴从中任意摸出1个球,摸到红球的概率是2,9故选:A.根据题意可知,从中任意摸出1个球,一共有9种可能性,其中摸到红球的可能性有2种,从而可以计算出相应的概率.本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.4.【答案】D【解析】解:∵a3⋅a3=a6≠a9,∴选项A不符合题意;∵(a3)3=a9≠a6,∴选项B不符合题意;∵a6÷a3=a3≠a2,∴选项C不符合题意;∵a3+a3=2a3,∴选项D符合题意;故选:D.利用同底数幂的乘法法则,幂的乘方的法则,同底数幂的除法法则,合并同类项法则对每个选项进行分析,即可得出答案.本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项,掌握同底数幂的乘法法则,幂的乘方的法则,同底数幂的除法法则,合并同类项法则是解决问题的关键.5.【答案】B【解析】解:根据直线的性质补全图2并作出法线OK,如下图所示:根据图形可以看出OB是反射光线,故选:B.根据直线的性质画出被遮住的部分,再根据入射角等于反射角作出判断即可.本题主要考查直线的性质,垂线的画法,根据直线的性质补全光线是解题的关键.6.【答案】C【解析】解:如下图所示,∵P(0,2),Q(3,0)M(,1,4),MN//PQ,∴N(4,2).故选:C.由P(0,2)平移得到M(1,4),横坐标加1,纵坐标加2;因此Q(3,0)要平移得到N点,也是横坐标加1,纵坐标加2,得到点的坐标为(4,2).本题主要考查用坐标来表示平移.7.【答案】A【解析】解:(1a+b +1a−b)÷★=2a+b,∴被墨水遮住部分的代数式是(1a+b +1a−b)÷2a+b=a−b+a+b(a+b)(a−b)⋅a+b2=2aa−b ⋅1 2=aa−b;故选:A.根据已知分式得出被墨水遮住部分的代数式是(1a+b +1a−b)÷2a+b,再根据分式的运算法则进行计算即可;本题考查了分式的化简,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.8.【答案】D【解析】解:根据图象知,当x=1时,y=a+b>0,故B选项结论正确,不符合题意,∵a<0,∴b>0,故A选项结论正确,不符合题意,根据图象可知x=2是关于x的方程ax2+bx=0(a≠0)的一个根,故C选项结论正确,不符合题意,若点(x1,y1),(x2,y2)在二次函数的图象上,当x1>x2>2时,y1<y2<0,故D选项结论不正确,符合题意,故选:D.根据二次函数的图象和性质作出判断即可.本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.9.【答案】C【解析】解:选项A,连接PA,PB,QA,QB,∵PA=PB,∴点P在线段AB的垂直平分线上,∵QA=QB,∴点Q在线段AB的垂直平分线上,∴PQ⊥l,故此选项不符合题意;选项B,连接PA,PB,QA,QB,∵PA=QA,∴点A在线段PQ的垂直平分线上,∵PB=QB,∴点B在线段PQ的垂直平分线上,∴PQ⊥l,故此选项不符合题意;选项C,无法证明PQ⊥l,故此选项符合题意;选项D,连接PA,PB,QA,QB,∵PA=QA,∴点A 在线段PQ 的垂直平分线上,∵PB =QB ,∴点B 在线段PQ 的垂直平分线上,∴PQ ⊥l ,故此选项不符合题意;故选:C .根据作图痕迹结合线段垂直平分线的判定和性质进行分析判断.本题考查尺规作图,准确识图,掌握线段垂直平分线的判定和性质是解题关键.10.【答案】C【解析】解:在Rt △AOB 中,∠AOB =30°,∵cos∠AOB =OA OB , ∴OB =√3,同理,OC =√3,∴OC =(√3)2OA , ……OG =(√3)6OA , 由位似图形的概念可知,△GOH 与△AOB 位似,且位似比为(√3)6,∵S △AOB =1,∴S △GOH =[(√3)6]2=(43)6, 故选:C .根据余弦的定义得到OB =√3,进而得到OG =(√3)6OA ,根据位似图形的概念得到△GOH 与△AOB 位似,根据相似三角形的面积比等于相似比的平方计算即可. 本题考查的是位似图形的概念、相似三角形的性质、余弦的定义,正确判断出与△AOB 位似的三角形是△GOH 是解题的关键.11.【答案】a(x +2)(x −2)【解析】解:ax 2−4a=a(x 2−4)=a(x −2)(x +2).故答案为:a(x−2)(x+2).先提公因式,再运用平方差公式进行因式分解即可得到答案.本题考查的是因式分解的知识,掌握因式分解的方法:提公因式、乘法公式、十字相乘法和分组分解法是解题的关键.12.【答案】m<5【解析】解:由题意可得,Δ=(−4)2−4×1×(m−1)=20−4m>0,解得m<5.故答案为:m<5.根据一元二次方程有两个不相等的实数根,可得Δ>0,代入求解即可.本题考查一元二次方程根的判别式,牢记:根的判别式为Δ=b2−4ac,若一元二次方程ax2+bx+c=0有两个不相等的实数根,则Δ>0;若有两个相等的实数根,则Δ=0,;若无实数根,则Δ<0.13.【答案】(a+1)【解析】解:∵6名学生的平均身高为a cm,∴2+x+3−1−4−1=0,解得x=1,故2号学生的身高为(a+1)cm.故答案为:(a+1).根据平均数的定义解答即可.本题考查了算术平均数,掌握平均数的计算公式是解答本题的关键.14.【答案】1+1=2,【解析】解:当x>0时,1x解得x=1.当x≤0时,2x−1=2,解得x=1.5,∵1.5>0,舍去.所以x=1.故答案为:x=1.不知x的正负,因此需要分类讨论,分别求解.本题中的字母表示的数没有明确告知正负数时,需要分类讨论,再代入解方程,注意:解必须在条件下才成立.15.【答案】24【解析】解:作CE⊥OB于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠OBA+∠CBE=90°,∵∠OBA+∠OAB=90°,∴∠OAB=∠CBE,∵∠AOB=∠CEB,∴△AOB≌△BEC(AAS),∴OA=BE,OB=CE,∵点A的坐标为(2,0),点B的坐标为(0,4).∴OA=2,OB=4,∴BE=2,CE=4,∴C(4,6),(k≠0)的图象经过点C,∵反比例函数y=kx∴k=4×6=24,故答案为:24.作CE⊥OB于E,利用AAS证明△AOB≌△BEC,得OA=BE,OB=CE,可得点C的坐标,从而得出k的值.本题主要考查了正方形的性质,全等三角形的判定与性质,反比例函数图象上点的坐标的特征等知识,作辅助线构造全等三角形是解题的关键.16.【答案】1【解析】解:设右下角方格内的数为x,根据题意可知:x−4+2=x−2+n,解得n=0,∴m n=m0=1(m>0).故答案为:1.直接利用每行、每列、每条对角线上的三个数之和相等得出n的值,再根据如何一个不等于0的数的0次幂都等于1,即可得出答案.此题主要考查了有理数的乘方,推理与论证,有理数的加法,正确得出n的值是解题关键.17.【答案】解:{4x−2≤3(x+1)①1−x−12<x4②,解不等式①得:x≤5,解不等式②得:x>2,在同一条数轴上表示不等式①②的解集,如图所示,∴原不等式组的解集为2<x≤5.【解析】根据解一元一次不等式组的一般步骤,进行计算即可.本题考查了解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解决问题的关键.18.【答案】解:过点M作MN⊥AB,垂足为N,设MN=x米,在Rt△ANM中,∠MAB=22°,∴AN=MNtan22∘≈x25=52x(米),在Rt△MNB中,∠MBN=67°,∴BN=MNtan67∘≈x125=512x(米),∵AB=50米,∴AN+BN=50,∴52x+512x=50,∴x≈17.1,∴这段河流的宽度约为17.1米.【解析】过点M作MN⊥AB,垂足为N,设MN=x米,分别在Rt△ANM和Rt△MNB中,利用锐角三角函数的定义求出AN,BN的长,然后根据AB=50米,列出关于x的方程,进行计算即可解答.本题考查了解直角三角形的应用−仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.19.【答案】D【解析】解:(1)由题意得x=200×20%=40;(2)把200个学生平均每天阅读时间从小到大排列,排在中间的两个数均落在D等级,故答案为:D;(3)被抽查的200人中,不低于50分钟的学生有200−5−10−40−80=65(人),1800×65200=585(人),答:估计受表扬的学生有585人.(1)用200乘C等级所占百分比即可得出x的值;(2)根据中位数的定义解答即可;(3)利用样本估计总体即可.本题考查频数分布表,扇形统计图,解题的关键是掌握“频率=频数÷总数”.20.【答案】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠ADE=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠ADB,∴∠ADB=∠ADE;(2)解:连接CO并延长交⊙O于点F,连接BF,则∠FBC=90°,在Rt△BCF中,CF=4,BC=3,∴sinF=BCCF =34,∵∠F=∠BAC,∴sin∠BAC=34.【解析】(1)根据圆内接四边形的性质以及等腰三角形的性质即可求证;(2)连接CO并延长交⊙O于点F,连接BF,根据圆周角定理得出∠FBC=90°,∠F=∠BAC,解直角三角形即可得解.此题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质、圆周角定理是解题的关键.21.【答案】解:设矩形鸡场与墙垂直的一边长为x m,则与墙平行的一边长为(47−2x+ 1)m,由题意可得:y=x(47−2x+1),即y=−2(x−12)2+288,∵−2<0,∴当x=12时,y有最大值为288,当x=12时,47−x−(x−1)=24<25(符合题意),∴鸡场的最大面积为288m2.【解析】设与墙垂直的一边长为x m,然后根据矩形面积列函数关系式,从而利用二次函数的性质求其最值.本题考查二次函数的应用,理解题意,掌握二次函数的性质是解题关键.22.【答案】解:(1)①四边形AGCH是菱形,理由如下:∵四边形ABCD和四边形AFCE是矩形,∴∠B=∠F=90°,AD//BC,AF//CE,∴四边形AGCH是平行四边形,∵S平行四边形AGCH=GC⋅AB=AG⋅CF,AB=CF,∴GC=AG,∴平行四边形AGCH是菱形;②由①可知,GC=AG,设GC=AG=x,则BG=8−x,在Rt△ABG中,AB=4,由勾股定理得:42+(8−x)2=x2,解得:x=5,∴GC=5,∴S菱形AGCH=GC⋅AB=5×4=20;(2)设GC=a,则BG=7−a,∵四边形ABCD和四边形AFCE是矩形,∴∠B=∠F=90°,AD//BC,AF//CE,∴四边形AGCH是平行四边形,∵∠AGB=∠CGF,∠B=∠F,∴△ABG∽△CFG,∴ABCF =AGCG,即√5√5=AGa,解得:AG=2a,在Rt△ABG中,由勾股定理得:(2√5)2+(7−a)2=(2a)2,解得:a=3或a=−233(不合题意舍去),∴CG=3,∴S平行四边形AGCH=CG⋅AB=3×2√5=6√5.设GC=a,则BG=7−a,∵四边形ABCD和四边形AFCE是矩形,∴∠B=∠F=90°,AD//BC,AF//CE,∴四边形AGCH是平行四边形,∵∠AGB=∠CGF,∠B=∠F,∴△ABG∽△CFG,∴ABCF =AGCG,即√5√5=AGa,解得:AG=2a,在Rt△ABG中,由勾股定理得:(2√5)2+(7−a)2=(2a)2,解得:a=3或a=−233(不合题意舍去),∴CG=3,∴S平行四边形AGCH=CG⋅AB=3×2√5=6√5.【解析】(1)①由矩形的性质得∠B=∠F=90°,AD//BC,AF//CE,则四边形AGCH是平行四边形,再由平行四边形的性质得GC=AG,即可得出结论;②设GC=AG=x,则BG=8−x,在Rt△ABG中,由勾股定理得出方程,解得x=5,即可解决问题;(2)设GC=a,则BG=7−a,证四边形AGCH是平行四边形,再证△ABG∽△CFG,得AG=2a,然后由勾股定理得出方程,得CG=3,即可解决问题.本题考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握矩形的性质和平行四边形的判定与性质是解题的关键.23.【答案】作MN⊥x轴于N,直线DM交直线x=1于Q,则QN//AD【解析】解:(1)①由题意得,{9a−3b+3=0a+b+3=0,∴{a=−1b=−2,∴y=−x2−2x+3=−(x+1)2+4,∴D(−1,4),C(0,3),设直线CD的解析式为:y=mx+n,∴{n=3−m+n=4,∴{n=3m=−1,∴y=−x+3,∴当x =1时,y =−1+3=2,∴E(1,2),∴直线OE 的解析式为:y =2x ,设直线AD 的解析式为y =cx +d ,∴{−3c +d =0−c +d =4, ∴{c =2d =6, ∴y =2x +6,∴OE//AD ;②设直线PD 的解析式为:y =ex +f ,∴{−e +f =42e +f =−5, ∴{e =−3f =1, ∴y =−3x +1,∴当x =1时,y =−3×1+1=−2,∴H(1,−2),设直线GH 的解析式为:y =gx +ℎ,∴{2g +ℎ=0g +ℎ=−2, ∴{g =2ℎ=−4, ∴y =2x −4,∴AD//HG ;(2)作MN ⊥x 轴于N ,直线DM 交直线x =1于Q ,则QN//AD ,理由如下:设M(m,−m 2−2m +3),设直线DM 的解析式为y =px +q ,∴{−p +q =4mp +q =−m 2−2m +3, ∴{p =−m −1q =−m +3, ∴y =−(m +1)x +(−m +3),∴当x =1时,y =−m −1−m +3=−2m +2,∴Q(1,−2m +2),设直线NQ 的解析式为:y =ix +j ,∴{i +j =−2m +2mi +j =0,∴{i =2j =−2m, ∴y =2x −2m ,∴QN//AD .(1)①将点A 和B 点的坐标代入抛物线的解析式,从而求得a ,b 的值,从而得出抛物线的解析式,从而得出点D 和点C 坐标,进而求得E 点坐标和AD 的解析式,再求出OE 的解析式,从而得出结论;②方法①求得GH 的解析式,进而得出结论;(2)作MN ⊥x 轴于N ,直线DM 交直线x =1于Q ,则QN//AD ,方法同①相同可推出结论.本题考查了求二次函数的解析式,求一次函数解析式,一次函数图象性质等知识,解决问题的关键是需要有较强的计算能力.24.【答案】(1)证明:①∵AB =AC ,∴∠ABC =∠ACB ,∵BD 是△ABC 的角平分线,∴∠DBC =12∠ABC ,同理∠ECB =12∠ACB ,∴∠DBC =∠ECB ,在△BCD 和△CBE 中,{∠ACB =∠ABC BC =CB ∠DBC =∠ECB,∴△BCD≌△CBE(ASA),∴BD =CE ;②∵AB =AC ,∴∠ABC =∠ACB ,∵D 是AC 的中点,∴CD =12AC ,同理BE =12AB ,∴BE =CD ,在△BCD和△CBE中,{CD=BE∠ACB=∠ABC BC=CB,∴△BCD≌△CBE(SAS),∴BD=CE;(2)解:添加条件:BE=CD(答案不唯一).理由:∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠EBC=∠ACB+∠BCD=180°,∴∠CBE=∠BCD,在△BCD和△CBE中,{CD=BE∠BCD=∠CBE CB=BC,∴△BCD≌△CBE(SAS),∴BD=CE;(3)能.理由:如图3中,值AC上取一点D,使得BD=CE若BF=CE,则BF=BD,反之也成立.∵BD<AB,∴BF<AB,显然BD越大,BF就越大,CF也越大,假设BF=AB,∵∠A=36°,∴∠BFA=∠A=36°,∴∠ABF=180°−2×36°=108°,∵AB=AC,∴∠ABC=∠ACB=72°,∴∠BCF=180°−72°=108°,∴∠BCF=∠ABF,∵∠BCF=∠ABF,∠BFC=∠AFB,∴△BFC∽△AFB,∴BFAF =CFBF,设CF=x,∵AB=AC=2,∴BF=2,AF=2+x,∴22+x =x2,解得x=√5−1或−√5−1,经检验x=√5−1是分式方程的解,且符合题意,∴CF=√5−1,∵E与A不重合,∴0<CF<√5−1.【解析】(1)①证明△BCD≌△CBE(ASA),推出BD=CE即可;②证明△BCD≌△CBE(SAS),推出BD=CE即可;(2)添加条件:BE=CD(答案不唯一).利用全等三角形的性质证明即可;(3)能.设CF=x,假设BF=AB,利用相似三角形的性质求出x的值,即可判断.本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.。
山东省潍坊(安丘市、诸城市、高密市)普通高中2021-2022学年高二上学期期中联考数学试题及答案
绝密★启用前山东省潍坊(安丘市、诸城市、高密市)普通高中 2021-2022学年高二年级上学期期中联考质量检测数学试题2021年11月本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分。
考试用时120分钟。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将姓名、座号、准考证号、班级和科类填写在答题卡和答题纸规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
第I 卷(共60分)一、单项选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线x+y+1=0的倾斜角为 A.4π B.34π C.3π D.23π 2.已知直线l 不在平面α内,则“l //α”是“直线l 上存在两个点到平面α的距离相等”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.绕它与x 轴的交点A 按顺时针方向旋转30°所得的直线方程是C.x-3y+3=0D.x-3y+33=04.若直线ax+2y+2=0与直线3x-y-2=0垂直,则a= A.-23 B.-6 C.32 D.235.半径为4的半圆卷成一个圆锥,则该圆锥的体积为 A.233π B.433π C.833π D.1633π 6.圆C 上的点(1,2)关于直线x+y=0的对称点仍在圆C 上,且该圆的半径为5,则圆C 的方程为A.x 2+y 2=5B.(x+1)2+(y-1)2=5C.x 2+y 2=5或(x-1)2+(y+1)2=5D.x 2+y 2=5或(x+1)2+(y-1)2=57.攒尖是古代中国建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖。
2022年山东省济南市(初三学业水平考试)中考数学真题试卷含详解
济南市2022年九年级学业水平考试数学试卷选择题部分共48分一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣7的相反数是()A.﹣7B.7C.17D.﹣172.如图是某几何体的三视图,该几何体是()A .圆柱B.球C.圆锥D.正四棱柱3.神舟十三号飞船在近地点高度200000m ,远地点高度356000m 的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为()A.53.5610⨯ B.60.35610⨯ C.63.5610⨯ D.435.610⨯4.如图,//AB CD ,点E 在AB 上,EC 平分∠AED ,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°5.下列绿色能源图标中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是()A.0ab >B.0a b +> C.a b< D.11+<+a b 7.某班级计划举办手抄报展览,确定了“5G 时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是()A.19B.16C.13D.238.若m -n =2,则代数式222m n mm m n-⋅+的值是()A.-2B.2C.-4D.49.某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m .如图所示,设矩形一边长为xm ,另一边长为ym ,当x 在一定范围内变化时,y 随x 的变化而变化,则y 与x 满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系10.如图,矩形ABCD 中,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN 分别交AD ,BC 于点E ,F ,连接AF ,若BF =3,AE =5,以下结论错误..的是()A .AF =CFB.∠FAC =∠EACC.AB =4D.AC =2AB11.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为()(精确到1m .参考数据:sin 220.37︒≈,tan 220.40︒≈,sin 580.85︒≈,tan 58 1.60︒≈)A .28mB.34mC.37mD.46m12.抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是()A.1m <-或0m > B.1122m -<< C.0m ≤< D.11m -<<非选择题部分共102分二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案.)13.因式分解:244a a ++=______.14.如果小球在如图所示的地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域的概率是______.15.小的整数_____.16.代数式32x +与代数式21x -的值相等,则x =______.17.利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,BD 是矩形ABCD 的对角线,将△BCD 分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a =4,b =2,则矩形ABCD 的面积是______.18.规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它绕原点顺时针旋转90°,由数字0和1组成的序列表示一个点按照上面描述依次连续变换.例如:如图,点()0,0O 按序列“011…”作变换,表示点O 先向右平移一个单位得到()11,0O ,再将()11,0O 绕原点顺时针旋转90°得到()20,1O -,再将()20,1O -绕原点顺时针旋转90°得到()31,0O -…依次类推.点()0,1经过“011011011”变换后得到点的坐标为______.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.计算:1134sin 303-⎛⎫--︒+ ⎪⎝⎭.20.解不等式组:()1,232532.x x x x -⎧<⎪⎨⎪-≤-⎩①②,并写出它的所有整数解.21.已知:如图,在菱形ABCD 中,E ,F 是对角线AC 上两点,连接DE ,DF ,∠ADF =∠CDE .求证:AE =CF.22.某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a :七年级抽取成绩的频数分布直方图如图.(数据分成5组,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤)b :七年级抽取成绩在7080x ≤<这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79.c :七、八年级抽取成绩的平均数、中位数如下:年级平均数中位数七年级76.5m 八年级78.279请结合以上信息完成下列问题:(1)七年级抽取成绩在6090x ≤<的人数是_______,并补全频数分布直方图;(2)表中m 的值为______;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则______(填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.23.已知:如图,AB 为⊙O 的直径,CD 与⊙O 相切于点C ,交AB 延长线于点D ,连接AC ,BC ,∠D =30°,CE 平分∠ACB 交⊙O 于点E ,过点B 作BF ⊥CE ,垂足为F .(1)求证:CA =CD ;(2)若AB =12,求线段BF 的长.24.为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.(1)求甲、乙两种树苗每棵的价格分别是多少元?(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍,则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.25.如图,一次函数112y x =+的图象与反比例函数()0ky x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接C B .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.26.如图1,△ABC 是等边三角形,点D 在△ABC 的内部,连接AD ,将线段AD 绕点A 按逆时针方向旋转60°,得到线段AE ,连接BD ,DE ,CE .(1)判断线段BD 与CE 的数量关系并给出证明;(2)延长ED 交直线BC 于点F .①如图2,当点F 与点B 重合时,直接用等式表示线段AE ,BE 和CE 的数量关系为_______;②如图3,当点F 为线段BC 中点,且ED =EC 时,猜想∠BAD 的度数,并说明理由.27.抛物线21164y ax x =+-与x 轴交于(),0A t ,()8,0B 两点,与y 轴交于点C ,直线y =kx -6经过点B .点P 在抛物线上,设点P 的横坐标为m .(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求12CQ PQ的最大值.济南市2022年九年级学业水平考试数学试卷选择题部分共48分一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣7的相反数是()A.﹣7 B.7C.17D.﹣17【答案】B【分析】据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【详解】解:根据概念,﹣7的相反数是7.故选:B .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图是某几何体的三视图,该几何体是()A.圆柱B.球C.圆锥D.正四棱柱【答案】A【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是长方形,那么此几何体为柱体,由俯视图为圆,可得此几何体是圆柱.故选:A .【点睛】此题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体.3.神舟十三号飞船在近地点高度200000m ,远地点高度356000m 的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为()A.53.5610⨯ B.60.35610⨯ C.63.5610⨯ D.435.610⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【详解】解:356000=3.56×105.故选:A.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.AB CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()4.如图,//A.45°B.50°C.57.5°D.65°【答案】B【分析】根据平行线及角平分线的性质即可求解.AB CD,【详解】解:∵//∴∠AEC=∠1(两直线平行,内错角相等),∵EC平分∠AED,∴∠A EC=∠CED=∠1,∵∠1=65°,∴∠CED=∠1=65°,∴∠2=180°-∠CED-∠1=180°-65°-65°=50°.故选:B.【点睛】本题考查了平行线的性质,解题关键根据直线平行和角平分线的性质得出角度之间的关系即可得出答案.5.下列绿色能源图标中既是轴对称图形又是中心对称图形的是()A. B. C. D.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A 、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B 、既是轴对称图形,又是中心对称图形,故本选项符合题意;C 、不是轴对称图形,是中心对称图形,故本选项不合题意;D 、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B .【点睛】本题考查了中心对称图形以及轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.6.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是()A.0ab >B.0a b +> C.a b< D.11+<+a b 【答案】D【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【详解】解:根据图形可以得到:320a -<<-<,01b <<,∴0ab <,故A 项错误,0a b +<,故B 项错误,a b >,故C 项错误,11+<+a b ,故D 项错误.故选:D .【点睛】本题考查了数轴与实数的关系,理解并正确运用是解题的关键.7.某班级计划举办手抄报展览,确定了“5G 时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是()A.19B.16C.13D.23【答案】C【分析】画树状图,共有9种等可能的结果,其中小明和小刚恰好选择同一个主题结果有3种,再由概率公式求解即可.【详解】解:把“5G时代”、“北斗卫星”、“高铁速度”三个主题分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中小明和小刚恰好选择同一个主题的结果有3种,∴小明和小刚恰好选择同一个主题的概率为31 93=.故选:C.【点睛】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.若m-n=2,则代数式222m n mm m n-⋅+的值是()A.-2B.2C.-4D.4【答案】D【分析】先因式分解,再约分得到原式=2(m-n),然后利用整体代入的方法计算代数式的值.【详解】解:原式m n m nm+-=()()•2mm n+=2(m-n),当m-n=2时,原式=2×2=4.故选:D.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.9.某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y 与x 满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系【答案】B 【分析】根据矩形周长找出关于x 和y 的等量关系即可解答.【详解】解:根据题意得:240x y +=,∴240y x =-+,∴y 与x 满足的函数关系是一次函数;故选:B .【点睛】本题通过矩形的周长考查一次函数的定义,解题的关键是理清实际问题中的等量关系准确地列式.10.如图,矩形ABCD 中,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN 分别交AD ,BC 于点E ,F ,连接AF ,若BF =3,AE =5,以下结论错误..的是()A.AF =CFB.∠FAC =∠EACC.AB =4D.AC =2AB【答案】D【分析】根据作图过程可得,MN 是AC 的垂直平分线,再由矩形的性质可以证明AFO CEO △≌△,可得5,AF CE AE ===再根据勾股定理可得AB 的长,即可判定得出结论.【详解】解:A ,根据作图过程可得,MN 是AC 的垂直平分线,,AF CF ∴=故此选项不符合题意.B ,如图,由矩形的性质可以证明AFO CEO △≌△,,AE CF ∴=,FA FC = ,AE AF ∴=∵MN 是AC 的垂直平分线,,FAC EAC ∴∠∠=故此选项不符合题意.C ,5AE =,5AF AE ∴==,在Rt ABF 中3,BF =4,AB ∴==故此选项不符合题意.D ,358,BC BF FC =+=+=AC ∴==4,AB = 2.AC AB ∴≠故此选项符合题意.故选:D .【点睛】本题考查了作图-基本作图,线段垂直平分线的性质、矩形的性质、勾股定理,解决本题的关键是掌握基本作图方法.11.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为()(精确到1m .参考数据:sin 220.37︒≈,tan 220.40︒≈,sin 580.85︒≈,tan 58 1.60︒≈)A.28mB.34mC.37mD.46m【答案】C 【分析】在Rt △ABD 中,解直角三角形求出58DB AB =,在Rt △ABC 中,解直角三角形可求出AB .【详解】解:在Rt △ABD 中,tan ∠ADB =AB DB ,∴5tan 58 1.68AB AB DB AB =≈=︒,在Rt △ABC 中,tan ∠ACB =AB CB ,∴tan 220.45708AB AB ︒=≈+,解得:112373AB =≈m ,故选:C .【点睛】本题考查了解直角三角形的应用,熟练掌握正切函数的定义是解题的关键.12.抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是()A.1m <-或0m > B.1122m -<< C.0m ≤< D.11m -<<【答案】D【分析】求出抛物线的对称轴、C 点坐标以及当x =m -1和x =m +1时的函数值,再根据m -1<m +1,判断出M 点在N 点左侧,此时分类讨论:第一种情况,当N 点在y 轴左侧时,第二种情况,当M 点在y 轴的右侧时,第三种情况,当y 轴在M 、N 点之间时,来讨论,结合图像即可求解.【详解】抛物线解析式2222y x mx m =-+-+变形为:22()y x m =--,即抛物线对称轴为x m =,当x =m -1时,有22(1)1y m m =---=,当x =m +1时,有22(1)1y m m =-+-=,设(m -1,1)为A 点,(m +1,1)为B 点,即点A (m -1,1)与B (m +1,1)关于抛物线对称轴对称,当x =0时,有222(0)2y m m =--=-,∴C 点坐标为2(0,2)m -,当x =m 时,有22()2y m m =--=,∴抛物线顶点坐标为(,2)m ,∵直线l ⊥y 轴,∴直线l 为22y m =-,∵m -1<m +1,∴M 点在N 点左侧,此时分情况讨论:第一种情况,当N 点在y 轴左侧时,如图,由图可知此时M 、N 点分别对应A 、B 点,即有121y y ==,∴此时不符合题意;第二种情况,当M 点在y 轴的右侧时,如图,由图可知此时M 、N 点满足12y y =,∴此时不符合题意;第三种情况,当y 轴在M 、N 点之间时,如图,或者,由图可知此时M 、N 点满足12y y <,∴此时符合题意;此时由图可知:101m m -+<<,解得11m -<<,综上所述:m 的取值范围为:11m -<<,故选:D .【点睛】本题考查了二次函数的图像与性质、翻折的性质,注重数形结合是解答本题的关键.非选择题部分共102分二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案.)13.因式分解:244a a ++=______.【答案】()22a +【分析】原式利用完全平方公式分解即可.【详解】解:244a a ++=()22a +.故答案为:()22a +.【点睛】此题考查了公式法的运用,熟练掌握因式分解的方法是解本题的关键.14.如果小球在如图所示的地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域的概率是______.【答案】49【分析】根据题意可得一共有9块方砖,其中阴影区域的有4块,再根据概率公式计算,即可求解.【详解】解:根据题意得:一共有9块方砖,其中阴影区域的有4块,∴它最终停留在阴影区域的概率是49.故答案为:49【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键.15.小的整数_____.【答案】3(答案不唯一)和进行估算,再根据题意即可得出答案.2<3<45<,小的整数有2,3,4.故答案为:3(答案不唯一).是解题的关键.16.代数式32x +与代数式21x -的值相等,则x =______.【答案】7【分析】根据题意列出分式方程,求出方程的解,得到x 的值即可.【详解】解:∵代数式32x +与代数式21x -的值相等,∴3221x x =+-,去分母()()3122x x -=+,去括号号3324x x -=+,解得7x =,检验:当7x =时,()()210x x +-≠,∴分式方程的解为7x =.故答案为:7.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,BD 是矩形ABCD 的对角线,将△BCD 分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a =4,b =2,则矩形ABCD 的面积是______.【答案】16【分析】设小正方形的边长为x ,利用a 、b 、x 表示矩形的面积,再用a 、b 、x 表示三角形以及正方形的面积,根据面积列出关于a 、b 、x 的关系式,解出x ,即可求出矩形面积.【详解】解:设小正方形的边长为x ,∴矩形的长为()a x +,宽为()b x +,由图1可得:()()211122222a xb x ax bx x ++=⨯+⨯+,整理得:20x ax bx ab ++-=,4a = ,2b =,2680x x ∴+-=,268x x ∴+=,∴矩形的面积为()()()()242688816a x b x x x x x ++=++=++=+=.故答案为:16.【点睛】本题主要考查列代数式,一元二次方程的应用,求出小正方形的边长是解题的关键.18.规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它绕原点顺时针旋转90°,由数字0和1组成的序列表示一个点按照上面描述依次连续变换.例如:如图,点()0,0O 按序列“011…”作变换,表示点O 先向右平移一个单位得到()11,0O ,再将()11,0O 绕原点顺时针旋转90°得到()20,1O -,再将()20,1O -绕原点顺时针旋转90°得到()31,0O -…依次类推.点()0,1经过“011011011”变换后得到点的坐标为______.【答案】()1,1--【分析】根据题意得出点()0,1坐标变化规律,进而得出变换后的坐标位置,进而得出答案.【详解】解:点()0,1按序列“011011011”作变换,表示点()0,1先向右平移一个单位得到()1,1,再将()1,1绕原点顺时针旋转90°得到()1,1-,再将()1,1-绕原点顺时针旋转90°得到()1,1--,然后右平移一个单位得到()0,1-,再将()0,1-绕原点顺时针旋转90°得到()1,0-,再将()1,0-绕原点顺时针旋转90°得到()0,1,然后右平移一个单位得到()1,1,再将()1,1绕原点顺时针旋转90°得到()1,1-,再将()1,1-绕原点顺时针旋转90°得到()1,1--.故答案为:()1,1--【点睛】此题主要考查了点的坐标变化规律,得出点坐标变化规律是解题关键.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.计算:1134sin 3043-⎛⎫--︒+ ⎪⎝⎭.【答案】6【分析】先根据绝对值的意义,特殊角的三角函数值,负整数指数幂,算术平方根定义进行化简,然后再进行计算即可.【详解】解:1134sin 3043-⎛⎫--︒ ⎪⎝⎭11342123=-⨯++3223=-++6=【点睛】本题主要考查了实数的混合运算,熟练掌握绝对值的意义,特殊角的三角函数值,负整数指数幂,算术平方根定义,是解题的关键.20.解不等式组:()1,232532.x x x x -⎧<⎪⎨⎪-≤-⎩①②,并写出它的所有整数解.【答案】13x ≤<,整数解为1,2【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而确定出整数解即可.【详解】解不等式①,得3x <,解不等式②,得1≥x ,在同一条数轴上表示不等式①②的解集原不等式组的解集是13x ≤<,∴整数解为1,2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.21.已知:如图,在菱形ABCD 中,E ,F 是对角线AC 上两点,连接DE ,DF ,∠ADF =∠CDE .求证:AE =CF.【答案】见解析【分析】根据菱形的性质得出DA DC =,DAC DCA ∠=∠,再利用角的等量代换得出ADE CDF ∠=∠,接着由角边角判定DAE DCF △≌△,最后由全等的性质即可得出结论.【详解】解:∵四边形ABCD 是菱形,E ,F 是对角线AC 上两点,∴DA DC =,DAC DCA ∠=∠.∵ADF CDE ∠=∠,∴ADF EDF CDE EDF ∠-∠=∠-∠,即ADE CDF ∠=∠.在DAE △和DCF 中,DA DC ADE CD DAC DC F A ⎧⎪=⎨⎪∠=∠∠∠⎩=,∴DAE DCF ASA △≌△(),∴AE CF =.【点睛】本题考查菱形的性质,全等三角形的判定和性质,解题的关键是熟练地掌握这些性质和判定定理,并能从题中找到合适的条件进行证明.22.某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a :七年级抽取成绩的频数分布直方图如图.(数据分成5组,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤)b :七年级抽取成绩在7080x ≤<这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79.c :七、八年级抽取成绩的平均数、中位数如下:年级平均数中位数七年级76.5m 八年级78.279请结合以上信息完成下列问题:(1)七年级抽取成绩在6090x ≤<的人数是_______,并补全频数分布直方图;(2)表中m 的值为______;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则______(填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.【答案】(1)38,理由见解析(2)77(3)甲(4)七年级竞赛成绩90分及以上人数约为64人【分析】(1)根据题意及频数分布直方图即可得出结果;(2)根据中位数的计算方法求解即可;(3)由七八年级中位数与甲乙学生成绩的比较即可得出结果;(4)用总人数乘以七年级竞赛成绩90分及以上的学生人数占总的人数的比例求解即可.【小问1详解】解:由题意可得:70≤x <80这组的数据有16人,∴七年级抽取成绩在60≤x <90的人数是:12+16+10=38人,故答案为:38;补全频数分布直方图如图所示;【小问2详解】解:∵4+12=16<25,4+12+16>25,∴七年级中位数在70≤x <80这组数据中,∴第25、26的数据分别为77,77,∴m =7777772+=,故答案为:77;【小问3详解】解:∵七年级学生的中位数为77<78,八年级学生的中位数为79>78,∴甲的成绩在本年级抽取成绩中排名更靠前,故答案为:甲;【小问4详解】解:84006450⨯=(人)答:七年级竞赛成绩90分及以上人数约为64人.【点睛】题目主要考查统计的相关应用,包括频数分布直方图及用部分估计总体、中位数的求法等,理解题意,综合运用这些知识点是解题关键.23.已知:如图,AB 为⊙O 的直径,CD 与⊙O 相切于点C ,交AB 延长线于点D ,连接AC ,BC ,∠D =30°,CE 平分∠ACB 交⊙O 于点E ,过点B 作BF ⊥CE ,垂足为F .(1)求证:CA =CD ;(2)若AB =12,求线段BF 的长.【答案】(1)见解析(2)【分析】(1)连接OC ,欲证明CA =CD ,只要证明CAD CDA ∠=∠即可.(2)因为AB 为直径,所以90ACB ∠=︒,可得出三角形CBF 为等腰直角三角形,即可求出BF ,由此即可解决问题.【小问1详解】证明:连接OC∵CD 与O 相切于点C ,∴OC CD ⊥,∴90OCD ∠=︒,∵30CDA ∠=︒,∴9060COB CDA ∠=︒-∠=︒,∵ BC所对的圆周角为CAB ∠,圆心角为COB ∠,∴1302CAB COB ∠=∠=︒,∴CAD CDA ∠=∠,∴CA CD =.【小问2详解】∵AB 为直径,∴90ACB ∠=︒,在Rt ABC 中,30CAB ∠=︒,12AB =,∴162BC AB ==,∵CE 平分ACB ∠,∴1452ECB ACB ∠=∠=︒,∵BF CE ⊥,∴90CFB ∠=︒,∴2sin 456322BF BC =⋅=⨯=︒【点睛】本题考查切线的性质,圆周角定理、解直角三角形等知识,解题的关键是灵活运用这些知识解决问题,学会条件常用辅助线,属于中考常考题型.24.为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.(1)求甲、乙两种树苗每棵的价格分别是多少元?(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍,则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.【答案】(1)甲种树苗每棵40元,乙种树苗每棵30元(2)当购买甲种树苗25棵,乙种树苗75棵时,花费最少,理由见解析【分析】(1)设每棵甲种树苗的价格为x 元,每棵乙种树苗的价格y 元,由“购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元”列出方程组,求解即可;(2)设购买甲种树苗m 棵,则购买乙种树苗()100m -棵,购买两种树苗总费用为W 元得出一次函数,根据一次函数的性质求解即可.【小问1详解】设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意得,2016128010x y x y +=⎧⎨-=⎩,解得4030x y =⎧⎨=⎩,答:甲种树苗每棵40元,乙种树苗每棵30元.【小问2详解】设购买甲种树苗m 棵,则购买乙种树苗()100m -棵,购买两种树苗总费用为W 元,由题意得()4030100W m m =+-,103000W m =+,由题意得1003m m -≤,解得25m ≥,因为W 随m 的增大而增大,所以当25m =时W 取得最小值.答:当购买甲种树苗25棵,乙种树苗75棵时,花费最少.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,找到正确的数量关系是本题的关键.25.如图,一次函数112y x =+的图象与反比例函数()0k y x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接C B .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.【答案】(1)4a =,12k =;(2)①8;②符合条件的点P 坐标是()6,2和()3,4.【分析】(1)将点(),3A a 代入112y x =+,求出4a =,即可得()4,3A ,将点()4,3A 代入k y x=,即可求出k ;(2)①如图,过A 作AM x ⊥轴于点M ,过C 作CN x ⊥轴于点N ,交AB 于点E ,求出()2,6C ,()2,2E ,得到CE ,进一步可求出△ABC 的面积;②设()11,P x y ,()2,0Q x .分情况讨论:ⅰ、当四边形ABQP 为平行四边形时,ⅱ、当四边形APBQ 为平行四边形时,计算即可.【小问1详解】解:将点(),3A a 代入112y x =+,得4a =,()4,3A ,将点()4,3A 代入k y x=,得4312k =⨯=,反比例函数的解析式为12y x =.【小问2详解】解:①如图,过A 作AM x ⊥轴于点M ,过C 作CN x ⊥轴于点N ,交AB 于点E ,∴AM CN ∥,∵AC AD =,∴12AM DA CN DC ==,∴6CN =,∴1226C x ==,∴()2,6C ,∴()2,2E ,∴624CE =-=,∴114242822ABC ACE BCE S S S =+=⨯⨯+⨯⨯=△△△.②分两种情况:设()11,P x y ,()2,0Q x .。
2021-2022学年山东省济南市高二上学期期末数学试题(解析版)
2021-2022学年山东省济南市高二上学期期末数学试题一、单选题1.已知空间向量()1,,2a m m =+-,()2,1,4b =-,且a b ⊥,则m 的值为( ) A .103-B .10-C .10D .103【答案】B【分析】根据向量垂直得2(1)80m m -++-=,即可求出m 的值. 【详解】,2(1)8010a b m m m ⊥∴-++-=⇒=-. 故选:B. 2.抛物线214x y =的准线方程为( ) A .1x =- B .116x =-C .1y =-D .116y =-【答案】D 【解析】求出1216p =,即得抛物线214x y =的准线方程. 【详解】因为124p =, 所以1216p =, 故准线方程为116y =-. 故选:D310+=的倾斜角为( ) A .3π B .23π C .6πD .56π 【答案】C【分析】将直线方程转化为斜截式,进而可得倾斜角.【详解】10+=,即y =,所以倾斜角α满足tan α=,[)0,απ∈, 所以6πα=,故选:C.4.已知等比数列{}n a 的各项均为正数,公比2q ,且满足2616a a =,则5a =( )A .8B .4C .2D .1【答案】A【分析】根据{}n a 是等比数列,则通项为11n n a a q -=,然后根据条件可解出112a =,进而求得58a =【详解】由{}n a 为等比数列,不妨设首项为1a由2616a a =,可得:26261216a a a =⋅=又0n a >,则有:112a = 则451282a =⨯=故选:A5.如图,在四面体OABC 中,OA a =,OB b =,OC c =,2CQ QB =,P 为线段OA 的中点,则PQ 等于( )A .112233a b c ++B .112233a b c --C .112233a b c -++D .121233a b c -++【答案】D【分析】根据空间向量的线性运算求解. 【详解】由已知2132PQ OC CQ OP c CB OA =+-=+-2121()()3232c OB OC a c b c a=+--=+--121233a b c =-++,故选:D .6.若圆()()22235x y r -++=上至少有三个点到直线4320x y --=的距离为1,则半径r 的取值范围是( ) A .()6,+∞ B .[)6,+∞C .(]4,6D .[]4,6【答案】B【分析】先求出圆心()3,5-到直线4320x y --=的距离为5,由此可知当圆的半径为516r =+=时,圆上恰有三点到直线4320x y --=的距离为1,当圆的半径516r >+= 时,圆上恰有四个点到直线4320x y --=的距离为1,故半径r 的取值范围是51=6r ≥+,即可求出答案.【详解】由已知条件得()()22235x y r -++=的圆心坐标为()3,5-,圆心()3,5-到直线4320x y --=为()2243352543d ⨯-⨯--==+,∵圆()()22235x y r -++=上至少有三个点到直线4320x y --=的距离为1, ∴圆的半径的取值范围是51r ≥+,即6r ≥,即半径r 的取值范围是[)6,+∞. 故选:B .7.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(]1,4 B .[)4,+∞ C .(]1,2 D .[)2,+∞【答案】C【分析】根据双曲线的定义求得2PF ,利用2PF c a ≥-可得离心率范围. 【详解】因为122PF PF a -=,又213PF PF =,所以13PF a =,2PF a =, 又2PF c a ≥-,即a c a ≥-,2ca≤,所以离心率(1,2]e ∈. 故选:C .8.如图甲是第七届国际数学家大会(简称ICME —7)的会徽图案,其主体图案是由图乙的一连串直角三角形演化而成的.已知1122334455667782OA A A A A A A A A A A A A A A ========⋅⋅⋅=,1A ,2A ,3A ,⋅⋅⋅为直角顶点,设这些直角三角形的周长从小到大组成的数列为{}n a ,令22n n b a =-,n S 为数列{}n b 的前n 项和,则99S =( )A .8B .9C .10D .11【答案】B【分析】由题意可得n OA 的边长,进而可得周长n a 及n b ,进而可得n S ,可得解. 【详解】由1122334455667782OA A A A A A A A A A A A A A A ========⋅⋅⋅=,可得2OA =3OA =⋅⋅⋅,n OA =所以112n n n n n a OA OA A A ++=++=, 22n n b a ===-所以前n 项和12213211n n S b b b n n n =+++=-+-+++-=+,所以9919S =, 故选:B. 二、多选题9.已知椭圆221169x y +=与椭圆()22190169x y t t t +=-<<++,则下列说法错误的是( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等【答案】ABC【分析】分别求出这两个椭圆的长轴长、短轴长、离心率、焦距,比较即可得到答案.【详解】由已知条件得椭圆221169x y +=中,4a =,3b =,c =则该椭圆的长轴长为28a =,短轴长为26b =,离心率为c e a ==,焦距为2c =椭圆()22190169x y t t t+=-<<++中,焦点在x 轴上,a b =c =.故选:ABC .10.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( )A .若2111n S n n =-+,则212n a n =-B .若()2,n S pn qn p q =+∈R ,则{}n a 是等差数列C .若数列{}n a 为等差数列,10a >,69S S =,则78S S >D .若数列{}n a 为等差数列,150S >,160S <,则8n =时,n S 最大 【答案】BD【分析】根据等差数列的性质,逐项分析即可得到结果.【详解】由于2111n S n n =-+,当1n =时,211111119a S ==-⨯+=-,若212n a n =-,则当1n =时,1211210a =⨯-=-,又091-≠-,故A 错误;因为()2,n S pn qn p q =+∈R ,当1n =时,11a S p q ==+;当2n ≥且*n N ∈时,()()()221112n n n a S S pn qn p n q n pn q p -⎡⎤=-=+--+-=-+⎣⎦, 当1n =时,上式亦满足,所以2n a pn q p =-+;所以()()()*12122,n n a a p n q p pn q p p n +-=+-+--+=∈⎡⎤⎣⎦N ,所以{}n a 是首项为p q +,公差为2p 的等差数列;故B 正确;若数列{}n a 为等差数列,10a >,69S S =,则96789830S S a a a a -=++==,即80a =,所以78S S =,故C 错误;若数列{}n a 为等差数列,150S >,160S <, 所以()115158151205S a a a+==>⨯,()()()1161168916160882a a a a a a S +⨯==++<=,所以80a >,890a a +<,即80a >,90a <,设等差数列{}n a 的公差为d ,所以980d a a =-<,所以等差数列{}n a 是递减数列, 所以在等差数列{}n a 中,当8n ≤且*n N ∈时0n a >,当9n ≥且*n N ∈时0n a <, 所以8n =时,n S 最大,故D 正确. 故选:BD.11.数学著作《圆锥曲线论》中给出了圆的一种定义:平面内,到两个顶点A ,B 距离之比是常数()0,1λλλ>≠的点M 的轨迹是圆.若两定点()2,0A -,()2,0B ,动点M 满足MA =,则下列说法正确的是( )A .点M 的轨迹围成区域的面积为32πB .ABM 面积的最大值为C .点M 到直线40x y -+=距离的最大值为D .若圆()()222:11C x y r ++-=上存在满足条件的点M ,则半径r 的取值范围为【答案】ABD【分析】根据直接法求点M 的轨迹方程,再根据直线与圆的位置关系及圆与圆的位置关系分别判断各选项.【详解】由题意,设点(),M x y , 又2MA MB =, 所以()()2222222x y x y ++=⋅-+,化简可得()22632x y -+=,所以点M 的轨迹为以点()6,0N 为圆心,42为半径的圆, 所以点M 的轨迹围成的区域面积为32π,A 选项正确; 又点(),M x y 满足42,42y ⎡⎤∈-⎣⎦,所以(10,822ABMSAB y ⎤=⋅∈⎦,B 选项正确; 点()6,0N 到直线40x y -+=的距离()22604524211d -+==>+-,所以直线与圆相离,所以点M 到直线40x y -+=距离的最大值为524292+=,C 选项错误;由D 选项可知圆C 与圆N 有公共点,所以4242r CN r -≤≤+, 且()()22610152CN =++-=,即425242r r -≤≤+, 所以292r ≤≤,D 选项正确; 故选:ABD.12.在棱长为1的正方体1111ABCD A B C D -中,E 为侧面11BCC B 的中心,F 是棱11C D 的中点,若点P 为线段1BD 上的动点,则下列说法正确的是( )A .PE 的长最小值为12B .PE PF ⋅的最小值为148-C .若12BP PD =,则平面PAC 截正方体所得截面的面积为98D .若正方体绕1BD 旋转θ角度后与其自身重合,则θ的值可以是23π 【答案】BCD【分析】建立如图所示的空间直角坐标系,设1(,,)BP BD λλλλ==--,(01)λ≤≤,得(1,1,)P λλλ--,然后用空间向量法求得PE ,判断A ,求得数量积PE PF ⋅计算最小值判断B ,由线面平行得线线平行,确定截面的形状、位置,从而可计算出截面面积,判断C ,结合正方体的对称性,利用1BD 是正方体的外接球直径判断D .【详解】建立如图所示的空间直角坐标系,正方体棱长为1,则11(,1,)22E ,(1,1,0)B ,1(0,0,1)D ,1(0,,1)2F ,1(1,1,1)BD =--,设1(,,)BP BD λλλλ==--,(01)λ≤≤,所以(1,1,)P λλλ--,11(,,)22PE λλλ=--,(PE λ==13λ=时,min PE =,A 错;1(1,,1)2PF λλλ=---,111()(1)()()(1)222PE PF λλλλλλ⋅=--+-+--2713()1248λ=--,所以712λ=时,min 1()48PE PF ⋅=-,B 正确;12BP PD =,则P 是1BD 上靠近1D 的三等分点,112(,,)333P ,取AC 上靠近C 的三等分点G ,则12(,,0)33G ,12(0,,)33PG =-,显然PG 与平面11CDD C 的法向量(1,0,0)垂直,因此//PG 平面11CDD C ,所以截面PAC 与平面11CDD C 的交线与PG 平行,作//CM PG 交11C D 于点M , 设(0,,1)M k ,则(0,1,1)CM k =-,由//CM PG 得21(1)33k --=,解得12k =,则M 与F 重合,因此取11A D 中点N ,易得//NF AC ,截面为ACFN ,它是等腰梯形,2AC =,22NF =,52AN CF ==,梯形的高为22225222h ⎛⎫- ⎪⎛⎫ ⎪=- ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭324=, 截面面积为12329(2)2248S =+⨯=,C 正确;(1,0,0)A ,(0,1,0)C ,1(1,1,1)B ,(1,1,0)AC =-,1(1,1,1)BD =--,11100AC BD ⋅=-+=,1AC BD ⊥,同理11AB BD ⊥,所以1BD 是平面1ACB 的一个法向量,即1BD ⊥平面1ACB ,设垂足为1O ,则111123AO C CO B B OA π∠=∠=∠=,1BD 是正方体的外接球的直径,因此正方体绕1BD 旋转θ角度后与其自身重合,至少旋转23π.D 正确. 故选:BCD .三、填空题13.已知直线60x my ++=和()2320m x y m -++=互相平行,则实数m 的值为___________. 【答案】1-【分析】根据直线平行的充要条件即可求出实数m 的值. 【详解】由直线60x my ++=和()2320m x y m -++=互相平行, 得()()132012620m m m m ⎧⨯--=⎪⎨⨯--≠⎪⎩,即1m =-. 故答案为:1-.14.已知等差数列{}n a 的公差为1,且3a 是2a 和6a 的等比中项,则{}n a 前10项的和为___________. 【答案】40【分析】利用等比中项及等差数列通项公式求出首项1a ,再利用等差数列的前n 项和公式求出{}n a 前10项的和.【详解】设等差数列的首项为1a ,由已知条件得2326a a a =⋅,即()()()211125a d a d a d +=++,()()()2111215a a a +=++,解得112a =-,则10110910402S a d ⨯=+=. 故答案为:40.15.如图,把正方形纸片ABCD 沿对角线AC 折成直二面角,则折纸后异面直线AB ,CD 所成的角为___________.【答案】π630° 【分析】过点E 作CE ∥AB ,且使得CE =AB ,则四边形ABEC 是平行四边形,进而DEC ∠(或其补角)是所求角,算出答案即可.【详解】过点E 作CE ∥AB ,且使得CE =AB ,则四边形ABEC 是平行四边形,设所求角为02πθθ⎛⎫<≤ ⎪⎝⎭,于是cos |cos |DEC θ=∠.设原正方形ABCD 边长为2,取AC 的中点O ,连接DO ,BO ,则2BO DO =,BO AC DO AC ⊥⊥,而平面ACD ⊥平面ABC ,且交于AC ,所以DO ⊥平面ABEC ,则DO OE ⊥.易得,22BE AC ==//BE AC ,而,BO AC ⊥则.BO BE ⊥于是,2210OE BO BE =+=2223DE DO OE +=在DCE 中,2DC CE ==,取DE 的中点F ,则CF DE ⊥,所以3cos FE DEC CE ∠==即3cos θ6πθ=.故答案为:6π.16.抛物线的聚焦特点:从抛物线的焦点发出的光经过抛物线反射后,光线都平行于抛物线的对称轴.另一方面,根据光路的可逆性,平行于抛物线对称轴的光线射向抛物线后的反射光线都会汇聚到抛物线的焦点处.已知抛物线()220y px p =>,一条平行于抛物线对称轴的光线从点()3,1A 向左发出,先经抛物线反射,再经直线3y x =-反射后,恰好经过点A ,则该抛物线的标准方程为___________. 【答案】216y x =【分析】根据抛物线的聚焦特点,()3,1A 经过抛物线后经过抛物线焦点,02p F ⎛⎫⎪⎝⎭,再经直线3y x =-反射后经过点A ,则根据反射特点,列出相关方程,解出方程即可.【详解】设光线与抛物线的交点为B ,抛物线的焦点为F ,则可得:1,12B p ⎛⎫⎪⎝⎭抛物线的焦点为:,02p F ⎛⎫⎪⎝⎭则直线BF 的方程为:11222p y x p p ⎛⎫ ⎪⎛⎫⎪=- ⎪⎝⎭ ⎪- ⎪⎝⎭设直线BF 与直线3y x =-的交点为M ,则有: 112223p y x p p y x ⎧⎛⎫⎪ ⎪⎛⎫⎪ ⎪=-⎪⎪⎝⎭⎨ ⎪- ⎪⎪⎝⎭⎪=-⎪⎩解得:2222436,2121p p p M p p p p ⎛⎫-- ⎪+-+-⎝⎭则过点M 且垂直于3y x =-的直线的方程为: 222222436563212121p p p p p y x x p p p p p p ----=-++=-++-+-+-根据题意可知:点()3,1A 关于直线2256321p p y x p p --=-++-的对称点1A 在直线BF 上设点()122,A x y ,1AA 的中点为C ,则有: 2231,22x y C ++⎛⎫ ⎪⎝⎭直线1AA 垂直于2256321p p y x p p --=-++-,则有:22113y x -=- 点C 在直线2256321p p y x p p --=-++-上,则有:2222135632221y x p p p p ++--=-++- 点1A 在直线BF 上,则有: 2211222p y x p p ⎛⎫ ⎪⎛⎫⎪=- ⎪⎝⎭ ⎪- ⎪⎝⎭化简得:()80p p -= 又0p > 故8p =故答案为:216y x =【点睛】直线关于直线对称对称,利用中点坐标公式和直线与直线垂直的特点建立方程,根据题意列出隐含的方程是关键 四、解答题17.已知()1,2A -,以点A 为圆心的圆被y轴截得的弦长为(1)求圆A 的方程;(2)若过点()1,2B -的直线l 与圆A 相切,求直线l 的方程. 【答案】(1)()()22124x y ++-= (2)1x =或3450x y ++=【分析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线l 的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为1x =的直线满足题意,斜率存在时,利用直线l 与圆相切,即()1,2A -到直线l 的距离等于半径,然后解出关于斜率的方程即可. (1)不妨设圆的半径为R ,根据垂径定理,可得:()22213R =+解得:2R =则圆的方程为:()()22124x y ++-= (2)当直线l 的斜率不存在时,则有:1x = 故此时直线l 与圆相切,满足题意当直线l 的斜率存在时,不妨设直线l 的斜率为k ,点()1,2B -的直线l 的距离为d 直线l 的方程为:()12y k x =--则有:22421k d k--==+解得:34k =- ,此时直线l 的方程为:3450x y ++=综上可得,直线l 的方程为:1x =或3450x y ++=18.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为线段AB ,11B C 的中点.(1)求点F 到平面1A CE 的距离;(2)求平面1A CE 与平面11BCC B 夹角的余弦值. 【答案】6 6【分析】(1)以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系.可根据题意写出各个点的坐标,进而求出平面1A CE 的法向量和EF 的坐标,点F 到平面1A CE 的距离||||EF n d n ⋅=.计算即可求出答案. (2)由(1)知平面1A CE 的法向量,在把平面11BCC B 的法向量表示出来,平面1A CE 与平面11BCC B 夹角的余弦值为cos ||||m nm n θ⋅=⋅,计算即可求出答案.(1)以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立如下图所示的空间直角坐标系.由于正方体1111ABCD A B C D -的棱长为2和E ,F 分别为线段AB ,11B C 的中点知,1(2,0,2),(2,1,0),(0,2,0),(1,2,2)A E C F =.设平面1A CE 的法向量为(,,)n x y z =.11(2,2,2),(0,1,2)AC A E =--=-.则1122200(1,2,1)200x y z n AC n y z n A E ⎧-+-=⋅=⎧⎪⇒⇒=⎨⎨-=⋅=⎪⎩⎩. =(1,1,2)EF -.故点F 到平面1A CE 的距离122||6||141EF n d n -++⋅===++.(2)平面11BCC B 的法向量(0,1,0)m =, 平面1A CE 与平面11BCC B 夹角的余弦值26cos ||||6m n m n θ⋅===⋅19.已知椭圆()2222:10x y C a b a b+=>>的左焦点为()2,0F -,点F 到短袖的一个端点的6.(1)求椭圆C 的方程;(2)过点F 作斜率为k 的直线l ,与椭圆C 交于A ,B 两点,若2OA OB ⋅>-,求k 的取值范围.【答案】(1)22162x y += (2)12k >或12k <-【分析】(1)根据焦点坐标可得2c =,根据点F,然后根据222a b c =+即可;(2)先设联立直线l 与椭圆的方程,然后根据韦达定理得到A ,B 两点的坐标关系,然后根据2OA OB ⋅>-建立关于直线l 的斜率k 的不等式,解出不等式即可. (1)根据题意,已知椭圆C 的左焦点为()2,0F -,则有:2c = 点Fa =则有:b =故椭圆C 的方程为:22162x y += (2)设过点F 作斜率为k 的直线l 的方程为:()2y k x =+ 联立直线l 与椭圆C 的方程可得: ()222162y k x x y ⎧=+⎪⎨+=⎪⎩ 则有:()222231121260k x k x k +++-=,直线l 过点F ,所以0∆>恒成立,不妨设A ,B 两点的坐标分别为:()()1122,,,A x y B x y ,则有:21221231k x x k +=-+ 212212631k x x k -=+ 又1212OA OB x x y y ⋅=+且()()2121222y y k x x =++则有:()()()()222212121212121222142OA OB x x y y x x k x x k x x k k x x ⋅=+=+++=++++将21221231k x x k +=-+,212212631k x x k -=+代入后可得:2210631k OA OB k -⋅=+ 若2OA OB ⋅>-,则有:22164031k k ->+ 解得:12k >或12k <- 20.如图,在梯形ABCD 中,AB CD ∥,四边形ACFE 为矩形,且CF ⊥平面ABCD ,112AD CD BC CF AB =====.(1)求证:EF BC ⊥;(2)点M 在线段BF (不含端点)上运动,设直线BE 与平面MAC 所成角为θ,求sin θ的取值范围.【答案】(1)证明见解析 (2)510⎝⎦【分析】(1)过C 作CH AB ⊥,垂足为H ,利用正余弦定理可证AC BC ⊥,再利用线线垂足证明线面垂直,进而可得证;(2)以C 为坐标原点,分别以CA ,CB ,CF 所在直线为x ,y ,z 轴建立空间直角坐标系,利用坐标法求线面夹角的正弦值. (1)证明:由已知可得四边形ABCD 是等腰梯形, 过C 作CH AB ⊥,垂足为H ,则21122BH -==, 在Rt BCH 中,221314CH BC BH =-=-=, 则332sin 1CBH ∠==60CBH ∠=°, 在ABC 中,由余弦定理可得,22212cos 4122132AC AB BC AB BC CBH =+-⋅⋅∠=+-⨯⨯⨯=,则222AC BC AB +=,AC BC ∴⊥, 又CF ⊥平面ABCD ,AC ⊂平面ABCD ,CF AC ∴⊥,BC CF C ⋂=,BC ,CF ⊂平面BCF ,AC ∴⊥平面BCF , 又ACFE 为矩形,//AC EF ∴,则EF ⊥平面BCF , 而BC ⊂平面BCF ,EF BC ∴⊥;(2)CF ⊥平面ABCD ,且AC BC ⊥,以C 为坐标原点,分别以CA ,CB ,CF 所在直线为x ,y ,z 轴建立空间直角坐标系,则)A,()0,1,0B ,()0,0,1F,)E,M BF ∈,∴设()0,1,M a a -,则()0,1,CM a a =-,又()3,0,0CA =,设平面MAC 的法向量为(),,n x y z =, 由()1030n CM a y az n CA x ⎧⋅=-+=⎪⎨⋅==⎪⎩, 取y a =,得()0,,1n a a =-, 又()3,1,1BE =-,sin cos ,5BE n a BE n BE na θ⋅-∴=====⋅,()0,1a ∈,21112,1222a ⎛⎫⎡⎫∴-+∈ ⎪⎪⎢⎝⎭⎣⎭,则sin θ∈⎝⎦.21.已知等差数列{}n A 的首项为2,公差为8.在{}n A 中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列{}n a . (1)求数列{}n a 的通项公式;(2)若1k a ,2k a ,⋅⋅⋅,nk a ,⋅⋅⋅是从{}n a 中抽取的若干项按原来的顺序排列组成的一个等比数列,11k =,23k =,令n n b nk =,求数列{}n b 的前n 项和n S . 【答案】(1)2,()n a n n N +=∈; (2)11()3424n n n S =+-⋅ 【分析】(1)由题意在{}n A 中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列{}n a ,可知{}n a 的公差824d ==,进而可求出其通项公式; (2)根据题意可得1=23n n k a -⨯,进而得到1=3n n k -,再代入n b 中得1=3n n b n -⋅,利用错位相减即可求出前n 项和n S . (1)由于等差数列{}n A 的公差为8,在{}n A 中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列{}n a ,则{}n a 的公差824d ==,{}n a 的首项和{}n A 首项相同为2,则数列{}n a 的通项公式为22(1)2,()n a n n n N +=+-=∈. (2)由于1k a ,2k a 是等比数列的前两项,且11k =,23k =,则132,6a a ==,则等比数列的公比为3, 则1=23n n k a -⨯,即112=23=3n n n n k k --⨯⨯⇒,1=3n n n b nk n -=⋅.01221132333(1)33n n n S n n --∴=⨯+⨯+⨯++-⨯+⨯①.12313132333(1)33n n n S n n -=⨯+⨯+⨯++-⨯+⨯ ②.①减去②得11213(13)1121333313()31322n n nn n n S n n n --⨯--=++++-⋅=+-⋅=-+-⋅-.11()3424n n n S ∴=+-⋅. 22.已知圆()22:24F x y -+=,点()2,0E -,点G 是圆F 上任意一点,线段EG 的垂直平分线交直线FG 于点T ,点T 的轨迹记为曲线C . (1)求曲线C 的方程;(2)已知曲线C 上一点()()002,0M y y >,动圆()()222:20N x y r r -+=>,且点M 在圆N外,过点M 作圆N 的两条切线分别交曲线C 于点A ,B . (i )求证:直线AB 的斜率为定值;(ii )若直线AB 与2x =交于点Q ,且2BQM AQM S S =△△时,求直线AB 的方程. 【答案】(1)2213y x -=(2)(i )答案见解析(ii )4623310x y ++=或2211130x y +-=【分析】(1)通过几何关系可知2ET TF -=,且42EF =>,由此可知点T 的轨迹是以点E 、F 为焦点,且实轴长为2的双曲线,通过双曲线的定义即可求解;(2)(i )设点()11,A x y ,()22,B x y ,直线AB 的方程为y kx m =+,将直线方程与双曲线方程联立利用韦达定理及0MA MB k k +=求出()()2230k k m ++-=,即得到直线AB 的斜率为定值;(ii )由(i )可知124x x m +=,由已知可得122122AQM BQMS x S x -==-△△,联立方程即可求出1x ,2x 的值,代入2123x x m =+即可求出m 的值,即可得到直线方程.(1)由题意可知2ET TF TG TF FG -=-==, ∵4EF ==,且2EF >,∴根据双曲线的定义可知,点T 的轨迹是以点E 、F 为焦点,且实轴长为2的双曲线, 即1a =,2c =,2223b c a =-=, 则点T 的轨迹方程为2213y x -=; (2)(i )设点()11,A x y ,()22,B x y ,直线AB 的方程为y kx m =+, 联立2213y x y kx m ⎧-=⎪⎨⎪=+⎩得()2223230k x kmx m ----=, 其中230k -≠,且()()22224433k m k m ∆=+-+()221230m k =-+>,12223km x x k +=-,212233m x x k+=--, ∵曲线C 上一点()()002,0M y y >,∴()2,3M ,由已知条件得直线MA 和直线MB 关于2x =对称,则0MA MB k k +=, 即121222033x x y y --+=--,整理得()()()()121223320x y y x --+--=, ()()()()121223320x kx m kx m x -+-++--=()()()1212223430kx x m k x x m +--+--=, ()()()2222322343033k m km m k m k k +---+--=--,()()221230k m k m +++-=,即()()2230k k m ++-=, 则2k =-或32m k =-,当32m k =-,直线方程为()3223y kx k k x =+-=-+,此直线过定点()2,3,应舍去, 故直线AB 的斜率为定值2-.(ii )由(i )可知124x x m +=,2123x x m =+由已知得12AQM BQMS S =△△,即122122AQM BQM S x S x -==-△△, 当122122x x -=-时,2122x x =-, 1211224x x x x m +=+-=,即1423m x +=,2823m x -=, 2124282333m m x x m +-=⋅=+,解得1m =或3123m =-, 但是当1m =时,0∆=,故应舍去,当3123m =-时,直线方程为4623310x y ++=, 当122122x x -=--时,2162x x =-,即164x m =-,286x m =-, ()()21264863x x m m m =--=+,解得1m =(舍去)或1311m =, 当1311m =时,直线方程为2211130x y +-=,故直线AB 的方程为4623310x y ++=或2211130x y +-=.。
2022年普通高等学校招生全国统一考试(乙卷)数学(理科)含答案解析(原卷版)
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生全国统一考试(乙卷)数学(理科)副标题学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本大题共12小题,共60.0分。
在每小题列出的选项中,选出符合题目的一项)1. 设全集U ={1,2,3,4,5},集合M 满足∁U M ={1,3},则( ) A. 2∈MB. 3∈MC. 4∉MD. 5∉M2. 已知z =1−2i ,且z +az +b =0,其中a ,b 为实数,则( ) A. a =1,b =−2 B. a =−1,b =2 C. a =1,b =2D. a =−1,b =−23. 已知向量a ,b 满足|a ⃗ |=1,|b ⃗ |=√3,|a ⃗ −2b ⃗ |=3,则a ⃗ ·b ⃗ =( )A. −2B. −1C. 1D. 24. 嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1a 1,b 2=1+1α1+1a 2,b 3+1a 1+1a 2+1a3,⋯,依此类推,其中a k ∈N ∗(k =1,2,⋯).则( )A. b 1<b 5B. b 3<b sC. b 6<b 2D. b 4<b 7……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………5. 设F 为抛物线C:y 2=4x 的焦点,点A 在C 上,点B(3,0),若|AF|=|BF|,则|AB|=( )A. 2B. 2√2C. 3D. 3√26. 执行右边的程序框图,输出的n =( )A. 3B. 4C. 5D. 67. 在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB ,BC 的中点,则( ) A. 平面B 1EF ⊥平面BDD 1 B. 平面B 1EF ⊥平面A 1BD C. 平面B 1EF//平面A 1ACD. 平面B 1EF//平面A 1C 1D8. 已知等比数列{a n }的前3项和为168,a 2−a 5=42,则a 6=( ) A. 14B. 12C. 6D. 39. 已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A. 13B. 12C. √33D. √2210. 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p 1,p 2,p 3,且p 3>p 2>p 1>0.记该棋手连胜两盘的概率为p ,则( )A. p 与该棋手和甲、乙、丙的比赛次序无关B. 该棋手在第二盘与甲比赛,p 最大C. 该棋手在第二盘与乙比赛,p 最大D. 该棋手在第二盘与丙比赛,p 最大……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………11. 双曲线C 的两个焦点为F 1 ,F 2 ,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos∠F 1NF 2=35,则C 的离心率为( )A. √52B. 32C. √132D. √17212. 已知函数f(x),g(x)的定义域均为R ,且f(x)+g(2−x)=5,g(x)−f(x −4)=7,若y =g(x)的图像关于直线x =2对称,g(2)=4,则∑f 22k=1(k)=( )A. −21B. −22C. −23D. −24第II 卷(非选择题)二、填空题(本大题共4小题,共20.0分)13. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 .14. 过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为 .15. 记函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f(T)=√32,x =π9为f(x)的零点,则ω的最小值为 .16. 已知x =x 1和x =x 2分别是函数f(x)=2a x −ex 2(a >0且a ≠1)的极小值点和极大值点,若x 1<x 2,则a 的取值范围是三、解答题(本大题共7小题,共80.0分。
山东省日照市2022年中考数学真题试题(含解析1)
2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【答案】A.考点:中心对称图形;轴对称图形.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.即4640万=4.64×107.故选C.考点:科学记数法—表示较大的数.4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【答案】B.试题分析:在Rt△ABC中,根据勾股定理求得BC=12,所以sinA=1213BCAB,故选B.考点:锐角三角函数的定义.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30° C.40° D.60°【答案】D.试题分析:由∠AEF=∠1=60°,AB∥CD,可得∠2=∠AEF=60°,故选D.考点:平行线的性质.6.式子12aa+-有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2【答案】C.1a+a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选C. 考点:二次根式有意义的条件.7.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【答案】A.试题分析:如图,∠AOB=3606=60°,OA=OB,可得△AOB是等边三角形,所以AB=OA,即可得圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选A.考点:正多边形和圆;根的判别式;点的坐标;旋转的性质.8.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.【答案】D.试题分析:∵y=kbx的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A. B. C.5 D.【答案】A.试题分析:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD= 12AO=2.5,∴AD=2253 2AO OD-= = ,∴AC=2AD=53,故选A.考点:切线的性质.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【答案】D.考点:动点问题的函数图象.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【答案】B.试题分析:观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.考点:规律型:数字的变化类.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【答案】C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m= .【答案】2m(m+2)(m﹣2).试题分析:提公因式2m,再运用平方差公式对括号里的因式分解即可,即2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).考点:提公因式法与公式法的综合运用.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.【答案】182.试题分析::根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.考点:算术平均数.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD 是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.【答案】6π.考点:扇形面积的计算;平行四边形的性质.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.【答案】5试题分析:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,如图所示:则OD=MN ,DN=OM ,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA ,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN ,在△AOM 和△BAN 中,AOM BAN AMO BNA OA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BAN (AAS ),∴AM=BN=2,OM=AN=2k , ∴OD=2k +2,OD=BD=2k ﹣2, ∴B (2k +2,2k ﹣2), ∴双曲线y=(x >0)同时经过点A 和B ,∴(2k +2)•(2k ﹣2)=k , 整理得:k 2﹣2k ﹣4=0,解得:k=1±5(负值舍去),∴k=1+5.考点:反比例函数图象上点的坐标特征.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2; (2)先化简,再求值:﹣÷,其中a=. 【答案】(1)3+1;(2)原式= 221a --,当2=2-. 试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题.试题解析:(1)原式32﹣1+(13)×4 333;(2)原式=21111(1)1a a a a a ++-÷+-- =21111(1)1a a a a a +--⋅+-+ =1111a a -+- =1(1)(1)(1)a a a a --++- =221a --, 当2时,原式=22221(2)1=-=---. 考点:分式的化简求值;实数的运算.18.如图,已知BA=AE=DC ,AD=EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即 ,可使四边形ABCD 为矩形.请加以证明.【答案】(1)详见解析;(2)AD=BC(答案不唯一).试题分析:(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.(2)添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;考点:矩形的判定;全等三角形的判定与性质.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】(1)15、25、35、45;(2)15.试题分析:(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.试题解析:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155.考点:列表法与树状图法.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1) 实际每年绿化面积为54万平方米;(2) 则至少每年平均增加72万平方米.试题分析:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a 万平方米.则由“完成新增绿化面积不超过2年”列出不等式.(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a ≥72.答:则至少每年平均增加72万平方米.考点:分式方程的应用;一元一次不等式的应用.21.阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P 0(0,0)到直线4x+3y ﹣3=0的距离.解:由直线4x+3y ﹣3=0知,A=4,B=3,C=﹣3,∴点P 0(0,0)到直线4x+3y ﹣3=0的距离为d==. 根据以上材料,解决下列问题:问题1:点P 1(3,4)到直线y=﹣x+的距离为 ;问题2:已知:⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y=﹣x+b 相切,求实数b 的值; 问题3:如图,设点P 为问题2中⊙C 上的任意一点,点A ,B 为直线3x+4y+5=0上的两点,且AB=2,请求出S △ABP 的最大值和最小值.【答案】(1)4;(2)b=5或15;(3)最大值为4,最小值为2.试题分析:(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题;(3)求出圆心C 到直线3x+4y+5=0的距离,求出⊙C 上点P 到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.试题解析:(1)点P 1(3,4)到直线3x+4y ﹣5=0的距离223344534⨯+⨯-+;(2)∵⊙C 与直线y=﹣34x+b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x+4y ﹣b=0的距离d=1,∴226434b +-+=1,解得b=5或15.(3)点C (2,1)到直线3x+4y+5=0的距离d=2264534+++=3,∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=12×2×4=4,S △ABP 的最小值=12×2×2=2. 考点:一次函数综合题.22.如图所示,在平面直角坐标系中,⊙C 经过坐标原点O ,且与x 轴,y 轴分别相交于M (4,0),N (0,3)两点.已知抛物线开口向上,与⊙C 交于N ,H ,P 三点,P 为抛物线的顶点,抛物线的对称轴经过点C 且垂直x 轴于点D .(1)求线段CD 的长及顶点P 的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x 轴于A ,B 两点,在抛物线上是否存在点Q ,使得S 四边形OPMN =8S △QAB ,且△QAB ∽△OBN 成立?若存在,请求出Q 点的坐标;若不存在,请说明理由.【答案】(1) CD=32, P (2,﹣1);(2) y=x 2﹣4x+3;(3) 存在满足条件的点Q ,其坐标为(2,﹣1). 试题分析:(1)连接OC ,由勾股定理可求得MN 的长,则可求得OC 的长,由垂径定理可求得OD 的长,在Rt △OCD 中,可求得CD 的长,则可求得PD 的长,可求得P 点坐标;(2)可设抛物线的解析式为顶点式,再把N 点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得A 、B 的坐标,由S 四边形OPMN =8S △QAB 可求得点Q 到x 轴的距离,且点Q 只能在x 轴的下方,则可求得Q 点的坐标,再证明△QAB ∽△OBN 即可. 试题解析:(1)如图,连接OC ,∵M (4,0),N (0,3),∴OM=4,ON=3,∴MN=5,∴OC=12MN=52, ∵CD 为抛物线对称轴,∴OD=MD=2,在Rt △OCD 中,由勾股定理可得22225()22OC OD -=-=32, ∴PD=PC ﹣CD=52﹣32=1, ∴P (2,﹣1);(2)∵抛物线的顶点为P (2,﹣1),∴设抛物线的函数表达式为y=a (x ﹣2)2﹣1,∵抛物线过N (0,3),∴3=a (0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x ﹣2)2﹣1,即y=x 2﹣4x+3;(3)在y=x 2﹣4x+3中,令y=0可得0=x 2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN=S△OMP+S△OMN=12OM•PD+12OM•ON=12×4×1+12×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则12×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).考点:二次函数综合题.。
山西省2024年(2022级冬)普通高中学业水平考试试题 数学
山西省2024年(2022级冬)普通高中学业水平考试试题数学
作者:
来源:《山西教育·招考》2024年第04期
本试题分第玉卷和第域卷两部分,第玉卷为选择题,第域卷为非选择题。
满分100分,考试时间60分钟。
第玉卷选择题(共60分)
一、单项选择题:本题包含8小题,每小题6分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
7.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了了解居民用水的实际情况,通过简单随机抽样,获得了该市1000户居民的月均用水量(均在0.3t到24.9t之间),整理得到如下图所示的频率分布直方图.据图,估计该市居民月均用水量的中位数为
二、多项选择题:本题包含2小题,每小题6分,共12分。
在每小题给出的四个选项中,至少有两个选项符合题目要求。
全部选对得6分,选对但不全得3分,有选错的得0分。
第域卷非選择题(共40分)
三、填空题:本题包含4小题,每小题6分,共24分。
四、解答题:本题包含2小题,每小题8分,共16分。
解答应写出文字说明、证明过程或演算步骤。
15.函数f(x)=sin2x+1.
(1)求f(x)的最小正周期及最大值;
(2)求f(x)的单调递增区间.
16.如图所示,在三棱锥D-ABC中,DC彝底面ABC,AB彝BC,E,F分别是BC,CD 的中点.
(1)求证:EF椅平面ABD;
(2)若AB=BC=CD=2,求直线AD与平面BCD所成角的正弦值.。
2022年高考数学试卷(新高考2卷)(含解析)
D. 直线 是曲线 的切线
【答案】AD
【解析】
【分析】根据三角函数的性质逐个判断各选项,即可解出.
【详解】由题意得: ,所以 , ,
即 ,
又 ,所以 时, ,故 .
对A,当 时, ,由正弦函数 图象知 在 上是单调递减;
对B,当 时, ,由正弦函数 图象知 只有1个极值点,由 ,解得 ,即 为函数的唯一极值点;
【解析】
【分析】利用复数的乘法可求 .
【详解】 ,
故选:D.
3.图1是中国古代建筑中的举架结构, 是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中 是举, 是相等的步,相邻桁的举步之比分别为 .已知 成公差为0.1的等差数列,且直线 的斜率为0.725,则 ()
A. 0.75B. 0.8C. 0.85D. 0.9
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 ,则 ()
A. B. C. D.
【答案】B
【解析】
【分析】求出集合 后可求 .
【详解】 ,故 ,
故选:B.
2. ()
A. B. C. D.
【答案】D
【解析】
【分析】由 及抛物线方程求得 ,再由斜率公式即可判断A选项;表示出直线 的方程,联立抛物线求得 ,即可求出 判断B选项;由抛物线的定义求出 即可判断C选项;由 , 求得 , 为钝角即可判断D选项.
【详解】
对于A,易得 ,由 可得点 在 的垂直平分线上,则 点横坐标为 ,
代入抛物线可得 ,则 ,则直线 的斜率为 ,A正确;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2022年冬季普通高中学业水平合格考试数学试卷一、选择题(本大题共20题,每小题3分,共计60分。
每小题列出的四个选项中只有一项是最符合题目要求的)1.设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( ) A .{}2B .{}2,3C .{}3,4D .{}2,3,42.已知p :02x <<,那么p 的一个充分不必要条件是( ) A .13x << B .11x -<< C .01x <<D .03x <<3.已知i 是虚数单位,若1i z =+,则=z ( )A .1B .0C .2D4.设命题0:p x R ∃∈,2010x +=,则命题p 的否定为( )A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠5.函数11y x =+的定义域为( ) A .[)4,1--B .[)()4,11,---+∞ C .()1,-+∞ D .[)4,-+∞6.已知向量()2,1a =,()1,1b =-,则a b +=( ) A .()3,0B .()3,1C .()1,2-D .()1,27.某中学共有学生2500人,其中男生1500人,为了解该校学生参加体育锻炼的时间,采用分层抽样的方法从该校全体学生中抽取一个容量为50的样本,则样本中女生的人数为( ) A .10B .15C .20D .308.为了得到函数sin()3y x π=-的图像,只需将函数sin y x =的图像A .向右平移6π个单位 B .向右平移3π个单位 C .向左平移6π个单位D .向左平移3π个单位9.已知点(2,P 为角α终边上一点,则cos α的值为( )A .23-B .53-C .23D .5310.有一副去掉了大小王的扑克牌,充分洗牌后,从中随机抽取一张,则抽到的牌为“黑桃”或“A ”的概率为( ) A .152B .827C .413D .175211.函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为( )A .πB .2πC .3πD .4π12.如图,在四面体OABC 中,OA a =,OB b =,OC c =,点M 在OA 上,且2OM MA =,点N 为BC 的中点,则MN =( ).A .121232a b c -+B .211322a b c -++C .112223a b c +-D .221332a b c +-13.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10%C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 14.设函数()1221,0=,>0x x f x x x --≤⎧⎪⎨⎪⎩,若()01f x <,则0x 的取值范围是( )A .()1,1-B .()1,∞-+C .()(),11,∞∞--⋃+D .()(),10,∞∞--⋃+15.函数4(1)1y x x x =+>-的最小值是( ) A .4B .5C .6D .816.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( ) A .π2B .π3C .π4D .π617.函数31()()log 3x f x x =-的零点个数为( )A .0B .1C .2D .318.函数()()2413f x x m x =-+-+在区间(],4∞-上单调递增,则实数m 的取值范围是( )A .(],3∞-B .[)1,∞+C .(],1∞--D .[)1,∞-+19.已知a =b =c =a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .c a b >>D .c b a >>20.设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( ) A .53- B .13- C .13 D .53二、填空题:本大题共5小题,每小题3分,共15分. 21.已知向量()3,4a =,()2,1b =,则()a b b -⋅=______.22.底面为正方形的直棱柱,,,则这个棱柱的侧面积是______.23.cos40sin70sin40sin160=-_______.24.甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有一次准确预报的概率为______.25.空间四个点P 、A 、B 、C 在同一球面上,P A 、PB 、PC 两两垂直,且P A=PB=PC=a ,那么这个球的体积是_______________.三、解答题:本题共3小题,共25分.26.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,E 为1DD 中点.(1)求证:1//BD 平面ACE ; (2)求证:1BD AC ⊥.27.已知函数()222sin 4cos 1f x x x =-+.(1)求()f x 的最小正周期;(2)求()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最大值与最小值.28.已知函数()221x f x x =+(1)证明:()f x 为偶函数;(2)判断()()g x f x x =+的单调性并用定义证明; (3)解不等式()()222f x f x x --+>山东省2022年冬季普通高中学业水平合格考试数学答案一、选择题(本大题共20题,每小题3分,共计60分。
每小题列出的四个选项中只有一项是最符合题目要求的) 1.【答案】B【解析】由题设有{}2,3A B ⋂=, 故选:B . 2.【答案】C【解析】对于A ,(1,3)(0,2)⊄,且(0,2)(1,3)⊄,即13x <<是p 的不充分不必要条件,A 不是; 对于B ,(1,1)(0,2)-⊄,且(0,2)(1,1)⊄-,即11x -<<是p 的不充分不必要条件,B 不是;对于C ,(0,1) (0,2),即01x <<是p 的一个充分不必要条件,C 是; 对于D ,(0,2) (0,3),即03x <<是p 的必要不充分条件,D 不是. 故选:C 3.【答案】D【解析】因为1i z =+,所以1i z =-,故=1i z -故选:D 4.【答案】B【解析】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B. 5.【答案】B【解析】依题意4010x x +≥⎧⎨+≠⎩,解得41x x ≥-⎧⎨≠-⎩,所以函数的定义域为[)()4,11,---+∞.故选:B . 6.【答案】A【解析】因为()2,1a =,()1,1b =-, 所以(21,11)(3,0)a b +=+-=, 故选:A 7.【答案】C【解析】因为共有学生2500人,其中男生1500人, 所以女生有1000人, 所以样本中女生的人数为100050202500⨯=人 故选:C 8.【答案】B【解析】由已知中平移前函数解析式为y =sin x ,根据函数图象平移“左加右减“的原则,要使平移后函数解析式为:sin 3y x π⎛⎫=- ⎪⎝⎭,则向右平行移动3π个单位长度, 故选B . 9.【答案】C【解析】因为点()2,5-P 为角α终边上一点,所以()2222cos 325α==+-,故选:C 10.【答案】C【解析】由题意可知,该副扑克牌共52张,其中“黑桃”共13张,“A ”共4张, 则抽到的牌为“黑桃”或“A ”共134116+-=张,故所求概率为1645213P ==. 故选:C. 11.【答案】A【解析】根据解析式可知:()f x 最小正周期22T ππ==. 故选:A. 12.【答案】B 【解析】连接ON ,则由题可得MN ON OM =- 12()23OB OC OA =+- 211322a b c =-++故选:B. 13.【答案】C【解析】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确; 该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确; 该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元),超过6.5万元,故C 错误. 综上,给出结论中不正确的是C. 故选:C. 14.【答案】A【解析】当00x ≤时,则()00=21<1xf x --,解得01<0x -≤当0>0x 时,则()1200=f x x ,解得00<<1x综上所述:0x 的取值范围是()1,1- 故选:A. 15.【答案】B【解析】因为1x >,所以10x ->,所以4(1)1151y x x =-++≥=-, 当且仅当411x x -=-,即=3x 时取等号, 所以4(1)1y x x x =+>-的最小值是5, 故选:B 16.【答案】D 【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC , 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥,设正方体棱长为2,则1111122,22BC PC D B ===, 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D 17.【答案】B【解析】函数31()()log 3x f x x =-的零点个数,即31()log 03x x -=的解得个数,等价于1()3xy =与3log y x =的交点个数,在同一平面直角坐标系中作出函数图象,由图可知两函数只有一个交点,故函数31()()log 3xf x x =-有一个零点,故选:B18.【答案】C【解析】函数()()2413f x x m x =-+-+的图像的对称轴为4(1)222m x m -=-=--, 因为函数()()2413f x x m x =-+-+在区间(],4-∞上单调递增,所以224m -≥,解得1m ≤-, 所以m 的取值范围为(],1-∞-, 故选:C 19.【答案】B【解析】由237a b -=2(23)567=+>,故a b >;由226a c -=-且2(22)86=>,故a c >; ()()7263b c -=+-+且()()22639218921472+=+>+=+,故c b >.所以a c b >>, 故选:B . 20.【答案】C【解析】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫= ⎪⎝⎭.故选:C.二、填空题:本大题共5小题,每小题3分,共15分. 21.【答案】5【解析】因为向量()3,4a =,()2,1b =,所以()()()3,42,11,3a b -=-=, 所以()()()1,32,112315a b b ⋅=-⨯==+⋅⨯, 故答案为:5. 22.【答案】8 【解析】如图所示:2BD 1AB AD ∴==,又16BD =2221116DD ∴++ 解得:12DD =,所以棱柱的侧面积1248S =⨯⨯=. 故答案为:823.【答案】12【解析】cos40sin70sin40sin160=-()cos 40sin 70sin 40sin 7090-+=cos 40sin 70sin 40cos70-=()1sin 7040sin 302-==. 故答案为:12.24.【答案】0.38【解析】因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7,所以在一次预报中两站恰有一次准确预报的概率为()()0.810.710.80.70.38⨯-+-⨯=. 故答案为:0.38 25.【答案】33π2a【解析】空间四个点P 、A 、B 、C 在同一球面上,P A 、PB 、PC 两两垂直,且P A=PB=PC=a , 则P A 、PB 、PC 可看作是正方体的一个顶点发出的三条棱,所以过空间四个点P 、A 、B 、C 的球面即为棱长为a 的正方体的外接球,球的直径即是正方体的对角线长为2223,a a a a ++=所以这个球面的体积33433π322a a V π⎛⎫== ⎪ ⎪⎝⎭. 故答案为:33π2a 三、解答题:本题共3小题,共25分.26.证明:(1)设AC 与BD 交于点O ,接OE , 底面ABCD 是菱形,O ∴为DB 中点,又因为E 是1DD 的中点,1//OE D BB ∴,OE ⊂面AEC ,1BD ⊂平面AEC 1//BD ∴平面ACE . (2)底面ABCD 是菱形,AC BD ∴⊥, 1DD ⊥底面ABCD ,AC ⊂底面ABCD , 1DD AC ∴⊥,且1DB DD D =,1,DB DD ⊂平面11BDB D . AC ∴⊥平面11BDB D . 1BD ⊂平面11BDB D ,1AC BD ∴⊥.27.(1)()222sin 4cos 1f x x x =-+()1cos221cos21x x =--++3cos2x =-,所以函数()f x 的最小正周期为22T ππ==. (2)因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以220,3x π⎡⎤∈⎢⎥⎣⎦, 于是1cos 2,12x ⎡⎤∈-⎢⎥⎣⎦, 所以()33,2f x ⎡⎤∈-⎢⎥⎣⎦, 所以()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值是-3,最大值是32. 28.解:()()221x g x f x x x x =+=++,所以()g x 为R 上的增函数, 证明: 任取1x ,2x ∈R ,且12x x >,()()22221212121212222212121111x x x x g x g x x x x x x x x x ⎛⎫-=+-+=-+- ⎪++++⎝⎭()()()()222212211222121111x x x x x x x x +-+=-+++2212122212(1)(1)x x x x x x -=-+++ 12122212()1(1)(1)x x x x x x ⎡⎤+=-+⎢⎥++⎣⎦ 22221212121222121()(1)(1)x x x x x x x x x x ⎡⎤+++++=-⎢⎥++⎣⎦ 22221212122212111()()222().(1)(1)x x x x x x x x ⎡⎤+++++⎢⎥=-⎢⎥++⎢⎥⎣⎦∵12x x >,∴220x x ->,又()()222212122212111222011x x x x x x ⎛⎫⎛⎫+++++ ⎪ ⎪⎝⎭⎝⎭>++, ∴22221212122212111()()222()0(1)(1)x x x x x x x x ⎡⎤+++++⎢⎥->⎢⎥++⎢⎥⎣⎦,即()()12g x g x >, ∴()g x 为R 上的增函数;(3)不等式()()222f x f x x --+>, 等价于()()()2222f x x f x x f x x +>-+-=-+- 即()()2g x g x >-,∵()g x 为R 上的增函数,∴2x x >-,解得1x >,故不等式的解集为()1,+∞.。