第一章线性空间与线性映射1
第1章 线性空间与线性变换-1
矩阵分析简明教程
事实上, a, b R a b ab R; R, a R a a R . 所以对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律: (1) a b ab ba b a; (2)(a b) c (ab) c (ab)c a(bc) a (b c); (3) R中存在零元素 1, 对于a R , 有
2
矩阵分析简明教程
例1 数域 F上的n维向量全体,按n维向量加法与n维 向量的数量乘法构成数域 F上的线性空间 F n 。 例2 数域 F 上 m n 阶矩阵全体,按矩阵的加法 和数乘,构成 F 上的线性空间 F mn 。 例3 数域 F上一元多项式全体按照多项式的加法以 及数与多项式的乘法构成 F 上的一线性空间 F[ x] 。
矩阵分析简明教程
第一章 线性空间与线性变换
矩阵分析简明教程
§1.1、线性空间的基本概念
线性空间是线性代数最基本的概念之一, 是矩阵论中极其重要的概念之一。它是向 量空间在元素和线性运算上的推广和抽象。
线性空间中的元素可以是向量、矩阵、多 项式、函数等,线性运算可以是我们熟悉 的一般运算,也可以是各种特殊的运算。
数的加法和数与函数的乘法构成线性空间 C[a, b]
矩阵分析简明教程
例6 齐次线性方程组 Ax 的所有解的集合构成数 域 R 上的线性空间 N ( A) ,称为 Ax 的解空间, 或矩阵 A 的核空间或零空间,即
N ( A) { x Rn | Ax , A Rmn} Ker( A)
向量个数 n 称为线性空间V 的维数,记为 dimV n
第1章 线性空间与线性变换
请双面打印/复印(节约纸张)工程矩阵理论主讲: 张小向第一章 线性空间与线性变换第一节 线性空间的基本概念 第二节 基, 维数与坐标变换 第三节 子空间的和与交 第四节 线性映射 第五节 线性映射的矩阵 第六节 线性映射的值域与核 第七节 几何空间线性变换的例子 第八节 线性空间的同构第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念§1.1 线性空间的基本概念 一. 几个具体的例子 1.n= {(a1, …, an)T | a1, …, an ∈ }.2, 3).1. n. 2. [x]. 3. Mm×n( ). 4. { f(x) | f: → }. 5. = {x∈ | x > 0}. a⊕b = ab, ∀a, b∈ +; k⊗a = ak, ∀a∈ 6. V = {α}.+, +非空集合(特例: 2. [x] ={a0+a1x+…+anxn a11 a21 … am1| a1, …, an ∈ }. .3. Mm×n( ) =a12 … a1n a22 … a2n 诸aij ∈ … …… am2 … amn共 同 点系数域 两种运算 八条规则∀k∈ .α +α = α, kα = α, ∀k∈ .第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念二. 线性空间的定义与性质 定义1.1.1 线性空间V(F). V——非空集合 F——数域 加法交换律 结合律 有零元素 每个元素都有负元素 1α = α k(lα) = (kl)α (k+l)α = kα + lα k(α+β) = kα + kβ定理1.1.1. (1) 零向量唯一; (2) 任一向量的负向量唯一; (3) 0α = θ; (4) kθ = θ; (5) (−1)α = −α, (−k)α = −(kα); (6) kα = θ ⇒ k = 0或α = θ.数乘272365083@1请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念三. 线性组合, 线性表示 1. 设α1, …, αk ∈V(F), x1, …, xk ∈F, 则称 x1α1 + … + xkαk 为α1, …, αk的一个线性组合. 2. 设α1, …, αk, β ∈ V(F). 若∃ x1, …, xk ∈ F s.t. β = x1α1 +…+ xkαk 则称β能由向量组α1, …, αk线性表示. 3. 若β1, …, βl都能由α1, …, αk线性表示,则称向量组β1, …, βl能由α1, …, αk线性表 示.四. 形式矩阵 设α1, …, αk , β1, …, βk ∈V(F). 1. 若α1 = β1, …, αk = βk , 则记(α1, …, αk) = (β1, …, βk). 2. 规定 (α1, …, αk) + (β1, …, βk) = (α1+β1, …, αk+βk). 3. 若a ∈F, 则规定 a(α1, …, αk) = (aα1, …, aαk).第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念4. 若x1, …, xk ∈F, 则记 x1α1 +…+ xkαk = (α1, …, αk) x1 . xk 5. 若A = (A1, …, As) ∈ Mk×s(F), 则规定 (α1, …, αk)A = ((α1, …, αk)A1, …, (α1, …, αk)As). …注: 设α1, …, αk , β1, …, βk ∈V(F). a, b ∈ F, A, B ∈ Mk×s(F), C ∈ Ms×t(F). 记α = (α1, …, αk), β = (β1, …, βk), 则可以验证下列等式成立: ① a(α + β) = aα + aβ, ② (a+b)α = aα + bα, ③ a(bα) = (ab)α. ④ (α + β)A = αA + βA, ⑤ α(A+B) = αA + αB, ⑥ (αA)C = α(AC), ⑦ (aα)A = a(αA) = α(aA).第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念五. 线性空间的子空间 定义1.1.2 子空间, W ≤ V(F) 定理1.1.2. 设∅ ≠ W ⊆ V(F), 则 W ≤ V(F) ⇔ W关于的加法和数乘封闭. 注: V(F)的两个平凡的子空间. {θ}, V(F)六. 由子集合{α1, α2, …, αk}生成的子空间 {α1, α2, …, αk}——生成系, 生成元集i=1 k∑ xiαi —— α1, α2, …, αk的一个线性组合 组合系数 W = { ∑ xiαi | ∀xi∈ F}.k记为L[α1, α2, …, αk]或span{α1, α2, …, αk}.i=1272365083@2请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.2 基, 维数与坐标变换§1.2 基, 维数与坐标变换 一. 向量组的线性相关性 定义1.2.1 线性相关, 线性无关. 定理1.2.1 设(I) α1, α2, …, αs线性无关, 且能由 (II) β1, β2, …, βt线性表示, 则s ≤ t. 推论1 设(I)与(II)都线性无关, 且等价, 则s = t. 推论2 设(I)能由(II)线性表示, 且s > t, 则(I)必线性相关.二. 基、维数 定义1.2.2 基, 维数. 例子. 1. n. 2. [x], [x]n = {a0+a1x+…+an−1xn−1 | …}. 3. Mm×n( ). 4. { f(x) | f: → }. 5. = {x∈ | x > 0}. a⊕b = ab, ∀a, b∈ +; k⊗a = ak, ∀a∈ +, ∀k∈ . 6. V = {θ}.+第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.2 基, 维数与坐标变换定理1.2.2 若dimV = n, 则V中任意 n 个线性无 关的向量都构成V的一组基. 定理1.2.3 若W ≤ V, dimV = n, α1, …, αr 为W 的一组基, 则∃αr+1, …, αn∈ V 使得 α1, …, αr, αr+1, …, αn构成V的一组 基.三. 坐标 定义1.2.3 设α1, …, αn为V的一组基, ξ ∈ V. 若ξ = x1α1 + … + xnαn, 则称有序数组(x1, …, xn)为ξ在基 α1, …, αn下的坐标, (x1, …, xn)T称为ξ的坐标向量.第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.2 基, 维数与坐标变换定理1.2.4 设α1, …, αn为V的一组基, (β1, …, βr) = (α1, …, αn)x11 … x1r x11 … x1r xn1 … xnr … …四. 坐标变换 V的两组基 , P, 可逆X=xn1 … xnr,p11 … p1n (β1, …, βn) = (α1, …, αn) … … … , pn1 … pnn 称P为从基α1, …, αn到β1, …, βn的过渡矩 阵.…则β1, …, βr线性无关 ⇔ 秩(X) = r.272365083@…3请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.3 子空间的和与交四. 坐标变换 V的两组基 P, 可逆§1.3 子空间的和与交 一. 基本概念与结论 定义1.3.1 设V1, V2 ≤ V. V1与V2的和: V1 + V2 = {α1 + α2 | α1∈V1, α2∈V2}. V1与V2的交: V1∩V2 = {α∈V | α∈V1且α∈V2}. 定理1.3.1 V1, V2 ≤ V ⇒ V1 + V2, V1∩V2 ≤ V.p11 … p1n (β1, …, βn) = (α1, …, αn) … … … , pn1 … pnnξ = (α1, …, αn)X = (β1, …, βn)Y,(α1, …, αn)PY ⇒ X = PY, Y = P−1X. ——坐标变换公式 =第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交注: ① 子空间V1∩V2与集合V1∩V2是一致的. ② 一般情况下, V1+V2 ≠ V1∪V2. 例如V =3,zOV1 = xOy平面, V2 = yOz平面, V1+V2 = V, V1∩V2 = y轴.定理1.3.2 (维数定理) 设V1, V2是V的两个有限维子空间, 则 dimV1 + dimV2 = dim(V1+V2) + dim(V1∩V2). 证明: (关键步骤) y(1) 取V1∩V2的一组基α1, …, αr ; (2) 把α1, …, αr扩充成V1的一组基 α1, …, αr, βr+1, …, βs ; (3) 把α1, …, αr扩充成V2的一组基 α1, …, αr, γr+1, …, γt ; (4) 验证α1, …, αr, βr+1, …, βs, γr+1, …, γt 线性无关(从而构成V1+V2的一组基).x③ V1+V2 = V1∪V2 的充分必要条件是 V1⊆V2 或 V2⊆V1.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交k1α1+…+krαr+kr+1βr+1+…+ksβs+lr+1γr+1+…+ltγt = 0 ⇒ lr+1γr+1+…+ltγt = −k1α1−…−krαr−kr+1βr+1−…−ksβs ∈ V1∩V2 ⇒ ∃l1, …, lr s.t. lr+1γr+1+…+ltγt = l1α1+…+lrαr i.e. l1α1+…+lrαr −lr+1γr+1−…−ltγt = 0 ⇒ l1 = … = lr = lr+1 = … = lt = 0 ⇒ k1α1+…+krαr+kr+1βr+1+…+ksβs = 0 ⇒ k1 = … = kr = kr+1 = … = ks = 0dimV1 + dimV2 = dim(V1+V2) + dim(V1∩V2) 例1(1) V = 3, V1 = xOy平面, V2 = yOz平面, V1+V2 = V, V1∩V2 = y轴, dimV1 = dimV2 = 2, dim(V1+V2) = 3, dim(V1∩V2) = 1. zOyx272365083@4请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交例1(2) V = V2 =2×2,V1 =x y z tx = y ≤ V,例1(3) V = V2 =2×2,V1 =x −x y −yx, y ∈ ≤ V,≤ V,x y z tx + y + z = 0 ≤ V,x y z tx y x yx, y ∈0 0V1+V2 = ______. V1∩V2 =x=y且x+y+z=0 ,则 0 0 , 构成V1的一组基, 1 −11 0 0 1 , 构成V2的一组基, 1 0 0 11 −1dimV1 = dimV2 = 3, dim(V1∩V2) = 2, 故dim(V1+V2) = 3 + 3 − 2 = 4 = dimV, 可见V1+V2 = V.故dimV1 = dimV2 = 2.x −x y −y ∈V2 ⇔ x = y. x −x 故V1∩V2 = x −x x ∈.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交可见1 −1 构成V1∩V2的一组基, 1 −1dim(V1∩V2) = 1. 故dim(V1+V2) = dimV1 + dimV2 − dim(V1∩V2) = 2 + 2 − 1 = 3. 事实上,1 0 0 1 1 −1 0 0 , , 1 0 , 0 1 线性相关, 0 0 1 −1二. 子空间的直和 定义1.3.2 设V1, V2 ≤ V. 若对于∀α∈V1+V2, ∃| α1∈V1, α2∈V2, s.t. α = α1 + α2, 则称V1 + V2为V1与V2的直和, 记为V1⊕V2.其中任意3个都线性无关, 因而构成V1+V2的 一组基.α = α1 + α2, α1∈V1, α2∈V2 ⇒ α = β1 + β2, β1∈V1, β2∈V2 α1 = β1, α2 = β2.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交定理1.3.3 设V1, V2 ≤ V, 则下列条件等价: (1) V1 + V2是直和; (2) V1 + V2中0分解式唯一, 即 0 = α1+α2 (αi∈Vi) ⇒ α1 = α2 = 0; (3) V1∩V2 = {0}; 当dimV1, dimV2 < ∞时, 上述条件还等价于 (4) dim(V1+V2) = dimV1 + dimV2.定理1.3.4 设V1 ≤ V, dimV = n, dimV1 = r, 则存在V的n−r维子空间V2使得 V = V1⊕V2. 定义1.3.3 设V1, …, Vs ≤ V, 则V1, …, Vs的和 V1 + … + Vs = {α1 +…+ αs | αi∈Vi}. 若对于∀α ∈ V1 + … + Vs , ∃| αi∈Vi (i = 1, …, s) s.t. α = α1 + … + αs , 则称V1 +…+ Vs为V1, …, Vs的直和, 记为V1⊕…⊕Vs .272365083@5请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交定理1.3.5 设Vi ≤ V (i = 1, …, s), 则TFAE: (1) V1 + … + Vs是直和; (2) V1 + … + Vs中0分解式唯一; (3) Vk∩Σi≠kVi = {0}, k = 1, …, s; 当dimVi < ∞ (i = 1, …, s)时, 上述条件还等价于 (4) Σ dimVi = dim( Σ Vi).i=1 i=1 s s例2. 设A2 = A ∈ Fn×n, V1 = {X ∈ Fn | AX = 0}, V2 = {X∈Fn | AX = X}. 证明: Fn = V1⊕V2. 证明: (1) 容易验证V1, V2 ≤ Fn. (2) ∀α∈Fn, 有α = (α − Aα) + Aα, A(α − Aα) = Aα − A2α = 0, A(Aα) = A2α = Aα. 可见α ∈ V1+V2. 这就证明了Fn ⊆ V1+V2. 又因为V1+V2 ⊆ Fn, 所以Fn = V1+V2.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.4 线性映射例2. 设A2 = A ∈ Fn×n, V1 = {X ∈ Fn | AX = 0}, V2 = {X∈Fn | AX = X}. 证明: Fn = V1⊕V2. 证明: (1) 容易验证V1, V2 ≤ (2) Fn = V1+V2. (3) 若α∈V1∩V2, 则α = Aα = 0. Fn. 可见V1∩V2 ⊆ {0}. 又因为{0} ⊆ V1∩V2, 所以V1∩V2 = {0}. 综上所述, Fn = V1⊕V2.§1.4 线性映射 一. 映射 定义1.4.1 像 原像 • • • 映射 • • • • • • 满射 • •第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射• • 单射 注:• • •• • • 双射• • •f:→; a → |a| ;a→ √a2(∀a∈ ) (∀a∈ )g: →f = g —— ∀a∈ , f(a) = g(a) 一般地, 若映射f, g: A → B满足 f(a) = g(a) (∀a∈A) 则称映射f与g相等, 记为f = g.• • •• • •• •• • •不是映射不是映射272365083@6请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射• • • f • • •• • •• • • g • • • gf• • •注① 映射的复合运算满足结合律: f: A → B, g: B → C, h: C → D (hg)f = h(gf). A B f b• g C c• h D d•• • •a•[(hg)f](a) = (hg)[f(a)] = (hg)(b) = h[g(b)] = h{g[f(a)]} = h[(gf)(a)] = [h(gf)](a)f: A → B与g: B → C的乘积 gf: A → C定义为 ( gf )(a) = g[ f(a)] (∀a∈A).第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射注② 1A: A → A, f: A → B, 1B: B → B f⋅1A = f, A a• 1A A a• f 1B⋅f = f. B b• 1B B b• • • • 双射f • • • • • • • • •f的逆映射( f⋅1A)(a) = f [1A(a)] = f(a) (1B⋅f )(a) = 1B[ f(a)] = f(a)若映射f: A → B, g: B → A满足 gf = 1A, fg = 1B, 则称g为f 的逆映射, 记为g = f −1. 注① g = f −1 ⇒ f = g−1. 注② f: A → B有逆映射⇔ f: A → B为双射.第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射注② f: A → B有逆映射⇔ f: A → B为双射.证明: (⇒) 设f: A → B有逆映射g: B → A, 则 (1) ∀x, y ∈ A, 由 f(x) = f(y)可得 x = 1A(x) = gf(x) = gf(y) = 1A(y) = y. 可见 f: A → B为单射. (2) ∀b ∈ B, ∃a = g(b) ∈ A s.t. f(a) = f[g(b)] = fg(b) = 1B(b) = b. 可见 f: A → B为满射. 所以 f: A → B为双射.注② f: A → B有逆映射⇔ f: A → B为双射.证明: (⇐) 设 f: A → B为双射, 则 ∀b ∈ B, ∃| a ∈ A s.t. f(a) = b. 令g(b) = a, 可得 映射g: B → A. 而且 (1) ∀b ∈ B, 有 fg(b) = f[g(b)] = f(a) = b. 这就是说, fg = 1B. (2) ∀a ∈ A, 令b = f(a) ∈ B, 按g的定义, gf(a) = g[ f(a)] = g(b) = a. 这就是说, gf = 1A, 可见 f: A → B有逆映射g: B → A.272365083@7请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射例1. 设A为数域F上的n阶方阵, Fn = {(a1, …, an)T | a1, …, an∈F}. 映射f: Fn→ Fn定义为 f(x) = Ax. 证明下列条件等价: (1) f: Fn→ Fn为单射; (2) f: Fn→ Fn为满射; (3) A可逆.证明: (1)⇒(3) 假设A不可逆, 则|A| = 0, 故r(A) < n, 因而Ax = 0有非零解, 即存在x ≠ 0使得Ax = 0, 于是f(x) = Ax = 0 = A0 = f(0). 这与“f: F n→ F n为单射”矛盾. 所以A可逆. (3)⇒(1) 对于任意的x, y ∈ F n, 若f(x) = f(y), 即Ax = Ay, 因为A可逆, 所以x = A−1Ax = A−1Ay = y. 可见 f: F n→ F n为单射.第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射证明: (2)⇒(3) 因为f: F n→ F n是满射, 所以存在n阶方阵B = (ξ1, …, ξn)使得 AB = (Aξ1, …, Aξn) = ( f(ξ1), ..., f(ξn)) = (e1, …, en) = I. 从而|A|×|B| = |AB| = |I| = 1, 故|A| ≠ 0, 因而A可逆. (3)⇒(2) 对于任意的y ∈ F n, 令x = A−1y, 则x ∈ F n, 而且f(x) = Ax = AA−1y = y. 可见f: F n→ F n为满射.二. 线性映射与线性变换 定义1.4.2 设U, V为数域F上的线性空间. 若映射 f: V → U保持加法和数乘, 即 f(α+β) = f(α) + f(β), f(kα) = kf(α), ∀α, β ∈ V, k ∈ F, 则称 f 为线性映射. 特别地, 当U = V时, 称线性映射 f: V → V为V上的线性变换. 注① f(kα+lβ) = kf(α) + lf(β), ∀α, β ∈ V, k ∈ F.第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射注② Hom(V, U) = { f: V → U | f为线性映射}. 注③ 若 f ∈ Hom(V, U), 则 f(0V) = 0U; f(−α) = −f(α); f(x1α1+…+xsαs) = x1 f(α1) +…+ xs f(αs); α1, …, αs线性相关 ⇒ f(α1), …, f(αs)线性相关. 注④ 若 f: V → U 满足 f(α) = 0, ∀α∈V, 则 f ∈ Hom(V, U), 称为零映射, 记为0.注⑤ 若 f: V → V 满足 f(α) = α, ∀α∈V, 则 f ∈ Hom(V, V), 称为V上的恒等变换, 记为 I 或 IdV . 注⑥ 对于 f ∈ Hom(V, U), 可以把 ( f(α1), …, f(αs))记为f(α1, …, αs). 相应地, 可以把 f(x1α1+…+xsαs) = x1 f(α1) +…+ xs f(αs) 改写成 ( α1, ), …, f(α f((α1, …, αs)X) = f(f(α1…, αs)X. s))X272365083@8请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射三. 线性映射的运算 定义1.4.3 (1) 线性运算 设 f, g ∈ Hom(V, U), k ∈ F. 定义 ( f + g)(α) = f(α) + g(α), (kf )(α) = kf(α), ∀α∈V. (2) 复合运算 设 f∈Hom(V, U), g∈Hom(U, W). 定义 (gf )(α) = g[ f(α)], ∀α∈V.注: 对于V上的线性变换 f 及正整数s, 定义 f 0 = I, f 1 = f, f 2 = ff, …, f s = ff s−1. 定理1.4.1(1) 设 f, g ∈ Hom(V, U), k ∈ F, 则 f + g, kf ∈ Hom(V, U). (2) 设 f∈Hom(V, U), g∈Hom(U, W), 则 gf∈ Hom(V, W). 证明: (2) (gf )(kα+lβ) = g[ f(kα+lβ)] = g[kf(α) + lf(β)] = kg[ f(α)] + lg[ f(β)] = k(gf )(α) + l(gf )(β).第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.5 线性映射的矩阵定理1.4.2 设 f ∈ Hom(V, U). 若 f 可逆, 则 f −1 ∈ Hom(U, V). 证明: ∀ξ, η ∈ U, k, l ∈ F, 令α = f −1(ξ ), β = f −1(η)∈ V, 则 f [ f −1(kξ + lη)] = kξ + lη = kf(α) + lf(β) = f(kα + lβ), 故 f −1(kξ + lη) = kα + lβ = kf −1(ξ ) + lf −1(η).§1.5 线性映射的矩阵 一. 线性映射在给定的基偶下的矩阵 设α1, …, αn为V的一组基, β1, …, βs为U的一组基, f ∈ Hom(V, U), 则存在A = (aij)s×n使得 ( f(α1), …, f(αn)) = (β1, …, βs)a11 … a1n as1 … asn,简记为 f(α1, …, αn) = (β1, …, βs)A. 称为 f 在基偶{α1, …, αn}与{β1, …, βs}下 的矩阵表示. A —— f 在基偶…下的矩阵.……第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵特别地, 设α1, …, αn为V的一组基, f ∈ Hom(V, V), 则存在A = (aij)n×n使得 ( f(α1), …, f(αn)) = (α1, …, αn)a11 … a1n an1 … ann注① 零映射在任意基偶下的矩阵都是O; 恒等变换在任一组基下的矩阵都是I. 注② 设α1, …, αn为V的一组基, ,…简记为 f(α1, …, αn) = (α1, …, αn)A. 称为 f 在基{α1, …, αn}下的矩阵表示. A —— f 在基{α1, …, αn}下的矩阵.…β1, …, βs为U的一组基, f(α1, …, αn) = (β1, …, βs)A. 若ξ = x1α1 + … + xnαn = (α1, …, αn)X, 则 f(ξ) = f(x1α1 + … + xnαn) = x1 f(α1) + … + xn f(αn) = ( f(α1), …, f(αn))X = f(α1, …, αn)X = (β1, …, βs)AX.272365083@9请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵例2. 在 [x]n中, D[p(x)] = p′(x), D(1, x, x2, …, xn−2, xn−1)0 0 0 . 0 … 0 1 0 … 0 0 0 2 … 0 … 2, …, xn−2, xn−1) 0 0 0 = (1, x, x n−2 0 0 0 … 0 0 0 0 … 0 … … …例3. D: [x]n → D(1, x, x2,[x]n−1, D[p(x)] = p′(x), …, xn−2, xn−1)0 0 0 . …0 1 0 … 0 0 0 2 … 0 = (1, x, x2, …, xn−2) 0 0 0 … … … ……n−1…0 0 0 … 0 n−1n−2例4. 设A ∈F s×n, f: F n → F s, f(X) = AX. f(e1, …, en) = (Ae1, …, Aen) = AIn = A = IsA = (ε1, …, εs)A.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵二. 线性映射在两对基偶下的矩阵间的联系 定理1.5.1 设 f ∈ Hom(V, U), 其中 V的一组基α1, …, αn到另一组基 β1, …, βn的过渡矩阵为P; U的一组基ξ1, …, ξs到另一组基 η1, …, ηs的过渡矩阵为Q. 若 f(α1, …, αn) = (ξ1, …, ξs)A, f(β1, …, βn) = (η1, …, ηs)B, 则B = Q−1AP.证明: (β1, …, βn) = (α1, …, αn)P (η1, …, ηs) = (ξ1, …, ξs)Q f(α1, …, αn) = (ξ1, …, ξs)A f(β1, …, βn) = (η1, …, ηs)B⇒(ξ1, …, ξs)AP = f(α1, …, αn)P = f((α1, …, αn)P) = f(β1, …, βn) = (η1, …, ηs)B = (ξ1, …, ξs)QB ⇒ AP = QB ⇒ B = Q−1AP.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵定理1.5.2 设 f ∈ Hom(V, V), 其中 V的一组基α1, …, αn到另一组基 β1, …, βn的过渡矩阵为P. 若 f(α1, …, αn) = (α1, …, αn)A, f(β1, …, βn) = (β1, …, βn)B, 则B = P−1AP.三. 线性变换运算的矩阵 设V的一组基为α1, …, αn , 线性变换 f: V→V在这组基下的矩阵记为 [ f ]. 定理1.5.3 设 f, g ∈ Hom(V, V), k ∈ F, 则 (1) [ f + g] = [ f ] + [g]. (2) [kf ] = k[ f ]. (3) [ fg] = [ f ][g]. (4) f 可逆⇒[ f −1] = [ f ]−1.272365083@10请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵证明: (1)( f + g)(α1, …, αn) = (( f + g)(α1), …, ( f + g)(αn)) = ( f(α1)+g(α1), …, f(αn)+g(αn)) = ( f(α1), …, f(αn)) + (g(α1), …, g(αn)) = f(α1, …, αn) + g(α1, …, αn) = (α1, …, αn)[ f ] + (α1, …, αn)[g] = (α1, …, αn){[ f ]+[g]}.证明: (2)(kf )(α1, …, αn) = ((kf )(α1), …, (kf )(αn)) = (kf(α1), …, kf(αn)) = k( f(α1), …, f(αn)) = kf(α1, …, αn) = k{(α1, …, αn)[ f ]} = (α1, …, αn){k[ f ]}.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵证明: (3)( fg)(α1, …, αn) = (( fg)(α1), …, ( fg)(αn)) = ( f(g(α1)), …, f(g(αn))) = f(g(α1), …, g(αn)) = f(g(α1, …, αn)) = f((α1, …, αn)[g]) = f(α1, …, αn)[g] = ((α1, …, αn)[ f ])[g] = (α1, …, αn)([ f ][g]).证明: (4) 设[ f −1] = B, 即 f −1(α1, …, αn) = (α1, …, αn)B, 则(α1, …, αn) = ( ff −1)(α1, …, αn) = f( f −1(α1, …, αn)) = f((α1, …, αn)B) = f(α1, …, αn)B = ((α1, …, αn)[ f ])B = (α1, …, αn)([ f ]B), 由此可得[ f ]B = I, 因而[ f −1] = B = [ f ]−1.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵例5. 设dimV = n, f ∈ Hom(V, V), f 2 = I. 证明: [ f ]相似于 Ir O (0 ≤ r ≤ n). O −In−r证明: 令V1 = {α∈V | f(α) = α}, V2 = {α∈V | f(α) = −α}, 则V1, V2 ≤ V 且V1∩V2 = {0}. 1 1 ∀α∈V, 令β = −(α +f(α)), γ = −(α −f(α)), 2 2 则由f 2 = I 可得 f(β) = β, f(γ) = γ, 故β ∈V1, γ ∈V2, α = β + γ ∈V1 + V2. 可见V1 + V2 ⊆ V ⊆ V1 + V2.因而V = V1 + V2 = V1⊕V2 . 设V1的一组基为α1, …, αr , V2的一组基为βr+1, …, βn , f 在V的基α1, …, αr , βr+1, …, βn下的矩阵为 Ir O . O −In−r 由定理1.5.2可知, [ f ]相似于 Ir O . O −In−r272365083@11请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵四. 不变子空间 定义1.5.1 设 f ∈ Hom(V, V), W ≤ V. 若∀α∈W, 有 f(α)∈W, 则称W为V的关于 f 的不变子空间, 简称为 f 的不变子空间. 此时, 定义 f |W: W → W; α → f(α), 则 f |W ∈ Hom(W, W), 称为f 在W上 的限制.例如: ① 例5中, f ∈ Hom(V, V), f 2 = I, 则 V1 = {α∈V | f(α) = α}, V2 = {α∈V | f(α) = −α} 都是 f 的不变子空间. ② ∀ f ∈ Hom(V, V), {0}和V都是 f 的不变子空间.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.6 线性映射的值域与核注: 设dimV = n, f ∈ Hom(V, V), V = U⊕W, 其中U, W都是 f 的不变子空间, U的一组基为α1, …, αr , W的一组基为βr+1, …, βn , 则 f |U(βi) = 0, i = r+1, …, n, f |W(αi) = 0, i = 1, …, r. 设 f |U在U的基α1, …, αr下的矩阵为A, f |W在W的基βr+1, …, βn下的矩阵为B, 则 f 在V的基α1, …, αr , βr+1, …, βn下的矩 A O 阵为 O B .§1.6 线性映射的值域与核 一. 定义 设 f ∈ Hom(V, U), 则称 f(V) = { f(α) |α∈V}为 f 的值域, 记为R( f ); 称K( f ) = {α∈V | f(α) = 0}为 f 的核. VK( f )U f → f(V) 0U第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核二. 性质 定理1.6.1 设 f ∈ Hom(V, U), 则 (1) R( f ) ≤ U. (2) K( f ) ≤ V. (3) 当U = V时, R( f )和K( f )都是 f 的不变子空间. VK( f )U f → f(V) 0U例1. 设A ∈ Fs×n, f: Fn→ Fs定义为 f(X) = AX. 则R( f ) = {AX | X ∈ Fn} ≤ Fs, 这是A的列空间, 也称为A的值域, 记为R(A); K( f ) = {X ∈ Fn | AX = 0}, 这是AX = 0的解空间, 也称为A的核, 记为K(A).272365083@12请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核定理1.6.2 设 f ∈ Hom(V, U), dimV < ∞, 则 dimR( f ) + dimK( f ) = dimV. VK( f )U f → f(V) 0U ...... ...证明: 设α1, …, αk为K( f )的一组基, α1, …, αk, αk+1, …, αn为V的一组基, 则R( f ) = span{ f(αi) | i = 1, …, n} = span{ f(αi) | i = k+1, …, n}. 若ck+1 f(αk+1) + … + cn f(αn) = 0, 则 f(ck+1αk+1 + … + cnαn) = 0, 即ck+1αk+1 + … + cnαn ∈ K( f ), 故存在c1, …, ck使得 ck+1αk+1 + … + cnαn = c1α1 + … + ckαk , 即c1α1 + … + ckαk − ck+1αk+1 − … − cnαn = 0, 由此可得ck+1 = … = cn = 0. 可见 f(αk+1), …, f(αn) 线性无关, 故dimR( f ) + dimK( f ) = dimV.第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核例2. 设A = 1 1 , f(X) = AX, ∀X∈ 2×2. (1) 分别求R( f )及K( f )的一组基, (2) R( f ) + K( f )是否为直和. 解: 取 2×2的一组基E11, E12, E21, E22. 则R( f ) = span{ f(E11), f(E12), f(E21), f(E22)}, 其中 f(E11) = f(E21) = E11 + E21, f(E12) = f(E22) = E12 + E22, 且E11 + E21, E12 + E22线性无关, 因此, E11 + E21, E12 + E22构成R( f )的一组 基.1 1设X = x1 x2 , 则 3 4 AX ⇔ x1 + x3 = x2 + x4 = 0 ⇔ X = x1(E11 − E21) + x2(E12 − E22). 又因为E11 − E21, E12 − E22线性无关, 可见E11 − E21, E12 − E22构成K( f )的一组基. (E11 + E21, E12 + E22, E11 − E21, E12 − E22)1 0 1 0x x= (E11, E12, E21, E22) 0 1 0 1 ,1 0 −1 0 0 1 0 −1第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核(E11 + E21, E12 + E22, E11 − E21, E12 − E22)1 = (E11, E12, E21, E22) 0 1 0 1 0 1 0 0 其中r 0 1 −1 1 = 4. 1 0 0 0 1 0 −1 0 1 0 1 1 0 −1 0 0 1 , 0 −1故E11 + E21, E12 + E22, E11 − E21, E12 − E22线性 无关, 因而R( f ) + K( f )为直和.事实上, 若B ∈ R( f ) ∩ K( f ), 则存在X∈ 2×2 使得B = AX, 而且AB = O. 于是可得 2AX = A2X = A(AX) = AB = O, 故B = AX = O. 可见R( f ) ∩ K( f ) = {O}, 因此R( f ) + K( f )为直和.272365083@13请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核例3. 设A = 0 0 , f(X) = AX, ∀X∈ 2×2. (1) 分别求R( f )及K( f )的一组基, (2) R( f ) + K( f )是否为直和. 解: 取 2×2的一组基E11, E12, E21, E22. 则R( f ) = span{ f(E11), f(E12), f(E21), f(E22)}, 其中 f(E11) = f(E12) = O, f(E21) = E11, f(E22) = E12, 且 E11, E12 线性无关, 因此, E11, E12构成R( f )的一组基.0 1设X = x1 x2 , 则 3 4 AX ⇔ x3 = x4 = 0 ⇔ X = x1E11 + x2E12. 又因为E11, E12 线性无关, 可见E11, E12构成K( f )的一组基. 因为R( f ) = span{E11, E12} = K( f ), 因此R( f ) + K( f )不是直和.x x第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子§1.7 几何空间线性变换的例子 一. 辐射相似变换 f:3二. 平行于某矢量的投影变换 对于任意的OP ∈P e23,e3→3OP → kOP (k > 0).设OP = x1e1 + x2e2 + x3e3, 令 f(OP) = x1e1 + x2e2, 则 f ∈ Hom(3, 3),e3 P O e1 1 0 0 0 0 0 e2O e1f在3的任意一组基下的矩阵都是kI.OP − f(OP) // e3,→ 0<k<1 压缩→ k>1 放大f 在e1, e2, e3下的矩阵为 0 1 0 , R( f ) = span{e1, e2}, K( f ) = span{e3}.第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子三. 平行于某一方向的压缩(或延伸) 对于任意的OP ∈3,四. 平行于某一方向的推移 对于任意的OP ∈P e23,e3e3P e2设OP = x1e1 + x2e2 + x3e3,f(OP) = x1e1 + x2e2 + ax3e3, O (a > 0).e13, 3),设OP = x1e1 + x2e2 + x3e3,O e1f(OP) = (x1+ax2)e1 + x2e2 + x3e3, (a ≠ 0). 则 f ∈ Hom(3, 3),则 f ∈ Hom(OP − f(OP) // e3,1 0 0 0 0 a→OP − f(OP) // e1, f 在e1, e2, e3下的矩阵为 0 1 0 .0 0 1 1 a 0f 在e1, e2, e3下的矩阵为 0 1 0 .272365083@14请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子五. 旋转变换 见下一章. 六. 镜像变换 见下一章.平面上的例子:0 • 7 • 5 7 0 • 7 • 5 6• 0 5 x 7 0 y5 0 1 0 −0.2 1 0 5 x 7 0 y • 5 −1第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子平面上的例子:平面上的例子:β αAβ = 0.5β2 0 A = 0 0.5β αcosφ sinφ B = −sinφ cosφ π/6Aα = 2 α第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.8 线性空间的同构平面上的例子: Cβ = β§1.8 线性空间的同构 一. 定义 设V, U都是数域F上的线性空间. 若∃双射σ∈ Hom(V, U), 则称V与U同构, 记为V ≅ U. 并且称σ为V到U的一个同构映射.βCα = − αα0 C = −1 1 0272365083@15请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构→二. 性质 定理1.8.1 设σ为线性空间V到U的同构映射, 则中向量α1, …, αk线性无关 ⇔ σ(α1), …, σ(αk)线性无关. 证明: (⇒) 设α1, …, αk线性无关, 则 c1σ(α1) + … + ckσ(αk) = 0 ⇒ σ(c1α1 + … + ckαk) = 0 = σ(0) ⇒ c1α1 + … + ckαk = 0 ⇒ c1 = … = ck = 0. 可见σ(α1), …, σ(αk)线性无关.→→第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构二. 性质 定理1.8.1 设σ为线性空间V到U的同构映射, 则中向量α1, …, αk线性无关 ⇔ σ(α1), …, σ(αk)线性无关. 证明: (⇐) 设σ(α1), …, σ(αk)线性无关, 则 c1α1 + … + ckαk = 0 ⇒ c1σ(α1) + … + ckσ(αk) = σ(c1α1 + … + ckαk) = σ(0) = 0 ⇒ c1 = … = ck = 0. 可见α1, …, αk线性无关.三. 判定 定理1.8.2 设V与U是数域F上的有限维线性空 间, 则V ≅ U ⇔ dimV = dimU. 证明: (⇒) 设σ为V到U的一个同构映射, 则R(σ) = U, K(σ) = {0}. 故dimV = dimR(σ) + dimK(σ) = dimU.第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构(⇐) 设dimV = dimU = n, α1, …, αn为V的一组基, ξ1, …, ξn为U的一组基. 对于任意的α = a1α1 + … + anαn ∈ V, 令σ(α) = a1ξ1 + … + anξn, 则 (1) σ : V → U为单射. 事实上, … (2) σ : V → U为单射. 事实上, … (3) σ ∈ Hom(V, U). 事实上, … 故V ≅ U.(1) σ : V → U为单射. 事实上, 若α = a1α1 +…+ anαn, β = b1α1 +…+ bnαn, 且σ(α) = σ(β), 则 a1ξ1 + … + anξn = b1ξ1 + … + bnξn, 故(a1−b1)ξ1 + … + (an−bn)ξn = 0, 由此可得 a1−b1 = … = an−bn = 0, 即(a1, …, an) = (b1, …, bn), 因而α = a1α1 +…+ anαn = b1α1 +…+ bnαn = β.272365083@16请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构(2) σ : V → U为满射. 事实上, ∀ξ∈U, 设ξ = a1ξ1 + … + anξn, 于是令α = a1α1 +…+ anαn, 则α ∈ V 且σ(α) = a1ξ1 + … + anξn = ξ.(3) σ ∈ Hom(V, U). 事实上, ∀α = a1α1 +…+ anαn, β = b1α1 +…+ bnαn, k, l ∈ F, 有 σ(kα + lβ) = σ((ka1+ lb1)α1 +…+ (kan+ lbn)αn) = (ka1+ lb1)ξ1 + … + (kan+ lbn)ξn = k(a1ξ1 +…+ anξn) + l(b1ξ1 +…+ bnξn) = kσ(α) + lσ(β).第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构四. 例子 1. [x]n = {a0+…+an−1xn−1 | a0, …, an−1x∈ }. dim [x]n = n = dim 事实上, 容易验证n,2. dimM2×3( ) = 6, 故M2×3( ) ≅ 事实上, 容易验证6.故 [x]n ≅n;n.σ : M2×3( ) →a11 a12 a13 a21 a22 a236;σ : [x]n →a0+…+an−1xn−1 → 为同构映射.a0 an−1 …a11 a12 a → a13 21 a22 a23为同构映射.第一章 线性空间与线性变换§1.8 线性空间的同构3.= {x∈ | x > 0}. a⊕b = ab, ∀a, b∈ +; k⊗a = ak, ∀a∈ +, ∀k∈ . dim + = 1, 故 + ≅ . 事实上, 容易验证 → ; x → logax++为同构映射.272365083@17。
第1章 线性空间与线性变换讲义
a + b = ( x 1 + y1 , x 2 + y 2 , , x n + y n ) T
定义数乘:
ka = ( kx1 , kx 2 , , kx n ) T ,
R n 是数域 R 上的线性空间。 C n 是数域 C 上的线性空间。
4
例2 实数域 R上的全体 m×n 矩阵,对矩阵的加法 和数乘运算构成 R上的线性空间,记作 Rm×n
定义:设 V 是一个非空集合,F 为数域,a, b, g V, 对于任意的a, b V, 总有唯一的元素 g V
与之对应,称 g 为a 与b 的和,记作 g =a +b,且
(1) a + b = b + a ;
( 2 ) (a + b ) + g = a + ( b + g );
( 3) 存在零元素: b V , a V , a + b = a, 称 b 为零元素, 并记 b 为 0 ; ( 4) 存在负元素 a V , b V, a + b = 0; 称 b 为 a 的负元素, 并记 b 为 - a ;
(1) a , b W , 则a + b W (2) a W , k F , 则 ka W
则称W 是V 的子空间。
21
例1. 实数域上 n 维向量的集合
W = { ( 0, x 2 , , x n ) T | x 2 , , x n R }
则 W是 R n 的 子 空 间 。
则 P 称为由基 a 1 , a 2 , , a n 到基 b 1 , b 2 , , b n 的 转移矩阵(或过渡矩阵),其中
p11 p21 P= p n1 p12 p22 pn 2 p1n p2 n pnn
矩阵分析课件(1-1,4)
显然, 例1.1.1 1.1.3都是实数域R上的线性空间.下面再举 几个例子 :
例1.1.4 设A为实m n矩阵, 易证 : 齐次线性方程组Ax 0的所有 解(包括零解)的集合构成实数域R上的线性空间.这个空间为方 程组 Ax 0的解空间, 也称为矩阵A的核或零空间, 常记为N ( A).
称n阶方阵
a11 a21 P= a n1
a12 a22 an 2
a1n a2 n ann
是由基1 , 2 ,
, n到基1 , 2 ,
, n的过渡矩阵。于是上 ,n ) P
式可写成(1 , 2 ,
, n)=(1 , 2 ,
n n
1=(0,0,
T ,1)是 Rn的一组基,称 1 , 2 , , n为Rn的
标准正交基。
例1.2.1 试证:线性空间 R[ x ]n a0 a1 x
是n维的,并求a0 a1 x ,( x a )n1 下的坐标。
an1 x n1 ai R
定义1.3.1 设W 为域F 上的n维线性空间V的子集合,若 W 中元素满足
(1) 若, W , 则+ W ; (2) W , F , 则 W .
则称W 是线性空间V的一个子空间。
a1i a 2i , n ) ani
( i 1, 2,
, n)
把这n个关系式用矩阵可表示为
( 1 , 2 , , n ) (1 , 2 , a11 a21 , n ) a n1 a12 a22 an 2 a1n a2 n ann
线性空间上的线性映射理论
线性空间上的线性映射理论线性映射是线性空间中的重要概念,它在各种数学和应用领域中都有着广泛的应用。
本文将介绍线性空间上的线性映射的定义、性质和相关定理,以及它在代数、几何和物理等领域中的应用。
1. 线性空间的定义线性空间是指一个集合,其中包含了一个数域(通常是实数域或复数域)的所有元素,同时满足一些特定的条件。
这些条件包括封闭性、加法运算的结合律和交换律、标量乘法的结合律和分配律等。
2. 线性映射的定义线性映射是指一个线性空间到另一个线性空间的映射,它保持向量的线性组合和标量乘法。
具体来说,设V和W是两个线性空间,f是从V到W的映射。
如果对于V中的任意两个向量u和v,以及任意的标量a,满足以下条件:- f(u + v) = f(u) + f(v) (保持向量的线性组合)- f(av) = af(v) (保持标量乘法)那么称f是一个线性映射。
3. 线性映射的性质线性映射有许多重要性质,其中一些是:- 零映射是一个线性映射,它将线性空间V中所有向量映射成零向量。
- 线性映射保持零向量:f(0) = 0。
- 恒等映射是一个线性映射,它将线性空间V中的任何向量映射为其自身。
- 线性映射的像是一个线性空间,它包含在目标空间W中。
- 线性映射的核是一个线性空间,它包含在起始空间V中。
- 线性映射在向量加法和标量乘法下保持封闭性。
4. 线性映射的相关定理线性映射具有许多重要的定理,其中一些是:- 利用矩阵表示:对于线性映射f,可以通过一个矩阵A来表示,称为线性映射的矩阵表示。
这个矩阵可以用来计算线性映射的像和核,以及进行线性变换等操作。
- 像空间和核空间的维数定理:对于线性映射f,其像空间和核空间的维数之和等于起始空间V的维数。
- 一一映射和满射:若线性映射f是一一映射,则其核为空空间,如果f是满射,则其像为目标空间。
- Rn和Rm之间的线性映射:对于线性映射f从Rn到Rm,可以通过线性变换矩阵来表示,这个矩阵可以用来计算矩阵的秩和零空间等。
《矩阵分析》
所以,V1 是向量空间。
(2) V2 不是向量空间。
因为若 1,a2 , ,an T V2 , 则2 2,2a2 , ,2an T V2 .
数乘运算:设 k为数域 p 中的数,向量
ka1,ka2,L ,kan 称为向量 a1,a2,L ,an
与数 k 的数量乘积。记为 k
数乘运算满足下列四条规则:
50 1 60 k(l ) (kl )
70 k l k l
80 k( ) k k , 是n维向量,k, l P
则与的和 为
(a b ,a b , ,a b )
1
1
2
2
n
n
负向量:向量 (a ,a , ,a )
1
2
n
称为向量 的负向量
向量的差 ( )
加法运算满足性质
10 20 ( ) ( ) 30 0
40 0
注: 零向量和负向量是唯一的
满足: , V
(4) 对于 V , V ,使
在集合V的元素与数域F之间还定义一种运算,叫乘法.即对于
V中任一元素 与数域F中任一数k,在V中有唯一 与它们对应,称为k与 的数乘积,记为 k 且满足:
(1)1 (2)k(l ) (kl) (3)(k l) k l (4)k( ) k k
问题3:全体正实数R ,加法“”和数乘“”分别
定义为:a,b R , k R, R是否为R上的线性空间?
a b ab
k
a
ak
,
例:设A Rmn , 记 N ( A) {x Rn , Ax 0},则N ( A)为R上的线性空间. 称其为矩阵A的核或零空间。
第3讲(1)线性空间与线性映射
算规律,那么 V 就称为数域 R 上的向量空间
(或线性空间). 5
设 α、β、γ ∈V,λ、μ ∈ R (1) α + β = β + α (2) (α + β) + γ = α + ( β + γ) (3) ∃0 ∈V,对∀α ∈V,都有α + 0 = α (4) ∀α ∈V,∃β ∈V,都有α + β = 0 (5) 1α = α (6) λ(μα) = (λμ)α (7) (λ + μ)α = λα + μα (8) λ(α + β) = λα + λ β
11
深圳大学数学与计算科学学院
例4. 正弦函数的集合 S [ x] = {s = Asin( x + B) A, B ∈ R}
对于通常的函数及 数乘函数的乘构成线性空间。 s1 + s2 = A1 sin( x + B1) + A2 sin( x + B2 ) = (a1 sin x + b1 cos x) + (a2 sin x + b2 cos x) = (a1 + a2 )sin x + (b1 + b2 )cos x = Asin( x + B) ∈ S[ x] λ s 1 = λ A1 sin( x + B1)= (λ A1)sin(x + B1) ∈ S [ x] ∴ S [ x]是一线性空间。
= [λ + (−λ )]α = 0α = 0
深圳大学数学与计算科学学院
4. 如果λ α = 0,则λ = 0 或 α = 0.
证明:假设λ ≠ 0 ⇒ 1 (λ α) = 1 0 = 0
矩阵论——讲稿
(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
例 3 K = R 时, R n —向量空间;
R m×n —矩阵空间
第一章 线性空间与线性变换(第 1 节)
3
Pn[t]—多项式空间; C[a,b] —函数空间 K = C 时, Cn —复向量空间; Cm×n —复矩阵空间 例 4 集合 R + = {m m是正实数 } ,数域 R = {k k是实数 } .
0
a 12
a
22
ai
j1
I
S 2
=
{A
=
a11
0
0
a
22
a 11
, a22
∈
R}
S 1
U
S 2
=
{A
=
a11 a21
a 12
a
22
aa 12 21
=
0,
ai
j
∈
R}
S 1
+
S 2
=
{A
=
a11 a21
a 12
a 22
ai j ∈ R}
2.数域:关于四则运算封闭的数的集合.
2.减法运算:线性空间V 中, x − y = x + (− y) .
矩阵论_第一章_线性空间和线性映射
(3) 零元素 在 V 中存在一个元素 0 ,使得对 于任意的 V 都有
0
(4) 负元素 对于 V 中的任意元素 都存 在一个元素 使得
0
1
则称 是 的 负元素. ( 5) 数 1
( 6)
( 7)
k (l ) (kl ) (k l ) k l
[a1 , a2 , a3 , ] [b1, b2 , b3 , ] [a1 b1 , a2 b2 , a3 b3 , ] k[a1, a2 , a3 , ] [ka1, ka2 , ka3 , ]
则
R
为实数域
R上的一个线性空间。
二 线性空间的基本概念及其性质
于是可得
1 2 0 1 1 0 3 4 x1 1 1 x2 1 1 1 1 1 1 x3 x4 0 1 1 0
解得
7 4 1 2 x1 , x2 , x3 , x4 3 3 3 3
称 n 阶方阵
a1n a22 a2 n an 2 ann a12
a11 a12 a a22 21 P a n1 a n 2
a1n a2 n ann
是由旧的基底到新的基底的过渡矩阵,那么上式可 以写成
1
x1 1 x 1 2 x3 1 x4 4
第三节 线性空间的子空间
定义 设
V 为数域 F 上的一个 n 维线性空间,
W 为 V 的一个非空子集合,如果对于任意的 , W 以及任意的 k , l F 都有
与向量组
1 0 1 1 1 1 1 1 0 0 , 0 0 , 1 0 , 1 1
矩阵论课后习题答案
第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。
(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。
(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。
01_矩阵论_第一章线性空间与线性变换
则有
1 0 0 1 0 0 0 0 A a11 0 0 a12 0 0 a21 1 0 a22 0 1
因此 R22 中任何一个向量都可写成向量组
1 0 0 1 0 0 0 0 E11 0 0 , E12 0 0 , E21 1 0 , E22 0 1
Pn [ x] { ai xi | ai R}
i 0 n 1
在通常多项式加法和数乘多项式运算下构成线性 空间 Pn[x]。 值得指出的是次数等于 n 1 的多项式集合
V { ai x | ai R, an1 0}
i i [a, b] = {f (x) | f (x) 是区间 [a, b] 上 实连续函数 } ,对于函数的加法与数乘运算构成 实数域上的线性空间。
定义 1.3 设 1, 2, …, n 是线性空间 Vn(F) 的一组基,若 V,
xi i (1 2
i 1 n
x1 x2 n ) x n
(1.1)
则称数 x1, x2, …, xn 是 在基 {1, 2, …, n} 下 的坐标,(1.1) 式中向量 (x1, x2, …, xn)T 为 的坐 标向量,也简称为坐标。
从上述线性空间例子中可以看到,许多常见 的研究对象都可以在线性空间中作为向量来研究。 另外应理解加法和数乘分别是 V 中的一个二元运 算和数域 F 和 V 中元素间的运算,要求运算满足 定义 1.1 中的八条性质,它们已不再局限在数的 加法、乘法的概念中。
一个数学例子 取集合为正实数集合 R+,F 为实数域 R,加 法“”和数乘“”如下定义 :a, bR+,ab = ab, :kR(i.e. F ),aR+,k a = ak。 在此运算下,R+ 是 R 上的一个线性空间,其中 加法零元素是 R+ 中的数 1,R+ 中元素 a 的负元素 是 a1。
矩阵理论课件 第一章 线性空间与线性变换
a1n
a2n
ann
前述关系可以表示为 AT 或 T T A
则称矩阵 A 为基 到基 的过渡矩阵(唯一且可逆)
定义2 (坐标变换)
设x V L(P) ,向量 x 在 基 和基 下的
坐标之间的关系,称之为坐标变换。
坐标变换与过渡矩阵的关系:
设 x k1x1 k2 x2 kn xn 和 x t1 y1 t2 y2 tn yn
和 W W1 W2 为直和,记为 W W1 W2 。
例6 设 R4的3个子空间:
① V1 (a, b, 0, 0)T a, b R ② V2 (0,0,c, 0)T c R ③ V3 (0,d,e, 0)T d,e R
容易验证V1 是V2直和, V1 V3不,V是2 直 V和3。
事实上 不妨设简单基为 (III )e1, e2 , , en ( x1, x2 , , xn ) (e1, e2 , , en )C1 ( y1, y2 , , yn ) (e1, e2 , , en )C2
( x1, x2 , , xn )C11C2
C C11C2
例4 设线性空间P3[t] 的两个基为: (I ) f1(t) 1, f2(t) 1 t, f3(t) 1 t t 2,
表示,不妨记
y1 a11x1 a21x2
y2
a12 x1
a22 x2
yn a1n x1 a2n x2
称上述关系为两组基的基变换。
an1xn an2 xn
ann xn
x1
y1
a11 a12
若记
x2
,
y2
A
a21
a22
xn
yn
an1 an2
线性代数中的线性空间和线性映射
线性代数中的线性空间和线性映射线性代数是数学中重要的一门学科,它的研究范围包括向量空间、线性变换、矩阵论等多个方面。
其中,线性空间和线性映射是线性代数的重要概念,本文将从这两个方面入手,探讨它们的定义、性质及应用。
一、线性空间线性空间又称向量空间,是线性代数中的基本概念之一。
它是一个具有加法和数乘运算的集合,满足以下条件:1.对于任意两个向量,其和仍为向量;2.对于任意一个向量和任意一个标量,它们的积仍为向量;3.加法和数乘运算遵从结合律和分配律;4.存在一个零向量,满足加法运算返回自身。
线性空间的定义具有很强的普遍性,它可以适用于实数、复数、函数以及其他更广泛的对象集合。
下面举一个实数向量空间的例子。
考虑一个三维实数向量空间,它包含所有形如 $(x,y,z)$ 的三元组,其中 $x,y,z$ 均为实数。
我们可以定义向量的加法和数乘运算如下:$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1+x_2, y_1+y_2,z_1+z_2)$$$$k(x, y, z) = (kx, ky, kz)$$显然,这样定义的加法和数乘运算符合上述线性空间的定义,因此该三维实数向量空间是一个线性空间。
除了上述基本性质外,线性空间还有许多衍生的性质,如基和维数的概念等。
具体来说,一个线性空间的基是指它的极大线性无关组,而线性空间的维数是其基的元素个数。
这些概念在矩阵论等应用中有广泛的应用。
二、线性映射线性映射是一种特殊的函数,它将一个向量空间映射到另一个向量空间,并保持加法和数乘运算的线性性。
考虑两个向量空间 $V$ 和 $W$,一个从 $V$ 到 $W$ 的线性映射 $T$ 应该满足以下条件:1.对于任意向量 $u,v\in V$,有 $T(u+v) = T(u) + T(v)$;2.对于任意向量 $u\in V$ 和标量 $k$,有 $T(ku) = kT(u)$;3.存在一个零向量 $0$,满足 $T(0)=0$。
线性空间上的线性映射理论
线性空间上的线性映射理论线性映射是线性空间中的一个重要概念,它在数学和工程领域中扮演着关键角色。
本文将深入探讨线性空间上的线性映射理论,重点介绍线性映射的性质、定义以及与矩阵的关系。
一、线性映射的定义与性质在介绍线性映射之前,我们先来了解线性空间的概念。
线性空间是指在加法和标量乘法下构成一个向量空间的集合。
线性映射是指一个向量空间到另一个向量空间的映射,它保持向量的线性组合性质。
具体地,设V和W是两个线性空间,一个从V到W的线性映射L 满足以下两个条件:1. 对于任意的u和v属于V,L(u+v) = L(u) + L(v),即L保持向量的加法运算性质。
2. 对于任意的u属于V和任意的c属于标量域,L(cu) = cL(u),即L保持向量的标量乘法性质。
线性映射的性质包括可加性和齐次性。
即线性映射对于向量的加法和标量乘法操作都是保持的,这一点在定义中已经强调。
线性映射还具有零映射的性质,即L(0) = 0。
二、线性映射与矩阵的关系线性映射与矩阵之间存在着密切的关系。
事实上,对于给定的线性映射L,我们可以找到一个矩阵A,使得L(u) = Au,其中u是向量。
具体地,假设V是n维线性空间,W是m维线性空间,选择V和W的基,分别为{v1,v2,...,vn}和{w1,w2,...,wm}。
对于L中的向量u,我们有u = a1v1 + a2v2 + ... + anvn,其中a1,a2,...,an是标量。
那么L(u)可以表示为L(u) = c1w1 + c2w2 + ... + cmwm,其中c1,c2,...,cm是标量。
将L(u)和u表示为矩阵形式,我们有:⎡L(v1) L(v2) ... L(vn)⎤⎡a1⎤⎢L(u) = ⎢⎥ = ⎢a2⎥⎢⎣L(vn) ⎥⎣...⎦⎡w1⎤⎢⎥⎢w2⎥⎢⎥⎢...⎥⎣wm⎦定义矩阵A为⎡L(v1) L(v2) ... L(vn)⎤,向量u为⎡a1⎤,我们可以得到L(u) = Au的形式。
第一章线性空间与线性变换4-7
下证唯一性 T 设有V1到V2 上的线性映射 T1, 2 使得 T1 (α 1, 2, , n ) = ( β 1, 2, , m ) A, α Lα β L β
T2 (α 1, 2, , n ) = ( β 1, 2, , m ) A α Lα β L β ⇒ T1 (α 1, 2, , n ) = T2 (α 1, 2, , n ), α Lα α Lα 任取α ∈ V1 且α = (α 1, 2, , n ) X,则 α Lα T1 (α ) = T1 [(α 1, 2, , n ) X ] = [T1 (α 1, 2, , n )] X α Lα α Lα = [T2 (α 1, 2, , n )] X = T2 [(α 1, 2, , n ) X ] = T2 (α ), α Lα α Lα ⇒ T1 = T2,故唯一性成立 .
一 第 章线 空 和 性 换 性 间 线 变
第四节 线性映射
上页
下页
返回
一、线性映射 1、定义:设V1, 2为线性空间,若映射 T : V1 → V2 满足: 定义: V 为线性空间, 满足: ∀α,β ∈ V1,λ ∈ F,有 (1)T (α + β ) = T (α ) + T ( β ); ( 2)T (λα ) = λT (α ). 的线性映射, 称为原像, 则称T为V1到V2的线性映射, 其中α称为原像,T (α )称为α的像 . 例1、定义T : V → V如下T (α ) = α, T为线性映射, 则 为线性映射, 记为T = E . 称为恒等映射或恒等变 换 例 2、定义T : V1 → V2如下T (α ) = 0, T为线性映射, 则 为线性映射, 记为 T = O . 称为零映射 例 3、设A = (aij ) m×n,定义T : R n → R m 如下T (α ) = Aα, T 则
第一章 线性空间与线性变换
xi ∈ P
(1.1.4)
称 x = (x1 , x2 ,L, xn ) T 是向量 α 在基 S 下的坐标, 且 x ∈ P.n
定理1 定理1.1.2 在 n 维线性空间 Vn 中,任一向量 在一个基下的坐标唯一.
V 这说明,当线性空间 Vn 的基 S 取定后, n 中任一
个向量的坐标是确定的,即假设 S = {α 1 ,α 2 ,L,α n }
定义1 定义1.2.2 如果 V1 + V2 中任一向量只能唯 一的表示成子空间 V1 的一个向量和子空间 V2 中的一个向量的和,则称 V1 + V2 是 V1 ,V2 • 的直和,记为 V1 ⊕ V2(或 V 1 + V 2 ).
S 是线性无关向量组;
V
中任一向量都是 S 中向量的线性组合.
V
α 称 S 是 V 的一个基(底), 1 ,α 2 ,L ,α n 称为V 的基
向量, S 中向量的个数 n ,称为线性空间 数,记为 dim(V ) = n。
的维
维数是 n 的线性空间 V 称为 n 维线性空间, 记为Vn . 假如 V 中存在任意多个线性无关的向量 时,称 V 为无限维线性空间. 如果 注: 定义1.1.3描述的基在线性空间中不唯一.
图1.2.1
图1.2.2
由于零子空间不含线性无关的向量,因此 没有基,它的维数规定为零。而对于 V 的其它 的子空间,由于它的线性无关的向量个数不可 能比整个线性空间线性无关的向量个数多,所 以子空间的维数比原空间的维数小,即
dim(W ) ≤ dim(V )
下面讨论子空间的生成问题。
设 S = {α 1 ,α 2 ,L,α m } 是数域 P上的线性空间 V 中的一 个向量组,在 P 中任取 m 个数 k1 , k 2 , L, k m , 做 S 中向 量的线性组合
线性空间与线性映射(一)
线性空间与线性映射(⼀)
关于线性空间也叫向量空间的理解
⾸先,客观上,从本质上来讲线性空间就是⽤来研究某⼀类事物在矩阵代数⾥的抽象的表⽰,线性空间也就是以向量为元素的集合,所以线性空间⾸先满⾜集合的概念和基本运算.
在集合基本运算中重点提⼀下笛卡尔积(叉乘),定义上讲X和Y的笛卡尔积就是两个集合中所有元素的有序对(x,y),平⾯就是两个直线的卡式积.通过笛卡尔积可以从映射的⾓度定义⼀下集合的加、减和数乘,例如:
给定⾮空集合V和数域F,若映射σ:V×V→V,即 (V1,V2)|→σ(V1,V2)则称σ为V上的加法,也就是从V和⾃⼰的卡式积中取出来的有序对经过映射σ后的出的元素还在V⾥⾯
若映射σ:V×F→V,即(V1,F1)|→σ(V)则称σ为V上的乘法,也就是从V和数域F的卡式积中的有序对经过映射σ后的出的元素在V⾥⾯.绕这么多的弯就是想要在这门学科中把加减乘除理解成为⼀个映射.
上⾯⼜引⼊了⼀个“域”的概念,域就是在集合的基础上要做到对加减乘除的封闭,例如⾃然数集N不是⼀个域因为他不对减法和除法封闭(1-2和3/2都不是⾃然数),有理数集R就是⼀个域对加减乘除都封闭.
所以,线性空间不仅要是向量的集合还要满⾜两个封闭性,还要满⾜加法和乘法的⼋条公理.
加法公理:交换律、结合律、有零元、有负元.
标量乘法公理:交换律、左分配律、右分配律、有1元.(其中,左分配律是指:对于标量a,向量x,yŒV,(x+y)a=xa+ya)。
线性空间和线性映射(1)
零的输出的观测来决定,则称该系统是可观测的 ;
否则,称该系统是不可观测的。
北京理工大学高数教研室
4
我们首先以单输入单输出系统为例 。 考虑下面的单输入单输出系统:
x Ax bu
y cT x 其中 b 和 c 是 n 维矢量, A是 n n矩阵, u 及 y 是标量。
定理1 上面的单输入单输出系统是可控的充分必要
例4 在4维线性空间 R22中,向量组
北京理工大学高数教研室
31
0 1
1 1
,
1 1
0 1
,
1 0
1 1
,
1 1
1 0
与向量组
1 0
0 0
,
1 0
1 0
,
1 1
1 0
,
1 1
1 1
是其两组基,求向量 坐标。
0
A 1 0 0 , b 1
0 1 0
1
由于矩阵
0 0 0 b Ab A2b 1 0 0
1 1 0
北京理工大学高数教研室
7
是不可逆(奇异)矩阵,所以对应的系统 是不可控的。
定理2 上面的单输入单输出系统是可观测的充分 必要条件是可观测性判别矩阵
cT
V
cT A
cT
An1
是可逆(非奇异)矩阵。
那么向量组(I)的秩小于等于向量组(II)的秩;
(6)等价的向量组秩相同。
北京理工大学高数教研室
25
例1 实数域 R上的线性空间 RR中,函数组
e1x , e2x , , enx
是一组线性无关的函数,其中 1, 2, , n为一
组互不相同的实数。
例2 实数域 R上的线性空间 RR中,函数组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 线性空间与线性映射线性空间是研究矩阵理论的重要基础,本章主要讨论线性空间及其子空间的性质、线性映射与矩阵的关系等。
§1.1 数 域定义1 设F 是至少包含两个数的数集,如果F b a ∈∀,均有ab b a ,±F b ba∈≠)0(,,则称F 是数域。
例1 全体实数构成实数域,记为R 。
全体复数构成复数域,记为C 。
全体有理数构成有理数域,记为Q 。
例2 全体整数不够成数域,因为对除法不封闭。
例3设{|,}F a a Q b Q =∈∈,证明F 是数域。
证明 ,F αβ∀∈,则1122,,,a b a b Q ∃∈,使得1122,a a αβ==,易证,αβαβ±,(0)F αββ≠∈。
例4 证明任何数域F 都包含有理数域。
证明 因为F 中至少包含两个不同元素,所以0,≠∈∃a F a ,由运算的封闭性知F aa∈=1,112,123,F +=+=∈ 121,132F -=--=-∈,所以F 包含了全体整数,又由除法封闭性知F 包含有理数域。
和号:∑∑∑∑=====∈n j mi j i m i nj ji j i a aF a 1111,§1.2 线 性 空 间在线性代数中n R 是n 维实向量空间,在本节中将此概念推广到一般向量空间。
定义1 设V 是一个非空集合,F 是一个数域。
在集合V 的元素之间定义一种称之为加法的运算,且V 关于加法封闭,即,,x y V ∀∈有唯一的V y x ∈+。
在F 与V 之间定义一种运算称之为数乘,即V x F ∈∈λ∀,有唯一确定的V x ∈λ=ω与之对应,如果以上两种运算满足以下八条运算规则,则称V 为数域F 上的线性空间,V 中元素也称为V 中的向量,也记)(F V V =。
V y x x y y x ∈∀+=+,.1V z y x z y x z y x ∈∀++=++,,)()(.2.3V θ∃∈使,x x x V θ+=∀∈,称θ为零元素,也记为0。
V y V x ∈∃∈∀,.4,使x y θ+=(记x y -=) 5.()x x x λμλμ+=+ ,F λμ∀∈ x V ∀∈ y x y x λ+λ=+λ)(.6 F λ∀∈ ,x y V ∀∈ 7.()()x x λμλμ= ,F λμ∀∈ x V ∀∈ 8.1x x x V =∀∈例1 设F 为数域,则1212{[]|,,,}n T n n F a a a a a a F =∈按通常的n 维向量加法与数乘,不难证明n F 为F 上的向量空间。
例2 记n m F ⨯为数域F 上的n m ⨯矩阵的全体,按通常的矩阵加法与数乘构成F 上的向量空间,其中m n O θ⨯=。
例3 ],[b a C 为区间],[b a 上一切一元连续实函数,按通常的实函数加法和数乘,构成了实数域R 上的线性空间,其中0θ=。
例4 n x P ][为不超过1-n 次的实多项式及零多项式的全体,是实数域R 上线性空间。
例5 复数域C 是实数域R 上的线性空间,而R 却不是C 上的线性空间. 以下为线性空间的简单性质。
性质1 线性空间)(F V 中零元素唯一。
证明 设有零元素12,()V F θθ∈,则1122θθθθ=+=。
性质2 (),()x V F y V F ∀∈∃∈使得,x y θ+=则y 唯一,称为x 的负元素。
证明 设12,x y x y θθ+=+=,则1112()y y y x y θ=+=++ 1222()y x y y y θ=++=+=性质3 0,(),x x x θλλλθθ=-=-= 证明 x x x x 00)00(0+=+=,所以0x θ=。
因为()[()]0x x x x λλλλθ+-=+-==,所以x x λ-=λ-)(。
因为()x x x λλθλθλ+=+=,所以λθθ=。
性质4 若x λθ=其中)(,F V x F ∈∈λ,则0=λ或x θ=。
证明 若0=λ命题显然成立,不妨设0≠λ,则11()x x λθθλλ===定义2 设)(F V W ⊂,若W 在数域F 上也是线性空间,则称)(F W 为)(F V 的子空间(按原来的两种运算)。
若W 是线性空间V 的非空子集,则在线性空间定义的八个条件中除3,4条外,W 显然满足其余条件。
而如果封闭性满足了,3,4条就成立了。
这是因为)(,,,F W x W y x W y x ∈λ∀∈λ∈+∈∀,则0,x W θ=∈(1)x x W -=-∈,因此有下面的定理。
定理1 设)(F V 是线性空间,W 为V 的非空子集,按原来的两种运算W 是线性空间⇔W 按原来两种运算封闭。
例6 数域F 上的n 阶对称阵的全体构成了n n F ⨯的一个子空间。
定义3 设t ααα,,,21 是数域F 上的线性空间V 中的向量,则不难证明t ααα,,,21 的线性组合的全体构成了V 的一个子空间,记为),,,(21t L ααα 或 12span[,,,]t ααα,称为t ααα,,,21 生成或张成子空间。
零向量集合及V 本身都是的V 子空间,称为平凡子空间。
若W 是V 的子空间,且不是平凡子空间,则称W 是V 的真子空间。
§1.3 线性空间的基与n R 中一样,我们在)(F V 中也要讨论线性相关性及向量组的秩和极大无关组,向量组的等价性,线性空间和线性子空间的基底,维数以及向量在一组基下的坐标及相关性质。
一、线性空间的基定义1 设m i F a F V x i i ,,2,1),( =∈∈,若1122m m x a x a x a x =+++则称x 可由12,,,m x x x 线性表示,或称x 为12,,,m x x x 的线性组合。
定义2 设12:,,,m A x x x ,12:,,,s B y y y 是线性空间()V F 中的两个向量组,如果A 中的任一个向量可由向量组B 线性表示,则称向量组A 可由向量组B 线性表示。
如果向量组A 与B 可以互相线性表示,则称向量组A 与B 等价。
定义3 设12,,,()m x x x V F ∈,如果存在一组不全为0的常数12,,,m a a a F∈使11m m a x a x θ++=则称向量组12,,,m x x x 线性相关,否则称12,,,m x x x 线性无关。
定义4 设12,,,m x x x 是()V F 中的向量组,如果12,,,m x x x 中有r 个向量线性无关,而所有的1r +个向量(如果有的话)都线性相关,则称此r 个向量为向量组12,,,m x x x 的极大无关组,称r 为向量组12,,,m x x x 的秩,记为12rank[,,,]m x x x 。
规定只含零向量的向量组秩为零。
与n R 类似,在线性空间)(F V 中下列命题成立:命题1 设2m ≥,则()V F 中向量组12,,,m x x x 线性相关⇔其中有某个向量可由其余的向量线性表示。
命题2 若)(F V 中向量组的某一子向量组线性相关,则该向量组线性相关。
命题3 若)(F V 中向量组12,,,m x x x 线性无关,则其任意非空子向量组也线性无关。
命题4 设)(F V x ∈,则x 线性无关x θ⇔≠。
命题5 设12,,,,()m x x x y V F ∈,若12,,,m x x x 线性无关,12,,,,m x x x y 线性相关,则y 可由12,,,m x x x 唯一线性表示。
定义5 线性空间V 中的向量12,,,n x x x 称为V 的基向量组或基(底),如果有 .112,,,n x x x 线性无关;)(.2F V 中任一向量可由12,,,n x x x 线性表示。
称n 为V 的维数,记dim V n =。
如果对n ∀均可在)(F V 中找到n 个线性无关的向量,则称)(F V 为无限维的向量空间(例如实数域上全体多项式的集合)。
只含零向量的线性空间维数规定为0。
命题6 若12,,,n x x x 为线性空间()V F 的基,则()x V F ∀∈,x 可由12,,,nx x x 唯一线性表示。
命题7 若12,,,n x x x 为线性空间()V F 的基,则12()[,,,]n V F L x x x =。
定义6 设12,,,n x x x 为)(F V 的基,则()x V F ∀∈,有唯一的表达式12121[,,],,1,2,,ni i n i i n a a x a x x x x a F i n a =⎡⎤⎢⎥⎢⎥==∈=⎢⎥⎢⎥⎢⎥⎣⎦∑称12,,,n a a a 或12n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦为x 在基12,,,n x x x 下的坐标。
注:基不唯一,例如在n R 中110,0e ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦2010e ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,,001n e ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦和111,1e ⎡⎤⎢⎥⎢⎥'=⎢⎥⎢⎥⎣⎦2110e ⎡⎤⎢⎥⎢⎥'=⎢⎥⎢⎥⎣⎦,,100ne ⎡⎤⎢⎥⎢⎥'=⎢⎥⎢⎥⎣⎦都是nR 的基 。
称110,0e ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦201,,0e ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦001n e ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦为n R 和n C 的自然基底。
例1 []n P x {}1011011()(),,,,n n n f x f x a a x a x a a a ---==+++∈R ,则12,,,,1-n x x x 为[]n P x 的基。
注:n 次多项式的全体不构成线性空间,因为不封闭。
二、基与基的关系,向量在两组基下的坐标关系定义7 设)(F V 的两组基为12,,,n εεε和 12,,,nεεε''',令 111112211122n nnn n nn na a a a a a εεεεεεεε'=+++⎧⎪⎨⎪'=+++⎩则[]12,,,n εεε'''[]111121,,,n n n nn a a a a εεε⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦即[]12,,,nεεε'''[]12,,,n A εεε=称1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为由基12,,,n εεε到12,,,nεεε'''的过渡矩阵。
命题8 基底过渡矩阵A 可逆。
证明 因为12,,,nεεε'''线性无关,所以 []12,,,nεεε'''12n x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦0 只有零解,即[]12,,,n εεεAx =0只有零解。