两三角形全等的几种判定方法

合集下载

证明三角形全等的五种方法

证明三角形全等的五种方法

证明三角形全等的五种方法
方法一:边边边(SSS)——三条边都对应相等的两个三角形全等。

三角形具有稳定性,三条边都确定了,整个三角形都可以固定下来了。

这样就具有了唯一性,而这样的两个三边都对应相等的三角形,自然就是全等的。

但是需要注意的是三个角都相等的两个三角形不能判定全等。

方法二:边角边(SAS)——两边和它们之间的夹角对应相等的两个三角形全等。

这个判定方式是课本上直接给出的,同一个角度的有很多,但是确定了夹这个角的两条边的长短,这个就被确定下来了,这是举不出反例的。

方法三:角边角(ASA)——两角和它们之间的夹边对应相等的两个三角形全等。

这个判定方式也是课本上直接给出的,一个角的边可以无限延长,两个角的夹边被确定以后,就无法延长了,另外两条边则肯定会有交点,这样肯定也能将三角形确定下来。

方法四:角角边(AAS)——两个角和其中一个角的对边对应相等的两个三角形全等。

这个判定方式是由方法三角边角衍生出来的,只要记住了方法三,这个方法就很好记了。

三角形的内角和是180,如果两个角都确定了的话,另外一个角度也可以确定下来,这样三个角都是固定的了,那条对边无论如何都是夹在其中两个角中间的,所以也就形成了“角边角”。

方法五:斜边直角边(HL)——斜边和一条直角边对应相等的两个三角形全等。

这个判定方式是利用了勾股定理,如果两条边都知道了,那么利用勾股定理很容易就可以确定第三条边了,这样利用方法一边边边,或者是方法二边角边,都是可以得出两个三角形全等的。

但是前提必须是两个直角三角形。

全等三角形的判定方法总结

全等三角形的判定方法总结

全等三角形的判定方法总结
1.SSS判定法:SSS(边边边)法是指通过比较两个三角形的三条边的边长是否相等来判定是否全等。

如果两个三角形的三条边长度相等,则可以判定它们是全等三角形。

2.SAS判定法:SAS(边角边)法是指通过比较两个三角形的一个边长和对应的两个角度来判定是否全等。

如果两个三角形的一个边和对应的两个角度相等,则可以判定它们是全等三角形。

3.ASA判定法:ASA(角边角)法是指通过比较两个三角形的两个角度和对应的一条边的边长来判定是否全等。

如果两个三角形的两个角度和对应的一条边相等,则可以判定它们是全等三角形。

4.AAS判定法:AAS(角角边)法是指通过比较两个三角形的两个角度和一个不夹在这两个角度之间的边的边长来判定是否全等。

如果两个三角形的两个角度和不夹在这两个角度之间的边相等,则可以判定它们是全等三角形。

5.RHS判定法:RHS(直角边斜边)法是指通过比较两个直角三角形的一个直角边和斜边的长度来判定是否全等。

如果两个直角三角形的一个直角边和斜边的长度相等,则可以判定它们是全等三角形。

需要注意的是,判定两个三角形是否全等时,条件一定要满足相等的关系。

任何两个边长或角度的比较都需要进行精确的测量和比较。

此外,在判定全等三角形时,还可以根据其他附加条件来进行判定,比如垂直平分线法、辅助线法等。

这些方法可以提供额外的证明和辅助,但主要还是依靠上述的基本的全等三角形判定方法。

综上所述,全等三角形的判定方法可以通过SSS、SAS、ASA、AAS和RHS这五种基本的判定法来进行。

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明全文共四篇示例,供读者参考第一篇示例:全等三角形(即三角形的所有对应边和角都相等)在几何学中具有重要意义,因为它们有着很多共性特征和性质。

在实际问题中,我们常常需要判定两个三角形是否全等,以便解决一些几何问题。

下面我们将介绍五种判定方法,并给出它们的证明。

一、SSS法则(边边边全等)首先我们来介绍SSS法则,即如果两个三角形的三条边分别相等,则这两个三角形全等。

设有两个三角形ABC和DEF,已知AB=DE,AC=DF,BC=EF。

我们要证明三角形ABC全等于三角形DEF。

【证明过程】由已知条件可知,三角形ABC和三角形DEF的三边分别相等。

所以可以得到以下对应关系:AB=DEAC=DFBC=EF三角形的两边之和大于第三边,所以我们有以下结论:AB+AC>BCDE+DF>EF由于AB=DE,AC=DF,BC=EF,所以根据上述两个不等式可得:AB+AC>BCAB+AC>BC所以三角形ABC与三角形DEF全等。

由于∠C=∠F,所以我们有以下结论:∠A+∠C+∠B=180°∠A+∠F+∠E=180°由于∠C=∠F,所以可以将两个等式相减,得到:∠B-∠E=0∠B=∠E四、HL法则(斜边-直角-斜边全等)由于∠A=∠D,∠B=∠E,所以可以使用AA法则证明三角形ABC 与三角形DEF全等。

我们介绍了五种全等三角形的判定方法以及它们的证明。

这些方法在解决几何问题中起着至关重要的作用,希望大家能够掌握并灵活运用这些方法。

如果遇到类似的题目,可以根据不同情况灵活选择合适的方法来判定三角形的全等关系。

通过不断练习和思考,相信大家能够在几何学习中取得更好的成绩。

【2000字】第二篇示例:全等三角形是指具有完全相同的三边和三角形的一种特殊情况。

在几何学中,全等三角形之间具有一些特殊的性质和关系。

正确判断两个三角形是否全等是解决几何问题的关键。

全等三角形证明判定方法分类归纳

全等三角形证明判定方法分类归纳

全等三角形证明判定方法分类归纳一、直接证明法直接证明法是指通过对已知条件进行计算和推理,直接得出两个三角形全等的结论。

常用的直接证明法有以下几种:1.SSS判定法SSS判定法是指如果两个三角形的三边分别相等,则这两个三角形全等。

证明思路:设两个三角形ABC和DEF,已知AB=DE,BC=EF,AC=DF,要证明ΔABC≌ΔDEF。

通过SSS判定法可知,只需要证明∠ABC=∠DEF,∠BAC=∠EDF,∠ACB=∠DFE即可。

这个可以通过角的和为180°进行计算和推理得到。

2.SAS判定法SAS判定法是指如果两个三角形的两个边分别相等,并且这两个边夹角相等,则这两个三角形全等。

证明思路:设两个三角形ABC和DEF,已知AB=DE,∠ABC=∠DEF,AC=DF,要证明ΔABC≌ΔDEF。

通过SAS判定法可知,只需要证明BC=EF即可。

这个可以通过边与角关系进行计算和推理得到。

3.ASA判定法ASA判定法是指如果两个三角形的两个角分别相等,并且这两个角的夹边相等,则这两个三角形全等。

证明思路:设两个三角形ABC和DEF,已知∠BAC=∠EDF,AC=DF,∠ABC=∠DEF,要证明ΔABC≌ΔDEF。

通过ASA判定法可知,只需要证明AB=DE即可。

这个可以通过角与角关系进行计算和推理得到。

二、间接证明法间接证明法是指通过假设两个三角形不全等,然后推出与已知条件矛盾的结论,从而得出两个三角形全等的结论。

常用的间接证明法有以下几种:1.矛盾法假设三角形ABC和DEF不全等,然后通过对已知条件进行计算和推理,得出一个与已知条件矛盾的结论,进而推出两个三角形全等的结论。

2.割取法假设三角形ABC和DEF不全等,然后取一个边分别作其平行线或垂线,进而构造出等腰三角形或等边三角形,从而推出两个三角形全等的结论。

三、利用全等条件证明法利用全等条件证明法是指在已知两个三角形之间有一个或多个角、边、角边相等的关系时,可以根据全等条件推出两个三角形全等的结论。

全等三角形的判定方法

全等三角形的判定方法

全等三角形的判定方法
1.两个三角形的三边分别相等。

2.两个三角形的两个角分别相等,且它们夹的两边也分别相等。

3.两个三角形的一个角相等,且两个角的夹的两边也分别相等。

4.两个三角形的两个角相等,且它们夹的两边分别相等。

5.两个三角形的一个角相等,且两个角的夹的两边分别相等。

6.两个三角形的两个边分别相等,且它们夹的角相等。

7.两个三角形的一边相等,且两个边的夹的角相等。

8.两个三角形的两边分别相等,且它们夹的一个角相等。

9.两个三角形的一边相等,且两个边的夹的一个角相等。

10.两个三角形的一角相等,且两个角的夹的一边也分别相等。

三角形全等的判定

三角形全等的判定

三角形全等的判定一、判定两个三角形全等的方法一般有以下4种:1、三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)。

2、两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)。

3、两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。

4、两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。

二、判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”:斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。

三、尺规作图运用尺规作图作相等角、相等线段以及全等三角形。

四、应用三角形的判定方法三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的隐藏条件有:①公共边,公共角,对顶角;②线段的相加减;③角度的互余,互补,三角形的外角等于与它不相邻的内角和。

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明全等三角形的判定方法有五种,分别是SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角边)和HL(斜边和直角边)。

下面我将从多个角度为你解释这五种判定方法的证明。

首先,我们来看SSS(边边边)判定方法。

假设有两个三角形ABC和DEF,如果它们的对应边长分别相等,即AB=DE,BC=EF,AC=DF,那么根据三角形的性质,这两个三角形是全等的。

这可以通过边长相等所确定的三个顶点的位置关系来证明。

其次,SAS(边角边)判定方法。

假设有两个三角形ABC和DEF,如果它们的一个对应边和夹角分别相等,即AB=DE,∠BAC=∠EDF,BC=EF,那么根据三角形的性质,这两个三角形是全等的。

这可以通过两个边和夹角所确定的三个顶点的位置关系来证明。

第三,ASA(角边角)判定方法。

假设有两个三角形ABC和DEF,如果它们的一个对应角和夹边分别相等,即∠A=∠D,BC=EF,∠B=∠E,那么根据三角形的性质,这两个三角形是全等的。

这可以通过两个角和夹边所确定的三个顶点的位置关系来证明。

其次,AAS(角角边)判定方法。

假设有两个三角形ABC和DEF,如果它们的两对应角和一对应边分别相等,即∠A=∠D,∠B=∠E,AB=DE,那么根据三角形的性质,这两个三角形是全等的。

这可以通过两个角和一对边所确定的三个顶点的位置关系来证明。

最后,HL(斜边和直角边)判定方法。

假设有两个直角三角形ABC和DEF,如果它们的斜边和一个直角边分别相等,即AB=DE,AC=DF,并且它们的一个锐角相等,那么根据三角形的性质,这两个三角形是全等的。

这可以通过斜边和直角边所确定的三个顶点的位置关系来证明。

综上所述,我们可以根据SSS、SAS、ASA、AAS和HL五种全等三角形的判定方法来证明两个三角形是否全等。

这些证明可以从边长、角度和边的组合等多个角度来进行推导和验证。

这些方法在几何推导和证明中起着重要的作用。

全等三角形的判定方法

全等三角形的判定方法

关于三角形的知识点有很多,本篇文章主要介绍全等三角形的五种判定方法,同学们要深刻体会。

三角形全等判定方法:1.三边对应相等的两个三角形全等,简称SSS(边边边)举例:在△ABC中,AC=BD,AD=BC,求证∠A=∠B.证明:在△ACD与△BDC中{AC=BD,AD=BC,CD=CD.∴△ACD≌△BDC.(SSS)∴∠A=∠B.(全等三角形的对应角相等)2:三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。

简称SAS(边角边)。

举例:如下图,AB平分∠CAD,AC=AD,求证∠C=∠D.证明:∵AB平分∠CAD.∴∠CAB=∠BAD.在△ACB与△ADB中{AC=AD,∠CAB=∠BAD,AB=AB.∴△ACB≌△ADB.(SAS)∴∠C=∠D.(全等三角形的对应角相等)3:三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。

简称ASA(角边角)。

举例:如下图,AB=AC,∠B=∠C,求证△ABE≌△ACD.证明:在△ABE与△ACD 中{∠A=∠A,AB=AC,∠B=∠C.∴△ABE≌△ACD.(ASA)4:三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。

简称AAS(角角边)。

举例:如下图,AB=DE,∠A=∠E,求证∠B=∠D.证明:在△ABC与△EDC中{∠A=∠E,∠ACB=∠DCE,AB=DE.∴△ABC≌△EDC.(AAS)∴∠B=∠D.(全等三角形的对应角相等)5:在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。

简称HL(斜边、直角边)。

定义举例:如下图,Rt△ADC与Rt△BCD,AC=BD,求证AD=BC.证明:在Rt△ADC与Rt△BCD中{AC=BD,CD=CD.∴Rt△ADC与Rt△BCD.(HL)∴AD=BC.(全等三角形的对应边相等)相关概念及性质能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。

全等三角形判定的三种类型

全等三角形判定的三种类型

全等三角形判定的三种类型1.SSS判定(边边边)SSS判定是指当两个三角形的三条边分别相等时,它们是全等三角形。

例如,对于两个三角形ABC和DEF,如果AB=DE,BC=EF,AC=DF,则可以通过SSS判定断定三角形ABC和DEF是全等的。

SSS判定的原理是,边长相等可以确保两个三角形的相应边之间的角度也是相等的,根据三角形角度之和为180°的性质,可以推导出它们的角度也是相等的,进而判断三角形全等。

2.SAS判定(边角边)SAS判定是指当两个三角形的两边和夹角分别相等时,它们是全等三角形。

例如,对于两个三角形ABC和DEF,如果AB=DE,∠BAC=∠EDF,BC=EF,则可以通过SAS判定判断三角形ABC和DEF是全等的。

SAS判定的原理是,两个三角形的一边和与这边相邻的两个角相等时,可以确保这两个三角形的三个边都相等,从而判断它们全等。

3.ASA判定(角边角)ASA判定是指当两个三角形的两角和边分别相等时,它们是全等三角形。

例如,对于两个三角形ABC和DEF,如果∠BAC=∠EDF,∠ABC=∠DEF,AC=DF,则可以通过ASA判定判断三角形ABC和DEF是全等的。

ASA判定的原理是,两个三角形的两个角和这两个角所夹的边相等时,可以确保这两个三角形的第三个角也相等,从而判断它们全等。

此外,还有两种特殊情况的判定方法:4.直角全等判定如果两个直角三角形的三个边分别相等,那么它们一定是全等的。

这是因为直角三角形的两个直角以及第三个角也是相等的。

5.等腰全等判定如果两个三角形都为等腰三角形,并且有一个角相等,那么它们一定是全等的。

这是因为等腰三角形的两个底角和底边相等,所以只需要一个额外的角相等即可推断两个等腰三角形全等。

综上所述,全等三角形的判定可以通过SSS、SAS、ASA以及两种特殊情况的判定方法来进行。

这些判定方法不仅可以帮助我们判断三角形的全等性质,而且在数学推导和证明过程中也有重要的应用。

三角形全等的五种方法

三角形全等的五种方法

三角形全等的五种方法
三角形全等是一种几何学中的概念。

在几何学中,全等指的是两
个或多个形状、物体或模型的大小、形状、位置等特征完全相同。


角形的全等有五种方法,分别是以下几点:
(1)SSS全等法。

SSS全等法是指当三角形三边的边长相等时,
可以通过做出三个完全相同的三角形来证明它们全等。

(2)SAS全等法。

在SAS全等法中,两个三角形的一个角和两个
边分别相等。

因此,通过构建两个能够匹配的三角形来证明它们全等。

(3)ASA全等法。

ASA全等法是当两个三角形的两个角以及它们
之间的一个边相等时,可以通过构建两个能够匹配的三角形来证明它
们全等。

(4)AAS全等法。

通过AAS全等法,我们可以确认两个三角形有
两个角和它们之间的一个边相等,可以运用这一法则来证明它们全等。

(5)HL全等法。

在HL全等法中,两个三角形的一条腰和一条相
邻边分别相等,同时另一条腰和它所对应的角也分别相等。

因此,可
以通过构建两个相应匹配的三角形来证明他们全等。

总之,无论哪种方法都可以用来证明两个三角形全等,都需要在
构建的时候保证构建出的三角形完全重合。

全等三角形的判定方法ssa

全等三角形的判定方法ssa

全等三角形的判定方法ssa判定全等三角形有六种方法:1、定义法:两个完全重合的三角形全等;2、边边边:三个对应边相等的三角形全等;3、边角边:两边及其夹角对应相等的三角形全等;4、角边角:两角及其夹边对应相等的三角形全等;5、角角边:两角及其中一角的对边对应相等的三角形全等;6、直角三角形的高和斜边:斜边和一条直角边对应相等的两个直角三角形全等。

【SSA与三角形全等】(1)如图,△ABC与△A′B′C′,AB= A′B′,BC= B′C′,且AB<BC,∠C=∠C′=α(0°<α<90°),那么△ABC与△A′B′C′全等吗?我们可以发现,这时候△A′B′C′有两种情况,如果形状不同的时候,它们就不全等。

下面举两个特例:(2)如图,△ABC与△A′B′C′,AB= A′B′,BC= B′C′,∠A=∠A′=90°,那么△ABC与△A′B′C′全等吗?显然,我们只能画出一种△A′B′C′,根据HL可以证明它们全等。

(3)如图,△ABC与△A′B′C′,AB= A′B′,BC= B′C′,∠A=∠A′=α(90°<α<180°),那么△ABC与△A′B′C′全等吗?显然,我们也只能画出一种△A′B′C′,但是又很难直接证明它们全等。

怎么办呢?我们可以构造辅助线的方式,分别过点B,B′作BH⊥AC,B′H′⊥A′C′,垂足分别为H,H′。

通过证明两次全等即可得出我们想要的结论。

总结很多时候我们做题的时候,经常会遇到各种各样的障碍,特别是遇到两个三角形明明就是形状大小相同的,但是偏偏条件就是SSA,无法直接证明全等。

那么上面的思路就可以为我们打开一条出路。

当然,图形本身两种不确定的可能都存在的时候,我们就无法证明全等,那么就不要往证明全等的方向去了。

【典型例题】【题目】如图,四边形ABCD是正方形,点E是边BC上一点,在正方形外角的平分线CF上取一点F使得AE=EF.求证:∠AEF=90°.【分析】在AB上取一点G使得AG=CE,如果能证明△AGE与△ECF全等就能得出结论了,但是只有SSA这样的条件,怎么办呢?那么我们可以参考上面的思路,作垂线试试。

全等三角形的判定方法五种例题

全等三角形的判定方法五种例题

全等三角形的判定方法五种例题三角形是初中数学学习中的重要内容之一,而全等三角形又是其中比较基础且重要的一部分。

那么,如何判断两个三角形是否全等呢?我们可以从以下5个方法入手。

第一种方法:角角角(AAA)判定法。

当两个三角形的对应角度相等时,就可以判断它们是全等的。

例如:若在两个三角形中角A、角B、角C分别对应相等,则这两个三角形就全等。

第二种方法:边角边(AAS)判定法。

当两个三角形的两边和夹角分别相等时,就可以判断它们是全等的。

例如:若在两个三角形中,两边AB、AC相等,并且夹角A的大小也相等,则这两个三角形就全等。

第三种方法:角边角(ASA)判定法。

当两个三角形的一对角和对应边相等,且另外一对角也相等时,就可以判断它们是全等的。

例如:若在两个三角形中,角A、边BC和角C分别对应相等,并且角B的大小也相等,则这两个三角形全等。

第四种方法:直角边(HL)判定法。

当两个直角三角形的一条直角边和另外一条边相等时,就可以判断它们是全等的。

例如:若在两个三角形中,直角边AB、边AC的长度分别相等,并且三角形ABC还有一个相等的直角,则这两个三角形就全等。

第五种方法:全等多边形拼凑法。

将一个三角形分割成两个或多个小三角形,然后将这些小三角形重新拼凑成另一个三角形。

如果这个三角形和另一个给定的三角形重合,则它们是全等的。

例如:将一个三角形ABC划分成两个小三角形,分别是三角形ABE和三角形AEC,然后将它们重新拼凑成三角形FDC,如果三角形FDC和另一个给定的三角形重合,则这两个三角形就全等。

在实际操作时,我们可以根据题目所给条件,选择一种或多种判定方法,来判断两个三角形是否全等。

因为不同的题目所给条件不同,因此我们要灵活掌握这些判定方法,并且要根据具体情况加以分析和判断。

只有将这些方法掌握好,才能在解题中灵活应用,提高我们的解题能力。

证明全等的五种方法

证明全等的五种方法

证明全等的五种方法全等是几何中的一个重要概念,指的是两个图形在形状和大小上完全相同。

在证明两个图形全等时,通常可以使用以下五种方法:SAS、ASA、SSS、AAS和HL。

下面将分别介绍这五种方法的原理和应用。

1. SAS(边-角-边)SAS是三角形全等的一个重要准则,它表示如果两个三角形的两边和夹角分别相等,则这两个三角形全等。

具体地,如果在两个三角形ABC和DEF中,AB=DE,AC=DF,且∠BAC=∠EDF,则可以得出三角形ABC≌DEF。

这种方法常用于证明两个三角形全等的情况。

2. ASA(角-边-角)ASA也是三角形全等的一个重要准则,它表示如果两个三角形的两个角和夹边分别相等,则这两个三角形全等。

具体地,如果在两个三角形ABC和DEF中,∠BAC=∠EDF,∠ABC=∠DEF,且BC=EF,则可以得出三角形ABC≌DEF。

这种方法常用于证明两个三角形全等的情况。

3. SSS(边-边-边)SSS是三角形全等的一个重要准则,它表示如果两个三角形的三条边分别相等,则这两个三角形全等。

具体地,如果在两个三角形ABC和DEF中,AB=DE,BC=EF,且AC=DF,则可以得出三角形A BC≌DEF。

这种方法常用于证明两个三角形全等的情况。

4. AAS(角-角-边)AAS是三角形全等的一个重要准则,它表示如果两个三角形的两个角和非夹边的对边的夹角分别相等,则这两个三角形全等。

具体地,如果在两个三角形ABC和DEF中,∠BAC=∠EDF,∠ABC=∠DEF,且BC=EF,则可以得出三角形ABC≌DEF。

这种方法常用于证明两个三角形全等的情况。

5. HL(斜边-斜边-直角边)HL是直角三角形全等的一个重要准则,它表示如果两个直角三角形的一条斜边和直角边分别相等,则这两个直角三角形全等。

具体地,如果在两个直角三角形ABC和DEF中,AB=DE,且∠BAC=∠EDF,则可以得出直角三角形ABC≌DEF。

全等三角形证明判定方式分类总结

全等三角形证明判定方式分类总结

全等三角形证明判定方式分类总结全等三角形是指具有完全相同形状和大小的三角形。

在几何学中,判定两个三角形是否全等是一种重要而基础的推理方法。

全等三角形的证明判定方式主要有三种:SSS全等定理、SAS全等定理和ASA全等定理。

接下来我将分别介绍这三种定理的内容及具体应用。

1.SSS全等定理SSS全等定理是指当两个三角形的三条边分别相等时,这两个三角形就全等。

具体表述为:如果两个三角形的三条边分别相等,则这两个三角形全等。

SSS全等定理的证明方法主要是通过边的长度作为条件来判断两个三角形是否全等。

在实际问题中,当已知两个三角形的三条边的长度分别相等时,可以直接通过SSS全等定理来判定这两个三角形是否全等。

例如,当已知两个三角形的三边分别等于3cm、4cm、5cm时,即可判定这两个三角形全等。

2.SAS全等定理SAS全等定理是指当两个三角形的一条边、夹角和另一条边分别相等时,这两个三角形就全等。

具体表述为:如果两个三角形的一条边、夹角和另一条边分别相等,则这两个三角形全等。

SAS全等定理的证明方法主要是通过一条边、夹角和另一条边的关系来判断两个三角形是否全等。

在实际问题中,当已知两个三角形的一个夹角和两条边分别相等时,可以直接通过SAS全等定理来判定这两个三角形是否全等。

例如,当已知两个三角形的一个夹角为60度,两个边分别等于4cm和6cm时,即可判定这两个三角形全等。

3.ASA全等定理ASA全等定理是指当两个三角形的一条角、边和另一条角分别相等时,这两个三角形就全等。

具体表述为:如果两个三角形的一条角、边和另一条角分别相等,则这两个三角形全等。

ASA全等定理的证明方法主要是通过一条角、边和另一条角的关系来判断两个三角形是否全等。

在实际问题中,当已知两个三角形的一个角和两条边分别相等时,可以直接通过ASA全等定理来判定这两个三角形是否全等。

例如,当已知两个三角形的一个角为30度,两个边分别等于5cm和7cm时,即可判定这两个三角形全等。

判定两个三角形全等的常用思路

判定两个三角形全等的常用思路

判定两个三角形全等的常用思路判定两个三角形全等的方法有:“SSS ”“SAS ”“ASA ”“AAS ”“HL ”这五种,其中“HL ”只适合于直角三角形.在具体运用过程中,要认真分析已知条件,挖掘题中隐含条件,有目的地选择三角形全等的条件,一般可按下面的思路进行:(1)已知两边⎩⎪⎨⎪⎧ 找第三边→SSS ,找夹角→SAS ,找直角→HL.(2)已知一边一角 ⎩⎪⎨⎪⎧ 边为角的对边→找任一角→AAS ,边为角的邻边⎩⎪⎨⎪⎧ 找角的另一邻边→SAS ,找边邻着的另一角→ASA ,找边的对角→AAS. (3)已知两角⎩⎪⎨⎪⎧找夹边→ASA ,找任一边→AAS. 例 (一题多证)已知,如图,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE =EF .求证:AE =CE .证法一:∵AB ∥FC ,∴∠ADE =∠F .在△ADE 和△CFE 中,∵⎩⎪⎨⎪⎧ ∠ADE =∠F ,DE =FE ,∠AED =∠CEF ,∴△ADE ≌△CFE (ASA).∴AE =CE .证法二:∵AB ∥FC ,∴∠A =∠ECF ,∠ADE =∠F .在△ADE 和△CFE 中,∵⎩⎪⎨⎪⎧ ∠A =∠ECF ,∠ADE =∠F ,DE =FE ,∴△ADE ≌△CFE (AAS).∴AE =CE .全等三角形判定和性质的综合运用全等三角形的性质是对应角相等、对应边相等,全等三角形的判定是“SAS ”“ASA ”“AAS ”“SSS ”“HL ”.在说明线段相等或角相等时,常常需要综合运用全等三角形的性质和判定.说明两条线段或两个角相等时,可考虑两条线段或两个角所在的两个三角形是否全等,若由已知条件不能直接说明这两个三角形全等时,可以由已知条件先推出其他的三角形全等,再由全等三角形的性质得到一些线段或角相等,为说明前面的三角形全等提供条件.【例5】 如图,已知∠E =∠F =90°,∠1=∠2,AC =AB ,求证:△AEB ≌△AFC .分析:已知∠E =∠F =90°,AC =AB ,即已知一边及一角,并且这边是角的对边,根据判定两个三角形全等的常用思路再找另一角即可,由∠1=∠2,可得∠EAB =∠F AC ,再根据全等的判定方法AAS 可证△AEB ≌△AFC .证明:∵∠1=∠2,∴∠1+∠BAC =∠2+∠BAC ,即∠EAB =∠F AC .在△AEB 和△AFC 中,∵⎩⎪⎨⎪⎧ ∠E =∠F ,∠EAB =∠F AC ,AB =AC ,∴△AEB ≌△AFC (AAS).【例6】 如图1,已知AB ∥CD ,OA =OD ,AE =DF ,求证:EB ∥CF .图1证明:如图2,∵AB ∥CD ,∴∠4=∠3.在△OAB 和△ODC 中,∵⎩⎪⎨⎪⎧ ∠4=∠3,OA =OD ,∠2=∠1,图2∴△OAB ≌△ODC (ASA).∴OB =OC . 又∵AE =DF ,OA =OD ,∴OA +AE =OD +DF ,即OE =OF . 在△BOE 和△COF 中,∵⎩⎪⎨⎪⎧ OB =OC ,∠2=∠1,OE =OF ,∴△BOE ≌△COF (SAS).∴∠E =∠F .∴EB ∥CF .。

三角形全等的判定方法

三角形全等的判定方法

三角形全等的判定方法三角形全等是几何学中一个重要的概念,用于判断两个三角形是否完全相同。

在这篇3000字的文章中,将详细介绍三角形全等的判定方法。

一、初步认识三角形全等三角形全等是指两个三角形的对应边和对应角都相等。

通常我们可以通过三个基本准则来判断两个三角形是否全等:1. SSS准则:如果两个三角形的三条边对应相等,那么这两个三角形全等。

2. SAS准则:如果两个三角形的有一条边和两个边夹角的对应边和夹角都相等,那么这两个三角形全等。

3. ASA准则:如果两个三角形的有一条边和两个角的对应边和角都相等,那么这两个三角形全等。

二、SSS准则详解在SSS准则中,我们需要比较两个三角形的三个边是否对应相等。

具体的判定方法如下:1. 首先,通过直尺和一个非锐角绘制两个已知线段的长度。

2. 然后,从已知长度的端点开始,使用指南针或带刻度的直尺,绘制相应长度的线段。

3. 最后,通过连接这些线段的端点来形成两个三角形。

如果这两个三角形的三个边长度分别相等,则可以判断这两个三角形全等。

需要注意的是,当判断两个三角形全等时,不仅需要比较对应边的长度,还需要考虑到它们之间的顺序。

即使两个三角形的边长相等,但如果它们的顺序不同,那么它们也不能被认为是全等的。

三、SAS准则详解在SAS准则中,我们需要比较两个三角形的一条边和两个边夹角的对应边和夹角是否相等。

具体的判定方法如下:1. 首先,通过直尺和一个非锐角绘制两个已知线段的长度。

2. 然后,在这两个已知线段中的某一点上使用量角器或者带刻度的直尺测量出两个线段之间的夹角。

3. 接着,从夹角的顶点开始,使用指南针或带刻度的直尺,绘制相应长度的线段。

4. 最后,通过连接这些线段的端点来形成两个三角形。

如果这两个三角形的一条边和两个边夹角的对应边和夹角分别相等,则可以判断这两个三角形全等。

四、ASA准则详解在ASA准则中,我们需要比较两个三角形的一条边和两个角的对应边和角是否相等。

三角形全等的判定条件

三角形全等的判定条件

三角形全等的判定条件
全等三角形判定条件(六种)是:
1、定义法:两个完全重合的三角形全等。

2、SSS:三个对应边相等的三角形全等。

3、SAS:两边及其夹角对应相等的三角形全等。

4、ASA:两角及其夹边对应相等的三角形全等。

5、AAS:两角及其中一角的对边对应相等的三角形全等。

6、HL:斜边和一条直角边对应相等的两个直角三角形全等。

经过翻转、平移、旋转后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。

全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。

判定两个三角形全等的常用思路

判定两个三角形全等的常用思路
∴△ADE≌△CFE(AAS).∴ AE=CE.
全等三角形判定和性质的综合运用
全等三角形的性质是对应角相等、对应边相等,全等三角形的判定是“SAS”“ASA”“AAS”“SSS”“HL”.在说明线段相等或角相等时,常常需要综合运用全等三角形的性质和判定.
说明两条线段或两个角相等时,可考虑两条线段或两个角所在的两个三角形是否全等,若由已知条件不能直接说明这两个三角形全等时,可以由已知条件先推出其他的三角形全等,再由全等三角形的性质得到一些线段或角相等,为说明前面的三角形全等提供条件.
例(一题多证)已知,如图,D是△ABC的边AB上一点,AB∥FC,DF交AC于点E,DE=EF.
求证:AE=CE.ຫໍສະໝຸດ 证法一:∵AB∥FC,∴∠ADE=∠F.
在△ADE和△CFE中,

∴△ADE≌△CFE(ASA).∴AE=CE.
证法二:∵AB∥FC,
∴∠A=∠ECF,∠ADE=∠F.
在△ADE和△CFE中,∵
又∵AE=DF,OA=OD,
∴OA+AE=OD+DF,即OE=OF.
在△BOE和△COF中,
∵ ∴△BOE≌△COF(SAS).
∴∠E=∠F.∴EB∥CF.
证明:∵∠1=∠2,
∴∠1+∠BAC=∠2+∠BAC,
即∠EAB=∠FAC.
在△AEB和△AFC中,

∴△AEB≌△AFC(AAS).
【例6】如图1,已知AB∥CD,OA=OD,AE=DF,求证:EB∥CF.
图1
证明:如图2,∵AB∥CD,∴∠4=∠3.
在△OAB和△ODC中,∵
图2
∴△OAB≌△ODC(ASA).∴OB=OC.
【例5】如图,已知∠E=∠F=90°,∠1=∠2,AC=AB,求证:△AEB≌△AFC.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两三角形全等的几种判定方法
两个三角形是否全等,是初中数学重要的一部分。

在确定两个三
角形全等之前,需要掌握以下几种判定方法:
1. SAS判定法:如果两个三角形的两个边和夹角分别相等,则它们是全等的。

即如果两个三角形的一边、夹角和另一边能一一对应,
则这两个三角形是全等的。

2. SSS判定法:如果两个三角形的三边分别相等,则它们是全等的。

即如果两个三角形各边分别相等,则这两个三角形是全等的。

3. ASA判定法:如果两个三角形的两个角和夹边分别相等,则它们是全等的。

即如果两个三角形的一角、夹边和另一角能一一对应,
则这两个三角形是全等的。

4. RHS判定法:如果两个三角形的两个直角边和一条斜边分别相等,则它们是全等的。

即如果两个三角形的直角边和斜边能一一对应,则这两个三角形全等。

5. AAS判定法:如果两个三角形的两个角和一边分别相等,则它们是全等的。

但要注意,这个一边不能是夹角边。

即如果两个三角形
的两个角和一边能一一对应,则这两个三角形是全等的。

掌握了以上五种判定方法,我们就能准确地判断两个三角形是否
全等,从而解决一些相关的问题。

相关文档
最新文档