考研数学基础复习全书《知识点解析》讲义02
考研数学必备知识点总结
考研数学必备知识点总结一、数学分析1. 极限与连续2. 导数与微分3. 微分方程4. 积分5. 级数极限与连续是数学分析中最基础的概念之一。
在数学中,极限是指当自变量趋于某一数值时,函数的值趋于某一确定的值的过程。
而连续则是指在一定的区间内,函数在任意一点都有定义,并且在该点的极限等于该点的函数值。
导数与微分则是描述函数变化率的概念。
导数是函数在某一点的变化率,而微分则是用微分形式来表示函数的变化。
微分方程则是描述函数及其导数之间关系的方程,是数学分析的一个重要分支。
积分是对函数在一定区间内的求和过程。
而级数则是无穷多项的和,是一种特殊的积分形式。
二、线性代数1. 矩阵与行列式2. 线性方程组3. 线性空间与线性变换4. 特征值与特征向量5. 正交性与对称性线性代数是研究向量空间和线性映射的代数结构的一个分支。
矩阵与行列式是线性代数中最重要的概念之一,矩阵是一种数学工具,可以用来表示线性映射。
而行列式则是对矩阵的一种特殊运算,可以用来描述线性映射对向量空间的扭曲程度。
线性方程组是研究线性代数中的一类重要问题,是矩阵和向量的组合。
线性空间与线性变换是描述向量空间和线性映射的概念,是线性代数的核心概念。
特征值与特征向量是描述线性映射变换性质的重要概念。
正交性与对称性则是描述向量空间内向量之间的关系的重要概念。
三、概率论与数理统计1. 随机事件与概率2. 随机变量与概率分布3. 大数定律与中心极限定理4. 参数估计与假设检验5. 相关与回归分析概率论与数理统计是数学中重要的应用分支,研究随机现象的规律和性质。
随机事件与概率是描述随机现象与其概率发生的概念,是概率论的基础。
随机变量与概率分布则是描述随机现象的数学模型,是概率论与数理统计的核心概念。
大数定律与中心极限定理是描述随机现象大量重复实验的规律。
参数估计与假设检验是描述推断统计中统计量的性质和推断的方法。
相关与回归分析是描述随机变量之间关系的重要概念。
考研数学之线性代数讲义(考点知识点+概念定理总结)
收集自网络,不以任何盈利为目的。
欢迎考研的同学,下载学习。
线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1nxn=b1,a21x1+a22x2+…+a2nxn=b2,…………am1x1+am2x2+…+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,kn)(称为解向量),它满足:当每个方程中的未知数xi 都用ki替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b2=…=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n 型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12… a1na11a12… a1nb1A= a21 a22… a2n 和(A|β)= a21 a22… a2n b2…………………am1 am2… amnam1am2… amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,an的向量可表示成a 1(a 1,a 2,⋯ ,a n )或 a 2 , ┆ a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量; 每一列是一个m 维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为α1, α2,⋯ ,αn 时(它们都是表示为列的形式!)可记A =(α1, α2,⋯ ,αn ).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量α和β相等(记作α=β),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m ⨯n 的矩阵A 和B 可以相加(减),得到的和(差)仍是m ⨯n 矩阵,记作 A +B (A -B ),法则为对应元素相加(减).数乘: 一个m ⨯n 的矩阵A 与一个数c 可以相乘,乘积仍为m ⨯n 的矩阵,记作c A ,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:① 加法交换律: A +B =B +A .② 加法结合律: (A +B )+C =A +(B +C ).③ 加乘分配律: c(A +B )=c A +c B .(c+d)A =c A +d A . ④ 数乘结合律: c(d)A =(cd)A . ⑤ c A =0⇔ c=0 或A =0.转置:把一个m ⨯n 的矩阵A 行和列互换,得到的n ⨯m 的矩阵称为A 的转置,记作A T (或A '). 有以下规律: ① (A T )T = A . ② (A +B )T=A T+B T. ③ (c A )T =c A T .转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当α是列向量时, α T 表示行向量, 当α是行向量时,α T 表示列向量.向量组的线性组合:设α1, α2,…,αs 是一组n 维向量, c 1,c 2,…,c s 是一组数,则称 c 1α1+c 2α2+…+c s αs为α1, α2,…,αs 的(以c 1,c 2,…,c s 为系数的)线性组合.n 维向量组的线性组合也是n 维向量.(3) n 阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n 的矩阵也常常叫做n 阶矩阵.把n 阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法.对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|β),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲 行列式一.概念复习 1. 形式和意义形式:用n 2个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式: a 11 a 12 … a 1na 21 a 22 … a 2n… … … . a n1 a n2 … a nn如果行列式的列向量组为α1, α2, … ,αn ,则此行列式可表示为|α1, α2, … ,αn |. 意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 . a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式 a 11 a 12 … a 1na 21 a 22 … a 2n… … … a n1 a n2 … a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定τ(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项nnj j j a a a 2121所乘的是.)1()(21n j j jτ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********, τ(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值: a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n nnj j j j j j j j j a a a τ-∑… … … a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | . ② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量α=β+γ ,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量α换为β或γ 所得到的行列式.例如|α,β1+β2,γ |=|α,β1,γ |+|α,β2,γ |.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0. ⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0. ⑦ 如果A 与B 都是方阵(不必同阶),则 A * = A O =|A ||B |. O B * B范德蒙行列式:形如1 1 1 … 1 a 1 a2 a3 … a na 12 a 22 a 32 … a n 2… … … … a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于 ).(i j ji a a -∏<因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |β)作初等行变换,使得A 变为单位矩阵: (A |β)→(E |η), η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1 ① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1 a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2 例2 1 2 3 4 52 3 4 5 1 3 4 5 1 2 . 4 5 1 2 3 5 1 2 3 4例3 1+x 1 1 1 1 1 1+x 2 1 1 . 1 1 1+x 3 1 1 1 1 1+x 4例4 a 0 b c0 a c b . b c a 0 c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A=(α, γ1, γ2 ,γ3),B=(β, γ1, γ2 ,γ3),|A|=2, |B|=3 ,求|A+B| .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A11=-9,A12=3,A13=-1,A14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01) 2 2 2 20 -7 0 05 3 -2 23.几个n阶行列式两类爪形行列式及其值:例11 a1 a2a3… an-1anb1 c20 … 0 0证明 0 b2 c30 0 =11111(1)nii i i nib b ac c--+=-∑ .…………0 0 0 …b n-1 c n提示: 只用对第1行展开(M1i都可直接求出).例12 a0 a1a2… an-1anb1 c10 … 0 0证明 b2 0 c2… 0 0 =011111n ni i i i i niia c c c abc c-+==-∑∏ . …………b n 0 0 …0c n提示: 只用对第1行展开(M1i都可直接求出). 另一个常见的n阶行列式:例13 证明a+b b 0 … 0 0 a a+b b … 0 0… … … … = 11n n nn iii abab a b++-=-=-∑(当a ≠b 时).0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题 例14设有方程组x 1+x 2+x 3=a+b+c, ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等. (2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10). 例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3. 例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c). 例5 1-a+a 2-a 3+a 4-a 5. 例6 9,-6例7 1,-10. 例8 40.例9 x=0,y=3,z=-1. 例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12… a1nb11b12… b1sc11c12… c1sA= a21 a22... a2n B= b21 b22... b2s C=AB=c21 c22 (2)………………………a m1 am2… amn, bn1bn2… bns, cm1cm2… cms,则c ij =ai1b1j+ai2b2j+…+ainbnj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A≠0推不出B=C.(无左消去律)由BA=CA和A≠0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质: |AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E. 显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=am x m+am-1x m-1+…+a1x+a,对n阶矩阵A规定f(A)=a m A m+a m-1A m-1+…+ a1A+a0E.称为A的一个多项式.请特别注意在常数项上加单位矩阵E.乘法公式一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ). 二项展开式成立: BACB A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22 要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法: 形如A 1 0 ... 0 A = 0 A 2 0… … …0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 … 0 ,B = 0 B 2 … 0 … … … … … … 0 0 … A k 0 0 … B k 如果类型相同,即A i 和B i 阶数相等,则A 1B 1 0 0AB = 0 A 2B 2 … 0 .… … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组设A 是m ⨯n 矩阵B 是n ⨯s 矩阵. A 的列向量组为α1,α2,…,αn ,B 的列向量组为β1, β2,…,βs , AB 的列向量组为γ1, γ2,…,γs ,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):① AB 的每个列向量为:γi =A βi ,i=1,2,…,s. 即A (β1, β2,…,βs )= (A β1,A β2,…,A βs ).② β=(b 1,b 2,…,b n )T ,则A β= b 1α1+b 2α2+…+b n αn .应用这两个性质可以得到:如果βi=(b1i,b2i,…,b ni)T,则γi=AβI=b1iα1+b2iα2+…+b niαn.即:乘积矩阵AB的第i个列向量γi是A的列向量组α1, α2,…,αn的线性组合,组合系数就是B的第i个列向量βi的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i 个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设 B=(β1, β2,…,βs),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=βi,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.) “⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)→(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21… An1A*= A12 A22… A n2 =(A ij)T.………A 1n A2n… Amn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1 α=(1,-2,3) T,β=(1,-1/2,1/3)T, A=αβ T,求A6.讨论:(1)一般地,如果n阶矩阵A=αβ T,则A k=(βTα)k-1A=(tr(A ))k-1A .(2)乘法结合律的应用:遇到形如βTα的地方可把它当作数处理.① 1 -1 1ααT= -1 1 -1 ,求αTα.(2003一)1 -1 1②设α=(1,0,-1)T, A=ααT,求|a E-A n|.③ n维向量α=(a,0,⋯,0,a)T, a<0, A=E-ααT, A-1=E+a-1αα T,求a. (03三,四)④ n维向量α=(1/2,0,⋯,0,1/2)T, A=E-αα T, B=E+2αα T,求AB. (95四)⑤ A=E-αβ T,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)1 0 1例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.0 1 0例4 设A为3阶矩阵, α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3, Aα2=2α2+ α3, Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2005年数学四)例5设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.(05)例6 3维向量α1, α2, α3, β1, β2, β3满足α1+α3+2β1-β2=0, 3α1-α2+β1-β3=0, -α2+α3-β2+β3=0,已知|α1, α2, α3|=a,求| β1, β2, β3|.例7设A是3阶矩阵, α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα-2A2α.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设α1=(5,1,-5)T, α2=(1,-3,2)T, α3=(1,-2,1)T,矩阵A满足Aα1=(4,3) T, Aα2=(7,-8) T, Aα3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则 |A|=1.例15 设矩阵A=(a ij)3⨯3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设α是n维非零列向量,记A=E-ααT.证明(1) A2=A⇔αTα =1.(2) αTα =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例135A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔ A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19 E(i,j).例22 提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲 向量组的线性关系与秩一.概念复习1. 线性表示关系设α1,α2,…,αs 是一个n 维向量组.如果n 维向量β等于α1,α2,…,αs 的一个线性组合,就说β可以用α1,α2,…,αs 线性表示.如果n 维向量组β1, β2,…,βt 中的每一个都可以可以用α1,α2,…,αs 线性表示,就说向量β1,β2,…,βt 可以用α1,α2,…,αs 线性表示.判别“β是否可以用α1, α2,…,αs 线性表示? 表示方式是否唯一?”就是问:向量方程x 1α1+ x 2α2+…+x s αs =β是否有解?解是否唯一?用分量写出这个向量方程,就是以(α1, α2,…,αs |β)为增广矩阵的线性方程组.反之,判别“以(A |β)为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB 的每个列向量都可以表示为A 的列向量组的线性组合,从而AB 的列向量组可以用A 的列向量组线性表示;反之,如果向量组β1,β2,…,βt 可以用α1,α2,…,αs 线性表示,则矩阵(β1,β2,…,βt )等于矩阵(α1,α2,…,αs )和一个s ⨯t 矩阵C 的乘积. C 可以这样构造: 它的第i 个列向量就是βi 对α1,α2,…,αs 的分解系数(C 不是唯一的).向量组的线性表示关系有传递性,即如果向量组β1,β2,…,βt 可以用α1,α2,…,αs 线性表示,而α1,α2,…,αs 可以用γ1,γ2,…,γr 线性表示,则β1,β2,…,βt 可以用γ1,γ2,…,γr 线性表示.当向量组α1,α2,…,αs 和β1,β2,…,βt 互相都可以表示时,就说它们等价,并记作{α1,α2,…,αs }≅{β1,β2,…,βt }.等价关系也有传递性.2. 向量组的线性相关性(1) 定义(从三个方面看线性相关性)线性相关性是描述向量组内在关系的概念,它是讨论向量组α1, α2,…,αs 中有没有向量可以用其它的s-1个向量线性表示的问题.定义 设α1,α2,…,αs 是n 维向量组,如果存在不全为0的一组数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0, 则说α1,α2,…,αs 线性相关,否则(即要使得c 1α1+c 2α2+…+c s αs =0,必须c 1,c 2,…,c s 全为0)就说它们线性无关.于是, α1,α2,…,αs “线性相关还是无关”也就是向量方程x 1α1+ x 2α2+…+x s αs =0“有没有非零解”,也就是以(α1,α2,…,αs )为系数矩阵的齐次线性方程组有无非零解.当向量组中只有一个向量(s=1)时,它相关(无关)就是它是(不是)零向量. 两个向量的相关就是它们的对应分量成比例.(2) 性质① 当向量的个数s 大于维数n 时, α1, α2,…,αs 一定线性相关.。
考研复习辅导书 2
数学:基础阶段(3月——5月)0.2013年研究生入学考试数学考试大纲1.《高等数学(第六版)》同济大学主编高等教育出版社(上下册)《高等数学习题全解指南(第六版)》同济大学主编高等教育出版社(上下册)2.《工程数学—线性代数(第五版)》同济大学主编高等教育出版社《线性代数附册学习辅导与习题全解(第五版)》同济大学主编高等教育出版社或《线性代数(第二版)》居余马主编清华大学出版社《线性代数学习指南(第二版)》居余马主编清华大学出版社3.《概率论与数理统计(第四版)》浙江大学主编高等教育出版社《概率论与数理统计习题全解指南(第四版)》浙江大学主编高等教育出版社4.《考研数学焦点概念与性质》徐兵主编高等教育出版社5.《考研数学基础核心核心讲义(经济类)》陈文灯主编北京理工大学出版社(高等数学部分)6.《线性代数辅导讲义》李永乐主编西安交通大学出版社7.《概率论与数理统计讲义(基础篇)》姚孟臣主编机械工业出版社8.《数学基础过关660题(数学三)》李永乐主编西安交通大学出版社强化阶段(6月——8月)1.《数学复习全书(数学三)》李永乐李正元主编国家行政学院出版社或《数学复习全书(数学三)》李永乐王式安主编西安交通大学出版社2.《考研数学复习指南(经济类)》陈文灯主编北京理工大学出版社(微分中值定理等高等数学部分)3.《考研数学单选题解题方法与技巧》陈文灯主编北京理工大学出版社总结提高阶段(9月——11月)1.《数学十年真题解析(数学三)》李永乐主编国家行政学院出版社2.《数学全真模拟经典400题(数学三)》李永乐主编国家行政学院出版社模拟冲刺阶段(12月)1.《数学决胜冲刺6+2(数学三)》李永乐主编西安交通大学出版社2.《五年真题十套模拟(经济类)》陈文灯主编北京理工大学出版社3.《合肥工业大学超越考研最后五套题(数学三)》近三年英语:基础阶段(3月——5月)1.《新概念英语3(技能培养)》亚历山大何其莘主编外语教学与研究出版社《新概念英语3之全新全绎》周成刚主编西安交通大学出版社2.《考研英语词汇词根+联想记忆法(乱序版)》俞敏洪主编群言出版社3.《考研英语词汇速记宝典》徐绽主编海豚出版社4.《考研英语阅读理解150篇(基础训练)》曾鸣张剑主编世界图书出版中心强化阶段(6月——8月)1.《历年考研英语真题解析及复习思路(试卷版)》曾鸣张剑主编世界图书出版中心2.《考研英语阅读Part B全突破》张锦芯主编中国人民大学出版社3.《考研英语拆分与组合翻译法》唐静主编群言出版社4.《考研英语万能作文》王若平主编中航出版传媒有限责任公司总结提高阶段(9月——11月)1.《考研英语阅读理解150篇(提高冲刺)》曾鸣张剑主编世界图书出版中心2.《考研英语完形填空与填空式阅读:新题型》张销民主编群言出版社3.《考研英语冲刺热点作文50篇(狂背板)》曾鸣张剑主编世界图书出版中心模拟冲刺阶段(12月)1.《考研英语最后预测五套题》曾鸣张剑主编世界图书出版中心2.《考研英语最后冲刺五套题》新东方研发中心西安交通大学出版社政治:预习阶段(暑假)1.《考研政治序列之一要点精编》任汝芬主编西安交通大学出版社基础阶段(9月——10月)1.《考研政治考试大纲解析》(红宝书)教育部考试中心主编高等教育出版社2.《考研政治命题人1000题》肖秀荣主编北京航空航天大学出版社强化阶段(11月)1.《风中劲草考研政治冲刺背诵核心考点》杨杰主编学林出版社2.《政治基础过关2000题》陈先奎主编北京理工大学出版社(马克思主义哲学部分)3.《考研政治真题考点分析解析解题秘诀》米鹏主编中国政法大学出版社总结提高阶段阶段(12月)1.《考研政治命题人形式与政策及当代世界经济与政治核心预测》肖秀荣主编北京航空航天大学出版社2.《考研政治序列四之最后四套题》任汝芬主编西安交通大学出版社3.《考研政治命题人终极预测4套卷》肖秀荣主编北京航空航天大学出版社冲刺阶段(1月)1.《启航考研政治20天20题》北京启航主编中国市场出版社2.《考研政治分析题深度预测10题》田维彬主编北京航空航天大学出版社3.各个辅导班最后押题的分析题专业课准备阶段(3月——暑假前)1.《微观经济学(第七版)》平狄克主编中国人民大学出版社《微观经济学学习指导(第七版)》乔纳森汉密尔顿主编中国人民大学出版社《微观经济学(第7版)》平狄克主编清华大学出版社2.《微观经济学:现代观点(第八版)》范里安主编格致出版社《微观经济学:现代观点(第八版)练习册》伯格斯特尤主编格致出版社3.《管理学(第九版)》罗宾斯主编中国人民大学出版社《管理学学习指导(第九版)》考克斯主编中国人民大学出版社基础阶段(暑假——9月份)1.《管理学》张玉利主编南开大学出版社2004年2.《管理学》周三多主编复旦大学出版社3.《现代西方经济学教程(第二版)》微观经济学部分魏埙主编南开大学出版社4.《西方经济学(第一版)》微观经济学部分高鸿业主编中国人民大学出版社When you are old and grey and full of sleep,And nodding by the fire, take down this book,And slowly read, and dream of the soft lookYour eyes had once, and of their shadows deep;How many loved your moments of glad grace,And loved your beauty with love false or true,But one man loved the pilgrim soul in you,And loved the sorrows of your changing face;And bending down beside the glowing bars,Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。
考研数学基础复习全书《知识点解析》讲义01
考研数学基础复习全书《知识点解析》注重积累夯实基础紧扣大纲精准把握知识网络一目了然目录第一章函数极限与连续第二章一元函数微分学第三章一元函数积分学第四章微分方程第五章多元函数微分学第六章二重积分第七章无穷级数(数一,数三)第八章多元函数积分学(数一)第一章函数极限与连续考纲要求:1:理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2:了解函数的有界性,单调性,周期性和奇偶性。
3:理解复合函数及分段函数的概念,了解反函数:及隐函数的概念4:掌握基本初等函数的性质及图形,了解初等函数的概念5:理解极限的概念,理解函数左极限和右极限的概念以及函数极限存在与左,右极限之间的关系。
6:掌握极限的性质及四则运算法则。
7:掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8:理解无穷小量,无穷大量的概念掌握无穷小量的比较方法,会用等价无穷小量求极限9:理解函数连续性的概念(含左连续右连续),会判别函数间断点的类型。
10:了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性最大值最小值定理介值定理零点定理),并会应用这些性质知识结构:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧-∞→⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧第二类间断点第一类间断点间断点质闭区间上连续函数的性连续的定义连续连续单调有界准则夹逼准则、定积分定义限计算连续化,转化为函数极将极限的计算保号性有界性唯一性极限的性质极限运算的过程性语言定义极限的定义数列的极限泰勒公式计算极限的高级工具七种未定式极限化简先行极限的计算局部保号性局部有界性唯一性极限的性质极限运算的过程性语言定义六种趋向极限的定义函数的极限极限函数的性质比较重要的函数函数的概念函数n x n δεδε---具体内容:一:函数的概念与性质 1:函数的概念设y x 与是两个变量,中的每个值若对于是实数集的某个子集,D D x , 按照一定的法则f 有唯一的值y 与之对应,则称变量y 为变量x 的函数记作()x f y =。
考研数学大纲详解(教材分析)讲解
高等数学考研指定教材:同济大学数学系主编《高等数学》(上下册)(第六版)第一章函数与极限(7天)(考小题)学习内容复习知识点与对应习题大纲要求第一节:映射与函数(一般章节)函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.(集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看)习题1-1:4,5,6,7,8,9,13,15,16(重点)1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等第二节:数列的极限(一般章节)数列定义,数列极限的性质(唯一性、有界性、保号性 )(本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看)习题1-2:1第三节:函数的极限(一般章节)函数极限的基本性质(不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等) P33(例4,例5)(例7不用做,定理2,3的证明不用看,定理4不用看)习题1-3:1,2,3,4第四节:无穷大与无穷小(重要)无穷小与无穷大的定义,它们之间的关系,以及与极限的关系(无穷小重要,无穷大了解)(例2不用看,定理2不用证明)习题1-4:1,6第五节:极限的运算法则(掌握)极限的运算法则(6个定理以及一些推论)(注意运算法则的前提条件是否各自极限存在)(定理1,2的证明理解,推论1,2,3,定理6的证明不用看)P46(例3,例4),P47(例6)习题1-5:1,2,3,4,5(重点)第六节:极限存在准则(理解)两个重要极限(重要)两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限(准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看)P51(例1)习题1-6:1,2,4价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.第七节:无穷小的比较(重要)无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法(定理1,2的证明理解)P57(例1)P58(例5)习题1-7:全做第八节:函数的连续性与间断点(重要,基本必考小题)函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。
考研数学分析知识点梳理
考研数学分析知识点梳理数学分析是考研数学中的重要部分,也是许多考研学子最困惑的内容之一。
为了帮助大家更好地掌握数学分析的知识点,以下将对常见的数学分析知识点进行梳理。
本文按照数学分析的章节内容和考研的重点来划分,希望能帮助大家在备考中有所收获。
一、极限与连续1.数列极限数列极限是数学分析的基础,通过数列极限我们可以理解数学分析的许多概念。
例如极限的定义、数列极限的性质、夹逼准则、单调有界原理等。
2.函数极限函数极限是数学分析中的核心概念,包括无穷小量与无穷大量、函数极限的定义与性质、极限的四则运算法则等。
3.连续性连续性是数学分析中的重要概念,涉及到函数的连续性定义、连续函数的性质、间断点的分类、闭区间上连续函数的性质等。
4.一致连续性一致连续性是连续性的进一步推广,常用的证明方法有柯西收敛性和一致收敛性。
二、导数与微分1.导数的定义导数的定义是函数微分学的基础,涉及到导数的定义、可导与连续的关系、可导函数的性质等。
2.常见函数的导数常见函数的导数是考研数学中的重点,包括幂函数、指数函数、对数函数、三角函数等。
3.高阶导数与导数的应用高阶导数是导数的进一步推广,可以使用高阶导数求函数的极值、凹凸性、拐点等。
4.隐函数与参数方程隐函数与参数方程是函数的另一种表达形式,在求导过程中要注意相应的求导法则。
三、积分与微积分基本定理1.定积分定积分是微积分中的重要概念,包括定积分的定义、性质与运算法则、牛顿-莱布尼茨公式等。
2.不定积分不定积分是定积分的逆运算,包括不定积分的定义、性质与运算法则,常用的积分方法有换元积分法、分部积分法等。
3.微积分基本定理微积分基本定理将导数与积分联系起来,包括第一、第二微积分基本定理,以及与定积分相关的一些公式和性质。
四、级数1.数项级数数项级数是级数的基础,包括级数的定义、收敛与发散的判定、级数性质等。
2.幂级数幂级数是数学分析中的重要内容,包括幂级数的收敛半径、收敛区间、求和等。
2020考研数学高等数学基础讲义02 极限部分-2
考点:无穷小与无穷大1.无穷小的定义()()0000,,f x x x f x x x x x x x x +→→→→→∞如果在时极限为零,那么称为时的无穷小,当然,这里的可以是其他情形如等.定义1 23(1)有限个无穷小的和仍是无穷小;()有限个无穷小的积仍是无穷小;()有界函数与无穷小的乘积仍是无穷小.注:()()lim ,.f x A f x A αα=⇔=+其中是无穷小定理1(无穷小与极限的关系)()323112007lim sin cos ____.2x x x x x x x →+∞+++=⎡⎤⎣⎦+例(数三)2.无穷小的比较lim 0,lim 0,0lim 0,2lim 0,3lim 1,4lim 0,.k o c c k αβαββαβααββααββααβαββαα==≠===≠==≠设且(1)若则称是比的高阶无穷小,记为();()若则称与是同阶无穷小;()若则称与是等阶无穷小,记为;()若则称是的阶无穷小12,3,,.αααββααββγαγ等价无穷小具有以下性质()(自反性);()(对称性)若则;()(传递性)若则注:()()()()()()()()()()()()()222232235235222,.0;2.x o x o x o x o x o x o x x o x o x o x o x o x o x o x →⎡⎤⎣⎦±=±=⋅=⋅==例判断下列等式是否正确并说明理由()(1);(2)(3);(4);(5)()()()()()()()()()3232,0.x x f x x A f x x B f x x C f x x D f x x =+−→⎡⎤⎣⎦例设则当时,有____与是等价无穷小与同价但非等价无穷小是比高阶的无穷小是比低阶的无穷小3.无穷大的定义()()()00,00,0,,M X x x x X x f x f x M f x x x x δδ>><−<>>→→∞如果对于任意给定的正数(不论它多么大)总存在(或)对适合(或)的一切对应的函数值总满足那么称是(或)时的无穷大.定义2ln !,,0, 1.n n n n n a n n a αβαβ→∞∀>>时,有其中注:()()()()(),,110,.f x f x f x f x f x ≠在自变量的同一变化过程中如果为无穷大那么为无穷小;反之,如果为无穷小,且那么为无穷大定理2(无穷小与无穷小的关系)4.无穷大与无界的关系()00.x x x x f x M x x x x →→∞⇒⎧>∀⎨→→∞⇒⎩要求或的一切这是无穷大对成立要求或的某一这是无界()114sin 0,10x x x+→⎡⎤⎣⎦例证明函数在内无界,但时这函数不是无穷大.()5cos ,y x x x =−∞+∞→+∞⎡⎤⎣⎦例函数在内是否有界?这函数是否为时的无穷大?考点:极限的四则运算法则()()()()()()()()()()()()()()()lim ,lim ,lim lim lim lim lim lim lim lim 0.lim f x A g x B f x g x f x g x A B f x g x f x g x A Bf x f x A Bg x g x B==±=±=±⎡⎤⎣⎦=⋅=⋅⎡⎤⎣⎦==≠如果那么数列对应有以上运算法则.定理1注:()()()()()()()()()()()()()()()()1,,1lim ,lim lim 2lim lim lim 3lim lim lim 4lim lim lim f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x ⎡⎤⎣⎦±⎡⎤⎣⎦±⎡⎤⎣⎦⋅⎡⎤⎣⎦⋅⎡⎤⎣⎦例下列陈述中哪些是对的哪些是错的?()如果存在但不存在,那么不存在;()如果和都不存在,那么不存在;()如果存在,但不存在,那么不存在;()如果和都不存在,那么不存在.32212lim .53x x x x →−⎡⎤⎣⎦−+例求)322323310334231lim 2lim .09753133lim 4lim .11x x x x x x x x x x x x x x →→∞→+∞→−∞++⎡⎤⎣⎦−∞+−⎛⎫⋅∞−∞−∞− ⎪−−⎝⎭例求()(型);()(型)()(0型);()(型)()()()()()()()()4:1lim ,lim 0,lim 0,2lim 0,lim 0,lim 0.f x Ag x f x g x f x A f x g x g x ===⎡⎤⎣⎦=≠==例证明()若且则()若且则考点:极限存在准则1.夹逼准则{}{}{}{}10,,2lim lim .lim .n n n n n n n n n n n n n x y z N n N x y z x z a y y a →∞→∞→∞∃>>≤≤===如果数列,,满足以下条件:()从某项起,即当时有;()则数列有极限,且函数对应有以上夹逼准则.注:01:lim 1.x x x +→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦例1证明222111:lim 1.2n n n n n n πππ→∞⎛⎫+++=⎡⎤ ⎪⎣⎦+++⎝⎭例2证明12,,,0.m n a a a ≥⎡⎤⎣⎦例3求其中2.单调有界准则{}{},lim ,lim n n n n n n x x x x →∞→∞若数列单调增加且有上界,则极限存在;若数列单调减少且有下界,则极限存在.函数对应有以上单调有界准则.注:{}11112,1,2,.2n n n n x x x n x x +⎛⎫==+=⎡⎤ ⎪⎣⎦⎝⎭例4设(),证明数列有极限{}11342,1,2,.1n n n nx x x n x x ++===⎡⎤⎣⎦+例5设(),证明:数列有极限{}116,sin 1,2,,.n n n x x x n x π+<<==⎡⎤⎣⎦例设0()证明:数列有极限。
考研数学二知识点
考研数学二知识点数学二是考研数学的一部分,它涵盖了许多重要的知识点。
作为考生,我们需要熟练掌握这些知识点,以便在考试中取得好成绩。
下面将介绍一些数学二的重要知识点。
一、线性代数线性代数是数学中的一个重要分支,它研究向量空间和线性变换等概念。
在考研数学二中,我们经常会接触到矩阵、向量、行列式等内容。
矩阵运算是线性代数的基础,我们需要掌握矩阵的加法、减法、乘法等运算规则。
此外,行列式是解线性方程组的有力工具,我们需要熟悉行列式的性质和计算方法。
二、概率论与数理统计概率论与数理统计是应用数学中的重要学科,它研究随机现象的规律和统计方法。
在考研数学二中,我们需要掌握概率论的基本概念和常见概率分布,如二项分布、正态分布等。
此外,数理统计是数据处理和分析的重要工具,我们需要掌握抽样、参数估计和假设检验等统计方法。
三、微分方程微分方程是数学中的重要分支,它研究函数与其导数之间的关系。
在考研数学二中,我们需要熟悉一阶和二阶常微分方程的解法,如分离变量法、齐次线性微分方程的解法等。
此外,线性微分方程和常系数线性微分方程也是考研的重点内容,我们需要熟悉它们的解法和性质。
四、数学分析数学分析是数学的基础学科,它研究极限、连续和导数等概念。
在考研数学二中,我们需要掌握函数的极限和连续性,了解函数的导数和不定积分的定义和计算方法。
此外,泰勒展开式和微分中值定理也是考研的重点内容,我们需要熟悉它们的应用和证明方法。
总结起来,数学二是考研数学的一部分,它涵盖了线性代数、概率论与数理统计、微分方程和数学分析等内容。
我们需要熟练掌握这些知识点,以便在考试中取得好成绩。
掌握矩阵运算和行列式的性质,理解概率分布和统计方法,熟练解常微分方程和线性方程组,了解函数的极限和连续性,这些都是取得好成绩的关键。
所以,我们要利用考前的时间,加强对这些知识点的复习和巩固,不断提高自己的数学水平。
只有做到理论联系实际,灵活运用所学知识,我们才能在考试中取得优异的成绩。
考研数学之线性代数讲义(考点知识点+概念定理总结)
收集自网络,不以任何盈利为目的。
欢迎考研的同学,下载学习。
线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个45矩阵.对于上面的线性方程组,称矩阵a11 a12… a1n a11 a12… a1n b1A= a21 a22… a2n 和(A|β)= a21 a22… a2n b2…………………a m1 a m2… a mn a m1 a m2… a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2, ,a n的向量可表示成a1(a1,a2, ,a n)或 a2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1n矩阵,右边是n1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.) 一个m n的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为α1, α2, ,αn时(它们都是表示为列的形式!)可记A=(α1, α2, ,αn).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量α和β相等(记作α=β),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m n的矩阵A和B可以相加(减),得到的和(差)仍是m n矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个m n的矩阵A与一个数c可以相乘,乘积仍为m n的矩阵,记作c A,法则为A的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0 c=0 或A=0.转置:把一个m n的矩阵A行和列互换,得到的n m的矩阵称为A的转置,记作A T(或A).有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当α是列向量时, α T表示行向量, 当α是行向量时,α T表示列向量.向量组的线性组合:设α1, α2,…,αs是一组n维向量, c1,c2,…,c s是一组数,则称c1α1+c2α2+…+c sαs为α1, α2,…,αs的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|β),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵A是阶梯形矩阵.(B) A是上三角矩阵A是阶梯形矩阵.(C) A是上三角矩阵A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式:a11 a12 (1)a21 a22 (2)……… .a n1 a n2… a nn如果行列式的列向量组为α1, α2, … ,αn,则此行列式可表示为|α1, α2, … ,αn|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n阶矩阵A对应一个n阶行列式,记作|A|.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 .a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式a 11 a 12 … a 1na 21 a 22 … a 2n… … …a n1 a n2 … a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项. 所谓代数和是在求总和时每项先要乘+1或-1.规定τ(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 002323215634, τ(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n n nj j j j j j j j j a a a τ-∑ … … …a n1 a n2 … a nn这里∑n j j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | .② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量α=β+γ ,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量α换为β或γ 所得到的行列式.例如|α,β1+β2,γ |=|α,β1,γ |+|α,β2,γ |.④把两个行(列)向量交换, 行列式的值变号.⑤如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦如果A与B都是方阵(不必同阶),则A * = A O =|A||B|.O B * B范德蒙行列式:形如1 1 1 (1)a1 a2 a3 … a na12 a22 a32… a n2…………a1n-i a2n-i a3n-i… a n n-i的行列式(或其转置).它由a1,a2 ,a3,…,a n所决定,它的值等于因此范德蒙行列式不等于0 a1,a2 ,a3,…,a n两两不同.对于元素有规律的行列式(包括n阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D1/D, D2/D,,D n/D),这里D是系数行列式的值, D i是把系数行列式的第i个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A|β)作初等行变换,使得A变为单位矩阵:(A|β)(E|η),η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A|0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例3 1+x1 1 1 11 1+x2 1 1 .1 1 1+x3 11 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x 3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 3 3x 2-29 x 3 6 -6例7 求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A =(α, γ1, γ2 ,γ3),B =(β, γ1, γ2 ,γ3),|A | =2, |B |=3 ,求|A +B | .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n ii i i i n i i a c c c a b c c -+==-∑∏.… … … …b n 0 0 … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i i i a b a b a b ++-=-=-∑(当a b 时).0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10).例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a 2-a 3+a 4-a 5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲 矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A 的列数和B 的行数相等时,和A 和B 可以相乘,乘积记作AB . AB 的行数和A 相等,列数和B 相等. AB 的(i,j)位元素等于A 的第i 个行向量和B 的第j 个列向量(维数相同)对应分量乘积之和. 设 a 11 a 12 … a 1n b 11 b 12 … b 1s c 11 c 12 … c 1sA = a 21 a 22 … a 2nB = b 21 b 22 … b 2sC =AB = c 21 c 22 … c 2s… … … … … … … … …a m1 a m2 … a mn ,b n1 b n2 … b ns ,c m1 c m2 … c ms ,则c ij =a i1b 1j +a i2b 2j +…+a in b nj .矩阵的乘法在规则上与数的乘法有不同:① 矩阵乘法有条件.② 矩阵乘法无交换律.③ 矩阵乘法无消去律,即一般地由AB =0推不出A =0或B =0.由AB =AC 和A 0推不出B =C .(无左消去律)由BA =CA 和A 0推不出B =C . (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:① 加乘分配律 A (B +C )= AB +AC , (A +B )C =AC +BC .② 数乘性质 (c A )B =c(AB ).③ 结合律 (AB )C = A (BC ).④ (AB )T =B T A T .2. n 阶矩阵的方幂和多项式任何两个n 阶矩阵A 和B 都可以相乘,乘积AB 仍是n 阶矩阵.并且有行列式性质:|AB |=|A ||B |.如果AB =BA ,则说A 和B 可交换.方幂 设k 是正整数, n 阶矩阵A 的k 次方幂A k 即k 个A 的连乘积.规定A 0=E .显然A 的任何两个方幂都是可交换的,并且方幂运算符合指数法则:① A k A h = A k+h .② (A k )h = A kh .但是一般地(AB )k 和A k B k 不一定相等!n 阶矩阵的多项式设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A B )2=A 22AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则 A 11 A 12 B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22A 21 A 22B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等.准对角矩阵的乘法:形如A 1 0 0A = 0 A 2 0… … …0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 ... 0 , B = 0 B 2 0… … … … … …0 0 … A k 0 0 … B k如果类型相同,即A i 和B i 阶数相等,则A 1B 1 0 0AB = 0 A 2B 2 … 0 .… … …00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是m n矩阵B是n s矩阵. A的列向量组为α1,α2,…,αn,B的列向量组为β1, β2,…,βs, AB的列向量组为γ1, γ2,…,γs,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):①AB的每个列向量为:γi=Aβi,i=1,2,…,s.即A(β1, β2,…,βs)=(Aβ1,Aβ2,…,Aβs).②β=(b1,b2,…,b n)T,则Aβ= b1α1+b2α2+…+b nαn.应用这两个性质可以得到:如果βi=(b1i,b2i,…,b ni)T,则γi=AβI=b1iα1+b2iα2+…+b niαn.即:乘积矩阵AB的第i个列向量γi是A的列向量组α1, α2,…,αn的线性组合,组合系数就是B的第i个列向量βi的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ⎤®↵X !Ξδ矩阵的各行向量; 用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ⎤®↵X !Ξδ矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(,,), C=(+2-,3-+,+2),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E (i,j(c))(i j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设 B=(β1, β2,…,βs),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=βi,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB =0B=0;AB=AC B=C.(左消去律);BA=0B=0;BA=CA B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C B=A-1C. BA=C B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆|A|0.证明“”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|0. (并且|A-1|=|A|-1.)“”因为|A|0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21… A n1A*= A12 A22… A n2 =(A ij)T.………A1n A2n… A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1 α=(1,-2,3) T,β=(1,-1/2,1/3)T, A=αβ T,求A6.讨论:(1)一般地,如果n阶矩阵A=αβ T,则A k=(βTα)k-1A=(tr(A ))k-1A .(2)乘法结合律的应用:遇到形如βTα的地方可把它当作数处理.① 1 -1 1ααT= -1 1 -1 ,求αTα.(2003一)1 -1 1②设α=(1,0,-1)T, A=ααT,求|a E-A n|.③ n维向量α=(a,0,,0,a)T, a<0, A=E-ααT, A-1=E+a-1αα T,求a. (03三,四)④ n维向量α=(1/2,0,,0,1/2)T, A=E-αα T, B=E+2αα T,求AB. (95四)⑤ A=E-αβ T,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)1 0 1例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.0 1 0例4 −A为3阶矩阵, α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3, Aα2=2α2+ α3, Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2005年数学四)例5设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.(05)例6 3维向量α1, α2, α3, β1, β2, β3满足α1+α3+2β1-β2=0, 3α1-α2+β1-β3=0, -α2+α3-β2+β3=0,已知|α1, α2, α3|=a,求| β1, β2, β3|.例7设A是3阶矩阵, α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα-2A2α.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设α1=(5,1,-5)T, α2=(1,-3,2)T, α3=(1,-2,1)T,矩阵A满足Aα1=(4,3) T, Aα2=(7,-8) T, Aα3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则 |A|=1.例15 设矩阵A=(a ij)33满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ. 例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设α是n维非零列向量,记A=E-ααT.证明(1) A2=AαTα =1.(2) αTα =1 A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆 E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab0,证明(1) A-b E和B-a E都可逆.(2) A可逆 B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例135A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-E A n-2(A2-E)=A2-E A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19 E(i,j).例22 提示:用克莱姆法则.例如证明,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设α1,α2,…,αs是一个n维向量组.如果n维向量β等于α1,α2,…,αs的一个线性组合,就说β可以用α1,α2,…,αs线性表示.如果n维向量组β1, β2,…,βt -∉ *⎬⎪∑可以用α1,α2,…,αs线性表示,就说向量β1,β2,…,βt可以用α1,α2,…,αs线性表示.判别“β是否可以用α1, α2,…,αs线性表示? 表示方式是否唯一?”就是问:向量方程x1α1+ x2α2+…+x sαs=β是否有解?解是否唯一?用分量写出这个向量方程,就是以(α1, α2,…,αs |β):⎡5↵∍≠⊗.反之,判别“以(A|β):⎡5↵∍≠⊗/&©©/&/ ”的问题又可转化为“β是否可以用A的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB的每个列向量都可以表示为A的列向量组的线性组合,从而AB的列向量组可以用A的列向量组线性表示;反之,如果向量组β1,β2,…,βt可以用α1,α2,…,αs 线性表示,则矩阵(β1,β2,…,βt)等于矩阵(α1,α2,…,αs)和一个s t矩阵C的乘积. C可以这样构造: 它的第i 个列向量就是βi对α1,α2,…,αs的分解系数(C不是唯一的).向量组的线性表示关系有传递性,即如果向量组β1,β2,…,βt可以用α1,α2,…,αs线性表示,而α1,α2,…,αs 可以用1,2,…,r线性表示,则β1,β2,…,βt可以用1,2,…,r线性表示.当向量组α1,α2,…,αs β1,β2,…,βt互相都可以表示时,就说它们等价,ϖ︒∴{α1,α2,…,αs }≅{β1,β2,…,βt}.等价关系也有传递性.2. 向量组的线性相关性(1) 定义(从三个方面看线性相关性)线性相关性是描述向量组内在关系的概念,它是讨论向量组α1, α2,…,αs -ϒ∉⎪∑(ϖs-1个向量线性表。
李永乐《考研数学复习全书基础篇》
再次,这本书的目录还注重前后和知识整合。在每个部分的开头部分,都会 有一个总体的知识框架图,帮助学生了解该部分所有知识点之间的关系。同时, 在每个章节的后面,都会设置一定数量的习题,帮助学生检验自己对本章知识的 掌握程度。这些习题不仅涵盖了各种题型,而且难度适中,既有对基础知识的考 察,也有对综合能力的考察,使得学生能够在复习过程中得到全面的锻炼。
这本书的目录还强调应用和实践。每个部分的最后都会设置一个或多个实际 应用案例,这些案例不仅涉及到各个章节的知识点,而且与实际生活密切相关。 例如在概率论与数理统计部分的设置了一个关于数据分析和预测的案例,这个案 例需要学生运用所学的概率论、随机变量和统计估计等知识进行分析和解答。这 样的目录设置不仅帮助学生巩固所学知识,而且提高了学生运用数学知识解决实 际问题的能力。
对于求解多元函数最值的方法,作者们总结出了极值点附近函数值的变化趋 势、无条件极值和条件极值等各种情况的方法和技巧,使考生们能够全面掌握求 解最值问题的能力。
在概率统计部分,作者们详细讲解了各种概率分布的性质、计算概率的方法 以及统计量的分布等知识。其中,对于古典概型、几何概型、条件概率、独立性 等概念的讲解非常透彻,并且例题丰富,非常有利于考生掌握概率统计知识。
内容摘要
在线性代数部分,本书从矩阵、行列式、向量、线性方程组等方面进行了详细的讲解,通过具体 的例题和练习题帮助考生理解和掌握线性代数的核心概念和方法。同时,本书还对线性代数的应 用进行了详细的介绍,如线性变换、特征向量、矩阵的对角化等。 在概率论与数理统计部分,本书详细讲解了随机事件、随机变量、概率分布、数理期望、方差、 协方差等基本概念和理论。通过大量的例题和练习题,帮助考生理解和掌握概率论与数理统计的 基本方法和应用。 《李永乐《考研数学复习全书基础篇》》是一本非常实用的数学参考书,对于准备考研的考生来 说是一本必备的参考书。这本书不仅全面系统地讲解了考研数学的基础知识,还通过大量的例题 和练习题帮助考生理解和掌握这些知识。如果大家正在准备考研数学,那么这本书是必读的。
考研数学二知识点总结
考研数学二知识点总结考研数学二在考研数学中占据着重要的地位,对于很多考生来说,掌握好数学二的知识点是取得理想成绩的关键。
以下是对考研数学二主要知识点的详细总结。
一、高等数学1、函数、极限、连续函数的概念及性质,包括定义域、值域、单调性、奇偶性、周期性等。
极限的定义、性质及计算方法,如四则运算、洛必达法则、两个重要极限等。
连续的概念及连续函数的性质,包括零点定理、介值定理等。
2、一元函数微分学导数的定义、几何意义及基本公式。
求导法则,如四则运算、复合函数求导、反函数求导等。
微分的定义及应用。
函数的单调性、极值、凹凸性的判定及应用。
3、一元函数积分学不定积分的概念、性质及基本积分公式。
不定积分的换元法、分部积分法。
定积分的定义、性质及计算,包括牛顿莱布尼茨公式。
定积分的应用,如求平面图形的面积、旋转体的体积、弧长等。
4、常微分方程常微分方程的基本概念、类型及解法。
一阶线性微分方程、可分离变量的微分方程、齐次方程等的解法。
二阶常系数线性微分方程的解法。
5、多元函数微分学多元函数的概念、极限、连续。
偏导数的定义、计算及几何意义。
全微分的概念及计算。
多元函数的极值、条件极值的求解。
6、二重积分二重积分的概念、性质及计算方法,包括直角坐标下和极坐标下的计算。
二、线性代数1、行列式行列式的定义、性质及计算。
行列式按行(列)展开定理。
2、矩阵矩阵的概念、运算,包括加法、乘法、数乘等。
矩阵的逆、伴随矩阵。
矩阵的秩的概念及求法。
3、向量向量的概念、线性表示、线性相关与线性无关。
向量组的秩。
4、线性方程组线性方程组的解的判定、求解。
齐次线性方程组的基础解系。
非齐次线性方程组解的结构。
5、矩阵的特征值和特征向量特征值和特征向量的概念及计算。
相似矩阵的概念及性质。
矩阵可对角化的条件及对角化的方法。
6、二次型二次型的概念、标准形、规范形。
合同矩阵的概念及性质。
正定二次型的判定。
对于考研数学二的复习,不仅要理解和掌握这些知识点,还要通过大量的练习来提高解题能力。
考研数学之高等数学讲义第一章(考点知识点概念定理总结)
高等数学讲义目录第一章函数、极限、连续 (1)第二章一元函数微分学 (24)第三章一元函数积分学 (49)第四章常微分方程 (70)第五章向量代数与空间解析几何 (82)第六章多元函数微分学 (92)第七章多元函数积分学 (107)第八章无穷级数(数一和数三) (129)第一章 函数、极限、连续§1.1 函数(甲) 内容要点一、函数的概念1.函数的定义 2.分段函数3.反函数 4.隐函数二、基本初等函数的概念、性质和图象三、复合函数与初等函数四、考研数学中常出现的非初等函数1.用极限表示的函数(1) )(lim x f y n n ∞→= (2) ),(lim x t f y xt →= 2.用变上、下限积分表示的函数(1) ⎰=x a dt t f y )( 其中)(t f 连续,则)(x f dx dy = (2) ⎰=)()(21)(x x dt t f y ϕϕ 其中)(),(21x x ϕϕ可导,)(t f 连续, 则2211[()]()[()]()dy f x x f x x dxϕϕϕϕ''=- 五、函数的几种性质1. 有界性:设函数)(x f y =在X 内有定义,若存在正数M ,使X x ∈都有M x f ≤)(,则称)(x f 在X 上是有界的。
2. 奇偶性:设区间X 关于原点对称,若对X x ∈,都有)()(x f x f -=-,则称)(x f 在X 上是奇函数。
若对X x ∈,都有()()f x f x -=,则称)(x f 在X 上是偶函数,奇函数的图象关于原点对称;偶函数图象关于y 轴对称。
3. 单调性:设)(x f 在X 上有定义,若对任意X x X x ∈∈21,,21x x <都有)()(21x f x f <)]()([21x f x f >则称)(x f 在X 上是单调增加的[单调减少的];若对任意1x X ∈,2,x X ∈12x x <都有1212()()[()()]f x f x f x f x ≤≥,则称)(x f 在X 上是单调不减[单调不增](注意:有些书上把这里单调增加称为严格单调增加;把这里单调不减称为单调增加。
考研数学各章节重要知识点
会求平面曲线的切线方程和法线方程
导数的四则运算公式反函数的求导公式复合函数的求导法则
基本初等函数的导数公式分段函数的求导
高阶导数n阶导数的求法(归纳法,莱布尼兹公式)
隐函数的求导方法,对数求导法
函数微分的定义,几何意义基本初等函数的微分公式
微分运算法则,微分形式不变性
平面方程 平面与平面夹角以及平行、垂直的条件点到平面的距离
直线方程 平面与直线、直线与直线的夹角以及平行、垂直的条件点到直线的距离
第九章多元函数微分法及其应用
多元函数的概念二元函数的几何意义
二元函数的极限与连续的概念有界闭区域上二元连续函数的性质
多元函数偏导数的概念与计算高阶偏导数的计算(重点是二阶偏导数的计算)
曲面的面积、质心、转动惯量引力
第十一章曲线积分与曲面积分
对弧长的曲线积分的概念、性质和计算方法
对坐标的曲线积分的概念、性质和计算方法两类曲线积分之间的关系
格林公式平面曲线积分与路径无关的充分必要条件 二元函数全微分的原函数
对面积的曲面积分的概念、性质和计算方法
对坐标的曲面积分的概念、性质和计算方法两类曲面积分之间的联系
判断函数的连续性和间断点的类型
连续函数的、和、差、积、商的连续性反函数与复合函数的连续性
初等函数的连续性
有界性与最大值最小值定理
零点定理与介值定理(零点定理对于证明根的存在是非常重要的一种方法)
第二章导数与微分
导数的定义、几何意义单侧与双侧可导的关系可导与连续之间的关系
函数的可导性,导函数奇偶函数与周期函数的导数的性质
第八章假设检验
显著性检验假设检验的两类错误假设检验的相关概念
考研数学讲义
第一部分第一章集合与映射§1.集合§2.映射与函数本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。
第二章数列极限§1.实数系的连续性§2.数列极限§3.无穷大量§4.收敛准则本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。
第三章函数极限与连续函数§1.函数极限§2.连续函数§3.无穷小量与无穷大量的阶§4.闭区间上的连续函数本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。
第四章微分§1.微分和导数§2.导数的意义和性质§3.导数四则运算和反函数求导法则§4.复合函数求导法则及其应用§5.高阶导数和高阶微分本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。
第五章微分中值定理及其应用§1.微分中值定理§2.L'Hospital法则§3.插值多项式和Taylor公式§4.函数的Taylor公式及其应用§5.应用举例§6.函数方程的近似求解本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。
第六章不定积分§1.不定积分的概念和运算法则§2.换元积分法和分部积分法§3.有理函数的不定积分及其应用本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。
考研数学一大纲解读数学分析部分重点概念解析
考研数学一大纲解读数学分析部分重点概念解析考研数学一大纲解读数学分析部分重要概念解析数学分析是考研数学一科目中的重要内容之一,它对于数学基础的掌握和问题解决能力的培养具有关键作用。
理解和掌握数学分析部分的重要概念,对于考研数学的学习和备考都十分重要。
本文将解读考研数学一大纲中数学分析部分的重点概念,帮助考生们更好地理解和应用这些概念。
一、极限与连续极限与连续是数学分析的基础概念,也是考研数学一中的重要内容。
在数学分析中,极限是指函数在某一点附近逼近某个值的过程。
在大纲中,关于极限的内容包括极限的定义、极限存在的判定和常用的极限运算法则等。
极限的定义是数学分析中最基础的概念之一,它将极限与函数的取值和自变量的趋势联系起来。
通过理解和掌握极限的定义,可以准确描述函数在某一点处的性质以及函数在整个定义域内的行为。
在极限存在的判定中,我们需要注意连续函数和间断点的概念。
连续函数是指在其定义域内,函数的极限等于函数在该点的取值。
间断点则是指函数在某一点处不满足连续的条件,可以分为可去间断点、跳跃间断点和无穷间断点等。
二、导数与微分导数是数学分析中研究函数的变化率和增减性的重要概念。
在大纲中,导数的定义、导数的运算法则以及常用的导数公式是考查的重点。
导数的定义是指函数在某一点处的变化率或者切线斜率。
导数的运算法则包括和差积商法则、导数与函数的四则运算法则以及复合函数求导法则。
这些运算法则是理解函数的变化和刻画函数性质的基础。
微分是导数的一个重要应用,它通过导数计算函数在某一点附近的近似变化。
微分在数学中有广泛的应用,例如在物理学中描述运动、在经济学中建立数学模型等。
三、不定积分与定积分不定积分和定积分是数学分析中研究函数与曲线的重要工具。
在大纲中,不定积分的定义、基本积分表和常用的积分方法是考查的重点。
不定积分是指求解一个函数的原函数的过程。
在不定积分的计算中,需要掌握基本积分表和常用的积分方法,例如换元积分法、分部积分法等。
历年考研数学高等数学基础讲义
考研数学高等数学基础讲义目录第一讲极限 (1)第二讲高等数学的基本概念串讲 (9)第三讲高等数学的基本计算串讲 (13)第四讲高等数学的基本定理串讲 (24)第五讲微分方程 (27)第六讲多元函数微积分初步 (29)1 第一讲 极限核心考点概述1.极限的定义2.极限的性质3.极限的计算4.连续与间断内容展开 一、极限的定义1. lim 是什么? lim 是什么?x →∙n →∞(1)lim 的情况:x →∙①“ x → ∙ ”代表六种情形: x → x , x → x +, x → x -, x → ∞, x → +∞, x → -∞②函数极限运算的过程性——必须保证在作极限运算的过程中函数处处有定义,否则极限过程便无从谈起,于是极限就不会存在了。
比如下面这个例子:sinx sin 1 x【例】计算lim x →0. x sin 1x事实上,在 x = 0 点的任一小的去心邻域内,总有点 x = → 0(| k | 为充分大的正整数),k πsin x s in 1 sin x s in 1 x x 使 在该点没有定义,故lim不存在. x sin 1 x x →0x sin 1x(2)lim 是什么?n →∞2.极限的定义(1)函数极限的定义:lim f (x ) = A ⇔ ∀ε > 0, ∃δ > 0, 当0 < x →x 0x - x 0< δ 时,恒有f (x ) - A < ε1n n12注:趋向方式六种(2)数列极限定义:lim x = a ⇔ ∀ε > 0, ∃N > 0, 当n > N 时,恒有 x - a < ε n →∞注:趋向方式只有一种【例】以下三个说法,(1)“ ∀ε > 0 ,∃X > 0 ,当 x > X 时,恒有件;εf (x ) - A < e 10”是“ lim x →+∞f (x ) = A ”的充要条( 2 )“ ∀ 正整数 N , ∃ 正整数 K ,当 0 <“ lim f (x ) = A ”的充要条件;x →x 0x - x 0 ≤ K时,恒有 f (x ) - A ≤ 1 ” 是 2N(3)“ ∀ε ∈ (0,1) , ∃ 正整数 N ,当n ≥ N 时,恒有| x n - a |≤ 2ε ”是“数列{x n } 收敛于a ” 的充要条件;正确的个数为()(A )0 (B )1(C )2(D )3二、极限的性质1.唯一性(1) lim e x= ∞, lim e x= 0 ,(2)limsin x 不存在(3)lim arctan x 不存在(4)lim [x ]x →+∞x →-∞x →0xx →∞x →0不存在1- π e x 1【例】设k 为常数,且 I = lim x →0+k ⋅ arctan 存在,求 k 的值,并计算极限 I 。
2020考研数学高等数学基础讲义第二讲讲义(上)
(csc狓)′ =-csc狓cot狓
(arcsin狓)′ = 1 槡1-狓2
(arccos狓)′ =- 1 槡1-狓2
(arctan狓)′
=
1 1+狓2
(arccot狓)′ =-1+1狓2
(ln(狓+ 槡狓2+1))′ = 1 槡狓2 +1
(ln(狓+ 槡狓2-1))′ = 1 槡狓2 -1
— 44 —
[ln(狓+1)](狀)= (-1)狀-1·((狀1-+狓1))狀!,狓 >-1
烄 1 烌(狀) 烆狓+犪烎
=
(-1)狀·
狀! (狓+犪)狀+1
求下列参数方程所确定的函数的三阶导数dd狓3狔3:
烄狓 =ln(1+狋2),
烅
烆狔 =狋-arctan狋.
【分析】
— 51 —
(6)高阶导数
① 高阶求导 烄(狌±狏)(狀) =狌(狀)±狏(狀)
狀
∑ (狌狏)(狀) =
烅
狌 狏 C犽 (狀-犽) (犽) 狀 犽=0
=狌(狀)狏+狀狌(狀-1)狏′
— 40 —
【例3】[张宇带你学高等数学·上册 P54第8题]
设犳(狓)可 导,犉(狓)= 犳(狓)(1+狘sin狓狘),则 犳(0)= 0 是
犉(狓)在狓 =0处可导的( ).
(A)充分必要条件
(B)充分条件但非必要条件
(C)必要条件但非充分条件 (D)既非充分条件又非必要条件
【分析】
— 41 —
求导,称为对数求导数. 【例1】[张宇带你学高等数学·上册 P69第4(3)题] 用对数求导法求下列函数的导数:
【分析】
狔 = 槡狓+(狓2+(31-)5狓)4.
— 48 —
【例2】[张宇带你学高等数学·上册 P69第4(4)题] 用对数求导法求下列函数的导数:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元函数积分学 考纲要求:(1)理解原函数的概念,理解不定积分和定积分的概念(2)掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定 理,掌握换元积分法与分部积分法(3)会求有理函数 三角函数有理式和简单的无理函数的积分(数一数二要求 数三参考)(4)理解积分上限函数,会求它的导数,掌握牛顿-莱布尼茨公式 (5)了解反函数的概念,会计算反常积分(6)掌握用定积分表达和计算一些几何量和物理量(平面图形的面积,平面曲 线的弧长, 旋转体的体积及侧面积,平行截面面积为已知的立体体积,功, 引力,压力,质心,形心等)及函数的平均值(数一,数二),会利用定积 分计算平面图形的面积,旋转体的体积和函数的平均值。
会利用定积分求 解简单的经济应用问题。
(数三)知识结构框架:⎪⎪⎩⎪⎪⎨⎧反常积分变限积分定积分原函数与不定积分概念⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧华里士公式周期性化简计算几何意义计算;分部积分积分表:凑;第二换元定积分的计算简单无理式积分数有理式积分有理函数积分;三角函部积分法第二类换元积分法;分基本积分表:凑微分法不定积分的计算计算⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧经济应用(数三)物理应用(数一数二)二)弧长,侧面积(数一数体体积平面图形的面积和旋转几何应用应用一元函数积分学的概念1.原函数:如果在区间I 上,可导函数函数为的)(导x F ()x f ,即I x ∈∀,都有)()(x f x F ='成立,则称)(x F 是)(x f 在区间I 上的一个 原函数.注:原函数必须指明是函数在哪个区间上的原函数。
定理:若()()()必有无穷多个原函数则上有一个原函数x f x F x f ,在区间 定理:()()的全体原函数函数族包括了x f C x F +对任意常数C,形如 2.不定积分:函数)(x f 在区间I 上的所有原函数称为)(x f 的不定积分,记为⎰dx x f )(,即C x F dx x f +=⎰)()(.例1:设函数()x f 在()∞+∞,-上连续,则()=⎰dx x f d ()()x f A :()dx x f B )( ()()C x f C + ()()dx x f D '答案:B例2:若()()有一个原函数是()则的导函数是x f x x f ,sec 2 ()x A cos ln 1- ()x B sin ln 1- ()x C sin 1+ ()x D cos 1-答案:A2:定积分定义:设函数()x f 在区间[]b a ,上有界,将[]b a ,任意分成n 个子区间[]i i x x ,1-, 分点为11210,---=∆=<<<=i i i n n x x x b x x x x x a 为该小区间的长度, 在每个小区间[]i i x x ,1-上任意取一点i ξ,对()()()i ni i i i x f n i x f ∆=∆∑=13,2,1ξξ求和 ,记{}i ni x ∆=≤≤1max λ,若对[]b a ,的 任意分法,()i ni i x f ∆∑=→1lim ξλ极限存在,则称此极限为()x f 在区间[]b a ,上的定积分,记为()dx x f b a⎰,即定积分()()i ni i bax f dx x f ∆=∑⎰=→1lim ξλ可积的条件:例3 ⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2224211lim答案:dx x x⎰++10211例4:∑∑==∞→ni nj n n ij 114lim答案:41例5:()()=++∑∑==∞→ni nj n j n i n n1122lim答案:()()dy y dx x ⎰⎰++102101111定积分的几何意义若0)(≥x f ,则dx x f ba ⎰)(表示以曲线)(x f y =、两直线b x a x ==,与x 轴所围成的曲边梯形的面积. 若0)(≤x f ,则dx x f ba ⎰)(表示以曲线)(x f y =、两直线b x a x ==,与x 所围成的曲边梯形的面积的负值 若)(x f 在[]b a ,上有正有负,则dx x f ba ⎰)(表示曲边梯形的面积的代数和,在0)(≥x f 部分,取“+”,在0)(≤x f 部分,取“-”定积分的性质:当()()()0.==-=<⎰⎰⎰bababadx x f b a dx x f dx x f a b 时,特别的,时,约定(1)⎰-=baa b dx 1(2)[]⎰⎰⎰±=±b ab abadx x g k dx x f k dx x g k x f k )()()()(2121(3)⎰⎰⎰∀+=b aabc dx x f dx x f dx x f c c,)()()((4)在[]b a ,上,)()(x g x f ≤,则⎰⎰≤b abadx x g dx x f )()(特别地⎰⎰≤babadx x f dx x f )()((5)Mm ,是)(x f 在[]b a ,上的最小值与最大值,则⎰-≤≤-b aa b M dx x f a b m )()()((6)积分中值定理:设函数()x f 在区间[]b a ,上连续,则存在[]b a ,∈ξ,使得()()()a b f dx x f ba -=⎰ξ3:变限积分:设函数()x f 在区间[]b a ,上连续,并且设x 为[]b a ,上的一点,考察()x f 在部分区间[]x a ,上的定积分()dx x f xa ⎰首先,由于()x f 在区间[]x a ,上仍旧连续,因此这个定积分存在。
这里x 即表示定积分的上限,又表示积分变量。
因为积分与字母记法无关,所以上面的定积分也可以写成()dt t f xa ⎰如果上限x 在区间[]b a ,上任意变动,那么对于每一个取定的x 值,定积分有一个对应的值,所以在[]b a ,上定义了一个函数,记为()x F :()()dt t f x F xa ⎰=变限积分函数性质(1))(x f 在[]b a ,上可积⎰=⇒xa dt t f x F )()(在[]b a ,上连续, (2))(x f 在[]b a ,上连续⎰=⇒x a dt t f x F )()(在[]b a ,上可导,且)()()(x f dt t f x F xa ='⎪⎭⎫ ⎝⎛='⎰, 注:联系原函数的概念可知,⎰=xadt t F x F )()(就是连续函数)(x f 在[]b a ,上的一个原函数,进而⎰⎰+=xa C dt t f dx x f )()(原函数存在定理:若()x f 在区间[]b a ,上连续,则变上限积分函数()()dtt f x F xa ⎰=在区间[]b a ,上可导,且()()x f x F =',即()()dt t f x F xa⎰=是()x f 在区间[]b a ,上的一个原函数注:该定理的重要性在于:一方面肯定了连续函数的原函数是存在的,另一方面初步揭示了积分学中的定积分与原函数的关系。
例6:证明:含有第一类间断点(可去 跳跃)及第二类中无穷间断点的函数()x f 在包含该间断点的区间内必没有原函数。
例7:判断函数()⎪⎩⎪⎨⎧=≠-=0,00,1cos 1sin 2x x xx x x f 在区间()∞+∞,-内是否存在原函数?若存在,写出原函数()x F答案:()⎪⎩⎪⎨⎧=≠=0,00,1sin 2x x xx x F例8:在区间[]2,1-上,讨论下列函数有没有原函数,有没有定积分(1):()⎪⎩⎪⎨⎧<-=>=0,10,10,2x x x x f(2):()⎪⎩⎪⎨⎧=≠-=0,00,1c o s 21s i n 22x x xxx xx f(3):()⎪⎩⎪⎨⎧=≠=0,00,1x x x x f(4):()⎪⎩⎪⎨⎧=≠+=0,00,1s i n 1co s 2x x xxx x f答案:(1)没有原函数,有定积分 (2)有原函数,没有定积分 (3)没有原函数,也没有定积分(4)有原函数,有定积分补充性质:奇偶函数和周期函数的积分性质 1:对称区间上奇偶函数的定积分 定理:假定()x f 在[]()0,>-a a a ,上为可积函数或连续函数,则有()()()()()()⎪⎩⎪⎨⎧==⎰⎰⎰--aaaaax f dx x f x f dx x f dx x f 为奇函数时当为偶函数时当:,0,210()()[]()[]⎩⎨⎧=⎰上为奇函数在偶函数,当上为偶函数在奇函数,当:a a x f a a x f dt t f x F x,-,-)()(20例9:设)(x f 连续,则在下列函数中,必是偶函数的是 A dt t f x⎰02)( B dt t f x ⎰02)( C []dt t f t f t x ⎰--0)()( D []⎰-+xdt t f t f t 0)()(2:周期函数的积分假设函数)(x f 以T 为周期的连续函数,即对于任意实数()()x f T x f x =+有,(1)()()dxx f dx x f TTa a⎰⎰=+0,即在任何长度为T 的区间上积分值是相等的()⎰=xdtt f x F 0)()(2:以T 为周期⎰=⇔Tdx x f 00)(,注:连续的以T 为周期的周期函数的所有原函数也以T 为周期⎰=⇔Tdx x f 00)(. 3.变限积分函数求导公式(1)设⎰=)()(21)(,)()(x x x f dt t f x F ϕϕ在[]b a ,上连续,)(),(21x x ϕϕ可导;则).())(()())(()()(1122)()('21x x f x x f dt t f x F x x ϕϕϕϕϕϕ'-'='⎪⎭⎫ ⎝⎛=⎰ (2)dttx f x F xa⎰=)()( (3)dtt xf x F xa⎰=)()( (4)dttx f x F ba⎰=)()(注:例1 设)(x f 具有连续的导数,求⎰'-xa dt t f t x dx d )()(例10: 设)(x f 连续,则=⎥⎦⎤⎢⎣⎡-⎰dt t x tf dx d x022)(例11:设连续函数)(x f 在[]b a ,上恒正,令⎰-=ba dt t f t x x F )()(,证明)(x F ''恒正.一元函数积分学的计算 (一)不定积分的计算 1.基本积分公式1.⎰++=+,11C x dx x u uμ 2.⎰+=C x xdx ln . 3.⎰+=C e dx e xx , 4.⎰+=C a a dx a x x ln 5.⎰+-=C x xdx cos sin , 6.⎰+=C x xdx sin cos , 7.⎰+-=C x xdx cos ln tan , 8.⎰+-=C x xdx sin ln cot , 9.⎰++=C x x xdx tan sec ln sec , 10.⎰+-=C x x xdx cot csc ln csc ,11.⎰+=C x xdx x sec tan sec ,12.⎰+-=C x xdx x csc cot csc ,13.⎰+=C x xdx tan sec 2,14.⎰+-=C x xdx cot csc 2 15.⎰+=-C x dx x arcsin 112,16.Cx dx x +=+⎰arctan 112,17.⎰+=-C a x dx x a arcsin122,18.⎰+=+C ax a dx x a arctan 1122 19.C ax a x a dx a x ++-=-⎰ln 21122,20.C a x x dx a x +++=+⎰)ln(12222,21.C a x x dx a x +-+=-⎰2222ln 1不定积分的性质: (1)[])()(x f dx x f ='⎰ (2)()()c x f dx x f +=⎰'(3)[]⎰⎰⎰±=±dx x g dx x f dx x g x f )()()()( (4)⎰⎰=dx x f k dx x kf )()((k 是常数2.第一类换元法(凑微分法) 设⎰=+=)(,)()(x g u C x F dx x f 存在连续导数,则[][][][]C x g F x g d x g f dx x g x g f +=='⎰⎰)()()()()(2.当被积函数较复杂,不易直接看出凑谁的微分时,可试着对被积函数较复杂的部分求导,观察形式,进而看出凑谁的微分. 例12:求⎰xdx sec答案:cx x ++tan sec ln例13:求不定积分dxx x x⎰++5224答案:Cx ++21arctan 412例14:()dxx x ⎰+2411答案:Cx x x +++-arctan 13133.第二类换元法 常用的换元形式: 1.三角代换22,sin 22ππ<<-=→-t t a x x a , 22,tan 22ππ<<-=→+t t a x x a ,20,sec 22π<<=→-t t a x a x .例15:计算⎰+22ax dx答案:c a x x +++22ln 2根式代换被积函数含有d cx b ax b ax n +++,等时,一般可直接令t dcx bax t b ax n =++=+,. 例16:⎰+x e dx1答案:Ce e xx +++-+1111ln3.倒代换 例17:⎰+-1232x x x dx答案:c xx x ++-+-32111ln-2例18:⎰+xdx 1答案:Cx ++12例19:dxe e x x ⎰arcsin答案:Ce e e e x x x x +-+-----1ln arcsin 24.分部积分法1)基本公式:设()()具有一阶连续导数x v x u ,,则()()()()()()x du x v x v x u x dv x u ⎰⎰-= 2)分部积分法使用的函数类-----两类不同函数相乘的积分,如⎰⎰⎰,cos )(,sin )(,)(axdx x P axdx x P dx e x P n n kx n ⎰⎰bxdx e bxdx eax axcos ,sin ;⎰⎰⎰xdx x P xdx x P x xdx x P nnnarctan )(,arcsin )(,ln )(例20:⎰xdx x arcsin答案:c x xx x x +-+-2214arcsin 41arcsin 2例21:()⎰≠≠0,0sin b a bxdx e ax答案:()c bx b bx a b a e ax+-+cos sin 22例22:dxxx x ⎰-21arcsin答案:cx x x ++arcsin -1-25.有理函数的积分 形如dx x Q x P m n ⎰)()()(m n <(头轻脚重不好)的积分称为有理函数的积分基本方法:将)(x Q m 因式分解,再把)()(x Q x P m n 拆成若干最简有理分式之和. 分解的一般原则1))(x Q m 的一次因式)(b ax +产生一项bax A+; 2))(x Q m 的k 重因式k b ax )(+产生k 项,分别是:kk b ax A b ax A b ax A )()(221++++++ 3))(x Q m 的二次单因式r qx px ++2产生一项rqx px BAx +++2;4))(x Q m 的k 重二次单因式k r qx px )(2++产生k 项,分别是:k k k r qx px B x A r qx px B x A r qx px B x A )()(22222211++++++++++++例23: dxx x x x ⎰++++)1)(12(22答案:()Cx x x x +++++-+312arctan 311ln 2112ln 2例:24:dxx x x ⎰+-+13652答案:()C x x x +-++-23arctan 4136ln 2126.三角有理函数的积分三角有理式---有三角函数及常数经过有限次的四则运算所构成的数学表达式可以表达为)cos ,(sin x x R ,⎰dx x x R )cos ,(sin一般方法:三角恒等变形、凑微分,换元,分部等例25: 设x x x f sin )(sin 2=,求dx x f x x⎰-)(1答案:C x x x ++-2arcsin 12- 例26: 计算dx xb x a ⎰+2222cos sin 1,其中022≠+b a .思路:分讨论0,;0;0≠≠≠b a b a 例27: 求⎰-dx e xe xx 1答案:C e e e x x x x +-+---1arctan 41412 例28:求dx x xe x ⎰+232arctan )1(答案:Cte t e t t ++2sin cos -三、定积分的计算1:用好基本积分法(基本积分表,凑微分,换元法,分部积分法) 例29:设()()dx x xf dt e x f x t ⎰⎰-=11,22求答案:()1411--e例30:设21121212,ln ,ln I I xdx I xdx I ee⎰⎰+==求答案:e例31:()dx x x 211-12⎰++答案:322例32:设()()⎰ππ2',sin dx x xf x xx f 则有一个原函数 答案:1-4π2:牛顿-莱布尼茨公式:若()[]b a x f ,在上连续,()()()()a F b F x F dx x f b a ba-==⎰例33:()⎩⎨⎧>≤+=1,1,12x x x x x f ,求()()dt t f x x ⎰=0ϕ3:利用定积分的几何意义计算 例34:计算dx x x ⎰-122答案:4π4:利用周期性来化简 例35:计算dx x ⎰-π10002cos 1答案:22005:用好重要的公式--华里士公式()()⎪⎪⎩⎪⎪⎨⎧-∙-==⎰⎰为奇数,为偶数n n n n n n xdx xdx n n !!!!1,2!!!!1cos sin 2020πππ例36:求:xdx x x 222-23cos )sin (⎰+ππ答案:π81补充三组重要公式: ()()()dxx f dx x f ⎰⎰=202cos sin 1ππ:()()()dxx f dx x xf ⎰⎰=πππ0sin 2sin 2:()()()()dxx f dx x f dx x f ⎰⎰⎰==20200cos 2sin 2sin 3πππ:4:反常积分:无穷区间的反常积分:设函数()x f 在区间[)+∞,a 上连续,称()()dx x f dx x f bab a⎰⎰+∞→+∞=lim为函数()x f 在[)+∞,a 上的反常积分,如果极限()dx x f bab ⎰+∞→lim存在,称反常积分收敛,如果上述极限不存在,这时称反常积分发散。