飞行模拟器的结构设计与仿真研究

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞行模拟器的结构设计与仿真研究

韩红伟;党淑雯;何法江

【摘要】Flight simulator has the incomparable advantages over real flight training which its structural design is the cru-cial to the optimization of aircraft design and improvement of the flight performance, so modeling and simulation of the research on the aircraft design is the key point for aircraft's design. After compared with 6-DOF(Degree of Freedom) flight simulator driven by hydraulic cylinders, a kind of 3-DOF flight motion platform based on 3-RPS mechanism driven by electric cylinders under UG environment is established , and the simulation of kinematical characteristics is researched after building joints and motions for the virtual prototype under the ADAMS/View module. For given kinematics charac-teristic curves, the post-processing of the measurement results using ADAMS/Post Processor module is carried, to get kinematics curves of various flight attitudes. The simulation results show that the designed structure can achieve three directions of motion, such as lift, roll or pitch, and meet the requirements of the technical specifications of the civil avia-tion flight simulator. The processes of analysis provide effective research methods for the design of the flight simulator.%飞行模拟器具有真实飞行训练无法比拟的优势,其结构设计是优化飞机设计,改善飞行性能的关键问题,故飞行模拟器的建模与仿真研究工作是飞行器设计的难点.通过与液压缸驱动的六自由度飞行模拟器对比分析,以3-RPS机构为基础,以在UG环境下建立的电动缸驱动的三自由度飞行模拟器运动平台模型为研究对象,在ADAMS/View模块下,对其添加约束

和驱动后,进行了运动学特性仿真.对于给定的运动学特性曲线,运用ADAMS/Post Processor模块,对测量结果进行后处理,得到各种飞行姿态下的运动学曲线.仿真实验结果验证了该设计可实现升降、横滚、俯仰三种姿态的运动,且符合民航飞行模拟器的技术指标要求.上述分析过程为飞行模拟器的设计提供了一套有效的研究方法.

【期刊名称】《计算机工程与应用》

【年(卷),期】2016(052)013

【总页数】5页(P254-258)

【关键词】三自由度运动平台;飞行模拟器;结构设计;运动学特性

【作者】韩红伟;党淑雯;何法江

【作者单位】上海工程技术大学机械工程学院,上海 201620;上海工程技术大学航空运输学院,上海 201620;上海工程技术大学航空运输学院,上海 201620

【正文语种】中文

【中图分类】TH12;TP39

HAN Hongwei,DANG Shuwen,HE Fajiang.

Computer Engineering and Applications,2016,52(13):254-258.

飞行模拟器作为一种安全、经济且有效的训练助手,引起了各国军方以及民航的高度关注,不断加大研制和采购费用的力度。

传统的飞行模拟器的驱动平台多为六自由度Stewart平台[1]。因该类型的飞行模拟器多为全任务类型,且价格高,控制系统复杂,随着飞行任务和相应飞行训练的多样化,六自由飞行模拟器的应用受到了限制。飞行训练器和地勤训练器等诸如

此类的飞行模拟器应运而生。少自由度并联机构在控制以及机构结构方面得到简化,能胜任这些飞行模拟器的训练要求,因此它的出现满足了这种发展的需求。

但随着少自由度并联机构在飞行模拟器中的应用,三自由度飞行模拟器便成为飞行模拟器的常见类型。文献[2]中应用3-UPS/PU型飞行模拟器驱动平台为基础,通过压缩气体承载主要负载,来提高驱动平台的模拟能力。文献[3]建立了一种飞行模拟器三自由度运动平台,在ADAMS上建立了虚拟样机并获得有关的运动

学和动力学特性曲线。对于三自由度飞行模拟器,目前的大多研究中,其运动平台的机构设计比较复杂,给设计和加工带来很多麻烦。另外传统的飞行模拟器驱动系统多为液压缸,由于液压缸驱动难度大以及成本贵等缺点,应用范围受到一定的限制。因此对于飞行模拟器,有必要设计机构简单的运动平台并选用不同于传统的驱动系统。

本文以一种机构简单的3-RPS并联机构和易于控制的电动缸驱动为基础,设计了

一种三自由度电动缸驱动的飞行模拟器运动平台。首先通过对三自由度和六自由度飞行模拟器、液压缸和电动缸驱动系统的优缺点对比分析,选择结构简单,电动缸驱动的3-RPS机构作为飞行模拟器的运动平台;进而为满足飞行模拟器高度逼真

的模拟性能要求,对3-RPS机构进行改进、总体结构设计、自由度验证;参照某

型飞行模拟器,确定了本文飞行模拟器的结构尺寸参数及技术指标;最后采用UG 和ADAMS联合仿真,验证了所设计的飞行模拟器的模拟性能。

飞行模拟器的设计首先是对其运动平台以及驱动系统的类型进行选择;其次针对飞行模拟器模拟性能的逼真性这一问题,进行运动平台的结构改进,飞行模拟器的总体结构设计,自由度计算;最后结合某型飞行模拟器,给出了本文所设计的飞行模拟器运动平台的技术指标和结构尺寸参数。

2.1 运动平台的选择

随着科学技术的发展以及飞行模拟器类型的增加,Stewart平台的缺点也慢慢暴露

相关文档
最新文档