pb—sn共晶相图相及组织组成物的量化分析
相图分析
.2
E′
合金的结晶过程
❖亚共晶合金(Ⅲ合金)的结晶过程 合金液体在2点以前为匀晶转变。冷却到2点,
固相成分变化到C点,液相成分变化到E点。 此时两相的相对重量为:
Q L ( Q E ) C C 2 1 E % 0Q 0 ,C 2 E 1 E % 00
在2点,具有E点成分的剩余液体发生共晶反应:
分析方法:可把稳定 化合物当作纯组元看 待,将相图分成几个 部分进行分析。
L+ Mg
Mg2Si
L+ Mg2Si
L+ Si
L+ Mg2Si
Mg2Si+Si
Mg+ Mg2Si
Si
4、根据相图判断合金性能 相图机械性能的关系
❖单相固溶体的合金: 性能随成分呈抛物线变化。
形成稳定化合物的合金: 性能-成分曲线出现拐点。 ❖共晶合金
共晶相图
❖当两组元在液态 下完全互溶,在 固态下有限互溶, 并发生共晶反应 时所构成的相图 称作共晶相图。 Pb
温度(℃)
成分(wt%Sn)
Sn
Pb-Sn合金相图
❖⑴ 相图分析
A
❖相:相图中有L、、
B
三种相。
❖相区:相图中有三个单 A
相区: L、、;三
B
个两相区: L+、 L+、+ ;一个三 相区:即水平线CED。
相图与铸造性能的关系
缩孔
显微缩松
使用性能与相图的关系
工艺性能与相图的关系
第三节 铁碳合金相图
❖铁碳合金—碳钢和 铸铁,是工业应用 最广的合金。
❖含碳量为0.02% ~2.14%的称碳 钢
❖含碳量> 2.14% 的称铸铁。
Pb-Sn二元相图测定及其组织分析
实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:陈越凡门明达王光王晓宇魏瑛康何林温雅欣杨多雪杨俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2金相组织分析:何林温雅欣杨多雪杨俊杰组:成分组织相理论相对量相实际相对量α90%87.1% 90%Pb-10%Snα+βⅡβ10%12.9%最终为ɑ固溶体,其冷却到固溶度线以下,将析出二次β,通常呈粒状或小条状分布于晶界与晶内。
Sn-P相图(Pb-Sn)
Pb—Sn 金属相 图
文献值:
Pb-Sn体系的熔点对照表:
锡%
0 20 40 60 80 100
熔点温度℃ 327 276 240 190 200 232
最低共熔点温度℃
181 181 181 181
最低共熔混合物组成: 含Sn63%
两种金属的 任何一种都能微
T/K
溶于另一种金属 中,是一个部分
金属相图(Pb-Sn体系)
一、实验目的 三、药品仪器 五、实验记录 七、结果分析与讨论 八、注意事项
二、实验原理 四、实验步骤 六、数据处理
九、思考题
实验目的
⑴用热分析法测绘Pb-Sn二元金属相图, 并掌握应用步冷曲线数据绘制二元体系 相图的基本方法;
⑵了解步冷曲线及相图中各曲线所代 表的物理意义;
存的三相线;水平线段以下表示纯A(s)和 纯B(s)共存的两相区;O为低共熔点。
药品仪器
1. EA/J2P00双笔自动平衡记录仪; 2. 电炉; 3. 镍铬—镍硅热电偶; 4. 大、小坩埚; 5. 保温瓶; 6. 坩埚钳; 7. 冰块、石墨; 8. 锡粒(AR),铅粒(AR); 9. 等等。
实验步骤
温度--时间曲线,即步冷曲线
转折点:
表示温度随时间的变化 率发生了变化。
水平段:
表示在水平段内,温度 不随时间而变化。
温 度
①a②a/③④
⑤ B
A
温 度
A
B
b
b/
L
c
时 (a间/)步冷曲线
L+A(s) L+B(s)
O A(s)+B
0(A)
(Bs%) 100(B)
(b)二元组分凝聚系统相图
Pb-Sn二元相图测定及其组织分析报告
实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:越凡门明达王光王晓宇瑛康何林温雅欣多雪俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2实验结果:金相组织分析:何林温雅欣多雪俊杰组:成分组织相理论相对量相实际相对量90%Pb-10%Sn α+βⅡα90% 87.1% β10% 12.9%最终为ɑ固溶体,其冷却到固溶度线以下,将析出二次β,通常呈粒状或小条状分布于晶界与晶。
pb sn合金的相组成物和组织组成物
pb sn合金的相组成物和组织组成物PB-Sn合金是一种常用的金属合金,由铅(Pb)和锡(Sn)两种金属元素组成。
它具有许多重要的应用,特别是在电子工业和焊接领域。
本文将重点介绍PB-Sn合金的相组成物和组织组成物。
PB-Sn合金的相组成物是指合金中不同相的存在情况。
相是指具有一定的化学成分和结构特征的固态物质。
在PB-Sn合金中,主要存在两种相,即α相和β相。
α相是一种固溶体相,其主要成分是锡。
β相是一种亚稳定相,其主要成分是铅。
在PB-Sn合金中,α相和β相的含量与合金的成分比例和处理工艺有关。
一般来说,合金中锡的含量越高,α相的含量就越高。
PB-Sn合金的组织组成物是指合金的微观组织结构。
在PB-Sn合金中,主要存在两种组织结构,即共晶组织和共晶固溶体组织。
共晶组织是指合金中α相和β相以共晶方式存在的结构。
共晶固溶体组织是指合金中α相和β相以固溶体的形式存在的结构。
共晶组织和共晶固溶体组织的形成与合金的冷却速率和成分比例有关。
在合金冷却速度较快的情况下,共晶组织容易形成;在合金冷却速度较慢的情况下,共晶固溶体组织容易形成。
PB-Sn合金的相组成物和组织组成物对合金的性能有重要影响。
首先,相的存在情况影响合金的硬度和强度。
α相是一种较硬的相,可以提高合金的硬度和强度;β相是一种较软的相,可以降低合金的硬度和强度。
其次,组织的存在形式影响合金的韧性和塑性。
共晶组织具有较高的韧性和塑性,可以提高合金的抗拉强度和延伸性;共晶固溶体组织具有较低的韧性和塑性,容易导致合金的脆性断裂。
此外,相的存在情况和组织的存在形式还会影响合金的热传导性能、电导率和热膨胀系数等。
为了获得所需的相组成物和组织组成物,可以通过调整合金的成分比例和处理工艺来实现。
例如,可以通过改变铅和锡的比例来控制α相和β相的含量;可以通过改变合金的冷却速度来控制共晶组织和共晶固溶体组织的形成。
此外,还可以通过添加其他元素或进行热处理等方式来改善合金的性能。
铅锡共晶相图分析
1、相图分析图3-12为一般共晶型的Pb-Sn合金相图。
其中AEB线为液相线,ACEDB线为固相线,A点为铅的熔点(327℃),B点为锡的熔点(232℃)。
相图中有L、α、β三种相,形成三个单相区。
L代表液相,处于液相线以上。
α是Sn溶解在Pb中所形成的固溶体,位于靠近纯组元Pb的封闭区域内。
β是Pb溶解在Sn中所形成的固溶体,位于靠近纯组元Sn的封闭区域内。
在每两个单相区之间,共形成了三个两相区,即L+α、L+β和α+β。
图3-12 Pb-Sn二元合金相图相图中的水平线CED称为共晶线。
在水平线对应的温度(183℃)下,E点成分的液相将同时结晶出C点成分的α固溶体和D点成分的β固溶体:LE ⇄ ( αC+ βD)。
这种在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变过程称为共晶转变或共晶反应。
共晶反应的产物即两相的机械混合物称为共晶体或共晶组织。
发生共晶反应的温度称为共晶温度,代表共晶温度和共晶成分的点称为共晶点,具有共晶成分的合金称为共晶合金。
在共晶线上,凡成分位于共晶点以左的合金称为亚共晶合金,位于共晶点以右的合金称为过共晶合金。
凡具有共晶线成分的合金液体冷却到共晶温度时都将发生共晶反应。
发生共晶反应时,L、α、β三个相平衡共存,它们的成分固定,但各自的重量在不断变化。
因此,水平线CED是一个三相区。
相图中的CF线和DG线分别为Sn在Pb中和Pb在Sn中的溶解度曲线(即饱和浓度线),称为固溶线。
可以看出,随温度降低,固溶体的溶解度下降。
2、典型合金的结晶过程⑴含Sn量小于C点成分合金的结晶过程(以合金Ⅰ为例)由图3-12可见,该合金液体冷却时,在2点以前为匀晶转变,结晶出单相α固溶体,这种从液相中结晶出来的固相称为一次相或初生相。
匀晶转变完成后,在2、3点之间,为单相α固溶体冷却,合金组织不发生变化。
温度降到3点以下,α固溶体被Sn 过饱和,由于晶格不稳,便出现第二相—β相,显然,这是一种固态相变。
Sn-Pb相图(Pb-Sn)
混合物步冷曲线如②、④所示,如② 起始温度下降很快(如a/b/段),冷却到b/ 点时,开始有固体A析出,这时体系呈两 相,因为液相的成分不断改变,所以其平 衡温度也不断改变。由于凝固热的不断放 出,其温度下降较慢,曲线的斜率较小 (b/c/段)。到了低共熔点c/后,体系出现 三相平衡L=A(s)+B(s),温度不再改变, 步冷曲线又出现水平段,直到液相完全凝 固后,温度又开始下降。
观察升温情况 启动自动平衡记 及时停止加热 录仪有关开关
取出样品、 观察降温情况 取出样品、放 实验结束记录 及时停止实验 入新样品测试 数据恢复原状
准备样品: 准备样品:
按以下比例配制
锡的百 分含量0%来自20%30%61.9%
80%
100%
锡(g) 铅(g)
0 100
20 80
30 70
61.9 38.1
80 20
100 0
零点制备:
取出冰块,敲碎,放到500ml 水中搅拌至冰不再溶解,倒入保 温瓶中至3/4高,再放入少许冰块, 以保证保温瓶中的水温度为0℃ 。 ℃
样品埋入方法:
小坩锅放入被测样品,大坩 锅装满沙,用旋转的办法把小坩 锅埋入到大坩锅的沙中,埋入的 深度应保证沙比样品高,或至少 一样高。
样品加热及保温:
在样品表面覆盖少许石墨,插 好热电偶,围好保温砖,插上电炉 插头,开始加热。
何时停止加热? 何时停止加热?
纯Pb、纯Sn、含锡61.9%(低共 熔物)三个样品,如果出现转折点, 则停止加热。 含锡20%、含锡30%、含锡80%三 个样品,如果出现转折点,再升高 50 ℃后,则停止加热。 则停止加热。
Pb-Sn二元相图测定及其组织分析
实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:陈越凡门明达王光王晓宇魏瑛康何林温雅欣杨多雪杨俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2实验结果:金相组织分析:何林温雅欣杨多雪杨俊杰组:成分组织相理论相对量相实际相对量90%Pb-10%Sn α+βⅡα90% 87.1% β10% 12.9%最终为ɑ固溶体,其冷却到固溶度线以下,将析出二次β,通常呈粒状或小条状分布于晶界与晶内。
Pb-Sn二元相图测定及其组织分析讲课讲稿
P b-S n二元相图测定及其组织分析实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:陈越凡门明达王光王晓宇魏瑛康何林温雅欣杨多雪杨俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
第三章3共晶相图
3.1.2伪共晶区的形状有两类:
图中a):随温度降低,伪共晶区对称扩大; 图中b):随温度降低,伪共晶区歪向一边;
3.2离异共晶:在先共晶相数量较多、共晶组织较 少的情况下,共晶组织中与先共晶相相同的那一 相依附于先共晶相生长,剩余的的共晶称为离异共晶。例如图中的合金Ⅰ;
2、典型合金的平衡结晶及其组织:
2.1含锡量wSn≤19%(c点)的合金(合金Ⅰ): 合金Ⅰ为:WSn=10%,它的结晶过程如图所 示;
名词: 二次结晶:由固溶体中析出另一个固相的过程, 也称为脱溶过程; 次生相:二次结晶析出的相称为次生相或二次相, 例如βⅡ; 次生相的析出部位:优先从α相的晶界析出,其 次是从晶粒内的缺陷部位析出,一般较为细小。
ed 97 . 5 61 . 9 w 100 % 100 % 45 . 4 % c ce 97 . 5 19 dc 61 . 9 19 w 100 % 100 % 54 . 6 % e ce 97 . 5 19
2.3亚共晶合金(合金Ⅲ)
2.4过共晶合金(合金Ⅳ):
•其室温的平衡组织: β
先+ (α M+
β N)+ α
Ⅱ
白亮色卵形部分为 先共晶β 固溶体, 其余部分为共晶组 织。
小结: ①结晶后的显微组织:
•组织组成物:在显微组织中能清楚的区分开, 是组成显微组织的独立部分。在金相显微镜下观 察到的具有某种形貌或形态特征的组成部分。 •合金的相组成物:从相的本质看,组成合金的 基本相。合金中结构、成分和性能均匀一致并以 界面相互分开的组成部分。
铅锡共晶相图分析
1、相图分析图3-12为一般共晶型得Pb-Sn合金相图。
其中AEB线为液相线,ACEDB线为固相线,A点为铅得熔点(327℃),B点为锡得熔点(232℃)。
相图中有L、α、β三种相,形成三个单相区。
L代表液相,处于液相线以上。
α就是Sn溶解在Pb中所形成得固溶体,位于靠近纯组元Pb得封闭区域内。
β就是Pb溶解在Sn中所形成得固溶体,位于靠近纯组元Sn得封闭区域内。
在每两个单相区之间,共形成了三个两相区,即L+α、L+β与α+β。
图3-12 Pb-Sn二元合金相图相图中得水平线CED称为共晶线。
在水平线对应得温度(183℃)下,E点成分得液相将同时结晶出C点成分得α固溶体与D点成分得β固溶体:LE ⇄ ( αC+ βD)。
这种在一定温度下,由一定成分得液相同时结晶出两个成分与结构都不相同得新固相得转变过程称为共晶转变或共晶反应。
共晶反应得产物即两相得机械混合物称为共晶体或共晶组织。
发生共晶反应得温度称为共晶温度,代表共晶温度与共晶成分得点称为共晶点,具有共晶成分得合金称为共晶合金。
在共晶线上,凡成分位于共晶点以左得合金称为亚共晶合金,位于共晶点以右得合金称为过共晶合金。
凡具有共晶线成分得合金液体冷却到共晶温度时都将发生共晶反应。
发生共晶反应时,L、α、β三个相平衡共存,它们得成分固定,但各自得重量在不断变化。
因此,水平线CED就是一个三相区。
相图中得CF线与DG线分别为Sn在Pb中与Pb在Sn中得溶解度曲线(即饱与浓度线),称为固溶线。
可以瞧出,随温度降低,固溶体得溶解度下降。
2、典型合金得结晶过程⑴含Sn量小于C点成分合金得结晶过程(以合金Ⅰ为例)由图3-12可见,该合金液体冷却时,在2点以前为匀晶转变,结晶出单相α固溶体,这种从液相中结晶出来得固相称为一次相或初生相。
匀晶转变完成后,在2、3点之间,为单相α固溶体冷却,合金组织不发生变化。
温度降到3点以下,α固溶体被Sn过饱与,由于晶格不稳,便出现第二相—β相,显然,这就是一种固态相变。
金相实验报告——Pb-Sn二元相图测定及其组织分析
西安交通大学实验报告
课程:金相技术与材料组织显示分析实验日期:年月日专业班级:组别交报告日期:年月日姓名:学号: 报告退发:(订正、重做)同组者:教师审批签字:
实验名称:Pb-Sn二元相图测定及其组织分析
实验目的:
1.掌握用热分析法测定材料的临界点的方法;
2.学习根据临界点建立二元合金相图;
3. 自制二元合金金相样品,并分析组织;
实验概述:
相图中临界点测定方法有很多种,有热分析法、热膨胀法、电阻测定法、显微分析法、磁性测定法等等。
把熔化的合金自高温缓慢冷却,在冷却过程中每隔相等的时间进行测量,记录一次温度,由此得到某一成分下合金的冷却曲线。
金属或合金无相变发生时,温度随时间均匀的降低,一旦发生了某种转变,水平台阶或者转折点的温度就是相变开始或终了的温度。
利用热分析法测定Pb-Sn合金转变点,是通过一定数量不同合金成分步冷曲线综合得到的。
简述热分析法测定二元相图的方法:
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作步冷曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
实验结果分析:
合金成分是亚共晶状态,在由液态缓慢冷却时,先析出初生α相,由于合金成分离共晶点很近,初生α相的量非常少,故沿晶界非连续分布,到达共晶点温度时,剩余液相按共晶成分恒温析出至完全,最后冷却到室温,组织没有发生变化。
第四-五节--二元共晶包晶相图剖析资料讲解
3 共晶组织及其形成机理 (2)粗糙-平滑界面:
金属-非金属型 具有不规则或复杂组织形态.
3 共晶组织及其形成机理 (2)平滑-平滑界面:
非金属-非金属型 一般认为具有不规则或复杂组织形态.
3 共晶组织及其形成机理 (4)初生晶的形态:
金属固溶体:粗糙界面-树枝状; 非金属相:平滑界面-规则多面体。
(
) 共晶
M2 ME
72 G
4.87 %
初
2E ME
N
22 .87 %
组织组成物与组织图
相组成物相对量的计算:杠杆定律。 两相组成物的相对含量: (以Wsn=0.5的合金为例) 相组成物:α+β
2 N 60 .51 %
MN
M 2 39 .49 %
第四-五节--二元共晶包晶相图 剖析
共晶转变:由一定成分的液相同时结晶出两个一定成分固 相的转变(Pb-Sn, Al-Si, Al-Cu, Mg-Si, Al-Mg)
共晶相图:具有共晶转变特征的相图; 特 点:液态无限互溶、固态有限互溶或完全不溶,且
发生共晶反应。 共晶组织:共晶转变产物(是两相混合物)。
例如:亚共晶合金(Wsn=0.3) 室温组织:α初, βⅡ, (α+β)共晶 相组成:α,β
α初晶
(α+β)共晶
βⅡ
组织组成物与组织图
组织图:用组织组成物填写的相图。
组织组成物与组织图
组织组成物相对量的计算:杠杆定律。 组织组成物的相对含量: (以Wsn=0.5的合金为例) 组织组成物:α初 + βⅡ+(α+β)共晶
成分互惠-交替形核 片间搭桥-促进生长
两相交替分布 (共晶组织)
3 共晶组织及其形成机理
(2)粗糙-平滑界面:
第三章3 共晶相图
3.1.2伪共晶区的形状有两类:
图中a):随温度降低,伪共晶区对称扩大; 图中b):随温度降低,伪共晶区歪向一边;
3.2离异共晶:在先共晶相数量较多、共晶组织较 少的情况下,共晶组织中与先共晶相相同的那一 相依附于先共晶相生长,剩余的另一相单独存在 于晶界处,使共晶组织特征消失。这种两相分离 的共晶称为离异共晶。例如图中的合金Ⅰ;
所以,亚共晶合金的室温组织为: α先+(αM+ βN)+ βⅡ
其中,黑色树 枝晶为先共晶 相α先,之中 的白色颗粒为 βⅡ,黑白相 间分布的是共 晶组织。
计算温度降到2点,未发生共晶反应时两相的相 对含量:
2d 61.9 50 w 100% 100% 27.8% cd 61.9 19 c2 50 19 wL 100% 100% 72.2% cd 61.9 19
4、比重偏析和区域偏析 4.1比重偏析:是由先共晶相与熔液之间密度的差 别所引起的一种区域偏析。 4.2区域偏析:
共晶合金的平衡结晶的室温组织: α +β;
共晶合金的显微组织为α和β呈层片状交替分 布,其中黑色的为α相,白色的为β相。
共晶组织的形 状很多,按两 相的分布形态, 可分为:层片 状、棒状(条 状或纤维状)、 球状(短棒 状)、针片状、 螺旋状等,如 图所示。
αc和βe相的含量可用杠杆定律求出:
1.4共晶转变(共晶反应):在一定的温度下,由一
定成分的液相同时结晶出成分一定的两个固相的转 变过程,称为共晶转变。 •成分相当于E点的液相发生共晶转变,其反应式为
铅锡共晶相图分析
1、相图分析图3-12为一般共晶型的Pb-Sn合金相图。
其中AEB线为液相线,ACEDB 线为固相线,A点为铅的熔点(327℃),B点为锡的熔点(232℃)。
相图中有L、a、b三种相,形成三个单相区。
L代表液相,处于液相线以上。
a是Sn溶解在Pb中所形成的固溶体,位于靠近纯组元Pb的封闭区域内。
b是Pb溶解在Sn 中所形成的固溶体,位于靠近纯组元Sn的封闭区域内。
在每两个单相区之间,共形成了三个两相区,即L+a、L+b和a+b。
图3-12 Pb-Sn二元合金相图相图中的水平线CED称为共晶线。
在水平线对应的温度(183℃)下,E点成分的液相将同时结晶出C点成分的a固溶体和D点成分的b固溶体:LE⇄(aC + bD)。
这种在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变过程称为共晶转变或共晶反应。
共晶反应的产物即两相的机械混合物称为共晶体或共晶组织。
发生共晶反应的温度称为共晶温度,代表共晶温度和共晶成分的点称为共晶点,具有共晶成分的合金称为共晶合金。
在共晶线上,凡成分位于共晶点以左的合金称为亚共晶合金,位于共晶点以右的合金称为过共晶合金。
凡具有共晶线成分的合金液体冷却到共晶温度时都将发生共晶反应。
发生共晶反应时,L、a、b三个相平衡共存,它们的成分固定,但各自的重量在不断变化。
因此,水平线CED是一个三相区。
相图中的CF线和DG线分别为Sn在Pb中和Pb在Sn中的溶解度曲线(即饱和浓度线),称为固溶线。
可以看出,随温度降低,固溶体的溶解度下降。
2、典型合金的结晶过程⑴含Sn量小于C点成分合金的结晶过程(以合金Ⅰ为例)由图3-12可见,该合金液体冷却时,在2点以前为匀晶转变,结晶出单相a 固溶体,这种从液相中结晶出来的固相称为一次相或初生相。
匀晶转变完成后,在2、3点之间,为单相a固溶体冷却,合金组织不发生变化。
温度降到3点以下,a固溶体被Sn过饱和,由于晶格不稳,便出现第二相—b相,显然,这是一种固态相变。
二元系合金的显微组织分析实验指导书
二元系合金的显微组织分析实验指导书一、实验目的1)掌握根据相图分析合金凝固组织的方法。
2)熟悉典型共晶系合金的显微组织特征。
3)了解初晶及共晶形态。
4)分析二元合金的不平衡凝固组织,掌握其组织特征及某与平衡组织的差别二、原理概述研究合金的显微组织时,常根据该合金系的相图,分析其凝固过程,从而得知合金缓慢冷却后应具有的显微组织。
显微组织是指各组成物的本质、形态、大小、数量和分布特征。
特征不同,即使组成物的本质相同,合金的性能也不一样。
具有共晶反应的二元合金系有:Pb-Sb、Pb-Sn、Al-Si、Al-Cu、Cu-O、Zn-Mg等。
根据合金在相图中的位置,可分为端部固溶体、共晶、亚共晶和过共晶合金来研究其显微组织特征。
1、端部固溶体合金端部固溶体合金位于相图两端。
如Pb-Sn相图中含锡的质量分数小于19%的合金,见图3-1;Pb-Sb相图中含锑的质量分数小于3.5%的合金,见图3-2。
这类合金慢冷凝固终了得到单相固溶体α,继续冷却到固溶度曲线以下,将析出二次相βⅡ,一般合金中的二次相常呈粒状或小条状分布在α固溶体的晶界和晶内。
图3-3为含锡10%的Pb-Sn合金的显微组织,其中暗色的基体为铅基固溶体α,亮色颗粒为二次相β,记为βⅡ,β是以锡为基体的固溶体。
图3-1 Pb-Sn相图图3-2Pb-Sb相图图3-3 Pb-10%Sn合金的显微组织2、共晶合金位于二元相图中共晶点成分的合金液体L E 冷至共晶温度t E 时,发生共晶反应,b a t E EL βα+→凝固终了得共晶体组织。
共晶体是由两种一定成分的固相(b a βα+)组成,两相的本质和成分可由相图上得知。
如Pb-Sn 合金的共晶体中两个相的本质分别为以铅和锡为基的固溶体α和β,在共晶温度时,α和β中锡的质量分数分别为19%和97.5%(见图3-1)。
而在Pb-Sb 合金中,由于铅在锑中的固溶度很小,β相的成分接近纯锑,故其共晶体由α+Sb 所组成。
Sn-Pb相图(Pb-Sn)
实验原理
相是指体系内部物理性质和化 学性质完全均匀的一部分。 相平衡是指多相体系中组分在 各相中的量不随时间而改变。 研究多相体系的状态如何随组 成、温度、压力等变量的改变而发 生变化,并用图形来表示体系状态 的变化,这种图就叫相图。
本实验采用热分析法绘制相图,其 基本原理:先将体系加热至熔融成一均 匀液相,然后让体系缓慢冷却,①体系 内不发生相变,则温度--时间曲线均匀 改变;②体系内发生相变,则温度--时 间曲线上会出现转折点或水平段。根据 各样品的温度--时间曲线上的转折点或 水平段,就可绘制相图。
实验结果与讨论
⑴结果:实测值为T铅= T锡= T低共熔= ⑵计算实验偏差: ⑶分析产生偏差的原因: ⑷有何建议与想法?
注意事项:
1.Pb-Sn混合物的液相必须均匀互溶(达 最高温度时,搅拌样品); 2.样品的降温速率必须缓慢; 3.操作过程中,要防止样品被氧化及混 入杂质; 4.热电偶要插到玻璃套的底部,以及热 电偶两极不能相碰。
样品加热及保温:
在样品表面覆盖少许石墨,插 好热电偶,围好保温砖,插上电炉 插头,开始加热。
何时停止加热? 何时停止加热?
纯Pb、纯Sn、含锡61.9%(低共 熔物)三个样品,如果出现转折点, 则停止加热。 含锡20%、含锡30%、含锡80%三 个样品,如果出现转折点,再升高 50 ℃后,则停止加热。 则停止加热。
金属相图(Pb-Sn体系) 金属相图(Pb-Sn体系)
一、实验目的 三、药品仪器 五、实验记录 二、实验原理 四、实验步骤 六、数据处理
七、结果分析与讨论 八、注意事项 九、思考题
实验目的
⑴用热分析法测绘Pb-Sn二元金属相图, 并掌握应用步冷曲线数据绘制二元体系 相图的基本方法; ⑵了解步冷曲线及相图中各曲线所代表 的物理意义; ⑶学习并掌握热电偶的使用及校正和自 动平衡记录仪的使用方法。
共晶、包晶、共析
动性降低, 补缩能力
下降, 分散缩孔增加。
②共晶合金结晶温度 低,流动性好,缩孔 集中, 偏析小, 铸 造性能好。
一个二元共晶反应如下: (1)WB =50%的合金完全凝固时初晶α与 共晶(α+β)的重量百分数,以及共晶体 中α相与β相的重量百分数; (2)若已知显微组织中β初晶与(α+β) 共晶各占一半,求该合金的成分。
织较细,呈片、棒、
点球等形状。
共晶组织形态
针 状 共 晶
树 枝 状 共 晶 螺 旋 状 共 晶
放 射 状 共 晶
在共晶转变过程中,L、
、 三相共存, 三个相的
量在不断变化,但它们各 自成分是固定的。
C(19.2) E(61.9) D(97.5)
共晶组织中的相称共晶相. 共晶转变结束时, 和
向左拐。
③ 发生三等温
转变时,冷却
曲线呈一水平
台阶。
⑵ 分析合金结晶过程 ① 画出组织转变示意图。 ② 计算各相、 各组织组成物相 对重量百分比:
a. 在单相区,合
金由单相组成,
相的成分、重量
即合金的成分、
重量。
b. 在两相区,两相的成分随 温度沿各自的相线变化,各 相和各组织组成物的相对重 量可由杠杆定律求出。
.2
温度降到3点以下, 固溶体被Sn过饱和,由于晶格 不稳,开始析出(相变过程也称析出)新相— 相。 由已有固相析出的新固相称二次相或次生相。 形成二次相的过程称二析出的二次 用Ⅱ 表示。 随温度下降, 和 相的成分分别沿CF线和DG线变 化, Ⅱ的重量增加。 室温下Ⅱ的相对重量百分比为:QⅡ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pb—sn共晶相图相及组织组成物的量化分析
晶相图是用于表示材料的相组成的一种绘图工具,主要由相名称、相比例和占总比例组成。
最常用的是Sn-Pb共晶相图。
Sn-Pb共晶相图大致由三个相组成:Sn、Pb和熔盐,代表其中的Sn和Pb的比例来自于其原子比例。
Sn-Pb共晶相图是分析熔锡锡-铅熔接设备成分的重要图表,反映了熔锡锡-铅共晶样品的组成情况。
Sn-Pb共晶相图量化分析首先要按相的位置绘制出各相的成份比例曲线,并利
用相的分割线来确定具体的成份比例。
其次,确定样品里每个元素的含量,以及由此引出的Sn和Pb的比例。
此外,要根据Sn-Pb图里按色彩分布画出熔盐晶体结构,并使用微观组织分析软件来进行微量元素的量化分析。
Sn-Pb共晶相图的量化分析主要针对热收缩材料行业使用的锡-铅熔合工艺的
熔锡锡-铅合金的分析,其精确性对熔锡锡-铅合金的制备性能有着重要意义。
此外,Sn-Pb共晶相图也可以用于传输率和电气特性测试,以及弱电性塑料仪表管材料测试。