近世代数复习思考题

合集下载

近世代数课后习题答案

近世代数课后习题答案

近世代数课后习题答案近世代数课后习题答案近世代数是数学中的一个重要分支,研究的是抽象代数结构及其性质。

在学习近世代数的过程中,课后习题是巩固知识、加深理解的重要途径。

本文将为大家提供一些近世代数课后习题的答案,希望对大家的学习有所帮助。

一、群论1. 设G是一个群,证明恒等元素是唯一的。

答案:假设G中有两个恒等元素e和e',则有e * e' = e'和e' * e = e。

由于e是恒等元素,所以e * e' = e' = e' * e。

再由于e'是恒等元素,所以e * e' = e =e' * e。

因此,e = e',即恒等元素是唯一的。

2. 设G是一个群,证明每个元素在G中的逆元素是唯一的。

答案:假设G中的元素a有两个逆元素b和c,即a * b = e,a * c = e。

则有a * b = a * c。

两边同时左乘a的逆元素a',得到a' * (a * b) = a' * (a * c)。

根据结合律和逆元素的定义,等式右边可以化简为b = c。

因此,元素a的逆元素是唯一的。

二、环论1. 设R是一个环,证明零元素是唯一的。

答案:假设R中有两个零元素0和0',则有0 + 0' = 0'和0' + 0 = 0。

由于0是零元素,所以0 + 0' = 0' = 0' + 0。

再由于0'是零元素,所以0 + 0' = 0 = 0' + 0。

因此,0 = 0',即零元素是唯一的。

2. 设R是一个环,证明每个非零元素在R中的乘法逆元素是唯一的。

答案:假设R中的非零元素a有两个乘法逆元素b和c,即a * b = 1,a * c = 1。

则有a * b = a * c。

两边同时左乘a的乘法逆元素a',得到(a * b) * a' = (a * c) *a'。

近世代数课后习题参考答案(张禾瑞)-2

近世代数课后习题参考答案(张禾瑞)-2

近世代数课后习题参考答案第二章 群论1 群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件 ''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1得e a a =-1因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([ 即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = a ae a a a a aa ea ====--)()(11即 a ea =这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-=b be b aa b a a ===--)()(11这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2 单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群. 证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n nn===⇒=---111)()(若有n m 〈 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2)a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3) b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证 G a ∈故 G a a a a nm∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等: nma a = )(n m 〈 故 e amn =-m n -是整数,因而a 的阶不超过它.4 群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同 例如 }231,231,1{i i G +-+-= }1{=-G对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G 但231,231i i --+-的阶都是3.而1的阶是1.5 变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→3 3→2 3→4 4→3 4→5 … …τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τ b ax x +→:λ d cx x +→:τλ d cb cax d b ax c x ++=++→)( d cb ca +,是有理数 0≠ca 是关闭的.(2) 显然时候结合律(3) 1=a 0=b 则 :ε x x → (4) :τ b ax + )(1:1ab x a x -+→-τ而 εττ=-1所以构成变换群.又 1τ: 1+→x x :2τ x x 2→ :21ττ )1(2+→x x :12ττ 12+→x x 故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元. 证 :1τ )(1a a τ→ :2τ )(2a a τ→那么:21ττ )()]([2121a a a ττττ=→ 显然也是A 的一个变换. 现在证这个乘法适合结合律:)]()[(:)(321321a a ττττττ→)]]([[321a τττ= =→)]([:)(321321a a ττττττ)]]([[321a τττ 故 )()(321321ττττττ= 再证ε还是S 的单位元 :ε )(a a a ε=→:ετ )()]([a a a ττε=→τ:τε )()]([a a a τετ=→ ∴ τεετ=4. 证明一个变换群的单位元一定是恒等变换。

近世代数复习题及答案

近世代数复习题及答案

近世代数复习题及答案1. 群的定义是什么?请给出一个例子。

答案:群是一个集合G,配合一个运算*,满足以下四个条件:封闭性、结合律、单位元的存在性、逆元的存在性。

例如,整数集合Z在加法运算下构成一个群。

2. 什么是子群?如何判断一个子集是否为子群?答案:子群是群G的一个非空子集H,使得H中的元素在G的运算下满足群的四个条件。

判断一个子集是否为子群,需要验证它是否在群运算下封闭,是否包含单位元,以及每个元素是否有逆元。

3. 什么是正规子群?请给出一个例子。

答案:正规子群是群G的一个子群N,对于G中任意元素g和N中任意元素n,都有gng^-1属于N。

例如,整数集合Z在加法运算下的子群2Z(所有偶数的集合)是一个正规子群。

4. 什么是群的同态?请给出一个例子。

答案:群的同态是两个群G和H之间的函数φ,使得对于G中任意两个元素a和b,都有φ(a*b) = φ(a) * φ(b)。

例如,函数φ: Z → Z_2定义为φ(n) = n mod 2,是整数群Z到模2整数群Z_2的一个同态。

5. 什么是群的同构?请给出一个例子。

答案:群的同构是两个群G和H之间的双射同态。

这意味着G和H不仅满足相同的群运算规则,而且它们之间存在一一对应关系。

例如,群Z_3(模3整数群)和群{1, -1}在乘法下构成的群是同构的。

6. 什么是环?请给出一个例子。

答案:环是一个集合R,配合两个运算+和*,满足以下条件:(R, +)是一个交换群,(R, *)满足结合律,且乘法对加法满足分配律。

例如,整数集合Z在通常的加法和乘法运算下构成一个环。

7. 什么是理想?如何判断一个子集是否为理想?答案:理想是环R的一个子集I,满足以下条件:I在加法下封闭,对于R中任意元素r和I中任意元素i,都有ri和ir属于I。

判断一个子集是否为理想,需要验证它是否在加法下封闭,以及是否满足吸收性质。

8. 什么是环的同态?请给出一个例子。

答案:环的同态是两个环R和S之间的函数φ,使得对于R中任意两个元素a和b,都有φ(a+b) = φ(a) + φ(b)和φ(a*b) = φ(a) * φ(b)。

近世代数 复习整理

近世代数 复习整理

【lagrange 定理及推论】定理5 (Lagrange 定理) 设G H ≤ ,如果n H N G ==,,且[]H G :j =,那么 .nj N = 证明: []H G :j =,这表明H 在G 中的右陪集只有j 个,从而有G 的右陪集分解: j Ha Ha Ha Ha G 321= (其中H Ha =1) 由引理知,n Ha Ha Ha j==== 21所以 nj N j Ha G =⇒=1.由上等式“nj N =”知子群H 的阶n 是G 的N 阶的因子,于是可得到下面 推论:设是G 有限群,G a ∈∀,若m a =,那么m 必是G 的因子。

证明:由元素a 生成G 的一个循环子群 ()a H =.由Lagrange 定理知G H ,但 .m H =G m ∴.推论2:设G =N ,则G ∈∀H ,有H 的阶数只能是N 的因式例:{},,,对G10a a 0Z G ==其所有子群阶数只能是1,2,5,10证:书p70|3:假定a 和b 是一个群G 的两个元,并且ab=ba ,又假定a 的阶是m ,b 的阶是n ,并且(m ,n )=1,证明:ab 的阶是mn 。

证明:【群同态】例1:设}0|||)({)(≠∈=A R M A R GL n n .}1|||)({)(=∈=A R M A R SL n n .},{⋅=∙R G ——非零实数的乘法群。

首先有,G R GLn →)(:ϕ,其中||)(A A =ϕ,可知ϕ是群同态满射(证明略),即∙R R GLn ~)(,因为1=e , 故知)()(R SL Ker n =ϕ,由定理2∙≅⇒R R SL R GLn n )()(.定理3—4. 设G G →:ϕ是群同态满射,于是有下列结果(1) 若 G H ≤,那么 ()G H ≤ϕ. (2) 若 G H ,那么 ()G H ϕ.(3) 若 ()G H G H ≤⇒≤-1ϕ,并ker ()()H 1-≤ϕϕ (4) 若 ()G H G H 1-⇒ϕ且 ker ()()H 1-≤ϕϕ.证明: (1) ()()g g H g G g H =∈∃∈=ϕϕ使 表示H 在ϕ下的象.于是 ()H y x H y x ∈∃⇒∈∀,,ϕ 使 ()()y y x x ϕϕ==, ,进而 , ()()()xy y x y x ϕϕϕ==,因为 H xy G H ∈⇒≤ ()H x ϕ=∴-1.由上知 ()G H ≤ϕ.(2) G H ≤, 由(1)()G H ≤⇒ϕ,另外, ()G g H x ∈∀∈∀,ϕ, ()()g g x x G g H x ϕϕ==∈∃∈∃∴,使 和 于是 ()()()()111---==gxgg x g g x g ϕϕϕϕ,因为 H gxgG H∈⇒-1()()()H gx g H gxgϕϕϕ∈⇒∈∴--11 即 ()G H ϕ.注意4. 在(1)的证明中,没有用到ϕ是满射的条件,但在(2)中用到了.(3) ()H y x 1,-∈∀ϕ,那么 ()().,H y y H x x ∈=∈=ϕϕ于是 ()()()H y x y x xy ∈==ϕϕϕ ()()H xy G H 1-∈⇒≤ϕ另外,()()H xx x ∈==---111ϕϕ ()G H ()H x11--∈∴ϕ由上知 ()G H ≤-1ϕ,且 ()()()()()H H He a a 11ker ker --≤⇒⇒∈=⇒∈∀ϕϕϕϕϕ(4) ,G H ≤ 由 (3)()G H ≤⇒-1ϕ()H x 1-∈∀ϕ,G g ∈∀. 则 ϕ()()()()()()111---==g x g g x g gxg ϕϕϕϕϕH gx g ∈=-1,()()H gxgG H 11--∈⇒ϕ, ()G H 1-∴ϕ.注意5. (3)和(4)的证明都没有用到ϕ是满射的条件.【子群的判定】 例1设G 为任意一个群,那么由G 的单位元组成子集}{e ,自然有G e ≤}{,另外G 本身也有G G ≤,所以G 一般有两个子群,统称它们为的G 平凡子群。

近世代数复习思考题

近世代数复习思考题

近世代数复习思考题一、基本概念与基本常识的记忆(一)填空题1.剩余类加群Z 12有_________个生成元.2、设群G 的元a 的阶是n ,则a k 的阶是________.3. 6阶循环群有_________个子群.4、设群G 中元素a 的阶为m ,如果e an =,那么m 与n 存在整除关系为———。

5. 模8的剩余类环Z 8的子环有_________个.6.整数环Z 的理想有_________个.7、n 次对称群Sn 的阶是——————。

8、9-置换⎪⎪⎭⎫ ⎝⎛728169345987654321分解为互不相交的循环之积是————。

9.剩余类环Z 6的子环S={[0],[2],[4]},则S 的单位元是____________.10. 24Z 中的所有可逆元是:__________________________.11、凯莱定理的内容是:任一个子群都同一个________同构。

12. 设()G a =为循环群,那么(1)若a 的阶为无限,则G 同构于___________,(2)若a 的阶为n ,则G 同构于____________。

13. 在整数环Z 中,23+=__________________;14、n 次对称群S n 的阶是_____.15. 设12,A A 为群G 的子群,则21A A 是群G 的子群的充分必要条件为___________。

16、除环的理想共有____________个。

17. 剩余类环Z 5的零因子个数等于__________.18、在整数环Z 中,由{2,3}生成的理想是_________.19. 剩余类环Z 7的可逆元有__________个.20、设Z 11是整数模11的剩余类环,则Z 11的特征是_________.21. 整环I={所有复数a+bi(a,b 是整数)},则I 的单位是__________.22. 剩余类环Z n 是域⇔n 是_________.23、设Z 7 ={0,1,2,3,4,5,6}是整数模7的剩余类环,在Z 7 [x]中, (5x-4)(3x+2)=________.24. 设G 为群,a G ∈,若12a =,则8a =_______________。

近世代数辅导(四)(复习指导).doc

近世代数辅导(四)(复习指导).doc

近世代数辅导(四)(复习指导)第一部分内容提要一、基本概念1.集合概念;子集;运算:交、并、积2.映射定义;满射;单射;一一映射;变换3.代数运算定义;运算律:结合律、交换律、分配律4.同态与同构同态映射;同态满射;同态;同构映射;同构;自同构5.等价关系与集合的分类二、群论1.样的定义及基本性质笫一定义:I, II, in;笫二定义:I, II, iv, v;有限群的另一定义:I, II, nr2.了集定义;判定条件3.群的同态群的同态;样的同构4.变换群与置换群定义;置换的两种表示方法;凯莱定理5.循环群定义;整数加样与模n的剩余类加群;循环样的构造6.子群的陪集右陪集与左陪集;两个元同在一个右(左)陪集的条件;子群的指数;拉格朗口定理7.不变子群与商群不变子群的定义及其判定条件;商群的定义;群的同态基本定理三、环与域1.环的定义及其计算规则2.有附加条件的环交换环;冇单位元环;无零因了环及其特征;整环;除环及其乘群;域3.子环、环的同态子环、子除环的定义及其判定条件;环的同态(同构)4.理想与剩余类环理想(了环)的定义;主理想的定义;剩余类环的定义;环的同态基木定理5. 设A={所有实数}, 入={所有2()的实数}, A和瓜的代数运算是普通乘法,证明:A第二部分思考题1.设A={1, 2,…,10},给出一个AXA到A的映射,这个映射是不是单射?2.设A={1, 2, 3},规定A的一个代数运算,这个代数运算是不是适合交换律?3.设人={所有实数},瓜={所有>0的实数},给出一个A-L/I间的一一映射。

4.设A={所有实数},给出A的两个不同的一一变换(恒等变换除外)。

到入的映射O : X -> X2, x G A是A到入的一个同态满射。

6.设A二{所有有理数}, A的代数运算是普通加法,证明:A到A的映射①:x —> 2x , x e A是A的一个自同构映射。

7.举一个有两个元的群的例,并写出它的运算表。

近世代数复习题

近世代数复习题

近世代数复习思考题一、基本概念与基本常识的记忆(一)填空题1、剩余类加群Z 12有_________个生成元、2、设群G 的元a 的阶就是n,则a k 的阶就是________、3、 6阶循环群有_________个子群、4、设群G 中元素a 的阶为m ,如果e an=,那么m 与n 存在整除关系为———。

5、 模8的剩余类环Z 8的子环有_________个、6、整数环Z 的理想有_________个、7、n 次对称群Sn 的阶就是——————。

8、9-置换⎪⎪⎭⎫⎝⎛728169345987654321分解为互不相交的循环之积就是————。

9、剩余类环Z 6的子环S={[0],[2],[4]},则S 的单位元就是____________、 10、24中的所有可逆元就是:__________________________、11、凯莱定理的内容就是:任一个子群都同一个________同构。

12、 设()G a =为循环群,那么(1)若a 的阶为无限,则G 同构于___________,(2)若a 的阶为n,则G 同构于____________。

13、 在整数环中,23+=__________________; 14、n 次对称群S n 的阶就是_____、15、 设12,A A 为群G 的子群,则21A A 就是群G 的子群的充分必要条件为___________。

16、除环的理想共有____________个。

17、 剩余类环Z 5的零因子个数等于__________、18、在整数环Z 中,由{2,3}生成的理想就是_________、 19、 剩余类环Z 7的可逆元有__________个、20、设Z 11就是整数模11的剩余类环,则Z 11的特征就是_________、 21、 整环I={所有复数a+bi(a,b 就是整数)},则I 的单位就是__________、 22、 剩余类环Z n 就是域⇔n 就是_________、23、设Z 7 ={0,1,2,3,4,5,6}就是整数模7的剩余类环,在Z 7 [x]中, (5x-4)(3x+2)=________、24、 设G 为群,a G ∈,若12a =,则8a =_______________。

近世代数习题解答2

近世代数习题解答2

近世代数习题解答2近世代数习题解答第二章群论1 群论1. 全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1 得e a a =-1 因为由'4G 有元'a 能使e a a =-'1所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即由 a ae = 得 a ea =a ae a a a a aa ea ====--)()(11即 a ea =这样就得到群的第二定义.(3) 证 b ax =可解取b a x 1-=b be b aa b a a ===--)()(11这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2 单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群.证由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证(1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===?=---111)()(若有n m ? 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a Θ的阶等于1-a 的阶 (2) a 的阶大于2, 则1-≠a a 若e a a a =?=-21 这与a 的阶大于2矛盾(3) b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证G a ∈故G a a a a n m ∈K K K ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等:n m a a = )(n m ? 故 e a m n =-m n -是整数,因而a 的阶不超过它.4 群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证不一定相同例如 }231,231,1{i i G +-+-= }1{=-G 对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由φ可知G ∽-G但 231,231i i --+-的阶都是3. 而1的阶是1.。

近世代数课后习题参考答案(张禾瑞)5

近世代数课后习题参考答案(张禾瑞)5

近世代数课后习题参考答案第五章 扩域1 扩域、素域1. 证明:)(S F 的一切添加S 的有限子集于F 所得的子域的并集是一个域.证 一切添加S 的有限子集于F 所得的子域的并集为∑1)若 ∑∈b a , 则一定有),,(2,1n F a ααα ∈),,(2,1m F b βββ ∈易知m n F b a βββααα,,,,,,(2121 ∈-但∑⊂),,,,,,(2121m n F βββααα 从而∑∈-a b2)若,,∑∈b a 且0≠b 则 ),,,(21m F b βββ ∈-从而有∑⊂∈-),,,,,,(21211m n F ab βββααα2 单扩域1. 令E 是域F 的一个扩域,而F a ∈证明a 是F 上的一个代数元,并且F a F =)(证 因0=-a a 故a 是F 上的代数元.其次,因F a ∈,故F a F ⊂)(易见F a F ⊃)(,从而F a F =)(2.令F 是有理数域.复数i 和112-+i i 在F 上的极小多项式各是什么? )(i F 与)112(-+i i F 是否同构? 证 易知复数i 在F 上的极小多项式为112,12-++i i x在F 上的极小多项式为252+-x x因)112()(-+=i i F i F 故这两个域是同构的.3.详细证明,定理3中a 在域F 上的极小多项式是)(x p证 令ℜ是)(x F 中的所有适合条件0)(=a f 的多项式作成)(x f 的集合.1) ℜ是)(x F 的一个理想(ⅰ)若 ℜ∈)(),(x g x f 则0)(,0)(==a g a f因而0)()(=-a g a f 故ℜ∉-)()(x g x f ⅱ)若)(,)(x h x f ℜ∈是)(x F 的任一元那么0)()(=a f a h 则ℜ∈)()(x f x h2)是一个主理想设 )(1x p 是ℜ中a !的极小多项式那么,对ℜ中任一)(x f 有)()()()(1x r x q x p x f +=这里0)(=x r 或r(x)的次数 但)()()()(1x R a q a p a f +=因 )(,0)(1a p a f =0= 所以0)(=a r若 0)(≠x r 则与x p 1是a 的极小多项式矛盾. 故有 )()()(1x q x p x f = 因而)((1x p =ℜ (3)因 p(a)=0 故p(x)ℜ∈)()(1x p x P 因二者均不可约,所以有)()(1x ap x p =又)(),(1x p x p 的最高系数皆为1那么1=a 这样就是)()(1x P x p =4. 证明:定理3中的K a F =)(证 设,K f ∈,则在定理3的证明中,'K K ≅之下有. a xa x a f n n nn +++→------11但 ,x a → -→11a a 故必011a a a f n n n n ++=--αα 这就是说)(αF k ⊂ 因而K a F =)(3 代数扩域1.令E 是域F 的一个代数扩域,而α是E 上的一个代数元, 证明α是E 上的一个代数元 证 因为α是F 上的代数元所以nn e e e αα+++ 10又因为E 是F 的代数扩域,从而),,(10n e e e F 是F 的代数扩域,再有α是),,(10n e e e F 上的代数元,故),,(10n e e e F ()(αn n e e e e F ,,,,(110- )的有限扩域,由本节定理1,知 ),,,,,(110αn n e e e e F -是F 的有限扩域,因而是F 的代数扩域,从而a 是F 上的一个代数元.2.令F ,E 和L 是三个域,并且F E ⊂I ⊂,假定(:)I F m =而E 的元α在F 上的次数是n ,并且1),(=n m证明α在I 上的次数也是1 证 设r I I =:)((α因为 F I I ⊃⊃)(α由本节定理1 rm F a I =):)(( 另一方面,因为F I F F :)(():)((αα 仍由本节定理!! 即有rm n但由题设知 1),(=n m 故 r n又α在I 上的次数是r ,因而其在I 上的极小多项式的次数是1 α在I 上的次数是n ,因而其在F 上的极小多项式的次数是n 由于α在上的极小多项式能整除α在F 上的极小多项式所以n r ≤ 因而n r =3.令域!的特征不是2,E 是F 的扩域,并且 4):(=F E证明存在一个满足条件E I F ⊂⊂的E 的二次扩域F 的充分与必要条是:4):(=F E ,而α在F 上的极小多项式是b ax x ++24证 充分性:由于α在F 上的极小多项式为b ax x ++24故F a ∉2及)(22αF a ∉因而1):)((2≠F a F 由本节定理1知:所以 2):)((2=F a F 这就是说,)(a F 是一个满足条件的的二次扩域必要性:由于存在I 满足条件E I F ⊂⊂且为F 的二次扩域即2):1(=F 因此可得(2)1:(=E 我们容易证明,当F 的特征不是2时,且 则 而!在!上的极小多项式是!同样 )(a I E =而β在f x -2上的极小多项式是 这样 ,,2F f f ∈=β I i i ∈=,2α那么ββ22212122f f f f i ++=所以24i =α22221212ββf f f f ++=222212122ββf f f f ++=令12f a -= f f f b 2221-=同时可知b a ,均属于F 024=++∴b a αα 由此容易得到0(a F E =4.令E 是域F 的一个有限扩域,那么总存在E 的有限个元m ααα ,,21使),,(21m F E ααα =证 因为E 是F 的一个有限扩域,那么把E 看成F 上是向量空间时,则有一个基n ααα ,,21显然这时 ),,(21m F E ααα =5.令F 是有理数域,看添加复数于F 所得扩域" )2,2(31311i F E =)2,2(31312wi F E =证明6):(,2)2((131==F E F证 易知!在!上的极小多项式是! 即(3:)2(32=F F同样312上的极小多项式是322324222∙+-x x 即4))2((31;2=F E由此可得(12):(,6):(21==F F F E4 多项式的分裂域1.证明:有理数域F 上多项式14+x 的分裂域是一个单扩域)(a F 其中a 是14+x 的一个根证 14+x 的4个根为2222,2222,2222,22223210i a i a i a i a --=+-=-=+=又a a a a a a -=-==--31211,;所以)(),,,(321a F a a a a F =2.令F 是有理数域,a x -3是F 上一个不可约多项式,而a 是a x -3的一个根,证明)(a F 不是a x -3在F 上的分裂域.证 由于a 是a x -3的一个根,则另外两个根是2,εεa a ,这里ε,2ε是12++x x 的根若)(a F 是a x -3的在H 上的分裂域那么)(,2a F a a ∈εε这样,就是)()(a F F F ⊂⊂ε由3。

近世代数课件(全)--3-2 环的定义—思考、解答、结论

近世代数课件(全)--3-2 环的定义—思考、解答、结论
2012-9-19
结论6 域: 交换的除环 结论6:域是环、交换环、有单位元环、 整环、除环.
2012-9-19
环的特征 定义:若环的元素对加法有最大阶n,则 称n为环的特征;若环的元素对加法没有最大 阶,则称环的特征是无限(或零). 记作charR. 定理1:有限环的特征是有限. (因为有限群的阶有限,所以最大阶有限)
b a ab a
1 1
0 0, 故 a 不 是 左 零 因 子 ,
同理也不是右零因子.
结论2:可逆元一定不是零因子, 零因子
一定不是可逆元;除环是无零因子环.
2012-9-19
思考题5、6 结论3 5.除环的非零元对于乘法构成群吗? 答:构成. 两个非零元的乘积是非零元, 结合律成立,有单位元,每个非零元有逆元. 6.若 R 关于加法构成交换群,所有非 零元关于乘法构成乘群,问 R 一定构成除环 吗? 答:不一定. 分配律未必保证. 结论3:环 R ,则 R 是除环
charR n
2012-9-19
2012-9-19
思考题4、结论2 除环:有单位元环 R ,且 1 R 0 ( R 1 ) ,每个非零元都可逆. 4.有人说:一个环 R 的零因子一定不是环 R 的可逆元.你认为他的论断对吗?为什么? 答:对. a 0, 且 a 是 可 逆 元 , 若 有 b , 使 得 ab 0,
( k a )( m a ) n a 0
2
与无零因子环矛盾,故假设不成立.
无零因子环的特征或者无限,或者为素数.
2012-9-19
定理4: 有单位元的环,单位元在加群中的阶 就是环的特征.
证明:若1的阶无限,则特征无限;
若1的阶是n,则 a 0 ,有

近世代数思考题

近世代数思考题

1 1. 在对称群S 4中,(134)(12)= ,(2143)1-= 。

2. 在多项式环Z 11[x ]中,([6]x +[2])11= 。

3. 设G =(a )是6阶循环群,则G 的非平凡子群的个数是 。

4. 在模6的剩余环Z 6中,方程x 2=1的所有根为 。

5. 环Z 10的所有零因子是 。

6. 设A 、B 是集合,| A |=2,| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。

7. 设G =(a )是10阶循环群,则G 的非平凡子群的个数是 ____。

8. 在剩余类环Z 18中,[8]+[12]= ,[6]·[7]= 。

9. 环Z 6的全部零因子是 。

10.若群G 的元素a 的阶为12,则元素5a 的阶等于__________;e a m =当且仅当_________。

1. ( )交换群的子群是不变子群。

2. ( )一个阶是11的群只有两个子群。

3. ( )无零因子环的特征不可能是2004。

4. ( )有单位元且满足消去律的半群是群。

5. ( )模21的剩余类环Z 21是域。

6. ( )无零因子环的同态象无零因子。

7. ( )欧氏环上的一元多项式环是欧氏环。

8. ( )在一个环中,若左消去律成立,则消去律成立。

9. ( )整除关系是整环R 的元素间的一个等价关系。

10. ( )域是主理想整环。

1. 设H ={(1),(12)}是对称群S 3的子群,求H 的所有左陪集和所有右陪集,试问H 是否是S 3的不变子群?为什么?2. 求模18的剩余类环Z 18的所有理想。

3. 在整数环Z 中,求由2004,125生成的理想(2004,125)。

4. 设~是整数集Z 上的模6同余关系,试证明~是Z 上的等价关系,并求所有等价类。

5.设G 是一个阶为偶数的有限群,证明:(1)G 中阶大于2的元素的个数一定是偶数;(2)G 中阶等于2的元素的个数一定是奇数。

近世代数初步(第二版)课后习题答案(石生明)03

近世代数初步(第二版)课后习题答案(石生明)03

第三章 有限域及其应用1畅有限域中的元素的数目.pn元域的存在及唯一性,它的结构(Zp上的n维向量空间、是xpn-x=0的全部根、它的全部非零元组成乘法循环群),它的子域.2畅有限域上不可约多项式的性质.Fq上全部n次不可约多项式皆为xqn-x的因子.不可约多项式f(x)(≠cx)的周期性.本原多项式及用于纠错码.3畅移位寄存器序列(线性递归序列)序列的数学刻画:引入F2上向量空间V(F2)={a=(a0,a1,a2,…,)|ai∈F2}及V(F2)上左移变换L:La=(a1,a2,a3,…).对F2上递归关系an+k=cn-1a(n-1)+k+cn-2a(n-2)+k+…+c0ak,k=0,1,2,…(倡)引入F2上多项式f(x)=xn+cn-1xn-1+…+c0.则V(F2)中向量a满足(倡)(即a是满足(倡)的线性递归序列)的充分必要条件是f(L)a=0.优美的理论结果:0≠a的周期等于f(x)的周期(这时f(x)必须是不可约多项式且f(x)≠x)m序列及其优美性质(参看习题)1畅§3内容是总导引中第一点思想的又一体现.读者自己察看一下,§3中共组织了两个运算系统.一个是F2上的无限序列作成的线性空间V(F2);一个是引入左移变换L,组成了V(F2)上线性变换的多项式环.正是有这两个运算系统才能将线性递归序列的周期性与F2上多项式的理论联系起来.2畅§1及§2内容是有限域及其上的多项式理论的一个简短而较全面的介绍.这在一般近世代数教材中少见.而§3内容在这些教材中从未出现过.其中的应用使我们看到这些内容与当代信息技术有密切联系.实际上它们对今后更·86·大范围的应用来说也是基本的.3畅§3内容是理论与实践相互促进的范例.正是分析移位寄存器序列性质的需要产生了理论的研究,理论的建立和优美的结果又解决了实践中的问题.这充分显示了理论的力量读者试作出一个具体线性递归序列来验证一下§3中关于周期性的结果.§1 有限域的基本构造 倡1畅验证x2+1及x2+x+2皆为Z3[x]上不可约多项式.写出下列两域Z3[x]/(x2+1) 及 Z3[x]/(x2+x+2)的加法表和乘法表.找出这两个域之间的同构对应. 倡2畅作出Z2[x],Z3[x]中所有的二次、三次、及两个四次不可约多项式.作出22,23,24个元的域. 倡3畅f1(x),f2(x)都是Zp[x]上m次不可约多项式,则Zp[x]/(f1(x))碖Zp[x]/(f2(x)).4畅作出一个34个元的域,并在其中找出一个32个元的子域. 倡5畅设d|m,证明(1)pd-1|pm-1.(2)xpd-x|xpm-x. 倡6畅设Fpn=Zp(α).问α是乘法群F倡pn=Fpn\{0}的生成元吗?1畅x2+1及x2+x+2在Z3上皆无根,故它们在Z3[x]中不可约.Z3[x]/(x2+1) 及 Z3[x]/(x2+x+2)都是域.我们略去它们的加法表和乘法表,只证明它们同构.Z3[x]/(x2+1)=Z3[珔x],其中珔x=x+((x2+1)).珔x满足Z3上x2+1=0.而·96·Z3[x]/(x2+x+2)=Z3[珕x]其中珕x=x+((x2+x+2)).珕x满足Z3上x2+x+2=0.我们要找出Z3[珕x]中的元素α,满足方程x2+1=0.实际上由0=珕x2+珕x+2==珕x2+珕x+1=+1==珕x2+4珕x+4=+1==(珕x+2=)2+1=(在Z3中4==1=).取α=珕x+2=就适合α2+1==0.由此[Z3(α):Z3]=2.再由Z3(α)彻Z3[珕x]及[Z3[珕x]:Z3]=2,知Z3(α)=Z3[珕x].现作映射Z3[x]φZ3(α)=Z3[珕x]=Z3[x]/(x2+x+2)p(x)p(α)这是满同态,且Kerφ=((x2+1)).由同态基本定理得同构Z3[x]/(x2+1)Z3(α)p(珔x)p(α).其中珔x=x+((x2+1)).2畅Z2[x]中不可约多项式如下:一次的:x,x+1,二次的:x2+x+1,三次的:x3+x2+1,x3+x+1,四次的:x4+x+1,x4+x3+1,x4+x3+x2+x+1.Z3[x]中不可约多项式如下:一次的:x,x+1,x+2,二次的:x2+1,x2+x+2,x2+2x+2,三次的:x3+2x+1,x3+2x+2,x3+x2+2,x3+x2+x+2,x3+x2+2x+1,x3+2x2+1,x3+2x2+x+1,x3+2x2+2x+2,四次的:x4+2x3+2,x4+x3+2,x4+x2+2x+1,x4+2x3+x+1,x4+x3+x2+2x+2,x4+2x3+x+1,x4+2x3+x2+1,x4+2x3+x2+2x+1,x4+x3+2x2+2x+1,x4+2x3+x2+x+2,x4+2x2+2x+2,x4+2x+2,x4+x+2,x4+2x2+2,x4+2x+2,x4+x2+2,x4+x2+x+1,x4+x2+2x+1.找寻的步骤:(1)列举出Z2[x](Z3[x])中所有一次,二次,三次及四次多项式.(2)一次多项式皆不可约.(3)检验Z2[x](Z3[x])中哪些二次、三次多项式在Z2(Z3)中没有根,它们是不可约多项式.(4)检验Z2[x](Z3[x])中哪些四次多项式在Z2(Z3)中没有根,又不是Z2[x](Z3[x])中两个二次不可约多项式的乘积,则它们都是不可约多项式.3畅它们都是pm个元的有限域,由定理3知它们同构.4畅取Z3[x]中的四次不可约多项式x4+2x2+2,则Z3[x]/(x4+2x2+2)是··0734个元的域.令珔x=x+((x4+2x2+2)),则珔x4+2珔x2+2=(珔x2+1)2+1=0.即珔x2+1是Z3[x]中二次不可约多项式的根.于是有Z3[x]/(x2+1)碖Z3(珔x2+1)彻Z3(珔x)=Z3[x]/(x4+2x2+2)这表明Z3(珔x2+1)是Z3(珔x)中的32个元的子域.5畅(1)d|m,令m=kd.则pm-1=pkd-1=(pd)k-1=(pd-1)(pd(k-1)+pd(k-2)+…+pd+1).故pd-1|pm-1.(2)令pm-1=l(pd-1).则xpm-1-1=x(pd-1)l-1=(xpd-1-1)(x(pd-1)(l-1)+x(pd-1)(l-2)+…+xpd-1+1).故xpd-1-1|xpm-1-1,即得xpd-x|xpm-x.6畅不一定.例Z3[x]/(x2+1)=F.令珔x=x+((x2+1)),它满足珔x2+1=0,当然有珔x4-1=0,即珔x4=1.但F是32个元的域,F倡=F\{0}是8阶循环乘法群.故珔x不是F倡的生成元.§2 有限域上不可约多项式及其周期,本原多项式及其对纠错码的应用以下习题中打倡者为必作题,其余为选作题. 倡1畅验证Z3[x]/(x2+1)的非零元乘法群是循环群,找出生成元.x2+1是否本原多项式? 倡2畅x3+x+1,x4+x+1是否Z2[x]中的本原多项式? 倡3畅证明映射FpmFpmaap是Fpm的自同构且保持Fpm中的素子域Fp中的元素不动.4畅f(x)是Zp上m次不可约多项式.设α∈Fpm是f(x)的一个根,则α,αp,…,αpm-1是f(x)的全部m个根.5畅设β∈Fpm,β在Zp上的极小多项式f(x)是d次的,则(1)β属于Fpm中的一个pd个元的子域.(2)d|m.6畅证明Fpm中元素β与βp在Zp上有相同的极小多项式.·17· 倡7畅设α是Z3[x]中多项式x4+x+2的一个根.把Z3(α)中全部元素用1,α,α2,α3的线性组合表示出来.并算出1+α+α31+α2+α3+α+α2.8畅把x24-x,x23-x分解成Z2[x]上不可约多项式的乘积,把x33-x,x32-x分解成Z3[x]上不可约多项式的乘积. 倡9畅取Z2[x]中本原多项式x3+x+1.在多项式∑6i=1aix7-i=a1x6+a2x5+…+a6x+a7与向量(a1,a2,…,a7)等同的约定下,作码集合M={(x3+x+1)(b1x3+b2x2+b3x+b4)|bi∈Z2}.(i)取f(x)=x6+x4+c1x2+c2x+c3,试决定c1,c2,c3使f(x)属于码集合M.(ii)设f1(x)=x6+x5+x4+x3+x2+x+1及f2[x]=x6+x4+x3+x2+x+1是接受到的向量,并设传输过程中最多错一位,试进行译码.1畅令珔x=x+((x2+1)).计算珔x+2的各方幂珔x+2,(珔x+2)2=珔x,(珔x+2)3=2珔x+2,(珔x+2)4=2,(珔x+2)5=2珔x+1,(珔x+2)6=2珔x,(珔x+2)7=珔x+1,(珔x+2)8=1.故珔x+2生成了非零元素乘法群,它是8阶循环群.珔x只是4阶元,它不是生成元,从而证明x2+1不是本原多项式.2畅x3+x+1的周期是23-1=7的因子.它不是x-1的因子,故周期不为1,只能是7,所以它是本原多项式.x4+x+1的周期是24-1=15的因子.但x4+x+1嘲x-1,x3-1,x5-1.故它的周期只能是15.因此是本原多项式3畅橙a,b∈Fpm,有(a+b)p=ap+bp及(ab)p=apbp故是φ同态.又由第二章§1习题8知(a-b)p=ap-bp,故这是单射.又上面的映射是有限集Fpm中的单射,必是满射.因此是Fpm的自同构.由于子域Fp是p个元的域,由第二章§5习题5,知这映射是Fp上的恒等变换.4畅设f(x)=amxm+am-1xm-1+…+a1x+a0,ai∈Zp.因此api=ai(第二章§1习题8).·27·设a∈Fpm满足f(a)=0,则f(a)p=(amam+…+a0)p=apmamp+…+ap1ap+ap0=am(ap)m+…+a1ap+a0=f(ap)=0.即ap也是f(x)的根.设a,ap,ap2,…,apk中两两不同,apk+1与前面某apl相同.a1,ap,…,apk是f(x)的k个不同的根,故k≤m.又若1≤l≤k.则apl=(apk+1-l)pl.因aapl是Fpm的自同构(习题3),上式两端元素的原象应相等,得a=apk+1-l.又k+1-l≤k,与a,ap,…,apk中两两不同矛盾.故l=0,即a=apk+1.令g(x)=(x-a)(x-ap)…(x-apk)=xk+b1xk-1+…+bk.则b1=-(a+ap+…+apk),…,bk=(-1)ka·ap…apk,bp1=(-1)p(ap+ap2+…+apk+1)=-(ap+…+apk+a)=b1,…,bpk=(-1)kpap·ap2…apk+1=(-1)kapap2…apka=bk.任意bi=(-1)i[a,ap,…,apk中任取i个的乘积之和],bpi=((-1)i)p[ap,ap2,…,apk+1中任取i个的乘积之和]=(-1)i[ap,ap2,…,apk,a中任取i个的乘积之和]=bi.即所有bi满足xp-x=0,故所有bi属于Fpm的子域Zp之中,因此g(x)是Zp上的多项式.因f(x),g(x)在Fpm[x]中有公因式(x-a),故f(x),g(x)在Zp[x]中不互素,又f(x)是Zp[x]中不可约多项式,且g(x)的次数≤m.故f(x)与g(x)是相伴的.因而k=m,且a,ap,ap2,…,apm是f(x)的全部m个根.5畅因f(x)是β在Zp上的极小多项式,由第二章§2定理4,f(x)在Zp[x]中不可约.由f(β)=0,有Fpm澈Zp(β)碖Zp[x]/(f(x)).又f(x)是d次的,故Zp(β)是pd个元的子域,再由定理4知d|m.6畅设Fpm的元β在Zp上的极小多项式为f(x).由第二章§定理4知它在Zp[x]中不可约.再由第4题,f(βp)=0.这时f(x)不可约,仍由第二章§定理4,它是βp在Zp上的极小多项式.7畅由§1习题2,知x4+x+2是Z3[x]中不可约多项式.α是它的根,故Z3(α)={a0+a1α+a2α2+a3α3|a0,a1,a2,a3∈Z3}.易计算知,α2(α3+α2+1)-(α+1)(α4+α+2)=1,即有α2(α3+α2+1)=1.于是1+α+α31+α2+α3+α+α2=α2(1+α+α3)+α+α2=α3+α2+2α.8畅x23-x=x(x+1)(x3+x+1)(x3+x2+1),x24-x=x(x+1)(x2+x+1)(x4+x+1)(x4+x3+1)(x4+x3+x2+x+1),·37·x32-x=x(x+1)(x+2)(x2+1)(x2+x+2)(x2+2x+2),x33-x=x(x+1)(x+2)(x3+2x+1)(x3+2x+2)(x3+x2+2)(x3+x2+x+2)(x3+x2+2x+1)(x3+2x2+1)(x3+2x2+x+1)(x3+2x2+2x+2).9畅(i)作除法算式,x6+x4=(x3+1)(x3+x+1)+x+1.取C1=0,C2=1,C3=1,f(x)=x6+x4+x+1=(x3+1)(x3+x+1)就属于码集合M.(ii)f1(x)=(x3+x2+1)(x3+x+1),故传输过程中无错误.f2(x)=x3(x3+x+1)+x2+x+1.作计算:x(x2+x+1)=x3+x2+x=(x3+x+1)+x2+1≡x2+1,(modx3+x+1),x2(x2+x+1)=x(x2+1)=(x3+x+1)+1≡1,(modx3+x+1),即x2(x2+x+1)≡1.但x2·x5=x7≡1,故x5≡x2+x+1,(modx3+x+1).这即说明f2(x)错在x5项上,原来输出的码字应为f2(x)+x5=x6+x5+x4+x3+x2+x+1.§3 线性移位寄存器序列以下习题中打倡者为必作题,其余为选作题.1畅Fp(p为素数)上首项系数为1的m次本原多项式的个数为φ(pm-1)/m,这里φ是欧拉函数(参见第二章§5).并算出Z2,Z3上三次、四次本原多项式的数目. 倡2畅作出Z2上两个周期为7的m序列(写出2个周期的长度). 倡3畅设F2上序列a=(a0,a1,a2,…)的周期为e.证明(i)若有e′使ak+e′=ak,k=0,1,2,…,则e|e′.(ii)若令S0=(a0,…,ae-1),S1=(a1,…,ae),…,Se-1=(ae-1,…,a2e-2),则它们两两不同. 倡4畅设f(x)是F2上n次不可约多项式,则(i)G(f)是F2上向量空间.(ii)对任意a∈G(f).令Sa=(a0,a1,…,an-1),称为a的初始状态向量.则橙a,b∈G(f),a=b当且仅当Sa=Sb.(iii)a1,…,ak,a∈G(f),l1,…,lk∈F2,则··47a=l1a1+…+lkak当且仅当Sa=l1Sa1+…+lkSak.于是a1,…,ak线性相关当且仅当Sa1,…,Sak线性相关.(iv)G(f)是F2上n维空间.5畅设f(x)是F2[x]中n次本原多项式,a是G(f)中非零序列,即m序列,则a=a0,La=a1,…,L2n-2a=a2n-2是G(f)中全部非零序列.进一步Sa0,Sa1,…,Sa2n-2全不相同,它们是F2上n元向量空间中全部非零向量.6畅设a=(a0,a1,a2,…)是F2上周期为2n-1的m序列.将a的一个周期(a0,a1,…,a2n-2)中的元依次排在圆周上,并使a2n-2与a0=aan-1相邻,则F2上的任一k元组(1≤k≤n),(b1,b2,…,bk)在上述圆周中出现的次数为2n-k, 若(b1,b2,…,bk)≠(0,0,…,0),2n-k-1, 若(b1,b2,…,bk)=(0,0,…,0).(考察有多少个Sai的前k个元正是b1,b2,…,bk).7畅a为F2上周期为2n-1的m序列,则在a的一个周期中1的数目为2n-1,0的数目为2n-1-1.8畅对习题2中作出的F2上周期为7的两个m序列的一个周期排成圆圈如习题6,数出1,0,01,10,101,110,出现的次数.1畅考虑域Fpm,它由Fp上多项式xpm-x的全部根组成.将xpm-x分解成Fp上不可约多项式的乘积.任一Fp上m次不可约多项式f(x)都是它的因子,·57·故f(x)在Fpm中有m个根.任取一根α,则Fpm=Fp(α)碖Fp[x]/(f(x))=F(珔x).其中珔x=x+(f(x)).由此知f(x)是Fp上m次本原多项式当且仅当珔x是pm-1阶乘法循环群Fp(珔x)\{0}的生成元当且仅当α是乘法循环群Fp(α)\{0}=Fpm\{0}的生成元.反之,任取Fpm\{0}的任一生成元α,则它必为Fp上某不可约多项式f(x)的根,显然Fpm=Fp(α)碖Fp[x]/(f(x)).比较两边元素的数目,知f(x)是m次不可约多项式.又α是乘法循环群Fpm\{0}的生成元,前一段证明了f(x)是Fp上m次本原多项式.m次本原多项式都是xpm-x的因式,后者无重根,故全体m次本原多项式在Fpm中的全体根也各不相重.设共有k个m次本原多项式,它们共有mk个根,前面证明了它们是pm-1阶乘法循环群Fpm\{0}的全部生成元.任取一个生成元α,由第一章§7习题5知αn是生成元当且仅当(n,pm-1)=1.故Fpm\{0}的生成元的数目等于与pm-1互素的且小于pm-1的正整数的数目即φ(pm-1).由于mk=φ(pm-1),得k=1mφ(pm-1).Z2,Z3上3次,4次本原多项式的数目分别是13φ(23-1),14φ(24-1),13φ(33-1),14φ(34-1).用第二章§5中关于φ(n)的公式进行计算,得到13φ(23-1)=13φ(7)=2,14φ(24-1)=14φ(15)=14φ(3)φ(5)=2,13φ(33-1)=13φ(26)=13φ(2)φ(13)=4,14φ(34-1)=14φ(80)=14φ(16)φ(5)=14241-12·4=8.2畅取Z2上的三次本原多项式x3+x+1(Z2上的3次不可约多项式都是本原多项式).作线性递归序列a=(a0,a1,a2…),其递归关系为ak+3=ak+1+ak,k=0,1,2,….因x3+x+1为本原多项式,它的周期,因而上述序列的周期为23-1=7.取a0=1,a1=a2=0.可计算出a取a0=a1=a2=1,可计算出a3畅(i)作除法算式e′=le+e1,e1=0或0<e1<e.若0<e1<e,则对k=0,·67·1,2,…有ak+e1=ak+e1+le=ak+e′=ak.即e1也是a的周期与e是极小周期矛盾.故e1=0,e′=le.(ii)若有0≤i<j≤e-1,使Si=Sj.即(ai,ai+1,…,ai+e-1)=(aj,aj+1,…,aj+e-1).当i≥1,由ai+e-1=ai-1,aj+e-1=aj-1,并把上面两端向量的前e-1个分量都向右移一位,而最后一位分量移至第一位,得到的两向量仍相等,(ai-1,ai,…,a(i-1)+e-1)=(aj-1,aj,…,a(j-1)+e-1).即Si-1=Sj-1.可继续这样做,结果得到S0=Si-i=Sj-i.于是对任意0≤t≤e-1有at=at+(j-i).而对任意k=0,1,2,…,作除法算式,设k=le+s,0≤s≤e-1.则ak=ak-le=as=as+(j-i)=as+le+(j-i)=ak+(j-i).即a有周期j-i.而0<j-i<e,与e为极小周期矛盾.故任意0≤i<j≤e-1,必有Si≠Sj.4畅(i)G(f)={a∈V(F2)|f(L)a=0}.橙ab∈G(f),则f(L)af(L)b=0.于是f(L)(ab)=f(L)a+f(L)bab∈G(f).又设l∈F2,aG(f),f(L)(lal(f(L)ala∈G(f).因此G(f)是V(F2)的子空间.(ii)橙abG(f),显然ab推出Sa=Sb.反之,设Sa=Sb.对k=0,1,2,…,有ak+n=cn-1ak+(n-1)+…+c1ak+1+c0ckbk+n=cn-1bk+(n-1)+…+c1bk+1+c0bk.由Sa=Sb,并在上式中令k=0,则有an=bn.于是SLa=(a1,a2,…,an)=(b1,b2,…,bn)=SLb.但f(L)LaLf(L)a=0,f(L)Lb=Lf(L)b同样可证SL2a=SL2b.归纳地可证,对任意k有SLka=SLkb.就得到对任意k,ak+n=bk+n.加上Sa=(a0,a1,…,an-1)=(b0,b1,…,bn-1)=Sb,就证明了ab(iii)ai有初始向量Sai.于是若al1a1+…+lkak,则显然Sa=l1Sa1+…+lkSak.反之,设Sa=l1Sa1+…+lkSak.因l1a1+…+lkak∈G(f),及Sl1a1+…+lka=l1Sa1+…+lkSak=Sa.由(ii)al1a1+…+lkak.特别地当a时就得到l1a1+…+lkak=0当且仅当l1Sa1+…+lkSak=0.即有a1,…,ak线性相关当且仅当Sa1,Sa2,…,Sak线性相关.(iv)考虑到可取F2上n维向量空间的任一组基作初始向量,由递归关系f(L)a得到G(f)中的一组序列a1,…,an.而初始向量Sa1,…,San是F2上n维向量空间的基.由(iii)a1,…,an也线性无关.橙aG(f),Sa是Sa1,…,San的线性组合,再由(ii),aa1,…,an的线性组合,故a1,…,an是G(f)的一组基,因·77·此G(f)是F2上n维线性空间.5畅f(x)为F2上n次本原多项式,aG(f)中非零序列,则其周期为2n-1.由习题3(ii)知Sa0,Sa1,…,Sa2n-2 互不相同,它们是F2上2n-1个非零的n维向量,但F2上仅有2n-1个非零的n维向量,故Sa1,…,Sa2n-2 是F2上全部非零 是G(f)中全部非零序列.的n维向量.由习题4(ii),a0,…,a2n-26畅设aa0,a1,a2,…)是周期为2n-1的m序列,由习题5知Sa0,Sa1,…,Sa2n-2 是F2上2n-1个不同的,也即全部非零的n元向量.对1≤k≤n,(b1,b2,…,bk)每次出现必有某Sai=(b1,b2,…,bk,…).因此它出现的次数正是这样的Sai的数目.当(b1,b2,…,bk)≠(0,0,…,0)时,后面n-k位分量可任意在F2上取值,故这样的Sa共2n-k个.若(b1,…,bk)=(0,0,…,0),后面n-k位分量除了不能全取零外可任意选取(因Sai不能为零向量),故这样的Sai共有2n-k-1个.7畅在习题6中取k=1.当(b1)=(1)时,它出现的次数是2n-1;当(b1)=(0)时,它出现的次数是2n-1-1.8畅习题2出现的周期为7的两个m序列各取一个周期,分别为1001011及1110010.排成的圆圈是下列同样的圆圈.可见到1出现4(=23-1)次,0出现3(=23-1-1)次,01出现2(=23-2)次,101出现1(=23-3)次,110出现1(=23-3)次.··87第四章 有因式分解唯一性的环1畅基本概念:因子、倍元、相伴、不可约元、素元、因式分解及唯一性、公因子、最大公因子.2畅整环成为唯一因分解环的充要条件.不是唯一因式分解环的例子.3畅欧氏环及例子(Z,域上多项式环,高斯整数环)主理想环及其因式分解唯一性.4畅交换环上的多项式环.唯一因式分解环上的多项式环仍是唯一因式分解环.5畅几个典型环类的包含关系欧氏环主理想环唯一因式分解环整环.1畅在其它抽象代数教材中,由于内容的逻辑体系的需要,都是把本章内容作为主要内容放在域论内容之前.占用了大量教学用时,以致只能讲很少域论内容.为了教材内容现代化,为了写入应用内容和为应用所需的理论内容,我们把域论和域论的应用内容放在前面,而把本章内容放在最后.时间不够,可以少讲和不讲.这是教材内容的重要改革.2畅本章§3的内容是为说明一般域甚至交换环上多项式的存在性.多项式是一类运算系统.必须举出实例才能表明对它的讨论有意义.本书的第二章§6及第三章§1的内容都是以一般域上多项式的存在为前提的.3畅§4中定理1的证明中又采用了将整系数作模p剩余类的方法.这个证明比以前教科书(包括本书第一版)中的证明有所简化.4畅内容要点中第5点中的包含关系是严格的真包含关系,要能用例子说明此关系.·97·§1 整环的因式分解以下习题中打倡者为必作题,其余是选作题. 倡1畅试说明整环中的零元,可逆元不能是不可约元的乘积. 倡2畅R是整环,则它的素元是不可约元. 倡3畅R是整环,则a∈R是素元当且仅当主理想(a)=aR是非零素理想(第二章§7习题2).4畅令整环M={a+b3i|a,b∈Z}.求出M的全部可逆元.证明它没有因式分解唯一性(举反例,有M中非零的不可逆元a,它没有分解唯一性). 倡5畅证明在环Z(-5)中3(2+5i)和9没有最大公因子.6畅R为整环.(1)a,b∈R,a,b不同时为零,a=a1d,b=b1d,则d是a,b的最大公因子当且仅当a1,b1互素.(2)把a,b两个元素推广到任意k个元素的情形.7畅设M是形为m2k(m任意整数,k非负整数)的全部有理数的集合,则它是Q的子环.找出M的全部可逆元和不可约元.8畅R是唯一因式分解环.a,b∈R是互素的,且a|bc,则a|c. 倡9畅R是唯一因式分解环,p为不可约元,则珚R=R/(p)为整环.1畅设在整环R中有0=p1p2…ps,pi是不可约元,于是p1及ps都是零因子,与R是整环矛盾.又设可逆元u=p1…ps,pi是不可约元.并设uv=1,则p1p2…psv=1,得出p1是可逆元,与p1非可逆矛盾.2畅设u是素元,若u可约,则u=v1v2,v1,v2皆非可逆.于是u|v1v2,u又是素元,必有u|v1或u|v2.若u|v1,则v1=uv,某v∈R.因此u=v1v2=u(vv2).R是整环,u≠0,用消去律得1=vv2.与v2非可逆矛盾.同样u|v2也·08·有矛盾.故u不可约.3畅设aR是非零素理想,故a是非零的非可逆元.对b,c∈R,a|bc,则bc∈aR.故b∈aR或c∈aR,即a|b或a|c,所以a是素元.反之,设a是素元.b,c∈R,bc∈aR.于是a|bc,有a|b或a|c.即b∈aR或c∈aR.又a是非零非可逆元,故aR≠0及aR≠R,所以aR是非零素理想.4畅设(a+b3i)(c+d3i)=1,a,b,c,d∈Z.对两端取复数模平方,得(a2+3b2)(c2+3d2)=1.若b≠0或d≠0则3b2≥3或3d2≥3,左端必大于1,不可能,所以b=0,d=0,得到ac=1,a=±1.故a+b3i在M中可逆当且仅当b=0,a=±1.4在M中有两种分解:4=2·2=(1+3i)(1-3i).下证2,1±3i皆为M中不可约元,实际上它们的模平方皆为4.令它们中任一个为α,设α=α1α2,α1,α2皆非可逆.而M中非可逆元a+b3i,必有b≠0,或a≠±1,这时|a+b3i|2=a2+3b2≥3.于是|α1|2|α2|2≥9.而左端|α|2=4,不能相等.故2,1±3i皆为不可约元,4分解成M中的不可约元乘积的方式不唯一.5畅要证明不存在9与3(2+5i)在Z[5i]中的公因子d,使得9与3(2+5i)的任一公因子皆是d的因子.反设d=a+b5i,a,b∈Z满足上述要求.由于3是9与3(2+5i)的公因子.故3|d,即有c,e∈Z使a+b5i=3(c+e5i).于是a=3c,b=3e.但d|9,两边取模平方得(3c)2+5(3e)2|92,则有c2+5e2|32.只有c=±2,e=±1;c=±3;e=0这几种情况适合这条件.故c+e5i的仅有的可能为±2±5i,±3.即d=a+b5i的仅有的可能为±6±35i,±9.若d=±6±35i,d|9,9=dα.取模平方92=|d|2|α|2=92|α|2.得|α|=1故α=±1畅9=±d,这不可能.若d=±9,d|3(2+5i),3(2+5i)=dα.取模平方,92=|d|2|α|2=92|α|2.得|α|=1,α=±1.3(2+5i)=±d也不可能.故9,3(2+5i)在Z[5i]中没有最大公因子.6畅(1)这时d≠0.设a1,b1不互素,则有d1非可逆元是它们的公因子.则dd1是a,b的公因子,而d为最大公因子,故dd1|d.有d2∈R,dd1d2=d.R是整环,用乘法消去律得d1d2=1,即d1是可逆元,矛盾.故a1,b1互素.反之,设a1,b1互素.又设d1是a,b的最大公因子.则d|d1,有d2∈R使d1=dd2.d1是a,b的因子,有a2,b2∈R使a=d1a2=dd2a2=da1,及b=d1b2=dd2b2=db1.用消去律d1a2=a1,d2b2=b1.于是d2是a1,b1的公因··18子.但a1,b1互素故d2为可逆元.由此知d=d1(d2)-1也是a,b的最大公因子.(2)略.7畅由于M中的元具有形式m2k,它们的和,差,积仍为这种形式的元,故M是Q设m2k为M中可逆元,则有n2l使m2kn2l=1.故m必为±2t,t为非负整数.反之,对±2t2k,k,t皆非负整数,则±2k2t属于M,且±2t2k·±2k2t=1,故在M中可逆.因此M中可逆元集=±2t2kt,k皆非负整数.由此易知,M中非可逆元集=m2km是具有奇素数因子的非负整数.下面证明m2k为M中不可约元当且仅当m=±p·2t,其中p为奇素数,t为非负整数.先设m2k,m=±p·2t,p为奇素数.若m2k=m12k1·m22k2,则m1·m2=±p·2t1.因此m1,m2中的一个只是2的非负方幂,于是m12k1·m22k2中有一个是可逆元.因此m2k是不可约元.再设m2k,m=p1p2m1,p1,p2皆为奇素数,可以相同,m1为整数.则m2k=p120·p2m12k,右端是M中两个非可逆元的乘积.因此m2k为M中可约元.故若m2k在M中不可约,必须m=±p·2t,其中p为奇素数,t非负整数,证毕.8畅设bc=ad,将b,c分解成不可约因式的乘积b=p1…ps,c=ps+1…pt.再将a,d分解成不可约因式的乘积a=q1…qr,d=qr+1…ql.由bc=ad,及因式分解唯一性知t=l,及有1,2,…,t的一个排列i1i2…it,使pij与qj相伴.对1≤j≤r,qj是a的不可约因子,则pij不在p1,…,ps之中,否则a与b有公因子pij,与它们互素矛盾.这样pi1…pir必出现在c的分解中,它与a=q1…qr相伴,故a|c.9畅R为唯一因式分解环,由§1定理1及定义2知它的不可约元p为素元.设珋c,珔d是珚R的两个非零元,来证珋c珔d≠0,即珚R是整环.反证法设cd=珋c珔d=0,·28·则p|cd、因p为素元,则或p|c或p|d,即或珋c=0或珔d=0.矛盾.故cd≠0,珚R为整环.§2 欧氏环,主理想整环以下习题中打倡者为必作题,其余为选作题. 倡1畅主理想环的商环是主理想环. 倡2畅R是主理想环,a为R中不可约元,则(i)(a)为极大理想;(ii)a为素元;(iii)每个非0素理想(见第二章§7习题2)是极大理想;(iv)R/(a)是域.3畅证明M={a+b2i|a,b∈Z}是欧氏环(仿例1). 倡4畅p是素数.令R=aba,b∈Z,(b,p)=1.(i)证明R是整环;(ii)求出R的所有可逆元;(iii)证明R的所有非可逆元组成R的唯一极大理想;(iv)上述极大理想是主理想;(v)求出R的全部理想. 倡5畅找出高斯整数环Z{a+bi|a,b∈Z}的全部可逆元. 倡6畅高斯整数环的元素a满足δ(a)=素数,则a为不可约元.7畅R是欧氏环,求证(i)若ε∈R倡=R\{0},则ε是R中可逆元当且仅当橙a∈R倡有δ(ε)≤δ(a).(ii)设a∈R倡,a不可逆.若对所有不可逆元b∈R倡都有δ(a)≤δ(b),则a是R中不可约元.8畅R=12a+12b19ia,b∈Z,则R是主理想环但不是欧氏环(参看Motzkin,TheEuclideanalgorithm,Bull.Amer.Math.Soc.55.1142-1146(1949).或参看张勤海著枟抽象代数枠(科学出版社,2004)中推论2畅4畅14及命题2畅4畅16).9畅R是主理想环.d是R中非零元,则R中只有有限个不同的素理想包含·38·(d)(提示:(d)炒(k)痴k|d).1畅设R为主理想环,珚R=R/I为商环.任取一个理想珡N,令N={r∈R|珋r=r+I∈珡N}.易证它是R的理想并包含I(参见第二章§4习题8).R是主理想环,故有N=aR.于是珡N=珔a珚R,即珚R是主理想环.2畅(i)设有(a)炒M炒R,M为R的理想.故有b∈M使M=(b).a∈(b),有a=br,r∈R.因a不可约,b,r中必有可逆元,若b可逆,则(b)=R;若r可逆,则(a)=(b).故(a)是极大理想.(ii)主理想环是唯一因式分解环,它的不可约元皆为素元.(iii)设(b)是非零素理想,由§1习题3,b为素元.因而是不可约元.由(i),(b)为极大理想.(iv)由(i),(a)为极大理想,故R/(a)为域.3畅仿例1,令δ:M倡Z+(非负整数集)δ(a+b2i)=a2+2b2.当a+b2i≠0,δ(a+b2i)≥1,具有性质(i)δ(αβ)=δ(α)δ(β)≥δ(β),橙α,β∈M倡.(ii)橙α,β∈M,β≠0,我们证明有q,r∈R使得α=qβ+γ,且γ=0或δ(γ)<δ(β).证明 对α∈M及β∈M倡,可写αβ-1=a+b2i,这几a,b∈Q选最接近a,b的整数k,l使a=k+ν,b=l+μ,其中|μ|≤12,|ν|≤12.则α=β[(k+ν)+(l+μ)2i]=β[k+l2i]+β(ν+μ2i).令q=k+l2i,γ=β(ν+μ2i)=α-βq∈M.则α=qβ+γ,且若γ≠0,δ(γ)=|γ|2=|β|2|ν+μ2i|2≤|β|214+24=34|β|2<δ(β).故M={a+b2i|a,b∈Z}是欧氏环.4畅(i)设a1b1,a2b2∈R,(bi,p)=1,i=1,2.于是(b1b2,p)=1,a1a2b1b2∈R,a1b1±a2b2=b2a1±b1a2b1b2∈R.故R是Q的子环,因而是整环.(ii)(b,p)=1.若ab在R中可逆,存在cd∈R使abcd=1.这时(b,p)=(d,p)=1,故(bd,p)=1.由ac=bd,于是(a,p)=1.·48·反之,ab∈R,若(a,p)=1,则ba∈R,ab·ba=1.即ab在R中可逆.故R中可逆元集=aba,b∈Z,(b,p)=(a,p)=1.(iii)由(ii)知ab∈R非可逆当且仅当(b,p)=1及p|a.令M={R中非可逆元}.橙ab,cd∈M,即有p|a,p|c.ab±cd=bc±addb,这时(db,p)=1,p|bc±ad.故ab±cd非可逆,属于M.又橙ab∈M,cd∈R,cd·ab=acdb.这时(db,p)=1及p|ac,故cd·ab是非可逆元,属于M.这就证明了M是R的理想.设M1是R的真理想,则M1中元皆为R中的非可逆元,故M1炒M,即M为R的唯一的极大理想.(iv)易知M=ab(b,p)=1,p|a=pR,故为主理想.(v)设M1是R的任一非零理想,M1炒M.任意0≠ab∈M1,(b,p)=1,p|a.令M1的全体元ab中使pl|a的最小的l值为k,k≥1,则M1彻pkR.又设M1中具有pk因子的元是pkcd,(d,p)=(c,p)=1.则pk=pkcd·dc∈M1,于是pkR彻M1,即有M1=pkR.也易知任一pkR也是R的理想.故R的全部理想是pkR,k=0,1,2,…,及零理想.5畅设a+bi是Z[i]中可逆元,则有c+di∈Z[i]使(a+bi)(c+di)=1.两边取模平方就得(a2+b2)(c2+d2)=1.只能a2+b2=1,有四个可能a=±1,b=0;a=0,b=±1.Z[i]中只有四个可逆元±1,±i.6畅设a∈Z[i],δ(a)=素数.若a=bc,b,c∈Z[i].因δ(a)=|a|2,故δ(a)=δ(b)δ(c).由于δ(a)为素数,δ(b)或δ(c)=1.由习题5,知b或c为可逆元.故a为Z[i]中不可约元.7畅设ε是R中可逆元,则有εr=1.对a∈R倡,有εra=a,由δ的性质知δ(a)≥δ(ε).反之,对ε∈R倡,若橙a∈R倡皆有δ(a)≥δ(ε).用欧氏环的定义,对1,ε有q,r∈R使1=qε+r,r=0或δ(r)<δ(ε).且若r≠0,则δ(r)<δ(ε),这与题设矛盾.故r=0,得1=qε,即ε为可逆元.(ii)设a有题设的性质,若a=bc,b,c皆非可逆.设有q,r使·58·b=qa+r,r=0或δ(r)<δ(a).若r=0,则b=qa=qbc.用消去律有1=qc与c非可逆矛盾.若r≠0,且非可逆,则δ(a)>δ(r)与题设δ(a)≤δ(r)矛盾.故r为可逆元.由b-qa=b-qbc=b(1-qc)=r,可得b为可逆元,与b非可逆矛盾.故a为R的不可约元.8畅不作要求,可参看所列文献.9畅R为主理想环,若某一素理想包含(d),可设该理想为(k).设d=pl11pl22…plss,p1,…,ps是不相伴的不可约元或素元.(k)是素理想,(d)彻(k),则(k)不为零.由习题3知k为素元,又k|d,知k与p1,…,ps之一相伴,故(k)为(pi)之一,1≤i≤s.§3 交换环上多项式环以下习题中打倡者为必作题,其余为选作题. 倡1畅R是整环,则R[x]中可逆元一定是R中可逆元.2畅设R是有限域.令R1={R到R的全部映射的集合}.R1上有加法和乘法:f1,f2∈R1,令橙a∈R,(f1+f2)(a)=f1(a)+f2(a),(f1·f2)(a)=f1(a)f2(a).易知R1在这两个运算下成环.其单位元e为:橙a∈R,e(a)=1.对橙r∈R,作R1中映射f(r):f(r)(a)=r,橙a∈R.它们组成R1的子环,并与R同构.干脆记成R,于是R1是R的扩环,并将f(r)记成r.令u是R的恒等映射:u(a)=a,橙a∈R.证明u不是R上不定元. 倡3畅Z是整数环,则a+bi,a,b∈Z,不是Z上不定元.1畅设f(x)∈R[x],在R[x]中可逆,则有g(x)∈R[x]使f(x)g(x)=1.在整环R[x]中,多项式相乘则次数相加.故必有抄(f(x))=抄(g(x))=0.即f(x)=a0,g(x)=b0,皆为R中元,且a0b0=1.故f(x)=a0是R中可逆元.·68·2畅先证明R1澈R0={f(r)|r∈R}是R1的子环并与R同构.实际上(f(r1)±f(r2))(a)=(r1±r2)=f(r1±r2)(a),(f(r1)·f(r2))(a)=f(r1)(a)f(r2)(a)=r1r2=f(r1r2)(a).即f(r1)±f(r2)=f(r1±r2),f(r1)f(r2)=f(r1r2),R0对加,减,乘是封闭的,故是R1的子环.作映射R0Rf(r)r它显然环同构.把f(r)干脆与r等同.则R1是R的扩环.现设R=Fpn.橙a∈R满足apn-a=0.upn(a)=apn,u(a)=a,即有(upn-u)(a)=0,橙a∈R.故upn-u=0,这即说upn,u在R上线性相关,u不是R上不定元.3畅令u=a+bi,则(u-a)2+b2=0,a,b∈Z.这是u2,u,1在Z上的一个线性关系,故u不是Z上不定元.§4 唯一因式分解环上的多项式环以下习题中打倡者是必作题,其余为选作题.下面的环R都是唯一因式分解环. 倡1畅R[x]的正次数多项式若是不可约元,一定是本原多项式. 倡2畅f(x),g(x)∈R[x].g(x)的首项系数为1,则有q(x),r(x)∈R[x],使f(x)=g(x)q(x)+r(x),其中r(x)或者为零或者抄(r(x))<抄(g(x)). 倡3畅f(x)∈R[x],c∈R是f(x)的一个根,则(x-c)|f(x). 倡4畅R[x]中的n次多项式f(x)在R中最多有n个不同的根.于是f(x)=anxn+…+a0在R中若有多于n+1个根,必是零多项式.1畅设f(x)各系数的最大公因子为d,则f(x)=dg(x).g(x)为正次数必·78·不可逆.因f(x)不可约,故d是R[x]中可逆元.由§3习题1,d是R中可逆元.故f(x)是R[x]中本原多项式.2畅设f(x)=anxn+an-1xn-1+…+a1x+a0,g(x)=xm+bm-1xm-1+…+b1x+b0,m≥0.我们对n作归纳法.当n=0时是显然的.设次数≤n-1时已对.若n<m,f(x)=0g(x)+f(x),f(x)就是要求的r(x).若n≥m.作f(x)-anxn-mg(x),此中两多项式的首项都是anxn,两者相消.这个差多项式若为零,则f(x)=anxn-mg(x)+0,命题已对.若差多项式不为零,其次数已小于n.用归纳假设有q(x),r(x)使f(x)-anxn-mg(x)=q(x)g(x)+r(x),就有f(x)=(anxn-m+q(x))g(x)+r(x),其中r(x)=0或抄(r(x))<抄(g(x)).完成了归纳法.3畅用(x-c)去除f(x),由习题2可得f(x)=(x-c)q(x)+r,这时r∈R.两边用c代入,0=f(c)=(c-c)q(c)+r.故r=0.即得f(x)=(x-c)q(x),(x-c)|f(x).4畅这时R[x]是唯一因式分解环.设f(x)有n+1个不同的根α1,α2,…,αn,αn+1.由习题3,(x-αi)|f(x),i=1,2,…,n+1.先设f(x)=(x-α1)q1(x).用α2代入得0=(α2-α1)q1(α2).因α2≠α1,知q1(α2)=0.仍由习题3,q1(x)=(x-α2)q2(x),于是f(x)=(x-α1)(x-α2)q2(x).同样α3代入,得q2(α3)=0.于是q2(x)=(x-α3)q3(x).这样可得f(x)=(x-α1)q1(x)=(x-α1)(x-α2)q2(x)=…=(x-α1)…(x-αn)qn.因f(x)是n次的,这时qn必为R中非零元.再用αn+1代入,左端为f(αn+1)等于零,右端(αn+1-α1)…(αn+1-αn)qn≠0,矛盾.故f(x)最多有n个不同的根.因此f(x)=anxn+…+a1x+a0若有n+1个不同的根,必为零多项式.·88·。

近世代数课后习题参考答案(张禾瑞)-3

近世代数课后习题参考答案(张禾瑞)-3

近世代数课后习题参考答案第三章 环与域1 加群、环的定义1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的.证 (ⅰ)若S 是一个子群 则S b a S b a ∈+⇒∈,'0是S 的零元,即a a =+'0对G 的零元,000'=∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+⇒∈, S a S a ∈-⇒∈今证S 是子群由S S b a S b a ,,∈+⇒∈对加法是闭的,适合结合律, 由S a S a ∈-⇒∈,而且得S a a ∈=-0 再证另一个充要条件:若S 是子群,S b a S b a S b a ∈-⇒∈-⇒∈,, 反之S a a S a a S a ∈-=-⇒∈=-⇒∈00 故S b a b a S b a ∈+=--⇒∈)(,2. },,,0{c b a R =,加法和乘法由以下两个表给定:+ 0 a b c ⨯0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0c0 a b c证明,R 作成一个环 证 R 对加法和乘法的闭的.对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(=事实上.当0=x 或a x =,)(A 的两端显然均为0.当b x =或x=c,)(A 的两端显然均为yz . 这已讨论了所有的可能性,故乘法适合结合律.两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)(事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了.至于第二个分配律的成立的验证,由于加法适合交换律,故可看0=y 或a y = (可省略a z z ==,0的情形)的情形,此时两端均为zx剩下的情形就只有0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环.2 交换律、单位元、零因子、整环1. 证明二项式定理 n n n n n b b aa b a +++=+- 11)()(在交换环中成立. 证 用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的:k i i k k i k kk k b b a b a a b a +++++=+-- )()()(11看1+=k n 的情形)()(b a b a k++))()()((11b a b b a b a a ki i k k i k k k ++++++=--1111111)]()[()()(++--+++++++++=+k ii k k i k i k k k k b b ab a a b a 111111)()(+-+++++++++=k i i k k i k k k b b a b a a(因为)()()(11kr k r k r -++=) 即二项式定理在交换环中成立.2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环.证 设a 是生成元 则R 的元可以写成na (n 整数)2)]([)]([))((nma aa m n ma a n ma na ===2))((mna na ma =3. 证明,对于有单位元的环来说,加法适合交换律是环定义里其他条件的结果 (利用)11)((++b a ) 证 单位元是1,b a , 是环的任意二元,1)11(1)()11)((⋅++⋅+=++b a b ab a b a +++= )11()11(+++=b a b b a a +++=b b a a b a b a +++=+++∴ b a a b +=+4. 找一个我们还没有提到过的有零因子的环.证 令R 是阶为2的循环加群 规定乘法:R b a ∈,而0=ab 则R 显然为环.阶为2 ∴有R a ∈ 而 0≠a但 0=aa 即a 为零因子 或者R 为n n ⨯矩阵环.5. 证明由所有实数2b a + (b a ,整数)作成的集合对于普通加法和乘法来说 是一个整环.证 令2{b a R +=b a ,(整数)}(ⅰ) R 是加群2)()()2()2(d b c a d c b a +++=+++ 适合结合律,交换律自不待言.零元 200+2b a +的负元2b a --(ⅱ)2)()2()2)(2(bc ad bd ac d c b a +++=++ 乘法适合结合律,交换律,并满足分配律.(ⅲ)单位元 201+(ⅲ) R 没有零因子,任二实数00=⇒=a ab 或0=b3 除、环、域1. =F {所有复数bi a + b a ,是有理数}证明 =F 对于普通加法和乘法来说是一个域.证 和上节习题5同样方法可证得F 是一个整环. 并且 (ⅰ)F 有01≠+i(ⅱ) 0≠+bi a 即 b a , 中至少一个0≠022≠+∴b a 因而有,i b a b b a a 2222+-++ 使)((bi a +i b a bb a a 2222+-++1)= 故F 为域2. =F {所有实数,3b a + b a ,( 是有理数)} 证明 F 对于普通加法和乘法来说是一个域.证 只证明 03≠+b a 有逆元存在.则b a ,中至少有一个0≠ , 我们说0322≠-b a 不然的话,223b a =,0(≠b 若0=b 则 0=a 矛盾)223b a = 但 3 不是有理数既然0322≠-b a则 3b a + 的逆为3332222b a bb a a -+-4. 证明 例3的乘法适合结合律.证),)](,)(,[(332211βαβαβα=),)(,(331212121βααββαββαα--+----+--=,)()[(3212132121βαββααββαα ---+--])()(3212132121ααββαβββαα 又 )],)(,)[(,(332211βαβαβα],)[,(3232323211--+-=αββαββααβα -----------------+--=)()([3232132321αββαβββααα, )]()(3232132321----------------++ββααβαββαα ),([32321321321----------+--=βββαβββαααα )](32321321321----------++αββαβαβαβαα,[321321321321αβββαβββαααα-------= ]321321321321βββααβαβαβαα-----++ ,)()[(3212132121βαββααββαα--+--= 3212132121)()(---++-ααββαβββαα )])()[(())]()([(332211333211βαβαβαβαβαβα=∴5. 验证,四元数除环的任意元 )(),(di c bi a ++ ,这里d c b a ,,,是实数,可以写成),0)(0,()1,0)(0,()0,)(0,()0,(i d c i b a +++的形式. 证 ),(),(),(di bi c a di c bi a +=++ ),0()0,(),0()0,(di bi c a +++=),0)(0,()0,)(0,()1,0)(0,()0,(i d i b c a +++=4 无零因子环的特征1. 假定F 是一个有四个元的域,证明.(a )的特征是2;(b )F 的0≠ 或11的两个元都适合方程 证 (a ) 设F 的特征为P 则P 的(加)群F 的非零元的阶 所 4P (4是群F 的阶) 但要求P 是素数, .2=∴P (b ) 设},,1,0{b a F =由于2=P ,所以加法必然是,0=+x x ,而b a a a =+⇒≠+11 故有0 1 a b0 0 1 a b 1 1 0 b a a a b 0 1 bb a 1 0 又 },,1{b a 构成乘群,所以乘法必然是 1,=⇒≠≠ab b ab a ab1,22≠≠a a a (否则b a = )b a =⇒2故有.1 a b 11 a b a a b 1 bb a 1这样, b a , 显然适合12+=x x2. 假定 ][a 是模 的一个剩余类.证明,若a 同 n 互素,那么所有][a 的书都同n 互素(这时我们说][a 同n 互素). 证 设][a x ∈ 且d n x =),( 则11,dn n dx x ==由于)(1111q n x d q dn dx nq x a nq a x -=-=-=⇒=-故有 ,a d ,且有 n d因为 1),(=n a 所以1=d3. 证明, 所有同 n 互素的模 n 的剩余类对于剩余类的乘法来说作成一个群(同 互素的剩余类的个数普通用符号)(n φ 来表示,并且把它叫做由拉φ函数)证]{[a G =而][a 同n 互素}G 显然非空,因为)1),1((]1[=∈n G(ⅰ)G b a ∈][],[则][]][[ab b a =又1),(,1),(==n b n a 有1),(=n abG ab ∈∴][(ⅱ)显然适合结合律.(ⅲ)因为n 有限,所以G 的阶有限. 若]][[]][['x a x a = 即][]['ax ax =由此可得)(''x x a ax ax n -=-',1),(x x n n a -∴= 即有][]['x x =另一个消去律同样可证成立.G 作成一个群4. 证明,若是1),(=n a , 那么)(1)(n an ≡φ(费马定理)证 ),(n a 则G a ∈][而 ][a 的阶是G 的阶 )(n φ的一个因子 因此]1[][)(=n a φ即]1[][)(=n aφ)(1)(n a n ≡∴φ5 子环、环的同态1. 证明,一个环的中心是一个交换子环.证 设N 是环的中心.显然N O ∈ N b a ∈,,x 是环的任意元N b a b a x xb x bx ax x b a ∈-⇒-=-=-=-)()( N ab ab x b xa b ax xb a bx a x ab ∈⇒=====)()()()()()(是子环,至于是交换环那是明显的.2. 证明, 一个除环的中心是个域.证 设!是除环!是中心 由上题知N 是R 的交换子环,1R ∈显然N ∈1,即N 包含非零元,同时这个非零元1是的单位元.R x N a ∈∈,即xa ax = N a x a xa x axa xaa axa∈⇒=⇒=⇒=------111111N ∴!是一个域3. 证明, 有理数域是所有复数b a bi a ,(+是有理数)作成的域)(i R 的唯一的真子域. 证 有理数域R 是)(i R 的真子域.设F !是)(i R 的一个子域,则R F ⊇(因为R 是最小数域) 若,F bi a ∈+ 而0≠b则)(i F F F i =⇒∈这就是说,R 是)(i R 的唯一真子域.4. 证明, )(i R 有且只有两自同构映射.证 有理数显然变为其自己. 假定α→i则由i i =⇒-=⇒-=αα1122或 i -=α这就证明完毕. 当然还可以详细一些:bi a bi a +→+:1φbi a bi a -→+:2φ21,φφ确是)(i R 的两个自同构映射.现在证明只有这两个.若bi a i +=→αφ: (有理数变为其自己)则由12)(12222-=+-=+⇒-=abi b a bi a i 1,0222-=-=b a ab若 102-=⇒=a b 是有理数,在就出现矛盾,所以有0=a 因而.1±=b 在就是说, 只能i i → 或i i -→i5. 3J 表示模3的剩余类所作成的集合.找出加群3J 的所有自同构映射,这找出域3J !的所有自同构映射.证 1)对加群3J 的自同构映射 自同构映射必须保持!00←→ 故有i i →:1φ2)对域3J 的自同构映射.自同构映射必须保持00←→,11←→ 所有只有i i →:φ6. 令R 是四元数除环, R 是子集=S {一切)}0,(a 这里a 阿是实数,显然与实数域-S 同构.令-R 是把R 中S 换成-S 后所得集合;替R 规定代数运算.使-≅R R ,分别用k j i ,,表示R 的元),,0(),1,0(),0,(i i ,那么-R 的元可以写成d c b a dk cj bi a ,,,(+++是实数)的形式(参看.3.3 习题5). 验证.1222-===k j i ,.,,j ik ki i kj jk k ji ij =-==-==-=证 1)对a a →)0,(:φ来说显然-≅S S 2)=S {一切)}0,(a a 实数 =-S {一切()0,a a 实数 βα,{(=R 一切)}0,(a 复数对)(αβ是不属于S 的R 的元. =-R βα,{(一切}a规定a a →→)0,(),,(),(:βαβαψ由于S 与-S 的补足集合没有共同元,容易验证ψ是R 与-R 间的一一映射. 规定-R 的两个唤的和等于它们的逆象的和的象. -R 的两个元的积等于它们的逆象的积的象.首先,这样规定法则确是-R 的两个代数运算.其次,对于这两个代数运算以及R 的两个代数运算来说在ψ之下-≅R R (3)由.3.3习题5知),0)(0,()1,0)(0,()0,)(0,()0,(),(i d c i b a di c bi a +++=++ 这里 d c b a ,,, 实数这是因为令),0(),1,0(),0,(i k j i i ===(4)1)0,1()0,)(0,(2-=-==i i i1)0,1()1,0)(1,0(2-=-==j 1)0,1()1,0)(1,0(2-=-==k k i ij -===)1,0()1,0)(0,( k i i ji -=-==),0()0,)(1,0(同样j ik ki i kj jk =-==-=,6 多项式环1. 证明, 假定R 是一个整环,那么R 上的一个多项式环][x R 也是一个整环. 证 R !是交换环][x R ⇒交换环, R 有单位元11⇒是][x R 的单位元, R 没有零因子][x R ⇒没有零因子事实上,0,)(10≠++=a x a x a a x f nn0,)(10≠++=m mm b x b x b b x g则mn m n x b a b a x g x f +++= 00)()(因为R 没有零因子,所以0≠m n b a 因而0)()(≠x g x f 这样][x R 是整环2. 假定R 是模7的剩余类环,在][x R 里把乘积 ])3[]4])([4[]5[]3([23+--+x x x x 计算出来解 原式=]2[]5[]4[]5[]5[]5[]3[]5[345345++++=-++-x x x x x x x x3. 证明:(ⅰ) ],[],[1221ααααR R =(ⅱ) 若n x x x ,,,21 是R 上的无关未定元,那么每一个i x 都是R 上的未定元. 证 (ⅰ)=],[21ααR {一切}211221i i i i aαα∑{],[12=ααR 一切}112212j j j j aαα∑由于=∑211221i i i i aαα112212j j j j a αα∑ 因而=],[21ααR ],[12ααR(ⅱ)设00=∑=nk ki k x a 即∑=+-nk n i h i i k x x x x x a 00010101因为n x x x ,,21是R 上的无关未定元,所以即i x 是R 上的未定元4. 证明:(ⅰ) 若是n x x x ,,21和n y y y ,,21上的两组无关未定元,那么],,[],,[2121n n y y y R x x x R ≅(ⅱ) R !上的一元多项式环][x R 能与它的一个真子环同构. 证 (ⅰ)),,(),,(:2121n n y y y f x x x f →φ 根据本节定理3 ],,[~],,[2121n n y y y R x x x R容易验证),,(),,(212211n n x x x f x x x f ≠),,(),,(212211n n y y y f y y y f ≠⇒ 这样],,[],,[2121n n y y y R x x x R ≅(ⅱ)令{][=x R 一切}2210nn x a x a a +++显然][][2x R x R ⊂ 但][2x R x ∉不然的话m m m m x b x b x b x b x b b x 22102210 ++-⇒++=这与x 是R 上未定元矛盾. 所以][2x R 是][x R 上未定元显然 故有(ⅰ)}[][2x R x R ≅这就是说,][2x R 是][x R 的真子环,且此真子环与][x R 同构.7 理想1. 假定R 是偶数环,证明,所有整数r 4是ϑ的一个理想,等式!对不对? 证 R r r r r ∈∈2121,,4,4ϑϑ∈-=-)(4442121r r r r R r r ∈-21ϑ∈=∈)(4)4(,'1'1'r r r r R r R r r ∈'1ϑ∴ 是R 的一个理想. 等式 )4(=ϑ不对这是因为R 没有单位元,具体的说)4(4∈但ϑ∉42. 假定R 是整数环,证明.1)7,3(=证 R 是整数环,显然)1(=R .1)7,3(=又 )7,3()7(13)2(1∈+-=1)7,3(=∴3. 假定例3的R 是有理数域,证明,这时),2(x 是一个主理想.证 因为2与x 互素,所以存在)(),(21x P x P 使),2(11)()(221x x xP x P ∈⇒=+),2()1(][x x R ==∴ 。

近世代数课后习题参考答案

近世代数课后习题参考答案

近世代数课后习题参考答案第一章 基本概念1 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ׃只有在B A =时, 才能出现题中说述情况.证明 如下当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ∉,显然矛盾; 若A B ⊂,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A =2.假定B A ⊂,?=B A ,A ∩B=? 解׃ 此时, A ∩B=A,这是因为A ∩B=A 及由B A ⊂得A ⊂A ∩B=A,故A B A = ,B B A ⊃ , 及由B A ⊂得B B A ⊂ ,故B B A = ,2 映射1.A =}{100,3,2,1,⋯⋯,找一个A A ⨯到A 的映射. 解׃ 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ⨯到A 的映射.2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ⨯到A 的一个元的的象? 解׃容易说明在1φ之下,有A 的元不是A A ⨯的任何元的象;容易验证在2φ之下,A 的每个元都是A A ⨯的象.3 代数运算1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ⨯到D 的代数运算;是不是找的到这样的D ?解׃取D 为全体有理数集,易见普通除法是A A ⨯到D 的代数运算;同时说明这样的D 不只一个.2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解׃a b c aa b ca b cb bc a a a a a c c a b bd a aca a a4 结合律1.A ={所有不等于零的实数}. 是普通除法:bab a = .这个代数运算适合不适合结合律? 解׃ 这个代数运算不适合结合律: 212)11(= , 2)21(1= ,从而 )21(12)11( ≠.2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律?解׃ 这个代数运算不适合结合律c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c .3.A ={c b a ,,},由表所给的代数运算适合不适合结合律?解׃ 经过27个结合等式后可以得出所给的代数运算适合结合律.5 交换律1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律?解׃ 一般地a b b a -≠- 除非b a =.2.},,,{d c b a A =,由表a b c d a a b c d b b d a c c c a b d dd c a b所给出代数运算适合不适合交换律?a b c aa b cb bc a cc a b解׃ d d c = , a c d =从而c d d c ≠.故所给的代数运算不适合交换律.6 分配律假定:⊗⊕,是A 的两个代数运算,并且⊕适合结合律,⊕⊗,适合两个分配律.证明)()()()(22122111b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗ )()()()(22211211b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗= 证)()()()(22122111b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗׃ =])[(])[(221121b a a b a a ⊗⊕⊕⊗⊕ =)()(2121b b a a ⊕⊗⊕=)]([)]([212211b b a b b a ⊕⊗⊕⊕⊗)()()()(22211211b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗=7 一 一 映射、变换1.A ={所有0〉的实数},=-A {所有实数}.找一个A 与-A 间的意义映射.证 φ:a a a log =→-因为a 是大于零的实数,所以a log 是实数即 A a ∈,而--∈A a ,而且b a b a log log =⇒=.因此φ是A 到-A 的映射.又给了一个-A 的任意元-a ,一定有一个A 的元a ,满足-=a a log ,因此φ是A 到-A 的满射.a a a log =→-b b b log =→-若 b a ≠, 则 b a log log ≠.即 --≠⇒≠b a b a 因此φ又是A 到-A 的单射.总之,φ是A 到-A 的一一映射.2. A ={所有0≥的实数},=-A {所有实数-a ,10≤≤-a }. 找一个A 到-A 的满射. 证 a a a sin :=→-φ,容易验证φ是A 到-A 的满射.3.假定φ是A 与-A 间的一个一一映射,a 是A 的一个元.?)]([1=-A φφ?)]([1=-a φφ若φ是A 的一个一一变换,这两个问题的回答又该是什么?解׃ a a =-)]([1φφ, a a =-)]([1φφ未必有意义;当φ是A 的一一变换时,.)]([,)]([11a a a a ==--φφφφ8 同态1.A ={所有实数x },A 的代数运算是普通乘法.以下映射是不是A 到A 的一个子集-A 的同态满射?x x a →) x x b 2)→ 2)x x c → x x d -→) 证׃ )a 显然=-A {所有0≥的实数}.又由于 y x xy xy =→ 可知x x →是A 到-A 的同态满射.)b 由于)2)(2(2y x xy xy ≠→ ( 除非0=xy )所以x x 2→不是A 到-A 的同态满射.)c 由于222)()()(y x xy xy =→,易知2x x →是A 到-A 的同态满射.这里-A ={所有0≥的实数}.)d 一般来说,))((y x xy --≠-,:所以x x -→不是A 到-A 的同态满射 .2. 假定A 和-A 对于代数运算ο和-ο来说同态,-A 和=A 对于代数运算-ο和=ο来说同态,证明 A 和=A 对于代数运算ο和=ο来说同态。

近世代数课后练习答案

近世代数课后练习答案

§1—3 集合、映射及代数运算思考题1:如何用语言陈述“A B ⊄”?定义4:设A B ⊂,且存在B a A a ∉∈但,那么称B 是A 的真子集,否则称B 不是A 的真子集。

思考题2:若A B ⊂,但B 不是A 的真子集,这意味着什么?定义5:若集合A 和B 含有完全一样的元素,那么称A 与B 相等,记为A =B .结论1:显然,A B B A B A ⊂⊂⇔=且.(4)集合的运算 ①集合的并:{}B x A x x B A ∈∈=或 ②集合的交:{}B x A x x B A ∈∈=且 ③集合的差:{}B x A x x B A ∉∈=-且 ④集合在全集内的补:{}A x E x x A ∉∈=且⑤集合的布尔和(对称差):{})()()()( B A B A A B B A B A x B x A x x B A -=--=∉∈∈=⊕但或 ⑥集合的卡氏积:{}B b A a b a B A ∈∈=⨯且),(卡氏积的推广:{}m i A a a a a A A A A m A A A i i m m mi i m ,,2,1,),,,( ,,,2121121 =∈=⨯⨯⨯=∏=:成的卡氏积为个集合,那么由它们做是令课堂练习:which of the following rules are algebra operations on the indicated set? 1、.,Q set the on ab b a =2、{}.0,ln >∈=x and R x x set the on b a b a3、.,0222R set the on b a x equation the of root a is b a =-4、.,Z set the on n Subtractio5、{}.0,≥∈n and Z n n set the on n Subtractio6、{}.0,≥∈-=n and Z n n set the on b a b aSolution:1、.221Q b a b and a when ∉=⇒==2、.0ln 12121<=⇒==b a b and a when3、⎩⎨⎧⋅-⋅=⇒==32323,2b a b a when4、.Okay5、.0352<-=⇒==b a b and a when6、.Okay§4—6 结合律、交换律及分配律例1、设,Z A =“ ”是整数中的加法:则)()(,,,t s r t s r Z t s r ++=++∈∀∴“+”在Z 中适合结合律。

近世代数复习题答案

近世代数复习题答案

近世代数复习题答案1. 群的定义是什么?答:群是一个集合G,配备有一个二元运算*,满足以下四个条件:封闭性、结合律、单位元、逆元。

即对于任意的a, b属于G,有a*b属于G;对于任意的a, b, c属于G,有(a*b)*c = a*(b*c);存在一个元素e属于G,使得对于任意的a属于G,有e*a = a*e = a;对于每一个a属于G,存在一个元素b属于G,使得a*b = b*a = e。

2. 什么是子群?答:如果群G的一个非空子集H满足对于任意的a, b属于H,有a*b^(-1)属于H,则称H为G的一个子群。

3. 什么是正规子群?答:如果群G的一个子群N满足对于任意的g属于G和任意的n属于N,有g*n*g^(-1)属于N,则称N为G的一个正规子群。

4. 群同态的定义是什么?答:设G和H是两个群,如果存在一个映射φ: G → H,满足对于任意的a, b属于G,有φ(a*b) = φ(a)*φ(b),则称φ为从G到H的一个群同态。

5. 什么是群的同构?答:如果群G和H之间存在一个双射的群同态φ,则称G和H是同构的,记作G ≅ H。

6. 什么是环?答:环是一个集合R,配备有两个二元运算+和*,满足以下条件:(R, +)是一个交换群;(R, *)满足结合律;乘法对加法满足分配律。

即对于任意的a, b, c属于R,有(a+b)+c = a+(b+c);存在一个元素0属于R,使得对于任意的a属于R,有a+0 = 0+a = a;对于每一个a属于R,存在一个元素-a属于R,使得a+(-a) = (-a)+a = 0;对于任意的a, b属于R,有(a*b)*c = a*(b*c);对于任意的a, b属于R,有a*(b+c) = a*b + a*c,(b+c)*a = b*a + c*a。

7. 什么是理想?答:如果环R的一个非空子集I满足对于任意的a属于I和任意的r 属于R,有a*r和r*a属于I,则称I为R的一个理想。

近世代数复习思考题

近世代数复习思考题

《近世代数》复习思考题1.指出下列判断正确还是错误(1)存在一个只含3个元素的群。

(2)一个群中阶大于2的元素的个数是奇数。

(3)循环群一定是交换群。

(4)所有的环都是交换环。

(5)整数环一定是整环。

(6)有理数的减法都满足结合律。

(7)两个理想的交集还是一个理想。

(8)整数环含有零因子。

(9)整数环是一个欧氏环。

(10)有理数的除法满足结合律。

(11)存在一个只含2个元素的群。

(12)一个群中阶等于2的元素组成一子群。

(13)任意群都包含一个循环子群。

(14)环的乘法都满足结合律。

(15)域一定是整环。

(16)每个域的特征都是素数。

(17)两个子群的交集还是一个子群。

(18)域含有零因子。

(19)每个域都包含有理数域。

(20)域上的多项式环一定是一个唯一分解环。

2.指出下列命题是否正确,并简述理由(1)全体整数组成一个乘法群。

(2)整数环与偶数环同构。

(3)域上的多项式环是唯一分解环。

(4)整系数多项式环Z[x]的理想(2,x)是一个主理想。

(5)循环群的子群也是循环群。

(6)整数环与偶数环不同构。

(7)全体非零有理数组成一个加法群。

(8)欧氏环一定是唯一分解环。

(9)整系数多项式环Z[x]是一个主理想环。

(10)循环群的同态像也是循环群。

3.回答下列问题(1)叙述群的定义。

(2)列出2个群的实例,其中一个是有限群,另一个是无限群。

(3)证明复数域的任何含1的子环都是整环。

(4)证明有理数域不包含真子域。

(5)叙述环的定义。

(6)列出2个群的实例,其中一个是循环群,另一个不是循环群。

(7)证明复数域的任何子域都含有理数域。

(8)整数环的商域(分式域)是什么域?(9)问偶数环的商域(分式域)是什么域?(10)问实数域是否是一个欧氏环?4 证明一个指数为2的群一定是一个不变子群。

5 如果群G的每个元素a都有a2=1则G是交换群。

6 求出整数模12剩余类加群的所有子群。

7 求出整数模15剩余类加群的所有子群。

近世代数复习思考题

近世代数复习思考题

近世代数复习思考题一、基本概念与基本常识的记忆(一)填空题1.剩余类加群Z 12有_________个生成元.2、设群G 的元a 的阶是n ,则a k 的阶是________.3. 6阶循环群有_________个子群.4、设群G 中元素a 的阶为m ,如果e an =,那么m 与n 存在整除关系为———。

5. 模8的剩余类环Z 8的子环有_________个.6.整数环Z 的理想有_________个.7、n 次对称群Sn 的阶是——————。

8、9-置换⎪⎪⎭⎫ ⎝⎛728169345987654321分解为互不相交的循环之积是————。

9.剩余类环Z 6的子环S={[0],[2],[4]},则S 的单位元是____________.10. 24Z 中的所有可逆元是:__________________________.11、凯莱定理的内容是:任一个子群都同一个________同构。

12. 设()G a =为循环群,那么(1)若a 的阶为无限,则G 同构于___________,(2)若a 的阶为n ,则G 同构于____________。

13. 在整数环Z 中,23+=__________________;14、n 次对称群S n 的阶是_____.15. 设12,A A 为群G 的子群,则21A A 是群G 的子群的充分必要条件为___________。

16、除环的理想共有____________个。

17. 剩余类环Z 5的零因子个数等于__________.18、在整数环Z 中,由{2,3}生成的理想是_________.19. 剩余类环Z 7的可逆元有__________个.20、设Z 11是整数模11的剩余类环,则Z 11的特征是_________.21. 整环I={所有复数a+bi(a,b 是整数)},则I 的单位是__________.22. 剩余类环Z n 是域⇔n 是_________.23、设Z 7 ={0,1,2,3,4,5,6}是整数模7的剩余类环,在Z 7 [x]中, (5x-4)(3x+2)=________.24. 设G 为群,a G ∈,若12a =,则8a =_______________。

代数结构部分复习与思考题

代数结构部分复习与思考题
构。
2005.2
Discrete Math. SLZ 经济学院
11
子群主要内容 1.子群的定义。 2.子群的三个判定定理及其应用。 3. 典型子群:由元素生成的子群<a>,群G的
中心C,若干个子群的交集。
子群复习要求 1. 会证明群的子集是子群。 2. 了解几个典型子群的定义。
一.代数系统部分 复习要点:
1.能够判定某个运算是否为给定集合上的二元或一元运算。 2. 能够求出给定二元或一元运算的结果。通过给定解析公式求出
相应的运算表。 3. 能指出给定运算所满足的算律(交换律、结合律、幂等律、分
配律和吸收律)。 4. 能求出给定运算的单位元、零元和所有可逆元素的逆元。 5.判断给定集合和运算能否构成代数系统。 6. 解子代数的基本概念 ; 7.同态的定义及其性质; 8.典型的同态实例 9. 代数系统的积代数
⑶ S3={0,1}, * 为普通乘法,则 S3 是 C .
⑷ S4={1,2,3,6}, ≼ 为整除关系,则 S4 是 D .
⑸ S5={0,1}, +, * 分别为模2的加法和乘法,则 S5是 E
2005.2
Discrete Math. SLZ 经济学院
13
(4) 答案是 ⑦布尔代数;
< S4, ≼>是格,又与22的集合代数同构,所以是布尔代数.
两个二元运算并满足交换律、分配律、同一律和 补元律的代数系统。 2. 布尔代数的特殊性质:双重否定律和德摩根律。 3. 子布尔代数的定义。 4. . 对于任意自然数n,只有一个2n元的有限布 尔代数,就是幂集代数。
学习要求 1. 会判别一个格是布尔代数。 2. 证明布尔代数中的等式。 3. 判别子布尔代数。 4. 了解任意有限布尔代数都与某个幂集格同
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数复习思考题一、基本概念与基本常识的记忆(一)填空题1. 剩余类加群Z12有____ 个生成元.2、设群G 的元 a 的阶是n,则a k的阶是.3. 6 阶循环群有____ 个子群.4、设群G 中元素a的阶为m,如果a n e,那么m与n存在整除关系为———。

5. 模8 的剩余类环Z8 的子环有___ 个.6. 整数环Z 的理想有___ 个.7、n 次对称群Sn的阶是——————。

8、9-置换 1 2 3 4 5 6 7 8 9分解为互不相交的循环之积是—5 4 3 96 1 8 2 7———。

9. 剩余类环Z6 的子环S={[0],[2],[4]},则S 的单位元是10. Z 24中的所有可逆元是: ____________________ .11、凯莱定理的内容是:任一个子群都同一个_ 同构。

12. 设G (a)为循环群,那么(1)若a的阶为无限,则G 同构于_ ,(2)若a的阶为n,则G 同构于 ___ 。

13. 在整数环Z 中, 2 3 = _________________ ;14、n 次对称群S n的阶是.15. 设A1, A2为群G的子群,则A1A2是群G的子群的充分必要条件为 ________ 。

16、除环的理想共有_______ 个。

17. 剩余类环Z5 的零因子个数等于____ .18、在整数环Z 中,由{2,3}生成的理想是.19. 剩余类环Z7 的可逆元有 ____ 个.20、设Z11是整数模11 的剩余类环,则Z11的特征是_.21. 整环I={所有复数a+bi(a,b是整数)},则I的单位是22. 剩余类环Z n是域n 是_______ .23、设Z7 ={0,1,2,3,4,5,6}是整数模7 的剩余类环,在Z7 [x]中, (5x-4)(3x+2)= .24. 设G为群,a G,若 a 12,则a8_______________ 。

25、设群G={e,a1,a2,⋯,a n-1},运算为乘法,e为G的单位元,则a1n =___.26. 设A={a,b,c},则A到A的一一映射共有__ 个.27、整数环Z 的商域是__ .28. 整数加群Z 有______ 个生成元.29、若R是一个有单位元的交换环,I是R的一个理想,那么R I是一个域当且仅当I是————————。

30. 已知 1 2 3 4 5为S5上的元素,则1=______________ 。

3 1 2 54 531. 每一个有限群都与一个______ 群同构。

32、设I 是唯一分解环,则I[ x]与唯一分解环的关系是二、基本概念的理解与掌握。

(二)选择题1. 设集合 A 中含有 5 个元素,集合 B 中含有 2 个元素,那么, A 与 B 的积集合 A ×B 中含有()个元素。

A.2B.5C.7D.102.设A=B=R(实数集),如果 A 到 B 的映射:x→x+2,x∈R,则是从 A 到 B 的()A.满射而非单射B.单射而非满射C.一一映射D.既非单射也非满射3.设Z15是以15 为模的剩余类加群,那么,Z 15的子群共有()个。

A.2B.4C.6D.84、G是12 阶的有限群,H 是G的子群,则H的阶可能是()A 5;B 6 ;C7; D 9.5、下面的集合与运算构成群的是( )A {0 ,1} ,运算为普通的乘法;B {0 , 1} ,运算为普通的加法 ;C {-1 ,1} ,运算为普通的乘法;D {-1 ,1} ,运算为普通的加法 ;6、关于整环的叙述,下列正确的是 ( )7、关于理想的叙述,下列不正确的是 ( )A 在环的同态满射下,理想的象是理想 ;B 在环的同态满射下,理想的逆象是理想C 除环只有两个理想,即零理想和单位理想D 环的最大理想就是该环本身 .8. 整数环 Z 中,可逆元的个数是 ( )A.1 个B.2 个C.4 个D.无限个9. 设 M 2(R)= a b a,b,c,d ∈R ,R 为实数域 按矩阵的加法和 cd 乘法构成 R 上的二阶方阵环,那么这个方阵环是 ( )。

A. 有单位元的交换环B. 无单位元的交换环C. 无单位元的非交换环D. 有单位元的非交换环 a ,当a 为偶数时10. 设Z 是整数集,σ(a)=a 21 ,a Z ,则σ是R 的 a 1,当a 为奇数时2( ).A. 满射变换 A 左、右消去律都成立;B 左、右消去律都不成立D 每个非零元都没有逆元 B. 单射变换C.变换D. 不是R 的变换11、设A={所有实数x},A 的代数运算是普通乘法,则以下映射作成 A 到 A 的一个子集的同态满射的是().A、x→ 10xB、x→ 2xC、x→ |x| D 、x→ -x .12、设是正整数集Z上的二元运算,其中 a b max a,b (即取 a 与b中的最大者),那么在Z中()A、不适合交换律B、不适合结合律C、存在单位元D、每个元都有逆元.13.设S3 ={(1),( 1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S3 中与元( 1 2 3)不能交换的元的个数是()A、1B、2C、 3D、4.14、设G, 为群,其中G 是实数集,而乘法: a b a b k ,这里k为G中固定的常数。

那么群G, 中的单位元e和元x 的逆元分别是()A、0 和x;B、1 和0;C、k 和x 2k ;D、k 和(x 2k)15、设H 是有限群G的子群,且G有左陪集分类H,aH,bH,cH 。

如果H 6,那么G的阶G ()A、6B、24C、10 D 、1216.整数环Z 中,可逆元的个数是().A、1 个B、2 个C、4 个D、无限个。

17、设 f :R1 R2 是环同态满射,f(a) b ,那么下列错误的结论为( )A、若a是零元,则b是零元B、若a是单位元,则b是单位元C、若a不是零因子,则b不是零因子D、若R2 是不交换的,则R1不交换18、下列正确的命题是( )A、欧氏环一定是唯一分解环B、主理想环必是欧氏环C、唯一分解环必是主理想环D、唯一分解环必是欧氏环19. 下列法则,哪个是集 A 的代数运算( ).A. A=N, a b=a+b-2B. A=Z,a b= a bC. A=Q, a b= abD. A=R, a b=a+b+ab20. 设A={ 所有非零实数x},A 的代数运算是普通乘法,则以下映射作成 A 到 A 的一个子集 A 的同态满射的是( ).1A. x→ -xB. x→xA. 3 个B. 4 个C. 5 个D. 6 个23、设a,b, c和x都是群G中的元素且x2a bxc 1,acx xac ,那么D. 3 个x ()A.bc 1a 1;B. c 1a 1;C. a 1bc 1;D. b 1ca 。

24、设 f :G1 G2是一个群同态映射,那么下列错误的命题是() A. f 的同态核是G1 的不变子群;B. G1的不变子群的象是G2 的不变子群。

C. G1 的子群的象是G2的子群;D.G2 的不变子群的逆象是G1的不变子群;25、设H 是群G 的子群,且G 有左陪集分类H,aH,bH,cH 。

如果H 6 ,那么G 的阶G ()A.6 ;B.24 ;C.10 ;D.12 。

(三)判断题(每小题 2 分,共12分)1、设 A 、 B 、D都是非空集合,则 A B到D 的每个映射都叫作二元运算。

()2、除环中的每一个元都有逆元。

()3、如果循环群G a 中生成元a的阶是无限的,则G 与整数加群同构。

()4、如果群G的子群H是循环群,那么G也是循环群。

()5、域是交换的除环。

()6、唯一分解环I 的两个元a和b不一定会有最大公因子。

()7、设f:G G 是群G 到群G 的同态满射,a∈ G ,则a 与 f (a)的阶相同。

()8、一个集合上的全体一一变换作成一个变换群。

()9、循环群的子群也是循环群。

()10、整环I 中的两个元素a,b 满足 a 整除 b 且 b 整除a,则a=b。

()11、一个环若没有左零因子,则它也没有右零因子。

()12、只要 f 是A到A的一一映射,那么必有唯一的逆映射 f 1。

()13、如果环R的阶2,那么R的单位元 1 0。

()14、指数为 2 的子群不是不变子群。

()15 、在整数环Z 中,只有± 1 才是单位,因此在整数环Z 中两个整数相伴当且仅当这两数相等或只相差一个符号。

()16、两个单位和的乘积也是一个单位。

()17、环K 中素元一定是不可约元;不可约元一定是素元。

()18、由于零元和单位都不能表示成不可约元之积,所以零元和单位都不能唯一分解。

()19 、整环必是唯一分解环。

()20 、在唯一分解环K 中,p 是K 中的素元当且仅当p 是K 中的不可约元。

()21 、设K 是唯一分解环,则K 中任意二个元素的最大公因子都存在,且任意二个最大公因子相伴。

()22、整数环Z和环Q x 都是主理想环。

()23、K是主理想环当且仅当K 是唯一分解环。

()24 、整数环Z 、数域P 上的一元多项式环P x 和Gauss 整环Zi 都是欧氏环。

()25、欧氏环必是主理想环,因而是唯一分解环。

反之亦然。

()26、欧氏环主理想环唯一分解环有单位元的整环。

()27、设环R, , 的加法群是循环群, 那么环R必是交换环. ()28、对于环R,若a是R的左零因子, 则a必同时是R 的右零因子. ()29、剩余类Z m是无零因子环的充分必要条件是m为素数. ()30、整数环是无零因子环,但它不是除环。

()31、S2 0 C 是M2 C 的子域. ()2232、在环同态下,零因子的象可能不是零因子。

()33、理想必是子环, 但子环未必是理想. ()34、群G 的一个子群H 元素个数与H 的每一个左陪集aH 的个数相等. ()35、有限群G 中每个元素a的阶都整除群G 的阶。

()三、基本方法与技能掌握。

(四)计算题1.设为整数加群, , 求[Z : H ] ?解在Z 中的陪集有:, ,, ,所以, [Z : H ] 5 .2、找出S3 的所有子群。

解:S3显然有以下子群:本身;((1))={(1)};((12))={(12),(1)};((13))={(13),(1)};((23))={(23),(1)};((123))={(123),(132),(1)}若S3 的一个子群H 包含着两个循环置换,那么H 含有(12),(13)这两个2-循环置换,那么H 含有(12)(13)=(123),(123)(12)=(23),因而H=S3。

同理,若是S3 的一个子群含有两个循环置换(21),(23)或(31),(32)。

这个子群也必然用完全类似的方法,可以算出,若是S3 的一个子群含有一个2-循环置换和一个3-循环置换,那么这个子群也必然是S3。

相关文档
最新文档