模电实验报告——多级级联放大器的研究

合集下载

多级放大电路的设计和实验

多级放大电路的设计和实验

多级放大电路的设计和实验一、教学目的熟悉两级(或多级)放大电路设计和调试的一般方法。

电压放大倍数的测量,幅频特性的测量方法。

可用计算机辅助设计和仿真。

二、设计指标电压放大倍数A u :≥5000(绝对值) 输入电阻R i :≥1kΩ输出电阻R o :≤3kΩ 通频带宽BW :优于100Hz~1MHz 电源电压V CC :+12V -20V 负载电阻R L :3kΩ输出最大不失真电压:5V (峰峰值) 电路要求:无自激、负反馈任选 三、实验电路及实验结果根据设计要求进行了理论计算,设计电路图如图1:图11、在仿真软件Multisim 2001中绘制电路图,调试后输出波形不失真,放大倍数满足要求,完成表格1。

第一级 第二级 ICUBUCUE IC UBUCUE 1.59mA 2.326V 11.990V1.606V2.519mA3.267V 12.407V2.543V2、各级的电压放大倍数如下表,输出波形如下图: 第一级第二级总电压放大倍数 输入电压 (mVrms) 输出电压 (mVrms) 电压放大倍数 输入电压 (mVrms) 输出电压 (mVrms) 电压放大倍数 0.1418.466608.466653774627各级的输出波形如图2图23、电路的输入输出电阻的测量(1)用输出换算法测量放大器输入电阻R i 选取Rs=1 kΩ,完成表3,利用公式s o2o1o1i R u u u R -=计算输入电阻。

表3 放大器输入电阻R 不接R s 时输出电压 uo1(V rms) 串接R s 时输出电压 u o2(V rms) 输入电阻R i (kΩ) 0.6530.4593.3(2)用开路电压法测量放大器输出电阻Ro选取RL=3 kΩ,完成表4,利用公式L oLooo )1(R u u R -=计算输出电阻。

开路输出电压U oo (V rms)连接负载时电压u oL (V rms)输出电阻R o (kΩ)1.301 0.6532.9774、思考题(1)避免自激振荡的措施主要有哪些?你在电路中是如何避免自激振荡的? (2)你是如何分配各级电路的电压放大倍数的?分配依据是什么? (3)如果引入负反馈,目的是什么?效果如何?。

多级运算电路实验报告(3篇)

多级运算电路实验报告(3篇)

第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。

2. 掌握多级运算电路的设计方法。

3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。

4. 培养实验操作能力和数据分析能力。

二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。

本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。

4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。

三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。

2. 示波器:用于观察实验过程中信号的变化。

3. 数字万用表:用于测量电路的电压、电流等参数。

4. 电阻、电容、二极管、运放等电子元器件。

5. 电路板、导线、焊接工具等。

四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。

2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。

3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。

4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。

5. 分析实验数据,验证实验结果是否符合理论计算。

五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

模电实验报告五 运算放大器

模电实验报告五 运算放大器

模拟电子技术实验报告第(5 )次实验实验名称:_运算放大器专业班级:自动化姓名:学号:一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

开环电压增益Aud=∞输入阻抗ri=∞输出阻抗ro=0带宽fBW=∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特征:1、输出电压uo与输入电压之间满足关系式子uo=Aud(u+—u-)由于Aud=∞,而uo为有限值,因此,u+—u-≈0,。

即u+≈u-,称为“虚短”。

2、由于ri=∞,故流进运放两个输入端的电流可视为零,即IIB=0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

基本运算电路(1)反相比例运算电路电路如图4-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1//RF(2)反相加法电路电路如图4-2所示,输出电压与输入电压之间的关系为(3)同相比例运算电路图4-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为(4)差动放大电路(减法器)对于图4-4所示的减法运算电路,当R1=R2,R3=RF时,有如下关系式(5)积分运算电路反相积分电路如图4-5所示。

在理想化条件下,输出电压uo等于式中uc(o) 是t=0 时刻电容C 两端的电压值,即初始值。

【东南大学模电实验】实验六多级放大器的频率补偿和反馈

【东南大学模电实验】实验六多级放大器的频率补偿和反馈

实验六多级放大器的频率补偿和反馈实验目的:1.掌握多级放大器的设计,通过仿真了解集成运算放大器内部核心电路结构。

2.掌握多级放大器基本电参数的定义,掌握基本的仿真方法。

3.熟悉多级放大器的频率补偿基本方法。

4.掌握反馈对放大器的影响。

实验内容1.多级放大器的基本结构及直流工作点设计。

基本的多级放大器如图.①若输入信号的直流电压为2V,通过仿真得到图1中得节点1,2和3的直流工作电压。

V(1) V(2) V(3) 14.42956V14.42958V8.38849V②若输出级PNP 管只用差分对管U3的一只管子,则放大器的输出直流电压为多少?给出U3种采用两只管子的原因。

V(1) V(2) V(3) 14.41222V 14.42958V7.0707V可见采用单管后,输出直流电压V (3)减小;而采用两只管子能提高直流工作点,并使工作点更稳定。

2.多级放大器的基本电参数仿真。

实验任务:①差模增益及放大器带宽将输入信号V2和V3的直流电压设置为2V ,AC 输入幅度设为0.5V ,相差180,采用AC 分析得到电路的低频差模增益A vd1,并提交输出电压V (3)的幅频特性和相频特性的仿真结果。

在幅频特性中标出上限频率,相频特性中标出0dB 的相位。

Avd1=))4()5((2)3(V V V =93.3897dB=46718.08可知f H =1.3574kHz ,φ(0dB)= 09.159②共模增益将输入信号V2和V3的直流电压设为2V ,AC 输入幅度设为0.5V ,相位相同。

AC 分析得到低频共模增益A vc ,结合①中得仿真结果得到电路的共模抑制比K CMR ,并提交幅频特性仿真图。

仿真得,A vc =-6.61dB=0.4671K CMR =Avc Avd 2/=100017.3③差模输入阻抗V2、V3设为2V ,AC 输入幅度0.5V ,相差180,AC 分析,用表达式R id =)3()6(I(V 2)5)(V V I V得到R id 。

模电实验报告

模电实验报告

2.1 晶体管共射极单管放大器一、实验目的1、掌握用multisim仿真软件分析单级放大器主要性能指标的方法。

2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放大器输出波形的影响。

3、测量放大器的放大倍数、输入电阻和输出电阻。

二、实验原理实验电路如图2.1-1所示,采用基极固定分压式偏置电路。

电路在接通直流电源Vcc而未加入信号(Vi=0)时,三极管三个极电压和电流称为静态工作点,即V BQ=R2V CC/(R2+R3+R7)I CQ=I EQ=(V BQ-V BEQ)/R4I BQ=I EQ/βV CEQ=V CC-I CQ(R5+R4)1、放大器静态工作点的选择和测量放大器的基本任务是不失真的放大小信号。

为了获得最大不失真输出电压,静态工作点应选在输出特性曲线上交流负载线的中点。

若工作点选的太高,则容易引起饱和失真;而选的太低,又易引起截止失真。

静态工作点的测量是指在接通电源电压后放大器输入端不加信号时,测量晶体管的集电极电流ICQ和管压降VCEQ。

其中VCEQ可直接用万用表直流电压档测C-E极间的电压既得,而ICQ的测量则有直接法和间接法两种:(1)直接法:将万用表电流档串入集电极电路直接测量。

此法精度高,但要断开集电极回路,比较麻烦。

(2)间接法:用万用表直流电压档先测出R5上的压降,然后根据已知R5算出ICQ,此法简单,在实验中常用,但其测量精度差。

为了减小测量误差,应选用内阻较高的电压表。

当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。

静态工作点具体的调节步骤如下:根据示波器上观察到的现象,做出不同的调整动作,反复进行。

当加大输入信号,两种失真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流负载线的中点,就是最佳的静态工作点。

去掉输入信号,测量此时的VCQ,就得到了静态工作点。

2.电压放大倍数的测量电压放大倍数是指放大器的输入电压Ui输出电压Uo之比:Au=Uo/Ui (2.1-5)用示波器分别测出Uo和Ui,便可按式(2.1-5)求得放大倍数,电压放大倍数与负载Rl有关。

模电设计多级放大器

模电设计多级放大器

模电设计多级放⼤器前⾔ (2)第⼀章放⼤器的概述 (2)1.1多级放⼤器的功能 (2)1.2.2设计任务及⽬标 (2)1.2.3主要参考元器件 (3)第⼆章电路设计原理与单元模块 (3)2.1设计原理 (3)2.2设计⽅案 (4)2.3单元模块 (6)第三章安装与调试 (6)3.1电路的安装 (6)3.2电路的调试 (7)第四章实验体会 (7)结论 (7)致谢 (7)参考⽂献 (8)附录 (8)前⾔电⼦技术电路课程设计是从理论到实践的⼀个重要步骤,通过这个步骤使我们的动⼿能⼒有了质的提⾼,也使我们对电路设计理念的认识有了质的飞跃。

本课程设计是对放⼤器对电压放⼤的基本应⽤,我们设计的⼆级低频阻容耦合放⼤器严格按照实验要求设计,能够充分满⾜的电压放⼤倍数、频带宽、输⼊输出电阻等实验要求的性能参数,这次课程设计让我们了解了类似产品的部原理结构。

设计时我和搭档设计了⼆级三极管放⼤电路、可变放⼤倍数的⼆级运算放⼤器电路等多种⽅案,由于考虑到器材的限制,我们最终采⽤了最为简洁的两级运算放⼤器电路,实现了⽤最少的元器件实现要求功能。

第⼀章放⼤器的概述1.1多级放⼤器的功能随着科技的进步,电⼦通讯产品越来越多的进⼊⼈们视野,⼩到⽿机⼿机收⾳机,⼤到⼤型雷达都要利⽤到信号放⼤器,可以说信号放⼤器是现代通讯设备的核⼼器件之⼀,⽽多级放⼤器⼜是⼀级放⼤器的推⼴,可以克服单级放⼤器放⼤倍数不够等诸多问题。

耦合形式多级放⼤电路的连接,产⽣了单元电路间的级联问题,即耦合问题。

放⼤电路的级间耦合必须要保证信号的传输,且保证各级的静态⼯作点正确。

直接耦合——耦合电路采⽤直接连接或电阻连接,不采⽤电抗性元件。

直接耦合电路可传输低频甚⾄直流信号,因⽽缓慢变化的漂移信号也可以通过直接耦合放⼤电路。

电抗性元件耦合——级间采⽤电容或变压器耦合。

电抗性元件耦合,只能传输交流信号,漂移信号和低频信号不能通过。

根据输⼊信号的性质,就可决定级间耦合电路的形式。

电路模电实验之运算放大器实验报告

电路模电实验之运算放大器实验报告

目录1实验目的2 2实验原理23实验设计33.1实验I基础型实验 (3)3.1.11、电压跟随器——检测运放是否正常 (3)3.1.2反相比例运算放大器电压放大特性 (3)3.2实验II设计型实验 (4)3.2.1减法器的设计 (4)4实验预习仿真44.1电压跟随器——检测运放是否正常 (4)4.2反相比例运算放大器电压放大特性 (5)4.3减法器设计 (6)5数据处理7 6实验总结9 7思考题9 8实验讨论91实验目的•深刻理解集成放大器工作在线性工作区时,遵循的两条基本原则——虚短、虚断•熟悉集成运算放大器的线性应用。

•掌握比例运算等电路、训练设计运放电路的能力。

2实验原理集成运算放大器是一种高电压放大倍数的多级直耦放大电路,在深度负反馈条件下,集成运放工作在线性工作区,它遵循两条基本原则:1.虚短:U i=U−−U+≈02.虚断:I N≈I p≈0(非线性区也成立)用途:广泛应用于各种信号的运算处理、测量以及信号的产生、变换等电路中。

图1:运算放大器符号3实验设计3.1实验I基础型实验3.1.11、电压跟随器——检测运放是否正常3.1.2反相比例运算放大器电压放大特性3.2实验II设计型实验3.2.1减法器的设计1.自行设计运放电路,要求实现u0=2u i2−u i12.将u i分别设置为以下两组信号,验证电路是否满足要求4实验预习仿真4.1电压跟随器——检测运放是否正常图2:Multisim接线图3:Multisim结果4.2反相比例运算放大器电压放大特性图4:Multisim 接线图5:Multisim 结果U i (V )理论值(V )实测值(V )U N U P U O U O U iU N U P U O U O U i-0.300310455.314µV 564.134µV 3.012V 10.040.3-310563.904µV489.999µV-2.987V9.964.3减法器设计设计如图所示:表3:验证结果波形频率u i u0直流0u i1=1V,u i2=2V3.04V正弦波500Hz u i1=1V,u i2=2V2.98V5数据处理表1U i(V)理论值(V)实测值(V)U N U P U O U OU iU N U P U O U OU i-0.3003100.1mV0.2mV 3.66V12.20.300-310-0.1mV0-3.65V12.16表2波形频率u i u0直流0u i1=1V,u i2=2V 3.00V正弦波500Hz u i1=1V,u i2=2V 3.24V1.完成表1,并绘制基础型实验的运放的电压传输特性;2.列出基础型实验中U i和U o理论关系式,并和仿真数据、实际数据比较;•电压跟随器u i=u o仿真数据中u i=u o,实验数据u i=1.00V,u o=1.04V,在误差允许范围内,所以等式也成立。

实验六 多级放大器的频率补偿和反馈

实验六 多级放大器的频率补偿和反馈

实验六多级放大器的频率补偿和反馈实验目的1.掌握多级放大器的设计,通过仿真了解集成运放放大器的内部核心电路结构2.掌握多级放大器基本参数的定义,掌握基本的仿真方法3.熟悉多级放大器频率补偿的基本方法4.掌握反馈对放大器的影响实验内容:1.多级放大器的基本结构及直流工作点设计电路如下所示:图一.基本的多级放大器实验任务:1)若输入信号的直流电压为2V,通过仿真得到图一中节点1,节点2和节点3的直流工作点电压。

2)若输出级的PNP管值采用差分对管U3的一只管子,则放大器的输出直流电压为多少?结合仿真结果给出U3中采用两只管子的原因。

仿真结果如下:表一两种输出下的直流工作点电压节点1电压节点2电压节点3电压输出为差分对管14.42956 14.42958 8.38849输出为单管14.41222 14.42958 7.07073分析:由表一的数据可以看出当输出的管子为差分对管时,节点1和节点2的电压比较对称。

而当输出只有一个管子时,节点1和节点2的电压相差较大。

而且采用差分对管时输出电压较大。

而本题分析的是差分放大器的单端输出,所以应采用差分对管,这样可以稳定直流工作点,得到相对准确的仿真结果。

2.多级放大器的基本电参数仿真实验任务:1)差模增益及放大器带宽将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180度,通过AC分析得到电路的低频差模增益,并提交输出电压V(3)的幅频特性和相频特性仿真结果图,在幅频特性曲线中标记出上限频率,在相频曲线中标记出。

通过仿真得到=99.4103dB。

=1.3460k,0dB处的相位为158.5380.仿真所得曲线如下所示:2)共模增益将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相同,采用AC分析得到电路的低频共模增益,结合上题仿真结果得到电路的共模抑制比,,并提交幅频特性仿真结果图。

通过仿真得到=-6.6176dB=100084.08仿真所得曲线如下:3)差模输入阻抗用表达式得到差模输入阻抗,提交随频率变化曲线图,并在图上标记。

模电实验多级负反馈放大电路

模电实验多级负反馈放大电路

多级负反馈放大电路一、实验目的(1)掌握用Multisim 13仿真研究多级负反馈放大电路。

(2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。

(3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。

(4)测试开闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。

(5)比较电压放大倍数、输入电阻、输出电阻和通频带在开闭环时的差别。

(6)观察负反馈对非线性失真的改善作用。

二、实验原理1.基本电路实验电路如图。

该放大电路由两级运放构成的反相比例器组成,在末级的输出端引入反馈网络f C ,1f R 和2f R ,构成交流电压串联负反馈电路。

反馈对放大器性能的改善程度,取决于反馈量的大小。

反馈深度是衡量反馈强弱的重要物理量,记为1+AF 。

式中,A 为开环增益;F 为反馈系数。

若引入负反馈后的闭环增益为f A ,则f A A AF =+1。

从上面的分析可知,引入负反馈会使放大器增益的降低。

负反馈虽然牺牲了放大器的放大倍数,但它改善了放大器的其他性能指标,因此负反馈在放大器中仍得到广泛的应用。

2.放大器基本参数(1)开环参数。

将负反馈支路中的开关P 和B 点相连,便可得到开环时的放大电路。

由此可测出开环时的放大电路的电压放大倍数V A 、输入电阻i R 、输出电阻o R 、反馈网络的电压反馈系数F 和通频带BW f ,即iLV V V A =Ni i i V V R V R -=1L L o o R V V R ⎪⎪⎭⎫ ⎝⎛-=1Lf V V F =L H BW f f f -=(2)闭环参数。

通过开环时放大电路的电压放大倍数V A 、输入电阻i R 、输出电阻o R 、反馈网络的电压反馈系数F 和上、下限H f ,L f ,可计算求得多级负反馈放大电路的闭环电压放大倍数Vf A 、输入电阻if R 、输出电阻of R 和通频带BW f 的理论值为VV VVf F A A A +=1()V V i if F A R R +=1V V o of F A R R '1+=,io V V V A ='()VV LV V H Lf Hf BW F A f F A f f f f +-+=-=11测量放大电路的闭环特性时,应将反馈支路中的开关P 与A 点相连。

多级负反馈放大器的研究仿真实验报告

多级负反馈放大器的研究仿真实验报告

多级负反馈放大器的研究一、实验目的(1)掌握用仿真软件研究多级负反馈放大电路。

(2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。

(3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。

1) 测试开环和闭环的电压放大倍数、输入电阻、反馈网络的电压反馈系数和通频带; 2) 比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别; 3)观察负反馈对非线性失真的改善。

二、实验原理及电路 (1)基本概念:在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输入回路,用来影响其输入量(放大电路的输入电压或输入电流)的措施称为反馈。

若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。

若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。

交流负反馈有四种组态:电压串联负反馈;电压并联负反馈;电流串联负反馈;电流并联负反馈。

若反馈量取自输出电压,则称之为电压反馈;若反馈量取自输出电流,则称之为电流反馈。

输入量、反馈量和净输入量以电压形式相叠加,称为串联反馈;以电流形式相叠加,称为并联反馈。

在分析反馈放大电路时,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。

“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路;“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,否则为串联反馈。

引入交流负反馈后,可以改善放大电路多方面的性能:提高放大倍数的稳定性、改变输入电阻和输出电阻、展宽通频带、减小非线性失真等。

实验电路如图所示。

多级放大电路的设计仿真分析

多级放大电路的设计仿真分析

多级放大电路的设计仿真分析多级放大电路的设计与仿真分析一、实验目的通过对放大电路的设计与分析,加深对放大电路的了解,并能够更加熟练的使用MULTISIM仿真软件,以及加深对各种分析的了解及应用。

二、实验原理静态工作点分析由计算可知UcQ=7V。

UcEQ=7.7V。

T1管的集电极电位UcQ1=2.36V。

所以△Uo=0.64V。

电路的差模放大倍数为A=58.三、实验步骤1、差分放大电路入图所示,此电路为单端输入、双端输出电路,两个输入端中有一个接地,输入信号加在另一端与地之间。

因为此电路对于差模信号是通过发射机相连的方式将T1管的发射极电流传递到T2管的发射极的,故称此电路为射极耦合电路。

2、设计中电阻选用R1和R2为10千欧,R3和R4为1千欧,三极管选用实际三极管模型。

三极管型号为2N1711,放大倍数为462.242。

1、直流工作点分析11 -1.78333io2 -1.68679io1 -1.6867913 -939.65643m14 -939.65643m在进行直流工作点分析时,电路中的交流源将被至零,电容开路,电感短路。

然后得到输入输出等各点的电压工作电压Io1=io2=-1.67679。

2、交流分析由分析可知,直接耦合差分放大电路的频率响应类似于低通放大电路。

在频率较小时,晶体管的电容效应可以忽略不计。

放大器对差模信号有很好的放大作用。

而当频率增大时,晶体管的电容效应不可忽略,并其影响随着频率的增大而增大,导致放大倍数下降,相移不断增大3、瞬态分析对输出节点io1和io2进行瞬态分析,即是指观察该节点子啊整个显示周期中每一时刻的电压波形,图中显示双端输出波形完全重合,即无失真,输出正常。

4、傅立叶分析Fourier analysis for io2:DC component: -1.6855No. Harmonics: 9, THD: 0.464951 %, Gridsize: 256, Interpolation Degree: 1 Harmonic Frequency Magnitude Phase Norm. Mag Norm. Phase-------- --------- --------- ----- --------- -----------1 1000 0.309375 0.0113511 1 02 2000 0.00139769 -92.415 0.0045178 -92.4263 3000 0.000317991 -3.5899 0.00102785 -3.60134 4000 0.000113302 85.4244 0.000366227 85.41315 5000 3.75667e-005 174.441 0.000121428 174.436 6000 1.33889e-005 -96.43 4.32772e-005 -96.4427 7000 4.67737e-006 -7.1248 1.51188e-005 -7.13618 8000 1.73049e-006 81.976 5.59349e-006 81.96479 9000 5.16304e-007 174.868 1.66886e-006 174.856由此可知,在1KHZ电源作用下,该电路的失真很小,可以忽略5、噪声分析Noise Analysisinoise_total 535.06991nonoise_total_qq2_rc 0.00000onoise_total_qq2_rb 0.00000onoise_total_qq2_re 0.00000onoise_total_qq2_ic 0.00000onoise_total_qq2_ib 0.00000onoise_total_qq1_rc 0.00000onoise_total_qq1_rb 0.00000onoise_total_qq1_re 0.00000onoise_total_qq1_ic 0.00000onoise_total_qq1_ib 0.00000onoise_total_qq1_1overf0.00000onoise_total_rr5 16.31716nonoise_total_rr4 16.11037nonoise_total_rr3 16.11037nonoise_total_rr2 1.63091nonoise_total_rr1 1.63091nonoise_total 52.00490n噪声分析用于检测电子线路输出信号的噪声的噪声功率幅度,用于计算、分析电阻或晶体管的噪声对电路的影响。

模拟电子技术基础及实验 第3章 多级放大

模拟电子技术基础及实验 第3章 多级放大

3.变压器耦合
18.02.2021
优点:
1.前后级静态工作点相互独立。 2.可实现阻抗变换,匹配合适,可 以使负载获得足够的电压或功率。
缺点:
1.低频特性差。 2.笨重不易集成。
4. 光电耦合
18.02.2021
特点:
1.抑制电干扰能 力强。
2.传输比较小, 需要加电压放大 级。
二、多级放大电路的分析
触点参数:
触点形式: 1A、1C(DPDT)
触点负载: 10A 120VAC/24VDC
阻 抗: ≤50mΩ
额定电流: 12A
电气寿命:≥10万回
机械寿命:≥1亿回
18.02.2021
线圈参数:
阻值(士10%):55Ω 线圈功耗:450mW 额定电压:DC 5V 吸合电压:DC 3.5V 释放电压:DC 0.5V 工作温度:-40℃~+85℃ 绝缘电阻:≥100MΩ 线圈与触点间耐压:750VAC/1分钟 触点与触点间耐压:1500VAC/1分钟 HRS4T系列 HRS4-S-DC3V、HRS4-S-DC5V、HRS4S-DC6V、HRS4-S-DC9V、HRS4-S-DC12V、HRS4TS-DC24V
A u2 =(R c rb2 /eR /2 L )12 0 .8 4.0 3 15 .63
A uA u 1A u 2 5.3 8 ( 1.5 6 ) 3 8955
+
ib1 b1
c1
ic1 ib2
ic2
b2 c2
+
18.02.2021
+
u
rbe1
i
- Rb1 Rb2 e1
+
Ri
βib1 Rc1 rbe2

模电设计多级放大电路实验报告

模电设计多级放大电路实验报告

摘要单级放大电路的电压放大倍数一般可以达到几十倍,然而,在许多场合,这样的放大倍数是不够用的,常需要把若干个单管放大电路串接起来,组成多级放大器,把信号经过多次放大,从而得到所需的放大倍数。

在生产实践中,一些信号需经多级放大才能达到负载的要求。

可由若干个单级放大电路组成的多级放大器来承担这一工作。

在多级放大电路的前面几级,主要用作电压放大,大多采用阻容耦合方式; 在最后的功率输出级中,常采用变压器藕合方式’;在直流放大电路及线性集成电路中,·常采用直接接藕合方式。

摘要 (2)第一章放大电路基础 (3)1.1 放大的概念和放大电路的基本指标:1.2 三种类型的指标第二章基本放大电路 (7)2.1 BJT 的结构 (7)2. 2 BJT的放大原理 (8)第三章多级放大电路 (9)3.1 多级放大电路的耦合方式 (9)3.2 放大电路的静态工作点分析 (11)3.3 设计电路的工作原理 (12)3.4计算参数 .......................................................................................................... .. (13)总结......................................................................................................................... (14)参考文献 ................................................................................................................ (14)第一章放大电路基础放大的概念和放大电路的基本指标:“放大”这个词很普遍,在很多场合都会发现放大的现象的存在。

西工大模电实验报告

西工大模电实验报告

凯2014模拟电子实验总结报告计算机学院班号:10031201学号:2012302606姓名:刘凯目录实验一:晶体管单级放大器............................................................................................... (3)一、实验目的............................................................................................... . (3)二、实验原理............................................................................................... . (3)三、实验内容............................................................................................... . (4)四、实验结果............................................................................................... . (5)实验二:多级负反馈放大器的研究 (6)一、实验目的............................................................................................... . (6)二、实验原理............................................................................................... . (6)三、实验内容............................................................................................... .. (10)四、实验结果...............................................................................................凯 (11)实验三:功率放大器............................................................................................... . (17)一、实验目的............................................................................................... .. (17)二、实验原理............................................................................................... .. (17)三、实验内容............................................................................................... .. (18)四、实验结果............................................................................................... .. (19)实验四:RC文氏电桥振荡器............................................................................................... .. (23)一、实验目的............................................................................................... .. (23)二、实验原理............................................................................................... .. (23)三、实验内容............................................................................................... .. (24)四、实验结果............................................................................................... .. (25)实验五:有源滤波器............................................................................................... . (26)一、实验目的............................................................................................... .. (26)二、实验原理............................................................................................... .. (26)凯三、实验内容............................................................................................... .. (27)四、实验结果............................................................................................... .. (28)实验六:电压比较器与矩形波发生器 (29)一、实验目的............................................................................................... .. (29)二、实验原理............................................................................................... .. (29)三、实验内容............................................................................................... .. (31)四、实验结果............................................................................................... .. (32)实验七:............................................................................................. .. (35)一、实验目的............................................................................................... .. (35)二、设计要求............................................................................................... .. (35)三、实验原理............................................................................................... .. (35)四、电路设计............................................................................................... .. (39)五、电路元器件选择............................................................................................... .. (39)六、实验结果...............................................................................................凯 (40)七、注意事项............................................................................................... .. (41)实验一:晶体管单级放大器一、实验目的(1)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点的对放大器输出的影响(2)测量放大器的放大倍数、输出电阻,输入电阻二、实验原理实验电路如图所示,采用基极固定分压式偏置电路。

多级负反馈放大器的研究实验报告

多级负反馈放大器的研究实验报告

多级负反馈放大器的研究一.实验目的(1)掌握用仿真软件研究多级负反馈放大电路。(2)学习集成运算放大器的应用,掌握多级集成运算放大器的工作特点。(3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。1)测试开环和闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带;2)比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别;3)观察负反馈对非线性失真的改善。二.实验原理1.基本概念在电子电路中,将输出量的一部分或全部通过一定的电路形式作用到输入回路,用来影响其他输入量的措施称为反馈。若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。实验电路如下图所示,该放大电路有两级运放构成的反向比例器组成,在末级的输出端引入了反馈网络Cf,Rf2,和Rf1,构成了交流电压串联负反馈电路。2.放大器的基本参数1)开环参数将反馈支路的A点与P点断开,与B点相连,便可得到开环时的放大电路。由此可测出开环时放大电路的电压放大倍数Av、输入电阻Ro、反馈网路的电压反馈系数Fv和通频带BW,即()1'1 2.51ovi i i i N o o L o f v o H L BW VA V V R R V V V R R V V F V f f ⎫=⎪⎪⎪⎪=⎪-⎪⎛⎫⎪⎪ ⎪=--⎬ ⎪⎪⎝⎭⎪⎪=⎪⎪⎪=-⎪⎪⎭2)闭环参数:通过开环时放大电路的电压放大倍数Av 、输入电阻Ri 、输入电阻Ro 、反馈网络的电压反馈系数Fv 和上下限频率,可以计算求得多级负反馈放大电路的闭环电压放大倍数Avf 、输入电阻Rif 、输出电阻Rof 和通频带BWf 的理论值,即负反馈放大电路的闭环特性的实际测量值为:上述所得结果与开环测试时由式(2.5-3)所计算的理论值近似相等,否则应找出原因后重新测量。在进行上述测试时,应保证各点信号波形与输入信号为同频率且不知真的正弦波,否则应找出原因,排除故障后再进行测量三.实验内容(1)实验电路图如下所示:(2)调节J1,使开关A端与B端相连,测试电路的开环基本特性。1)将信号发生器输出调为1kHz、20mv(峰峰值)正弦波,然后接入放大器的输入端,得到网络(未接入负载时)的波特图,如下图所示。2)保持输入信号不变,用示波器观察输入和输出的波形。3)接入负载RL,用示波器分别测出Vi,Vn,Vf,V o,记入表2.5-1中。Vi=19.997mvV o=3.988v4)将负载RL开路,保持输入电压Vi的大小不变,用示波器而出输出电压V’o,记入表2.5-1中。V’o=3.989v5)从波特图上读出放大器的上限频率fH和下限频率fL,记入表2.5-1中。Fl=1.154HzFH=59.78KHZ6)由上述测试结果,根据式(2.5-1)算出放大电路开环时的Av,Rf,Ro和Fv的值,并由式(2.5-3)计算出放大器闭环时Avf,Rif和Rof的理论值,记入表2.5-1中。(3)调节J1,使开关A端与P端相连,测试电路的闭环基本特性。1)将信号发生器输出调为1kHz、20mv(峰峰值)正弦波,然后接入放大器的输入端,得到网络的波特图,如下图所示。2)接入负载RL,逐渐增大信号Vi,使输出电压Vo达到开环时的测量值,然后用示波器分别测出Vi、Vn和Vf的值,记入表2.5-1中。3)将负载RL开路,保持输入电压Vi的大小不变,用示波器而出输出电压V’o,记入表2.5-1中。V’o=4.026v4)闭环时放大器的频率特性测试同开环时的测试,即重复开环测试(5)步。fH=104.307kHzfL=1.266Hz5)由上述结果并根据式(2.5-4)计算出闭环时的Avf、Rif、Rof和Fv的实际值,记入表2.5-1中。6)由波特图测出上、下限频率,计算通频带BW。表2.5-1 负反馈放大电路仿真测试数据Vi (mV)Vn(mV)Vf(mV)V’o(V)Vo(V)A’vA’vfAvAvfRiRif/kΩRoRof/kΩFv fH(kHz)fL(Hz)开环测试19.997 0 0.490 3.989 3.988 3理论计算200 164.9 10000 1000 90.59 1.104 闭环测试54.554 49.838 50.786 4.026 3.984四.实验结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告 多级级联放大器的研究
一、实验目的
1、掌握用仿真软件研究多级负反馈放大电路;
2、学习集成运算放大器的应用,掌握多级级联运放电路的工作特点;
3、研究负反馈对放大电路性能影响,掌握负反馈放大器性能指标测试方法。

二、实验原理
实验用电路图如下:
实验原理图
在电子电路中,将输出量的一部分或全部通过一定电路形式作用到输入回路,用来影响其输出量的措施称为反馈。

若反馈使得净输出量减小,称之为负反馈;反之,为征反馈。

引入交流负反馈之后,可以大大改善放大电路多方面性能:提高放大电路的稳定性、改变输入、输出阻抗、展宽通频带、减小非线性失真等。

实验电路图1由两级运放构成的反相比例运算器组成,在末级的输出端引入了反馈网络f C 、2f R 和1f R ,构成了交流电压串连负反馈。

放大器的基本参数
开环参数:将反馈支路的A 点与P 点断开、与B 点连接,便可得到开环时的放大电路。

由此可测出开环时放大电路的电压放大倍数V A 、输入电阻i R 、输出电阻o R 、反馈网络的电压反馈系数V F 和通频带BW ,即
1
'(1)o V
i
i i
i N
o o L o
f V
o H L V A V V R R V V V R R V V F V BW f
f ⎧
=⎪⎪⎪=⎪-⎪⎪⎪
=-⎨⎪⎪⎪=⎪
⎪=-⎪
⎪⎩
式中,N V 为N 点对地的交流电压;'o V 为负载开路时的输出电压;f V 为P 点对地的交流电压;H L f f 和分别为放大器的上下限频率。

闭环参数:通过开环时放大电路的电压放大系数V A 、输入电阻、输出电阻、反馈网络的电压反馈系数和上下限频率,可以计算求得多级级联负反馈放大电路的闭环电压放大倍数、输入电阻、输出电阻和通频带的理论值。

测量负反馈电路的闭环特性时,应将负反馈电路的A 点与B 点断开、与P 点相连以构成反馈网络。

此时需适当增大输入信号,使输出电压达到开环时的测量值,然后分别测出各量值的大小并与理论值比较找出误差的原因。

三、实验内容
1、调节J1,使开关9与10连接,测试电路开环基本特性
(1)将信号发生器输出调为1kHz 、20mV (峰峰值)正弦波,然后接入放大器输入端得到网络波特图:
开环波特图
(2)保持输入信号不变,用示波器观察输入和输出波形,如下:
开环时输入电压Vi、Vn
开环时反馈电压Vf、输出电压Vo
R,用示波器分别测出Vi、Vn、Vf、V o
(3)接入负载
L
V
(4)将负载开路,保持输入电压不变,用示波器测出输入电压'
o
(5)从波特图上读出上下限频率
(6)进行相关参数计算
2、调节J1,使开关9与另一端连接,测试电路开环基本特性
(1)将信号发生器输出调为1kHz、20mV(峰峰值)正弦波,然后接入放大器输入端得到网络波特图:
闭环波特图
R,逐渐增大输入信号Vi,使输出电压达到开环时的测量值,(2))接入负载
L
然后用示波器分别测出Vi、Vn、Vf
(3)将负载开路,保持输入电压Vi的大小不变,用示波器分别测出'V
o
(4)计算闭环的相关参数
(5)由波特图测出上下限频率,计算通频带
闭环时输入电压Vi、Vn
闭环时反馈电压Vf(、输出电压V o
四、实验结果
项目开环测试理论计算闭环测试Vi / mV 9.974 32.976 Vn / mV 1.740 22.595 Vf / mV 0.000361 20.399 V'o / V 1.984 1.720 Vo / V 1.641 1.634 A'v/A'vf 198.92 49.55 Av/Avf 164.53 53.8 52.16 Ri /Rif /(Ω)12113 36990.07 34765.7 Ro/Rof (Ω)982 281.65 277.4 Fv 0.0125 f1 / Hz 3.514 3.47 3.514 f2 / kHz 37.592 119 125.574 BW 23.628 119 125.57。

相关文档
最新文档