射频连接器的结构设计简述

合集下载

射频同轴连接器技术简介

射频同轴连接器技术简介
3、插合特性
插合特性主要是通过机械方法检查弹性插孔的 弹性,其性能优劣与接触电阻和连接器耐久性有直 接联系。
4、中心接触件固定性 无论哪种连接器,其中心接触件都要同电缆芯线、
微带或其它导体连接。连接器使用时中心接触件将受 到轴向推拉力和力矩的作用,如果中心接触件固定不 好,将导致尾部连接点受力过大而松脱或断裂。
IEC标准 • IEC标准是指导性标准,不是强制性标准,
因此很少被直接引用;值得一提的是德 国在某些专用新型连接器方面也有一些 优势,例如:DIN47223 7/16(L29) 系 列、DIN47297 SAA系列 DIN41626、 DSA系列,这些系列产品在通信领域应用 较广泛,德国的标准和产品已得到全世 界认可,但美国尚无这些标准出现。
• 九十年代出现表现贴装射频同轴连接器,并大 量用一于手机产品中。
我国射频同轴连接器的发展
• 我国从五十年代开始由整机厂研制RF连接器; • 六十年代组建专业工厂,开始了专业化生产; • 一九七二年国家组织集中设计,使国产的RF连
接器是自成体系,只能在国内使用,产品标准
水平低,且不能与国际通用产品对接互换; • 八十年代起开始采用国际标准,根据IEC169和
这项试验主要模拟沿海工作环境条件下, 连接器抗锈蚀能力,实际主要是检验镀层质量。
( 四 ) 材料方面 1、弹性材料
按GJB要求,除非另有规定,中心接触件的 弹性零件应采用铍青铜制成。 2、绝缘材料
一般产品选用聚四氟乙烯(TFE),精密型连 接器采用交链聚苯乙烯,气密封连接器除外。 3、壳体材料
按美军标规定RF连接器壳体可用黄铜、磷铜、 铝、无磁易切不锈钢和铍青铜五种材料。这里要 特别注意在军标中规定连接器壳体材料的导磁率 要小于2.0, 这就是我们不能采用一般钢材作过 连接器壳体的原因。

分体式气密封射频连接器的结构设计

分体式气密封射频连接器的结构设计

产品结构及尺寸的不合理将会产生成批的废品。
从 以上可 以看 出 ,由于 玻 璃 密封 件 非 常脆 弱 , 因而在产 品 的结构设 计 中 ,外 壳连 接处 应选 择恰 当
的过盈量及配合长度 ,以避免玻璃密封件受力过大
图 3 螺 纹 连 接 结 构 局 部 剖 视 图
而遭 到破 坏 。如 图 4所 示 ,将外 壳 l后部 直 径减 小 ( 见更 改 后 A处 ) ,则 可 以避 免 较 大 压 力 的产 生 , 防止玻 璃密封 件受 到破 坏 。
类 似于 不锈 钢材 料 ,所 以对 于一些 外形 较复 杂 、尺
产 品 的结构 有 两种 形 式 ,见 图 2和 图 3 图 2 。 是外壳 间采 用压 配收铆 连 接 ,这 种 结构形 式 常见 于
寸较大的产品 ,用可伐合金非常难 以加工 ,尺寸也
不好 保证 。 由图 1中气 密 封转 接 器 的剖 视 图 可见 ,
体积较小的射频连接器 ,如 S A型 ;图 3是外壳 M 间采用螺纹连接 ,这种结构形式常见于体积较大的
玻璃体位于中段 ,孔为深长孔 ,烧结时模具不好定
收稿 日期 :2 0 0 6一o 4—2 0
维普资讯
第 2期
王榕欣 :分体式气 密封射频连接器 的结构设计
文章编号 :10 63 ( 06 0 00- 13 2 0 )2-0 1 o 0 2一 4
1 前

位,烧结后易出现玻璃厚薄不一致、玻璃沿外壳内
表面爬 升等 现象 ,严重 影 响产 品的装 配及 性 能 ,不 适合 于大批 量生 产 。
连 接器 是 一 种 能 提 供 电连 接 与 分 离 功 能 的元 件 ,由于应 用领 域 十分广 泛 ,因而在结 构上 也是 千

射频同轴连接器设计理论基础

射频同轴连接器设计理论基础

射频传输线、连接元件和过渡元件简述第一节射频传输线射频同轴连接器的设计一、同轴传输线的特性阻抗1 同轴传输线的特性阻抗的一般公式射频同轴连接器由一段同轴传输线、连接机构绝缘支架组成。

所以,对同轴传输线的特性阻抗有一个比较全面的了解对射频同轴连接器的设计是非常重要的。

同轴传输线特性阻抗的一般公式:Cj G L j R Z ωω++='0 (1)上式中: Z o1—特性阻抗,欧姆R —每单位长度上导体的内部电阻,欧姆/米G —每单位长度上介质的电导,西门子/米L —每单位长度的电感,享/米C —每单位长度的电容,法/米ω=2πff —频率,赫当R=G=0时,公式(1)简化为:CL Z =0 (2) 在微波频率,导体的内部电感是很小的,每单位长度上的电感很接近于每单位长度上的外部电感:d D L ln 21πμ=(3)上式中:L —每单位长度的外部电感,享/米 μ?=μr μo — 介质的导磁率, 享/米 μr —介质的相对导磁率μo =4π×10-7—真空导磁率,享/米 D —外导体的内径 d —内导体的外径单位长度的电容可按下计算:dD C /ln 21πε=(4)上式中:C — 每单位长度电容,法/米ε1 =εr ε0—介质的介电常数,法/米 εr —— 介质的相对介电常数ε0 =1/C o 2μo —真空介电常数,法/米 C O —在真空中的光速 C O =(±)×108,米/秒将公式(3)和(4)代入(2),并只考虑非磁性介质的情况(μr =),可得到:dDZ rln00006.095860.590ε±=(5) 请注意,真空光速:001με=C真空导磁率μo 被任意地规定为严格等于4π×10-7享/米。

根据精确地进行的实验我们知道光速为0±300米/秒,因此,εo 并不严格等于1/36π×10-9,根据公式计算,εo 应为1/π×10-9。

射频同轴连接器设计要点

射频同轴连接器设计要点

③与外壳做成 整 体,降 低 了 过 去 两 体 压 配 面 间 的接触电阻;
④可承受较大轴向连接压力。 (2)中 心 导 体 接 插 部 位 设 计 除了平接头以 外,所 有 射 频 同 轴 连 接 器 中 心 导 体 的 连 接 形 式 都 是 以 接 插 头 形 式 连 接 的 ,如 图 11 所 示。
SomedesignartforRFcoaxialconnectors
FengLiangping XuLan
(ShangHaiTOKO ElectronElementCo.,Ltd.201801)
Abstract:Thispaperinvestigatedreflectionproblematisolatesupportandsizeabruptofin-outconductofcoaxialconnectors,throughtheanalysisandresearchof microwavetransmittheoryand EDAdesignofHFSS.Finally,itsolvedthecompensationproblemoffourmajorreflectionsources. SomeinstancesofstructuredesignofRFcoaxialconnectorsarepresented. Keywords:RFcoaxialconnector,isolatesupports,co-planecompensative,simulateinvestigated.
(5)
K75Ω =3.04
42
国外电子测量技术
第 24 卷
图8 台阶式过渡轴向错位
为了验证上述结 论,取 出 N 型 转 SMA 型 的 台 阶 过 渡处一段图,进行 仿 真 计 算,再 对 尺 寸 修 正 完 善,得 到图9所示验证结果。

射频连接器的基本结构及产品介绍

射频连接器的基本结构及产品介绍

射频射频连接器的基本结构及产品介绍连接器的基本结构及产品介绍典型型号典型型号::N 型:外导体内径为7mm(0.276英寸)、特性阻抗50Ω(75Ω)的螺纹式射频同轴连接器。

(IEC169-16)BNC 型:外导体内径为6.5mm(0.256英寸)、特性阻抗50Ω的卡口锁定式射频同轴连接器。

(IEC169-8)TNC 型:外导体内径为6.5mm(0.256英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。

(IEC169-17)SMA 型:外导体内径为4.13mm(0.163英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。

(IEC169-15)SMB 型:外导体内径为3mm(0.12英寸)、特性阻抗50Ω的推入锁定式射频同轴连接器。

(IEC169-10)SMC 型:外导体内径为3mm(0.12英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。

(IEC169-9)SSMA 型:外导体内径为2.79mm(0.11英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。

(IEC169-18)SSMB 型:外导体内径为2.08mm(0.082英寸)、特性阻抗50Ω的推入锁定式射频同轴连接器。

(IEC169-19)SSMC 型:外导体内径为2.08mm(0.082英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。

(IEC169-20)SC 型(SC-A 和SC-B 型):外导体内径为9.5mm(0.374英寸)、特性阻抗50Ω的螺纹式(两种型号有不同类型连接螺纹)射频同轴连接器。

(IEC169-21)APC7型:外导体内径为7mm(0.276英寸)、特性阻抗50Ω的精密中型射频同轴连接器。

(IEC457-2)APC3.5型(3.5mm):外导体内径为3.5mm(0.138英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。

(IEC169-23K 型(2.92mm):外导体内径为2.92mm(0.115英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。

射频同轴连接器技术简介分析

射频同轴连接器技术简介分析
(2)C系列 是 Concel研制成功的,它采用内卡口方式
连接,内部公称尺寸,工作频率等与N系列相 同,但没有N系列通用。
2、小型(BNC、TNC系列) (1)BNC系列
是Neill和Concel共同研制的Bayonet(外 卡口)连接器,因而简称 “BNC”。其工作频 率 0~4 GHz,最大特点是连接方便,一般通过连 接卡套旋转不到一圈即可连接好。适用于频繁 连接与分离的场合,是最通用而又便宜的产品。 尤其在仪器仪表、网络和计算机信息领域应用 广泛。
是一种推入自锁式连接器,有50Ω和75Ω两 种。国内目前在程控交换机、光端机等通信系 统大量应用。
4、微型(SSMA、SSMB、MMCX系列) (1)SSMA系列
但介质耐压一旦不合格,危害性很大,它可以 使连接器或整机系统直接发热或烧毁。所以介 质耐压指标不过关是RF连接器的致命缺陷。 6、射频高电位耐压
一般测试频率为5~7.5MHz,而不是介质 耐压的50Hz,在这一频率时介质承受电压能力 是不同的。它的主要目的是考核连接器耐受高 频电压的能力。
7、电晕电平
这项试验主要模拟沿海工作环境条件下, 连接器抗锈蚀能力,实际主要是检验镀层质量。
( 四 ) 材料方面 1、弹性材料
按GJB要求,除非另有规定,中心接触件的 弹性零件应采用铍青铜制成。 2、绝缘材料
一般产品选用聚四氟乙烯(TFE),精密型连 接器采用交链聚苯乙烯,气密封连接器除外。 3、壳体材料
按美军标规定RF连接器壳体可用黄铜、磷 铜、铝、无磁易切不锈钢和铍青铜五种材料。 这里要特别注意在军标中规定连接器壳体材料 的导磁率要小于2.0, 这就是我们不能采用一 般钢材作过连接器壳体的原因。
(2)TNC系列 是BNC的螺纹式变形,又称螺纹式BNC,其

射频连接器装配工艺_解释说明以及概述

射频连接器装配工艺_解释说明以及概述

射频连接器装配工艺解释说明以及概述1. 引言1.1 概述在现代通信和电子领域中,射频连接器扮演着至关重要的角色。

它们被广泛应用于无线通信设备、卫星通信系统、雷达系统以及各种电子设备等领域。

射频连接器负责连接不同设备之间的射频电路,确保高频信号的传输和稳定性。

而射频连接器的装配工艺则决定了其性能和可靠性。

1.2 文章结构本文将详细探讨射频连接器装配工艺的解释说明以及概述。

首先,在第2部分中我们将介绍射频连接器的基础知识,包括其类型、结构和特点等方面的内容。

然后,在第3部分中,我们将详细描述射频连接器的装配和焊接工艺流程,并提供常见问题以及相应的解决方法。

最后,在第4部分中,我们将给出一个概述,包括硬件要求、步骤和注意事项,以及一些最佳实践和技巧。

1.3 目的本文的目的是为读者提供关于射频连接器装配工艺的全面理解,并帮助读者学习如何正确地进行射频连接器的装配工作。

通过对射频连接器基础知识、装配工艺流程以及常见问题的介绍,读者将能够更好地理解和掌握射频连接器的装配技术。

此外,我们还将展望未来射频连接器装配工艺的发展趋势,希望能够为相关领域的研究和实践提供一些思路和参考。

2. 射频连接器装配工艺解释说明:2.1 射频连接器基础知识:射频连接器是一种专门设计用于传输高频信号的电子组件,常见于无线通信、电子设备和其他射频应用中。

它们起着将信号从一个设备传输到另一个设备的重要作用。

射频连接器通常由两个主要部分组成:插头和插座。

插头是与设备中的天线或射频接口相连的组件,而插座则固定在另一个设备上以接收插头。

这两个部分通过特定的接触方式实现信号传输,并保持稳定的连接。

在选择适合特定应用的射频连接器时,需要考虑多种因素,包括工作频率范围、阻抗匹配、可靠性和可维护性等。

此外,还有许多不同类型的射频连接器可供选择,如SMA、BNC、N型等。

2.2 装配及焊接工艺流程:射频连接器的装配过程非常重要,直接关系到整个系统性能和稳定性。

射频插头制作

射频插头制作
天线射频接头的制作
一、 N型射频头的结构:射频头的结构如图,从右至左为零 件组装顺序。
二、制作工具如图:
三、 制作方法:
1、首先剪除天线端部受潮部分,保持端部干燥清洁。然后 从距天线端部50mm处环割天线外皮保留屏蔽铜网。将屏蔽网端 部绞拧在一起(如图)
3、将N型射频头零件按组装顺序套入天线(如图)
4、切除多余端部,使端部保留约8mm(如图)
5、将屏蔽铜网向下翻,贴敷在套环上(如图)。
6、将压环套压在屏蔽网之上。
7、环比压环,将天线内护套切除。
8、将插针插接到天线线芯上,焊接好。
9、套入外壳。
10、用扳手将压缩螺丝拧紧。

射频同轴连接器技术简介

射频同轴连接器技术简介

射频同轴连接器技术简介一、射频连接器发展概况·1939年出现的UHF连接器是最早的RF连接器;·二战期间,随着雷达、电台和微波通信的发展,产生了N、C、BNC、TNC等中型系列;·1958年后,随着整机设备的小型化,出现了SMA、SMB、SMC等小型化产品;·1964年制定了美国军用标准MIL-C-39012《射频同轴连接器总规范》·七十年代末,毫米波连接器出现;·九十年代初,HP公司推出频率高达110GHz的1.0mm连接器,并用于其仪器设备中;·九十年代出现表现贴装射频同轴连接器,并大量用于手机产品中。

我国射频同轴连接器的发展·我国从五十年代开始由整机厂研制RF连接器;·六十年代组建专业工厂,开始了专业化生产;·一九七二年国家组织集中设计,使国产的RF连接器自成体系,只能在国内使用,产品标准水平低,且不能与国际通用产品对接互换;·八十年代起开始采用国际标准,根据IEC169和MIL-C-39012,颁布了GB11313和GJB681,使射频同轴连接器的生产和使用逐步与国际接轨;·经过十几年的努力,目前通用R连接器的整体水平与国外差距不大,但精密连接器的设计与生产跟国外仍有较大差距。

二、射频连接器的标准体系美军标美国是世界上最大的通用型RF连接器制造和消费国,其技术水平也是一流的因此美国军用标准MLC39012被认为是RF连接器的最高标准。

其它先进国家的标准有德国DIN、英国BS、日本JIS和IEC标准等。

这些国家或国际标准大都是参照或等同美军标制订的,有些国家或公司甚至直接应用美军标。

IEC标准IEC标准是指导性标准,不是强制性标准,因此很少被直接引用;值得一提的是德国在某些专用新型连接器方面也有一些优势,例如:DIN47223、7/16(L29)系列、DIN47297、SAA系列、DIN41626、DSA系列,这些系列产品在通信领域应用较广泛,德国的标准和产品已得到全世界认可,但美国尚无这些标准出现。

射频同轴连接器设计和计算

射频同轴连接器设计和计算

毫米波同轴连接器的结构与特性刘洪扬【摘要】随着毫米波技术的发展与应用,电子设备不断向小型化发展,迫切需要研制毫米波同轴连接器已势在必行。

本文对国外自70年代中期发展的3.5mm连接器直到90年代初发展到1.0mm连接器的产品结构、设计要点和产品性能作了比较详细的论述,并指出了在我国发展毫米波同轴连接器今后研究工作的重点。

【关键词】毫米波连接器结构性能一、前言同轴线和同轴连接器是应用较早的一种元件。

早期认为它的应用范围适合分米直到10厘米波段(即300MHz~3GHz),当波长再短时会出现传输功率容量小,衰减大,制造困难等一系列的缺点。

因此,早期在厘米波段中同轴线几乎完全被波导所代替。

由于技术上的困难,同轴系统被认为是不能应用到毫米波系统上。

这主要还是同轴电缆插入损耗大,当工作频率升高以后有高次杂模出现,使其无法传播电磁信号。

另一方面在一对同轴连接器接头处也会产生较强的电磁波辐射,会造成很大的电磁干扰。

正因为这些原因,就使得同轴线及其连接器无法广泛应用到毫米波频段。

很长一个时期内毫米波主要靠波导来传输。

但是波导频带较窄,甚至在某些情况下,在所给定的频带内,在其边缘还会出现重叠的现象。

由于同轴系统能够传输从直流到超高频频谱的电磁波信号,并且同轴器件具有体积小、重量轻、使用同轴器件组装的系统具有不受物理位置限制等一系列优点,因此又一直吸引着各国的同轴器件专家们去克服同轴系统存在的这些固有的困难。

自第二次世界大战结束到90年代初,同轴连接器的性能没有重要的改进。

SMA是当时使用频率最高的一种小型同轴连接器,工作频率到22GHz、60~70年代重点是发展精密同轴连接器,如14、7、3.5(mm)精密连接器。

精密同轴连接器的研制成功是同轴连接器技术发展史上的一项重大成就。

它使同轴线电压驻波比的测量精度由百分之几提高到千分之几。

这对毫米波连接器技术的发展起了很大的影响。

随着各种新型微波器件的出现,很多电子系统的传输功率不再像电子管时代那样高,再加上精密测量技术的发展和精密机械加工技术的进步,近十几年来,毫米波同轴连接器技术有了突飞猛进的发展。

射频同轴连接器基础

射频同轴连接器基础

射频同轴连接器分类
频率(波长):分为米波连接器、分米波连接器、厘米波连接器和毫米波连接器。 外形和结构型式 :直式连接器、弯式(通常为直角)连接器和T型连接器 。 连接机构的型式 :螺纹式连接器、卡口式连接器、推入(滑入)式连接器、 推入自锁式连接器、法兰连接器和哈夫式连接器等。 使用状态 :自由连接器和固定连接器固定连接器有可分为螺母安装连接器、 螺纹安装连接器、法兰盘安装连接器和焊接安装连接器。 端接型式 :电缆连接器、同轴微带连接器、硬同轴连接器和焊导线连接器。 性能优劣 :0级、1级和2级三种连接器。0级连接器亦称标准试验连接器,供测试用。 用途 :军用连接器、民用连接器、通用连接器、精密连接器、高压连接器、 大功率连接器、可调相连接器、抗辐照连接器、三同轴连接器和其他特种连接器。 界面极性 :阳性(通常带插针)连接器、阴性(通常带插孔)连接器和无极性 (中性)连接器。在转换器中还会有阳阳连接器、阴阳连接器和阴阴连接器。 命名方式分类为:SMA、SMB、SMC、SMP、QMA、BMA、MCX、MMCX、F、UHF、1.0/2.3、 1.6/5.6、BNC、TNC、N、7/16等。
射频同轴连接器连接机构型式分类
螺纹式
卡口式
推入式
推入自锁式
滑入连接式
常见射频同轴连接器命名方式分类
常见射频同轴连接器极性分类
射频同轴电缆及连接器标准
相关标准 多年来,国际通用射频同轴连接器采用两套标准,一套是MIL标准,一套是 IEC标准。 IEC(国际电工委员会),第46技术委员(通信设备和信号用电缆、电线、波导、 连接器和附件)的第46A分技术委员会(射频电缆)制定。 全国电子设备用高频电缆及射频连接器标准化技术委员会。 我国制定了分别采用这两套标准的GB11313国际GJB681国军标。 不管军用还是商用射频同轴连接器,只要是同一系列或同一型号的界面结构和 尺寸是相同的,均可实现机械互换性。 IEC 96-0:1970 射频电缆 第0部分:详细规范和设计指南 IEC 96-1:1986 射频电缆 第1部分:一般要求和测量方法 IEC 96-2:1961 射频电缆 第2部分:有关电缆规范 IEC 169-1:1987 射频连接器 第1部分:一般要求和测量方法 GB/T 17738.1-1999 射频同轴电缆组件 第1部分:总规范 一般要求和试验方法 GJB 681A-2002 射频同轴连接器通用规范 GJB 5246-2004 射频连接器界面

射频同轴连接器设计01第2部分(6-10)A

射频同轴连接器设计01第2部分(6-10)A

77射频同轴转接器的设计吴秉钧 韩梅英1 前言八十年代初,根据型号任务要求,我们在国内最先开展了红七信标机和地面设备用OSM (即SMA )射频同轴连接器的研制任务。

经过课题组全体同志数年努力和反复改进,使连接器的各项机电性能接近和达到国外同类产品水平,八九年获部科技进步二等奖。

十余年来,我们根据市场需求,不断开发新产品,到目前为止,已开发了APC-7、N 、L16、SMA 、TNC 、BNC 、SMB 、SMC 、K 、2.4mm 、MCX 等系列连接器、转接器、精密电缆组件及部分微波元件近五百种,除满足型号任务需要外,还提供给国内外近百个单位使用。

由于SMA 射频连接器的研制成功和广泛应用,许多用户为解决部件性能测试,提出了SMA 与SMA 、N 型、APC-7等系列内和系列间转接器的要求,所以我们首先开展了SMA 与SMA 及N 型转接器的研制和设计,十几年来历经四次改进提高,不仅在电性能,而且在机械性能,特别是可靠性方面都有很大提高。

随着产品质量的提高,用户的需求也不断增加。

因此决定先对下列六种转接器进行设计定型,其中包括SMA 系列内转接器两种,SMA 与N 型系列间转接器四种,它们是:SMA-50JJ 、SMA-50KK 、N/SMA-50JJ 、N/SMA-50JK 、N/SMA-50KJ 、N/SMA-50KK 。

2 射频同轴转接器设计2.1 设计原理射频同轴连接器、转接器作为同轴传输线的连接元件,对其最基本的要求是与传输线特性阻抗的良好匹配,以减小能量的反射,所以在同轴连接器、转接器的设计中,必须遵循下列三条原则,这关系着连接器、转接器电性能优劣的关键所在。

2.1.1 在同轴传输线方向上尽可能保持一致的特性阻抗通常同轴传输系统是一个阻抗连续分布并保持不变的系统,如果由于同轴转接器的引入使传输系统在该处的阻抗发生变化,则会影响系统的性能。

当转接器特性阻抗偏离传输系统的特性阻抗时,而引起的转接器电压驻波比变化为O OZ Z VSWR ∆+=1式中:△Z O 为特性阻抗的偏离值Z O 为特性阻抗2.1.2 不连续性的共面补偿连接器或转接器的设计中,为了固定内、外导体的相对位置,必须要加介质支撑。

(整理)射频同轴连接器设计.

(整理)射频同轴连接器设计.

精品文档精品文档降低LQ型射频连接器电压驻波比的研究李明德【摘要】 LQ型射频密封连接器,主要用在大、中功率米波电视天馈系统连接电缆传输电视信号。

其电压驻波比(VSWR)在0~1GHz频率范围内为1.07~1.10,不能满足分米波电视的要求。

本文对目前国内流行的LQ型连接器的双支撑、外衬式、内衬式三种基本结构,做了具体分析。

找出了多支撑、多阶梯、多介质是影响VSWR的主要因素,并进行了改进。

新设计的LQ型连接器,不仅保持了原有各种性能,且大大降低了VSWR,使在0~1GHz频率范围内,VSWR为1.03~1.05,满足了分米波电视天馈系统的需要,达到了目前国际上同类产品的水平。

一、引言LQ型射频密封连接器,主要用在大、中功率米波电视天馈系统连接主、分馈电缆传输电视信号,或用于其它通信设备。

连接器上备有充气孔,供电缆充入干燥空气或惰性气体,达到密封防潮保持电气性能的目的。

特性阻抗分为50Ω和75Ω两种。

为了满足广播电视事业发展的需要,在七十年代末和八十年代初我国陆续研制了一系列米波段LQ型射频密封连接器,至今仍在使用。

其主要电气性能如表1。

表1随着广播电视事业的发展,迫切需要发展我国的分米波彩色电视系统,使其接近或达到目前国际上同类产品水平。

对于射频密封连接器,分米波段与米波段的主要区别是适用频率范围不同,对VSWR的要求不同,其它性能两者类同。

分米波电视天馈系统对射频密封连接器的要求是在0~1GHz频率范围内,电缆组件具有低VSWR性能,即短段电缆(约50cm)配接一对连接器和一对测试用转接器,其VSWR≤1.05。

米波段LQ型连接器VSWR 最低才达1.07,显然不符合要求。

但是其螺纹连接的接口型式,由于连接方便、接触可靠、性能稳定,仍为一种比较好的连接结构形式,在国外也广为采用。

对此,如何降低LQ型连接器的VSWR,使其满足分米波电视天馈系统的要求,成为必须解决的主要问题。

分米波密封连接器,由于工作频率的提高,精确地进行设计是必要的,要降低VSWR,按照射频连接器的设计原则应满足以下要求:1. 保持特性阻抗的均匀性。

射频同轴连接器培训

射频同轴连接器培训

微安通射频同轴连接器知识培训1.RF连接器的结构及特点1.1结构RF连接器按接口形式分为三大类:一是螺纹式连接:如7/16、N型、TNC型、SMA型等。

由于采用螺纹式连接,使插头与插座配合更加稳定、可靠、防振抗撞能力更强。

二是卡口式连接:如BNC、C型、Q6型等。

由于采用卡口式连接,使用方便,连接不易松动、分离又很迅速,很多医疗设备、电子仪器中使用。

三是插入式连接:如SMB、MCX等。

其特点是有些采用了锁紧结构。

大部份都是体积小、重量轻、结构紧凑。

适用于系统对重量、体积有要求的仪器设备,特点适用于抽屉式、排列式、积木式安装。

1.2与电缆连接处结构通常RF连接器有两种使用形式:一是直接安装在仪器面板或印刷电路板上,另一种是连接射频同轴电缆作为电信号传输用。

连接电缆处的结构分为:a.内外导体均采用压接b.内导体采用压接,外导体采用焊接c.内导体采用焊接,外导体采用压接d.内导体采用焊接,外导体采用螺纹压紧e.内导体采用压接,外导体采用螺纹压紧等总之,RF连接器与电缆的连接处要求连接可靠、反射要小,必须进行一定的补偿来保证性能。

2.RF连接器的主要技术特性:RF连接器的主要技术特性分为两大类:一是电气参数,一是机械参数。

2.1电气参数2.1.1特性阻抗它是根据传输线理论,设定平行线路的导体是均匀的,而且长度无限长,其参数:R电阻;L电感;G电导为常数值,则线路上的任意点电压和电流的比值Zo为定值(我国根据多种因素,如衰减、功率、耐压等)确定为50欧和75欧,该值称为特性阻抗或特定阻抗。

2.1.2频率是指在单位时间内,线路信号振荡的次数,单位是Hz,通常用F表示。

RF即射频,它是一种能远距离传输的高频电磁波。

RF连接器的频率分为工作频率和截止频率。

截止频率是指连接器使用到这个频率会引起高次模型的出现,使能量急剧下降,电压驻波比显著劣化,所以连接器规定了它的工作频段。

2.1.3电压驻波比 VSWRRF连接器设计时规定了一定的电长度,在有限长度的线路中,特性阻抗和负载阻抗不相等时,从负载端有一部份电压和电流,被反射而回到电源侧的波,称为反射波;从电源到负载的电压和电流称为入射波。

rf射频同轴连接器电路设计__概述说明以及解释

rf射频同轴连接器电路设计__概述说明以及解释

rf射频同轴连接器电路设计概述说明以及解释1. 引言1.1 概述在无线通信系统中,射频(RF)同轴连接器电路设计是关键的组成部分。

它负责连接天线和设备之间的信号传输,并确保高质量的数据传输和通信质量。

因此,了解RF射频同轴连接器电路设计的原理、工作方式以及设计要点和考虑因素对于确保无线通信系统正常运行至关重要。

1.2 文章结构本文将从三个方面来介绍RF射频同轴连接器电路设计。

首先,在第2节中,我们将提供一般性的正文部分,其中包括有关无线通信系统的背景知识和相关原则。

然后,在第3节中,我们将深入探讨RF射频同轴连接器电路设计的重要性和应用领域,并详细介绍其基本原理和工作方式。

最后,在第4节中,我们将探讨设计这种连接器电路时需要考虑的关键要点和因素。

1.3 目的撰写本文旨在提供一个全面且清晰的概述,以帮助读者了解RF射频同轴连接器电路设计的重要性、原理、工作方式以及涉及其中的考虑因素。

通过阅读本文,读者将能够了解设计RF射频同轴连接器电路的要点,并为未来研究和实际应用提供基础知识。

通过深入研究并掌握这些核心概念,我们将进一步推动无线通信系统的发展和优化。

2. 正文正文部分将详细介绍RF射频同轴连接器电路设计的相关内容。

在进行电路设计时,我们需要考虑一系列因素,包括应用领域、基本原理和工作方式、设计要点以及考虑因素等。

首先,我们将介绍RF射频同轴连接器电路设计的重要性和应用领域。

RF射频同轴连接器广泛应用于无线通信系统、微波系统以及一些测量仪器中。

它们具有良好的屏蔽性能和高频传输特性,能够有效地提供稳定的信号传输,并且适合在复杂环境下使用。

接下来,我们将讨论RF射频同轴连接器电路设计的基本原理和工作方式。

在RF 射频同轴连接器中,内部导体通过同轴结构与外部导体隔开,并且被绝缘材料包裹。

这种结构可以减小功率损耗并保护信号免受外界干扰。

同时,连接器还使用螺纹或插入式插头来实现牢固可靠的物理连接。

然后,我们将探讨RF射频同轴连接器电路设计时需要考虑的要点和因素。

射频同轴连接器设计理论基础

射频同轴连接器设计理论基础

射频传输线、连接元件和过渡元件简述第一节射频传输线射频同轴连接器的设计一、同轴传输线的特性阻抗1 同轴传输线的特性阻抗的一般公式射频同轴连接器由一段同轴传输线、连接机构绝缘支架组成。

所以,对同轴传输线的特性阻抗有一个比较全面的了解对射频同轴连接器的设计是非常重要的。

同轴传输线特性阻抗的一般公式:Cj G L j R Z ωω++='0 (1)上式中: Z o ¹—特性阻抗,欧姆R —每单位长度上导体的内部电阻,欧姆/米G —每单位长度上介质的电导,西门子/米L —每单位长度的电感,享/米C —每单位长度的电容,法/米ω=2πff —频率,赫当R=G=0时,公式(1)简化为:CL Z =0 (2) 在微波频率,导体的内部电感是很小的,每单位长度上的电感很接近于每单位长度上的外部电感:dD L ln 21πμ=(3) 上式中: L —每单位长度的外部电感,享/米μІ=μr μo — 介质的导磁率, 享/米μr —介质的相对导磁率μo =4π×10-7—真空导磁率,享/米 D —外导体的内径 d —内导体的外径单位长度的电容可按下计算:dD C /ln 21πε=(4)上式中:C — 每单位长度电容,法/米 ε1 =εr ε0—介质的介电常数,法/米 εr —— 介质的相对介电常数ε0 =1/C o 2μo —真空介电常数,法/米 C O —在真空中的光速 C O =(±)×108,米/秒将公式(3)和(4)代入(2),并只考虑非磁性介质的情况(μr =),可得到:dDZ rln00006.095860.590ε±=(5) 请注意,真空光速:001με=C真空导磁率μo 被任意地规定为严格等于4π×10-7享/米。

根据精确地进行的实验我们知道光速为0±300米/秒,因此,εo 并不严格等于1/36π×10-9,根据公式计算,εo 应为1/π×10-9。

射频同轴连接器设计和计算

射频同轴连接器设计和计算

,毫米波同轴连接器的结构与特性刘洪扬【摘要】随着毫米波技术的发展与应用,电子设备不断向小型化发展,迫切需要研制毫米波同轴连接器已势在必行。

本文对国外自70年代中期发展的3.5mm连接器直到90年代初发展到1.0mm连接器的产品结构、设计要点和产品性能作了比较详细的论述,并指出了在我国发展毫米波同轴连接器今后研究工作的重点。

【关键词】毫米波连接器结构性能一、前言同轴线和同轴连接器是应用较早的一种元件。

早期认为它的应用范围适合分米直到10厘米波段(即300MHz~3GHz),当波长再短时会出现传输功率容量小,衰减大,制造困难等一系列的缺点。

因此,早期在厘米波段中同轴线几乎完全被波导所代替。

由于技术上的困难,同轴系统被认为是不能应用到毫米波系统上。

这主要还是同轴电缆插入损耗大,当工作频率升高以后有高次杂模出现,使其无法传播电磁信号。

另一方面在一对同轴连接器接头处也会产生较强的电磁波辐射,会造成很大的电磁干扰。

正因为这些原因,就使得同轴线及其连接器无法广泛应用到毫米波频段。

很长一个时期内毫米波主要靠波导来传输。

但是波导频带较窄,甚至在某些情况下,在所给定的频带内,在其边缘还会出现重叠的现象。

由于同轴系统能够传输从直流到超高频频谱的电磁波信号,并且同轴器件具有体积小、重量轻、使用同轴器件组装的系统具有不受物理位置限制等一系列优点,因此又一直吸引着各国的同轴器件专家们去克服同轴系统存在的这些固有的困难。

】自第二次世界大战结束到90年代初,同轴连接器的性能没有重要的改进。

SMA是当时使用频率最高的一种小型同轴连接器,工作频率到22GHz、60~70年代重点是发展精密同轴连接器,如14、7、(mm)精密连接器。

精密同轴连接器的研制成功是同轴连接器技术发展史上的一项重大成就。

它使同轴线电压驻波比的测量精度由百分之几提高到千分之几。

这对毫米波连接器技术的发展起了很大的影响。

随着各种新型微波器件的出现,很多电子系统的传输功率不再像电子管时代那样高,再加上精密测量技术的发展和精密机械加工技术的进步,近十几年来,毫米波同轴连接器技术有了突飞猛进的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

射频连接器的结构设计简述1射频连接器简介
射频连接器是一种同轴传输线,是一种通用性的互连元件,广泛应用于各类
微波系统中。

作为基础元件,在微波系统中起电气和机械连接作用。

射频连接器一般分为三类。

(1)面板座:一端配接标准(或非标)界面连接器,一端配接微带、玻珠等,执行GJB976A-2009《同轴、带状线或微带传输线用射频同轴连接器通用规范》。

(2)转接器:两端配接标准(或非标)界面连接器,GJB680A-2009《射频
连接器转接器通用规范》。

(3)接电缆连接器:一端配接标准(或非标)界面连接器,一端配接电缆,执行GJB681A-2002《射频连接器通用规范》。

射频连接器的内部结构分为三层,由外向内分别是外导体、绝缘介质和内导体。

外导体接地,绝缘介质起绝缘作用、支撑作用,内导体通电。

特性阻抗计算公式
截止频率计算公式:
a-内导体外径;b-外导体内径;-绝缘介质相对介电常数。

2射频连接器的界面结构
标准界面的射频连接器,应符合GJB5246《射频连接器界面》。

其主要的插
合形式包括:螺纹旋接(SMA、TNC);推入自锁(QMA);浮动盲插(BMA、SBMA);直插擒纵(SMP、SSMP);卡口连接(BNC)等。

(a)SMA型射频连接器(螺纹旋接式)
(b)QMA型射频连接器(推入自锁式)
(c)BMA型射频连接器(浮动盲插式)
图1射频连接器的主要插合形式示意图
以螺纹旋接形式为例:在插头和插座进行互连时,通过旋动螺套,带动插头
外导体插入插座外导体中,直至两者的电气和机械基准面完全重合,在此过程中,实现内导体(插针和插孔)的插合接触。

可以明确的是,电气和机械基准面完全
重合之前,内导体端面是不应该接触的,否则在外导体持续推进过程中,内导体
会因此端面互顶,从而造成整个连接器内部结构的破坏。

但同时,内导体端面之
间的缝隙使得此处存在一段高阻抗,造成反射增大。

因此,一些测试级转接器会
控制插合完成后,内导体端面处的缝隙大小。

根据连接过程,界面设计时,插合部分的尺寸公差应满足界面手册的要求,
内孔不能小于下限值,外圆不能大于上限值,以避免无法完成插合过程。

对于螺纹旋接等插合方式的大部分界面,应确保电气和机械基准面最终完全重合。

在电气和机械基准面完全重合之前,内导体台阶不允许接触,避免损坏内部结构。

因此设计时应考虑台阶下陷于电气和机械基准面(规定的尺寸),同样也适用于界面的绝缘介质端面。

对于TNC、SC等界面,其内导体、绝缘介质存在伸出或下陷于电气和机械基准面的情况,尤其应充分考虑零件的累积公差问题。

3射频连接器的内部结构
(1)固定结构
固定结构设计最终目的是实现内导体与外导体之间相对稳定,考核方法是中心接触件的固定性。

固定结构设计一般包括两方面。

内导体与介质支撑之间:通常采用的方式是在内导体上设计台阶过渡。

采用小台阶固定时,在内导体上设计一段小外圆台阶(两边的外圆大于此段),对绝缘介质进行切割或过盈装配至小台阶段进行固定;采用大台阶固定时,在内导体上设计一段大外圆台阶(两边的外圆小于此段),通过两端绝缘介质夹紧大台阶进行固定。

介质支撑与外导体之间:外导体固定绝缘介质,采用压套夹紧结构,对于过盈压配处的孔、轴尺寸要求精度均比较高。

并且对于同心度、垂直度、平面度均有所要求。

因此,建议采用一体式的壳体结构,对于降低装配难度、减少加工成本、提升效率、提升合格率都是有帮助的。

通常采用的做法主要有两种,一种是在一体式壳体的内孔设计倒刺结构,绝缘介质(聚四氟乙烯)过盈压配进孔内;另一种是在一体式壳体的侧面设计侧孔,对传输通道进行(环氧)灌封处理。

(2)补偿结构
射频连接器的设计过程中,阻抗不连续是不可避免的,如内、外导体结构上发生的变化:台阶、开槽、接触间隙等引起的阻抗不连续等。

为了获得最佳的电
性能,首先应使未补偿的不连续性减至最小,其次对剩余的不连续性施加各自的补偿。

一般来说,补偿包括共面补偿、阶梯补偿、锥度补偿三种方式,其原理均是通过一段高阻抗匹配不连续性电容。

4射频连接器的设计示例
以一款2.92-KFD型产品为例对设计步骤进行说明。

(1)按照GJB5246的要求,对连接器的界面部分进行设计。

(2)如下图所示,设计内导体为小台阶支撑结构,设计外导体为分体压套结构。

图2结构设计示意图
(3)根据设计目标(50±0.5Ω),分别计算下图中A、B、C、D段的特性阻抗,确定内、外导体的公差带。

图3特性阻抗计算段示意图
(4)根据设计目标(40GHz、VSWR≤1.3),分别仿真下图中a、b、c段的补偿尺寸。

其中a、b段采用的共面补偿,c段采用的是阶梯补偿。

图4补偿示意图
参考文献
【1】李明德.射频同轴连接器设计基础-国外射频连接器设计论文译文选编,2013,1-17.。

相关文档
最新文档