高考数学空间几何体的外接球与内切球常见题型

合集下载

2020高考热点立体几何之外接球和内切球

2020高考热点立体几何之外接球和内切球

2020高考热点立体几何之外接球和内切球(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--外接球和内切球题型一 高过外心(正棱锥、圆锥、侧棱相等)【例1】 已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,2PA AB ==,则球O 的表面积为( )A .2πB .4πC .8πD .16π【答案】C 【解析】∵正四棱锥P ﹣ABCD 的所有顶点都在球O 的球面上,PA =AB =2, ∴连结AC ,BD ,交于点O ,连结PO ,则PO ⊥面ABCD ,OA =OB =OC =OD=221=AC ,OP 222=-=OB PB ,∴O 是球心,球O 的半径r =∴球O 的表面积为S =4πr 2=8π.故选:C .【举一反三】1.(2019·广东高考模拟(文))在三棱锥P ABC-中.2PA PB PC ===.1AB AC ==,BC ,则该三棱锥的外接球的表面积为( )A .8πB .163πC .43πD .27【答案】B题型二 高不过心(直棱柱、圆柱、侧棱垂直于底面的圆锥)【例2】(1)(2019·天津高考模拟(理))长方体ABCD −A 1B 1C 1D 1的8个顶点在同一个球面上,且AB =2,AD =√3,AA 1=1,则球的表面积为______.(2) 已知正三棱柱111ABC A B C -的底面边长为3,外接球表面积为16π,则正三棱柱111ABC A B C -的体积为( )【答案】(1)8π(2)D【举一反三】1. 已知三棱柱111ABC A B C -的侧棱与底面垂直,12,4AA BC BAC π==∠=,则三棱柱111ABC A B C -外接球的体积为( )A .B .C .D .【答案】D2. 四棱锥P ABCD -的底面为正方形ABCD ,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为92π的同一球面上,则PA 的长为( ) A .3B .2C .1D .12 【答案】C3.四棱锥A BCDE -的各顶点都在同一球面上,AB ⊥底面BCDE ,底面BCDE 为梯形,60BCD ∠=,且2AB CB BE ED ====,则此球的表面积等于( )A .25πB .24πC .20πD .16π【答案】C题型三 找高作心(顶点的投影在底边上)【例3】(1) 在三棱锥P −ABC 中,平面PAB ⊥平面ABC ,ΔABC 是边长为2√3的等边三角形,其中PA =PB =√7,则该三棱锥外接球的表面积为_____.(2) 在四面体ABCD 中,ABD ∆与BDC ∆都是边长为2的等边三角形,且平面ABD ⊥平面BDC ,则该四面体外接球的体积为_______.【举一反三】1. 已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.【答案】1015π3(2019·河南高考模拟(理))如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,已知其俯视图是正三角形,则该几何体的外接球的体积是( )A B C .193π D .223π 【答案】A考向四 球心在边上(斜边是球的直径)【例4】 在三棱锥P ABC -中,2AC AB ==BC =90APC ∠=,平面ABC ⊥平面PAC ,则三棱锥P ABC -外接球的表面积为()A .4πB .5πC .8πD .10π【答案】D【举一反三】1. 已知三棱锥A SBC -,各顶点均在以SC 为直径球面上,2AB AC BC ===,则这个球的表面积为_____________。

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。

1. 求立方体的外接球和内切球的半径。

外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。

2. 求正方体的外接球和内切球的半径。

外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。

3. 求圆柱体的外接球和内切球的半径。

外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。

4. 求圆锥的外接球和内切球的半径。

外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。

5. 求球的外接球和内切球的半径。

外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。

6. 求棱锥的外接球和内切球的半径。

外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。

7. 求棱柱的外接球和内切球的半径。

外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。

8. 求四面体的外接球和内切球的半径。

外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。

9. 求正六面体的外接球和内切球的半径。

外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。

10. 求正八面体的外接球和内切球的半径。

外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。

以上是关于立体几何中外接球和内切球的十个常见题型及其解答。

希望能对你有所帮助。

2023届高三数学一轮复习专题 空间几何体的外接球与内切球问题 讲义 (解析版)

2023届高三数学一轮复习专题  空间几何体的外接球与内切球问题  讲义 (解析版)

空间几何体的外接球与内切球问题高考分析: 球与几何体的切接问题是近几年高考的高频考点,常以选择题和填空题的形式出现,以中档题和偏难题为主. 一、几种常见几何体的外接与内切球 1.长方体的外接球 (1)球心:体对角线的交点;(2)半径:R =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球 (1)外接球:球心是正方体的中心;半径R =32a(a 为正方体的棱长); (2)内切球:球心是正方体的中心;半径r =2a(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体的中心;半径=2r a (a 为正方体的棱长). 3.正四面体的外接球与内切球(1)外接球:球心是正四面体的中心;半径R (a 为正四面体的棱长);(2)内切球:球心是正四面体的中心;半径r (a 为正四面体的棱长).求外接球问题常用方法:1.补体法。

将几何体补形成长方体正方体等常见模型去求解2.外接球的球心都在过底面外接圆圆心的垂线上(注意球体可以滚动所以可以选择较为方便计算的那一面作为底面)3.利用外接球球心到几何体各顶点距离都等于半径4.球心与截面圆圆心的连线垂直于截面圆求外接球的关键是确定球心位置,进而计算出外接球半径。

题型一:柱体的外接球1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________.2.已知三棱柱111ABC A B C -的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12 ,则该三棱柱的体积为_________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π4.已知圆柱的底面半径为12,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4题型二:锥体的外接球5.求棱长为1的正四面体外接球的体积为_________.6.已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( )A.16R 381B.32R 381C.64R 381 D .R 3 7.如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P -AOB 的外接球的体积是_________.8.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.B.C. 1D.9.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π10.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱切开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均是直角三角形的四面体).在如图所示的堑堵ABC -A 1B 1C 1中,AA 1=AC =5,AB =3,BC =4,则阳马C 1-ABB 1A 1的外接球的表面积是( )A .25πB .50πC .100πD .200π11.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π12.已知正三棱锥的所有顶点都在球O 的球面上,其底面边长为3,E,F ,G 分别为为侧棱AB,AC,AD 的中点.若O 在三棱锥A -BCD 内,且三棱锥A -BCD 的体积是三棱锥O -BCD 体积的3倍,则平面EFG 截球O 所得截面的面积为微专题 球与几何体的切接问题——内切球1.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为_________,体积为_________.2.若正四面体的棱长为a ,则其内切球的半径为_________.3.已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( ) A .18 B .12 C .6 3 D .434.将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( )A.2π3 B.3π3 C.4π3D .2π 5.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6 D.33π题型三 最值问题6.已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为_________.7.四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于( )A.32π3B.322π3 C .16π D.162π38.已知SAB 是边上为2的等边三角形,045ACB ∠=,则三棱锥体积最大时,CA = ;其外接球的表面积为。

(完整版)高考外接球内切球专题练习

(完整版)高考外接球内切球专题练习

高考外接球与内接球专题练习(1)正方体,长方体外接球1. 如图所示,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 的中点的轨迹的面积为( )A. 4πB. 2πC. πD. 2π 2. 正方体的内切球与其外接球的体积之比为( ) A. 1:3 B. 1:3 C. 1:33 D. 1:93. 长方体ABCD ﹣A 1B 1C 1D 1的8个顶点在同一个球面上,且AB=2,AD=3,AA 1=1, 则该球的表面积为( )A. 4πB. 8πC. 16πD. 32π4. 底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一球面上,则该球的体积为A. 323π B. 4π C. 2π D. 43π 5. 已知正三棱锥P ﹣ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A ,PB ,PC 两两垂直,则球心到截面ABC 的距离为 _________ .6. 在三棱椎A ﹣BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的 面积分别为22,32,62,则该三棱椎外接球的表面积为( ) A. 2π B. 6π C. 46π D. 24π7. 设A 、B 、C 、D 是半径为2的球面上的四点,且满足AB ⊥AC 、AD ⊥AC 、AB ⊥AD , 则S △ABC +S △ABD +S △ACD 的最大值为( )A. 4B. 8C. 12D. 168. 四面体ABCD 中,已知AB=CD=29,AC=BD=34,AD=BC=37,则四面体的 外接球的表面积为( )A. 25πB. 45πC. 50πD. 100π9. 如图,在三棱锥S ﹣ABC 中,M 、N 分别是棱SC 、BC 的中点,且MN ⊥AM ,若AB=22,则此正三棱锥外接球的体积是A. 12πB. 43πC. 433π D. 123π 10. 已知三棱锥P ABC -的顶点都在同一个球面上(球O ),且2,6PA PB PC ===, 当三棱锥P ABC -的三个侧面的面积之和最大时,该三棱锥的体积与球O 的体积的比值为( )A. 316πB. 38πC. 116πD. 18π (2)直棱柱外接球11. 已知三棱柱ABC ﹣A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC , AA 1=12,则球O 的半径为A. 3172B. 210C. 132D. 310 12. 设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面 积为( )A. 2a πB. 273a πC. 2113a π D. 25a π 13. 直三棱柱ABC ﹣A 1B 1C 1的各顶点都在同一球面上,若AB=AC=AA 1=2,∠BAC=120°, 则此球的表面积等于_________ .14. 三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥BC ,又SA=AB=BC=1,则球O 的表面积为( )A. 32πB. 32π C. 3π D. 12π 15. 已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3, 则球O 的体积等于 _________ .(3)正棱锥外接球16. 棱长均相等的四面体ABCD 的外接球半径为1,则该四面体的棱长为___________17. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A. 4327πB. 62π C. 68π D. 624π 18. 已知三棱锥P ABC -的所有顶点都在表面积为28916π的球面上,底面ABC 是边长为 3的等边三角形,则三棱锥P ABC -体积的最大值为__________19. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积 为( )A. 814π B. 16π C. 9π D. 274π 20. 已知正三棱锥P ﹣ABC 的顶点均在球O 上,且P A=PB=PC=25,AB=BC=CA=23, 则球O 的表面积为( )A. 25πB. 1256πC. 52π D. 20π21. 在球O 的表面上有A 、B 、C 三个点,且3AOB BOC COA π∠=∠=∠=,△ABC 的外接圆半径为2,那么这个球的表面积为( ) A. 48π B. 36π C. 24π D. 12π 22. 半径为2的半球内有一内接正六棱锥P ﹣ABCDEF ,则此正六棱锥的侧面积是 ____.23. 表面积为23的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A. 23πB. 3π C. 23π D. 223π 24. 正四棱锥P ﹣ABCD 底面的四个顶点A 、B 、C 、D 在球O 的同一个大圆上,点P 在球面 上,如果163P ABCD V -=,则求O 的表面积为( ) A. 4π B. 8π C. 12π D. 16π(4)棱锥外接球25. 已知A ,B ,C ,D 在同一个球面上,AB ⊥平面BCD ,BC ⊥CD ,若AB=6,213AC =, AD=8,则此球的体积是 _________ .26. 在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B ﹣AC ﹣D , 则四面体ABCD 的外接球的体积为( )A. 12512πB. 1259πC. 1256πD. 1253π 27. 点A ,B ,C ,D 在同一个球的球面上,AB=BC=2,AC=22,若四面体ABCD 体积 的最大值为43,则该球的表面积为( ) A. 163π B. 8π C. 9π D. 12π 28. 四棱锥S ﹣ABCD 的底面ABCD 是正方形,侧面SAB 是以AB 为斜边的等腰直角三角 形,且侧面SAB ⊥底面ABCD ,若AB=23,则此四棱锥的外接球的表面积为( )A. 14πB. 18πC. 20πD. 24π29. 三棱锥S ﹣ABC 的四个顶点都在球面上,SA 是球的直径,AC ⊥AB ,BC=SB=SC=2, 则该球的表面积为( )A. 4πB. 6πC. 9πD. 12π30. 已知四棱锥V ﹣ABCD 的顶点都在同一球面上,底面ABCD 为矩形,AC∩BD=G ,VG ⊥平面ABCD ,AB=3,AD=3,VG=3,则该球的体积为( )A. 36πB. 9πC. 123πD. 43π(5)内接球31. 一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A. 1B. 2C. 3D. 432. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6,8AB BC ==,13AA =,则V 的最大值为A. 4πB. 92πC. 6πD. 323π 33. 已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( ) A. 823π B. 833π C. 863π D. 1623π 34. 把一个皮球放入一个由8根长均为20的铁丝接成的四棱锥形骨架内,使皮球的表面 与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A. 103B. 10C. 102D. 3035. 棱长为23的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小 球,则这些球的最大半径为( )A. 2B. 22C. 24D. 2636. 如图,在四面体ABCD 中,截面AEF 经过四面体的内切球球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A ﹣BEFD 与三棱锥A ﹣EFC的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定(6)球的截面问题37. 平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体 积为( )A. 6πB. 43πC. 46πD. 63π38. 已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形, SC 为球O 的直径,且SC=2,则此棱锥的体积为( )A. 26B. 36C. 23D. 2239. 高为2的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半 径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. 102B. 232+C. 32D. 240. 已知三棱锥S ﹣ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =,则球的体积与三棱锥体积之比是( )A. πB. 2πC. 3πD. 4π41. 在半径为13的球面上有A ,B ,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC 的距离为 _________ ;(2)过A ,B 两点的大圆面与平面ABC 所成二面角为(锐角)的正切值为 ____.42. 设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到 该平面的距离是球半径的一半,则球的体积是( )A. B. C. D.43. 已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2, 则球面面积是( ) A. 169π B. 83π C. 4π D. 649π 44. 已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M . 若圆M 的面积为3π,则球O 的表面积等于 _________ .45. 三棱锥P ﹣ABC 的各顶点都在一半径为R 的球面上,球心O 在AB 上,且有P A=PB=PC , 底面△ABC 中∠ABC=60°,则球与三棱锥的体积之比是 _________ .46. 已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截 球O 所得截面的面积为π,则球O 的表面积为__________(7)旋转体的外接内切47. 半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面 积之差是 _________ .48. 将4个半径都是R 的球体完全装入底面半径是2R 的圆柱形桶中,则桶的最小高度 是 _________ .1. D ;2. C ;3. B ;4. D ;5. 3; 6. B ; 7. B ; 8. C ; 9. B ;10. A ; 11. C ; 12. B ; 13. 20π; 14. C ; 15. 92π; 16. ;17. C ; 19. A ; 20. A ; 21. A ; 22. ; 23. A ; 24. D ; 25. 2563π; 26. C ; 27. C ; 28. D ; 29. B ; 30. D ; 31. B ; 32. B ; 33. A ; 34. B ; 35. C ; 36. C ; 37. B ; 38. A ; 39. A ; 40. D ;41. 12;3;42. A;43. D;44. 16π;45.3;46.92π47. 30π;48.(2R+;。

高考球的内切和外接常考类型全归纳

高考球的内切和外接常考类型全归纳

多面体与球的内切和外接常有种类概括在平时教课中, 立体几何的多面体与球的地点关系, 是培育学生的立体感,空间想象能力的好教材。

但是学生在两个几何体的组合后,常常感觉无从下手。

针对这类状况,笔者把平时教课中相关这方面的习题加以总结和归类以下:一.正四周体与球以下图, 设正四周体的棱长为 a ,r 为内切球S的半径, R 为外接球的半径。

则高 SE= 23a, 斜高 SD=3a ,OE=r=SE-SO ,又 SD=BD,BD=SE-OE, F4O则在ABE直角 OEB 中,OE 2EB 2 BD 2 (SE OE)2DCr= 6a 。

R=SO=OB=6a124特点剖析:1. 因为正四周体是一其中心对成图形,因此它的内切球与外接球的球心为同一个。

2. R=3r. r=6a R= 6a 。

此结论能够记忆。

124例题一。

1、一个四周体的全部棱长都为2 ,四个极点在同一球面上,则此球的表面积为()剖析:借助结论, R= 6a = 62 = 3, 因此 S=4 R 2 =3 。

44 22、球的内接正四周体又有一个内切球,则大球与小球的表面积之比是()剖析:借助 R=3r ,答案为 9:1。

二、特别三棱锥与球四个面都是直角三角形的三棱锥。

SA 面 ABC , ABC 为直角三角形,BC AB因为 SA AC ,SB BC ,球心落在 SC 的中点处。

因此 R=SC。

2三.正方体与球。

1.正方体的外接球SSOOCABC即正方体的 8 个定点都在球面上。

重点找出截面图 :ABCD 为正方体的体对角面。

设正方AB体的边长为 a ,则 AB= 2 a ,BD=2R , AD=a ,OR= 3a 。

2DCCD2. 正方体的内切球。

(1)与正方体的各面相切。

如图: ABCD 为正方AB体的平行侧面的正方形。

R=a2(2)与正方体的各棱相切。

如图:大圆是正方形ABCD 的外接圆。

AB=CD=a ,R= 2a 。

2ABD C3. 在正方体以一个极点为交点的三条棱构成的三棱锥,特点是:三棱锥的三条侧棱相互垂直且相等,它的外接球可把三棱锥补形成正方体的外接球,再求解。

专题05 立体几何外接球、内切球专题(解析版)

专题05 立体几何外接球、内切球专题(解析版)

专题05 立体几何外接球、内切球专题1、在三棱锥P ABC -中,PA ⊥底面,ABC AB BC ⊥.若2PA AB BC ===,,E F 分别是,PB PC 的中点,则三棱锥P AEF -的外接球的表面积为__________.答案: 5π解析: 根据题意,结合题中几何体的结构,将题中棱锥的外接球问题转化为长方体外接球问题. 【详解】因为PA ⊥底面ABC ,所以PA BC ⊥.又AB BC ⊥,所以BC ⊥平面PAB ,故BC AE ⊥. 又PA AB =,故AE PB ⊥, 所以AE ⊥平面PBC , 所以,AE EF AE PE ⊥⊥. 又//EF BC ,所以EF PE ⊥,故,,EF PE AE 两两垂直.又11,22EF BC PE AE ====, 故该三棱锥外接球的半径与一个棱长分别为1,2,2. 所以三棱锥P AEF -的外接球的半径为122522++=, 故外接球的表面积为25452ππ⎛⎫⨯= ⎪ ⎪⎝⎭.故答案为:5π.2、已知三棱锥O ABC -中,A ,B ,C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ∠=︒,且三棱锥O ABC -的体积为3,则球O 的表面积为( )A .323πB .16πC .52πD .64π答案: C 解析:由题意2AB BC ==,120ABC ∠=︒,可求得ABC ∆的面积,进而通过O ABC -的体积得到三棱锥的高,即球心到平面ABC 的距离.通过外接圆的半径公式,求得截面圆的半径,得到球O 的半径,即得解. 【详解】由题意2AB BC ==,ABC 1120=||||sin 32ABC S AB BC ABC ∆∠=︒∠=, 1333O ABC ABC V S h h -∆==∴=.又ABC ∆的外接圆的半径222sin 2sin 30oAB r C ===因此球O 的半径222313R =+= 球的表面积:2452S R ππ==. 故选:C3、已知球O 是三棱锥P ABC -的外接球,1PA AB PB AC ====,2CP =,点D 是PB 的中点,且72CD =,则球O 的表面积为( ) A .73π B .76π C .72127πD .72154π答案: A 解析:证明AC ⊥平面PAB ,以PAB ∆为底面,AC 为侧棱补成一个直三棱柱,则球O 是该三棱柱的外接球,计算半径得到答案. 【详解】由1PA AB PB AC ====,2CP =,得PA AC ⊥. 由点D 是PB 的中点及PA AB PB ==,易求得32AD =,又72CD =,所以AD AC ⊥,所以AC ⊥平面PAB .以PAB ∆为底面,AC 为侧棱补成一个直三棱柱,则球O 是该三棱柱的外接球, 球心O 到底面PAB ∆的距离1122d AC ==, 由正弦定理得PAB ∆的外接圆半径12sin 603PA r ==︒,所以球O 的半径为22712R d r =+=,所以球O 的表面积为2743S R ππ==.故选:A .4、已知四边形ABCD 是菱形,60BAD ︒∠=,2AB =,将菱形ABCD 沿对角线BD 翻折后,二面角A BD C --的余弦值为13,则四面体ABCD 的外接球的表面积为( ). A .5πB .6πC .7πD .8π答案: B解析: 由菱形ABCD 中,连接AC 和BD 交于O ,求出3OA OC ==,由二面角A BD C --的余弦值为13,可得2AC =,即四面体ABCD 为棱长为2的正四面体求解可得表面积,将正四面体补成一个正方体,求出正方体的外接球半径即可得结果. 详解:由题意,菱形ABCD 中,连接AC 和BD 交于O , 可知AC BD ⊥,即OA BD ⊥,OC BD ⊥, ∵60BAD ︒∠=,2AB =,∴3OA OC ==, ∴AOC ∠为二面角A BD C --的平面角,即1cos 3AOC ∠=, 22212cos 3323343AC OA OC OA OC AOC =+-⋅⋅∠=+-⨯⨯⨯=即2AC =,即四面体ABCD 为棱长为2的正四面体,将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为6, ∵正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为26462S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭,故选:B.5、已知A ,B ,C 是球心为O 的球面上三点,60AOB ∠=,120AOC ∠=,若三棱锥O ABC -体积的最大值为1,则球O 的表面积为( ) A .12π B .16π C .24π D .36π 答案: B 解析:根据题意分析可知,当平面AOB ⊥平面AOC 时,三棱锥O ABC -体积的最大.此时,点B 到平面AOC 的距离达到最大值,为正三角形AOB 的OA 边上的高,根据三棱锥的体积公式计算体积,可解得R ,根据球的表面积公式可得结果.详解:设球O 半径为R ,当平面AOB ⊥平面AOC 时,三棱锥O ABC -体积的最大. 注意AOB 是正三角形,AOC △是顶角等于120︒的等腰三角形, 所以231131sin120123228V R R R R ⎛⎫=︒⨯==⇒=⎪⎝⎭,所以16S π=. 故选:B.6、在四面体ABCD 中,60ACB ∠=︒,90DCA ∠=︒,2DC CB CA ===,二面角D-AC-B 的大小为120°,则此四面体的外接球的表面积是________.答案: (100163)9π+解析:取,AC AD 的中点,M N ,和ABC ∆的中心E ,点N 是ACD ∆外接圆的圆心,点E 是ABC ∆外接圆的圆心,过点,E N 分别作平面ABC 和平面ACD 的垂线,交于点O ,在四边形OEMN 中找几何关系,构造方程求解外接圆的半径和表面积.【详解】由条件可知ABC ∆是等边三角形,取,AC AD 的中点,M N ,和ABC ∆的中心E ,过点,E N 分别作平面ABC 和平面ACD 的垂线,交于点O ,120EMN ∠=,60EON =∠,如图:由条件可知,33EM =,60EMG ∠= 30OEH ∠= 331322HN EG ∴==⨯=,316EH GN GM MN ==+=+ 33123tan 301636OH EH ⎛⎫+∴=⋅=+⨯= ⎪ ⎪⎝⎭, 323ON OH HN +∴=+=, ()222222322543239R OD ON ND ⎛⎫++==+=+=⎪ ⎪⎝⎭, 210016349S R ππ+==7、如图,在体积为233的四棱锥P ABCD -中,底面ABCD 为边长为2的正方形,PAB △为等边三角形,二面角PAB C 为锐角,则四棱锥P ABCD -外接球的半径为( )A .213 B .2C .3D .32答案: A解析:取AB 的中点E ,CD 的中点F ,连E 、PF 、EF ,过点P 作PH EF ⊥,易得AB ⊥平面PEF ,PH ⊥平面ABCD ,根据四棱锥的体积为233,得到32PH =,进而得到30PEF ∠=︒,32EH =,12HF =,1PF =,PE PF ⊥,然后利用截面圆的性质求得外接球的球心再求半径即可. 详解:如图所示:取AB 的中点E ,CD 的中点F ,连E 、PF 、EF ,过点P 作PH EF ⊥,垂足为H. 则AE BE =、CF DF =,有AB EP ⊥,AB EF ⊥, 所以AB ⊥平面PEF ,所以AB PH ⊥,又PH EF ⊥, 所以PH ⊥平面ABCD , 因为四棱锥的体积为233, 所以123433PH ⨯=, 解得32PH =,由3PE =,得30PEF ∠=︒,32EH =,12HF =,1PF =,PE PF ⊥. 三角形PEF 的平面图如下:2PM EM =,N 为EF 的中点,由图可知四棱锥外接球的球心O 为过点M 的EP 的垂线1和EF 的中垂线的交点,设四棱锥P ABCD -外接球的半径为R ,33EM =,23EQ =,13NQ =,33NO =,17212333R =+==. 故选:A8、已知三棱锥A BCD -的四个顶点在球O 的球面上,AB AC AD ==,BCD 是边长为2的正三角形,M 、N 分别为AB 、BC 中点,且MD MN ⊥,则球O 的表面积为__________.答案: 3π解析: 利用已知条件可知三棱锥A BCD -是正三棱锥,结合MD MN ⊥可得AC ⊥面ABD ,即可知ABC 是等腰直角三角形,可得1AB AC AD ===且两两垂直,借助于正方体的外接球,即可求出三棱锥的外接球.详解:由题意知A BCD -为正三棱锥,取BD 中点F ,连接,AF CF , 所以CF BD ⊥ ,AF BD ⊥ ,且AF CF F ⋂= , 所以BD ⊥平面ACF ∴AC BD ⊥,又M 、N 分别为AB 、BC 中点,易知||MN AC , 由已知MD MN ⊥, 所以AC MD ⊥ MD BD D ⋂=, 所以AC ⊥面ABD ,所以AC AB ⊥,即ABC 是等腰直角三角形,因为斜边2BC =,所以1AB AC AD ===且两两垂直,则A BCD -为以A 为顶点的正方体一部分,()222221113R AB AC AD =++=++=, 即243R =所以球O 的表面积为243S R ππ==. 故答案为:3π9、已知三棱锥P ABC -的底面是正三角形,点A 在侧面PBC 内的射影H 是PBC ∆的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的体积为( )A B C .6π D 答案: D解析: 设点O 是点P 在底面ABC 的射影,先分析可得O 是底面ABC 的垂心,也是外心,则当,,PA PB PC 互相垂直时体积最大,再求得外接球的体积即可【详解】设点D 为BC 的中点,则AD BC ⊥,因为点A 在侧面PBC 内的射影H 是PBC ∆的垂心,所以PA BC ⊥,PC AB ⊥, 设点O 是点P 在底面ABC 的射影,则BC ⊥平面PAD ,所以O 一定在AD 上, 因为AB PC ⊥,AB PO ⊥,所以CO AB ⊥,所以O 是底面ABC 的垂心,也是外心,则当,,PA PB PC 互相垂直时体积最大,设球的半径为R ,故选:D10、点,,,A B C D 在同一个球的球面上,,若四面体ABCD 体积)A B .8πC D 答案: A 解析:根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积. 【详解】根据题意知,ABC ∆是一个等边三角形,其面积为334,由正弦定理322sin3r π==知,外接圆的半径为1r =.设小圆的圆心为Q ,若四面体ABCD 的体积有最大值,由于底面积ABC S ∆不变,高最大时体积最大, 所以,DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ∆⨯=,4DQ ∴=,设球心为O ,半径为R ,则在直角AQO ∆中,222OA AQ OQ =+, 即2221(4)R R =+-,178R ∴=则这个球的表面积为:2172894()816S ππ==故选:A . 11、如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,AD BP ⊥,PA AC =,若三棱锥P ABC -外接球的表面积为8π,则三棱锥P ACD -体积的最大值为( )A .23B .12C .34D .24答案: A解析:详解:设AB a ,BC b =,由三棱锥P ABC -外接球的表面积为8π,得外接球的半径2R =.又PA ⊥平面ABC ,AB BC ⊥,所以()2222222228AB BC AP AC AP AP R ++=+===,所以2AP =,所以224a b +=.因为PA ⊥平面ABC ,AD PB ⊥,所以24PB a =+,224a BD a=+,过D 作DE AB ⊥,垂足为E ,则DE ⊥平面ABC ,所以DE PA ∥,所以DE BD PA BP =,所以2224a DE a=+,所以()()()222221124423643432P ABC D ABCACD P ACD a ab abV V S PA DE ab V a a a b ---⎛⎫-=-=-== ⎪++⎝=+⎭△44223623a b b a =≤=⎛⎫+ ⎪⎝⎭,当且仅当2a b b a =,即233a =,263b =时,“=”成立,所以三棱锥P ACD -体积的最大值为23.故选A.12、已知直三棱柱111ABC A B C ﹣中,AB AC ⊥,11AB AC AA ===,若点M 在线段1AA 上运动,则四棱锥11M BCC B -外接球半径的取值范围为( )A .252,28⎡⎤⎢⎥⎣⎦ B .232,24⎡⎤⎢⎥⎣⎦ C .352,28⎡⎤⎢⎥⎣⎦D .332,24⎡⎤⎢⎥⎣⎦ 答案: C解析: 首先把三棱柱体转换为正方体,利用B 、C 、1C 、1B 在球面上,球心G 在线段2OO上,整理出关系式222 R x y=+,且2223222R y⎛⎫⎛⎫=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭,然后利用勾股定理的应用建立二次函数的关系式,再利用二次函数的最值的应用求出结果.详解:将三棱柱111ABC A B C-补成一个正方体1111ABDC A B D C-.设四棱锥体11M BCC B-外接球的球心为G,1AA的中点为1O,1DD的中点为2O,12O O的中点为O,如图所示,则122OO=,32OB=,由于B、C、1C、1B在球面上,所以球心G在线段2OO上,设GM GB R==,1O M x=,1O G y=,则22OG y=-,在1Rt O MG△中,222R x y=+①在1Rt O BG中,2223222R y⎛⎫⎛⎫=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭②,联立①②得2524x y=-,由于12x≤≤,故25228y≤≤,故222225233252,424432R x y y y y⎛⎫⎡⎤=+=-+=+∈⎪⎢⎥⎪⎣⎦⎝⎭所以352,28R⎡⎤∈⎢⎥⎣⎦.故选:C .13、在边长为2的菱形ABCD 中,23BD =,将菱形ABCD 沿对角线AC 折起,使二面角B AC D --的大小为60,则所得三棱锥A BCD -的外接球表面积为( )A .4πB .529πC .6πD .203π 答案: B解析: 由已知可得ABC 、ACD 都是边长为2的等边三角形,由菱形的对角线互相垂直,可得BED ∠为二面角B AC D --的平面角,即60BED ∠=,作出图形,找出三棱锥A BCD -的外接球球心,利用四点共圆结合正弦定理求解三棱锥A BCD -的外接球的半径,代入球的表面积公式可得结果. 详解:由于四边形ABCD 是边长为2的菱形,且23BD =,则22222AC CE AB BE ==-=,所以,ABC 、ACD 都是边长为2的等边三角形,由于菱形的对角线互相垂直,则BE AC ⊥,DE AC ⊥,所以,BED ∠为二面角B AC D --的平面角,即60BED ∠=,过点B 作平面ACD 的垂线BM ,垂足为点M ,则点M 在线段DE 上,由3BE DE ==,60BED ∠=,可得1322ME MD DE ===, 且BDE 是等边三角形,所以,3BD BE ==,设ACD 的外心为点G ,BD 的中点H ,在平面BED 内,过点G 、H 分别作平面ACD 、BD 的垂线交于点O ,则点O 为三棱锥B ACD -的外接球的球心, 60BDE ∠=,则136012=由于O 、G 、D 、H 四点共圆,可得13603= 所以,三棱锥B ACD -的外接球的表面积为13⎫故选:B.。

高考数学立体几何体的外接球与内切球常见题型

高考数学立体几何体的外接球与内切球常见题型

高考数学立体几何体的外接球与内切球常见题型介绍在高考数学中,立体几何是一个重要的考点。

其中,经常涉及到求解立体几何体的外接球和内切球的问题。

本文将介绍几种常见的题型以及解题方法,帮助考生更好地理解和应对这类题目。

以下是具体内容。

外接球的题型题型1:求立体几何体的外接球的半径或直径这类题型要求求解一个给定立体几何体的外接球的半径或直径。

解题的关键是找到立体几何体的特性和几何关系。

解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。

2. 根据立体几何体的几何关系,得出外接球与立体几何体的关系。

3. 利用几何关系,建立方程。

4. 求解方程,得到外接球的半径或直径。

题型2:求多个立体几何体的共同外接球的半径或直径这类题型要求求解多个给定立体几何体的共同外接球的半径或直径。

解题的关键是找到多个立体几何体之间的共同特性和几何关系。

解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。

2. 找到多个立体几何体之间的共同特性和几何关系。

3. 根据几何关系,建立方程。

4. 求解方程,得到共同外接球的半径或直径。

内切球的题型题型1:求立体几何体的内切球的半径或直径这类题型要求求解一个给定立体几何体的内切球的半径或直径。

解题的关键是找到立体几何体的特性和几何关系。

解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。

2. 根据立体几何体的几何关系,得出内切球与立体几何体的关系。

3. 利用几何关系,建立方程。

4. 求解方程,得到内切球的半径或直径。

题型2:求多个立体几何体的共同内切球的半径或直径这类题型要求求解多个给定立体几何体的共同内切球的半径或直径。

解题的关键是找到多个立体几何体之间的共同特性和几何关系。

解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。

2. 找到多个立体几何体之间的共同特性和几何关系。

3. 根据几何关系,建立方程。

4. 求解方程,得到共同内切球的半径或直径。

总结本文介绍了高考数学立体几何体的外接球和内切球常见题型,并给出了解题的步骤和方法。

高考数学外接球与内切球十大模型(例题+练习共10个专题)(学生版+解析版)

高考数学外接球与内切球十大模型(例题+练习共10个专题)(学生版+解析版)

专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例] (1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π答案 A 解析 由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ). A .3 B .6 C .36 D .9ABC D A 1B 1C 1D 1类型ⅠA BC DA 1B 1C 1D 1类型ⅡABC D A 1B 1C 1D 1类型ⅢABC D A 1B 1C 1D 1例外型答案 A 解析 616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC,则球O 的表面积等于( ).A .4πB .3πC .2πD .π 答案 解析由已知,22R =, 244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱SA =三棱锥S -ABC 外接球的表面积是________.答案 π36 解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)R ∴=+2+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A. B. C. D答案 D 解析 解法一:, PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC, APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R,=,即344π33R V R π=∴==,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC△为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴==,AEC △中,ABCSMN ABCP EF(解法一)AC(解法二)由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D ∴为AC 的中点,cos E ∠12AD AC PA x ==,2243142x x x x +-+∴=,221212 2x x x ∴+=∴==,,,PA PB PC ∴===2AB BC AC ===,, , PA PB PC ∴两两垂直,2R ∴,R ∴,34433V R ππ∴==⨯==,故选D . (6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β 内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,P A =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体P ACD 的四个顶点都在同一球面上,则该球的体积为________.答案 86π 解析 ∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵P A ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵P A =23,∴BA =2,∵BC=22,∴AC =23.设球的半径为R ,则23-R 2-()32=R 2-()32,∴R =6,V =4π3(6)3=86π.【对点训练】1.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB =1,AC =2,AD =3,则该球的 表面积为( )A .7πB .14πC .72πD .714π32.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱 锥B -ACD 的外接球的表面积为( )A .5πB .203π C .10π D .34π3.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体 积等于________.4.已知四面体P -ABC 四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,AB =PB =2,则球O 的表面积为________.5.三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC 的外接球的体 积为( )A .272πB .2732π C .273π D .27π6.在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π7.在平行四边形ABCD 中,∠ABD =90°,且AB =1,BD =2,若将其沿BD 折起使平面ABD ⊥平面BC D ,则三棱锥A -BDC 的外接球的表面积为( D )A .2πB .8πC .16πD .4π8.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S-ABC的外接球的表面积为()A.6πB.12πC.32πD.36π9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A-BCD为鳖臑,AB⊥平面BCD,且AB=BC=36CD,若此四面体的体积为833,则其外接球的表面积为________.10.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为32的正方形,AA1=3,E是线段A1B1上一点,若二面角A-BD-E的正切值为3,则三棱锥A-A1D1E外接球的表面积为________.专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例] (1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π答案 A 解析 由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ). A .3 B .6 C .36 D .9ABC D A 1B 1C 1D 1类型ⅠA BC DA 1B 1C 1D 1类型ⅡABC D A 1B 1C 1D 1类型ⅢABC D A 1B 1C 1D 1例外型答案 A 解析 616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC,则球O 的表面积等于( ).A .4πB .3πC .2πD .π答案 解析由已知,22R =, 244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱SA =三棱锥S -ABC 外接球的表面积是________.答案 π36 解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)R ∴=+2+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A. B. C. D答案 D 解析 解法一:, PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC, APB PA PB PC ∴∠=90︒,∴===P ABC∴-为正方体的一部分,2R,即344π33R V R π∴===,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴==,AEC △中,ABCSMN ACP EF(解法一)AC(解法二)由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D ∴为AC 的中点,cos E ∠12AD AC PA x ==,2243142x x x x +-+∴=,221212 2x x x ∴+=∴==,,,PA PB PC ∴===2AB BC AC ===,, , PA PB PC ∴两两垂直,2R ∴,R ∴,34433V R ππ∴==⨯==,故选D . (6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β 内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,P A =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体P ACD 的四个顶点都在同一球面上,则该球的体积为________.答案 86π 解析 ∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵P A ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵P A =23,∴BA =2,∵BC=22,∴AC =23.设球的半径为R ,则23-R 2-()32=R 2-()32,∴R =6,V =4π3(6)3=86π.【对点训练】1.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB =1,AC =2,AD =3,则该球的 表面积为( )A .7πB .14πC .72πD .714π31.答案 B 解析 三棱锥A -BCD 的三条侧棱两两互相垂直,所以把它补为长方体,而长方体的体对角 线长为其外接球的直径.所以长方体的体对角线长是12+22+32=14,它的外接球半径是142,外接球的表面积是4π×⎝⎛⎭⎫1422=14π.2.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱 锥B -ACD 的外接球的表面积为( )A .5πB .203π C .10π D .34π2.答案 D 解析 依题意,在三棱锥B -ACD 中,AD ,BD ,CD 两两垂直,且AD =4,BD =CD =3, 因此可将三棱锥BACD 补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R =32+32+42=34,故三棱锥B -ACD 的外接球的表面积为4πR 2=34π3.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体 积等于________. 3.答案6π 解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径.∴CD =(2)2+(2)2+(2)2=2R ,因此R =62,故球O 的体积V =4πR 33=6π.4.已知四面体P -ABC 四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,AB =PB =2,则球O 的表面积为________.4.答案 9π 解析 由PB ⊥平面ABC ,AB ⊥AC ,可得图中四个直角三角形,且PC 为△PBC ,△P AC 的公共斜边,故球心O 为PC 的中点,由AC =1,AB =PB =2,PC =3,∴球O 的半径为32,其表面积为9π.5.三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC 的外接球的体 积为( )A .272πB .2732π C .273π D .27π5.答案 B 解析 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B .6.在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π6.答案 B 解析 在空间直角坐标系内画出A ,B ,C ,D 四个点,可得BA ⊥AC ,DC ⊥平面ABC , 因此可以把四面体ABCD 补成一个棱为2的正方体,其外接球的半径R =22+22+222= 3.所以外接球的表面积为4πR 2=12π,故选B.7.在平行四边形ABCD 中,∠ABD =90°,且AB =1,BD =2,若将其沿BD 折起使平面ABD ⊥平面BCD ,则三棱锥A -BDC 的外接球的表面积为( D )A .2πB .8πC .16πD .4π 7.答案 D 解析 画出对应的平面图形和立体图形,如图所示.AAB BC CD DO在立体图形中,设AC 的中点为O ,连接OB ,OD ,因为平面ABD ⊥平面BCD ,CD ⊥BD ,所以CD ⊥平面ABD ,又AB ⊥BD ,所以AB ⊥平面BCD ,所以△CDA 与△CBA 都是以AC 为斜边的直角三角形,所以OA =OC =OB =OD ,所以点O 为三棱锥A -BDC 的外接球的球心.于是,外接球的半径r =12AC=12CD 2+DA 2=1212+(3)2=1.故外接球的表面积S =4πr 2=4π.故选D .8.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的 外接球的表面积为( )A .6πB .12πC .32πD .36π8.答案 B 解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,AC ,AM ⊂平面SAC ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选B.9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A -BCD 为鳖臑,AB ⊥平面BCD , 且AB =BC =36CD ,若此四面体的体积为833,则其外接球的表面积为________. 9.答案 56π 解析 四面体A -BCD 为鳖臑,则由题意可知△BCD 中只能∠BCD 为直角,则四面体A -BCD 的体积为13×12×CD ·36CD ·36CD =833,解得CD =43.易知外接球的球心为AD 的中点,易求得AD =214,所以球的半径为14,所以球的表面积为56π.10.在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点,若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为________.10.答案 35π 解析 过点E 作EF ∥AA 1交AB 于F ,过F 作FG ⊥BD 于G ,连接EG ,则∠EGF 为二面角A -BD -E 的平面角,∵tan ∠EGF =3,∴EFFG=3,∵EF =AA 1=3,∴FG =1,则BF =2=B 1E ,∴A 1E =22,则三棱锥A -A 1D 1E 外接球的直径为8+9+18=35,因此三棱锥A -A 1D 1E 外接球的表面积S =35π.专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R =长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例] (1)________. 答案解析 这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.答案292π 解析 构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S . (3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____. 答案43436π解析 依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知432R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为34434336R ππ=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +,则该正四面体的外接球的体积是( )A B .6π C D .32π AB C D A 1B 1C 1D 1答案 A 解析 将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为1cos1202BE a a ===,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径R ==,外接球的体积343V R π=.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,AD BC ==A BCD -的外接球表面积为92π.则AC =________.答案解析 将四面体A BCD -放置于长方体中,四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD ==,AD BC ==棱两两相等,∴设AC BD x ==,可得外接球的直径2R =R =,三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得4R ==,解之得x AC BD == 【对点训练】1.已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.2.表面积为( )A .B .12πC .8πD .3.已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是 ________.4.三棱锥中S -ABC ,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为______. 5.已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.6.正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE + 体的外接球表面积是( )A .12πB .32πC .8πD . 24π专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R =长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例] (1)________. 答案解析 这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.答案292π 解析 构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S . (3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____. 答案43436π解析 依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知432R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为34434336R ππ=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +,则该正四面体的外接球的体积是( )A B .6π C D .32π AB C D A 1B 1C 1D 1答案 A 解析 将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为1cos1202BE a a ==,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径R =,外接球的体积343V R π=.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,AD BC ==A BCD -的外接球表面积为92π.则AC =________.答案解析 将四面体A BCD -放置于长方体中,四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD ==,AD BC ==棱两两相等,∴设AC BD x ==,可得外接球的直径2R =R =,三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得R ==,解之得x AC BD == 【对点训练】1.已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.1.答案 163 解析 将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,设正四面体ABCD 的外接球的半径为R ,则43πR 3=86π,解得R =6,因为正四面体ABCD 的外接球和正方体的外接球是同一个球,则有3a =2R =26,所以a =22.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以正四面体ABCD 的棱长为2a =4,因此,这个正四面体的表面积为4×12×42×sin π3=163.2.表面积为( )A .B .12πC .8πD .2.答案 B 解析 表面积为将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为24(3)12ππ=.3.已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是 ________.3.答案 7π 解析 在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥CD .在Rt △AED 中,CD =6,∴AE =102.同理BE =102,取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥AB .在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1,取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.同理得OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 4.三棱锥中S -ABC ,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为______. 4.答案 14π 解析 如图,在长方体中,设AE =a ,BE =b ,CE =c .则SC =AB =a 2+b 2=10,SA =BC =b 2+c 2=13,SB =AC =a 2+c 2=5,从而a 2+b 2+c 2=14=(2R )2,可得S =4πR 2=14π.故所求三棱锥的外接球的表面积为14π.5.已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.5.答案 22 解析 由题意可知,四面体ABCD 的对棱都相等,故该四面体可以通过补形补成一个长 方体,如图所示.设AF =x ,BF =y ,CF =z ,则x 2+z 2=y 2+z 2=5,又4π×⎝ ⎛⎭⎪⎫x 2+y 2+z 222=9π,可得x =y =2,∴a =x 2+y 2=22.6.正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE + 体的外接球表面积是( )A .12πB .32πC .8πD .24π6.答案 A 解析 将三角形ABC 与三角形ACD 展成平面,BP PE +的最小值,即为BE 两点之间连线的距离,则BE =2AB a =,则120BAD ∠=︒,由余弦定理221414222a a a a +--=,解得a =,则正四面体棱长为4倍,所以,设外接球半径为R ,则223R =,则表面积244312S R πππ===.专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例] (1) (2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).AB. C .132D. 答案 C 解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.另解 过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r 132=.故选C . (2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).O 1C 1AA 1B 1O BC Rrh2hO 2A .2a πB .273a πC .2113a πD .237a π答案 B 解析 222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A .10πB .20πC .30πD .40π答案 B 解析 如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D 解析 由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A .12)πB .C .3)πD .16π 答案 A 解析 设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则222222222165959()()32332444h R r r r r r r r r=+=+-=+--=,当且仅当22594r r=,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为43)12)ππ=-. 【对点训练】1.一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为( ) A .28π3 B .22π3 C .43π3D .7π2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该 六棱柱的体积为98,底面周长为3,则这个球的体积为________.3.已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A .40π3B .4030π27C .32030π27D .20π5.已知矩形ABCD 中,AB =2AD =2,E ,F 分别为AB ,CD 的中点,将四边形AEFD 沿EF 折起,使二 面角A -EF -C 的大小为120°,则过A ,B ,C ,D ,E ,F 六点的球的表面积为( ) A .6π B .5π C .4π D .3π6.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A .32π3B .3πC .4π3D .8π7.有一个圆锥与一个圆柱的底面半径相等,此圆锥的母线与底面所成角为60︒,若此圆柱的外接球的表面积是圆锥的侧面积的4倍,则此圆柱的高是其底面半径的( )A B .2倍 C . D .3倍 8.正四棱柱1111ABCD A B C D -中,2AB =,二面角11A BD C --的大小为3π,则该正四棱柱外接球的表面积为( )A .12πB .14πC .16πD .18π9.正四棱柱1111ABCD A B C D -中,AB =12AA =,设四棱柱的外接球的球心为O ,动点P 在正方 形ABCD 的边上,射线OP 交球O 的表面点M ,现点P 从点A 出发,沿着A B C D A →→→→运动一次,则点M 经过的路径长为________.10.已知圆柱的上底面圆周经过正三棱锥P ABC -的三条侧棱的中点,下底面圆心为此三棱锥底面中心O .若三棱锥P ABC -的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径的比值为________.专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例] (1) (2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).A.2 B. C .132D. 答案 C 解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.另解 过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r 132=.故选C . (2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).A .2a πB .273a πC .2113a πD .237a πO 1C 1AA 1B 1O BC Rrh2hO 2答案 B 解析 222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A .10πB .20πC .30πD .40π答案 B 解析 如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D 解析 由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A .12)πB .C .3)πD .16π 答案 A 解析 设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则222222222165959()()32332444h R r r r r r r r r=+=+-=+--=,当且仅当22594r r=,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为43)12)ππ=-. 【对点训练】1.一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为( ) A .28π3 B .22π3 C .43π3D .7π1.答案 A 解析 由题知此直棱柱为正三棱柱ABC -A 1B 1C 1,设其上下底面中心为O ′,O 1,则外接球 的球心O 为线段O ′O 1的中点,∵AB =2,∴O ′A =33AB =233,OO ′=12O ′O 1=1,∴OA =O ′O 2+O ′A 2=213,因此,它的外接球的半径为213,故球O 的表面积为28π3.故选A . 2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该。

高考数学中的内切球和外接球问题(附习题)

高考数学中的内切球和外接球问题(附习题)

高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .27π.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.43π.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为.14π.例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(). CA. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有263,1,2936,384x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩.∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.9π.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积249S R ππ==.小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222R a b c =++.出现“墙角”结构利用补形知识,联系长方体。

立体几何之内切球与外接球求法(经典习题)

立体几何之内切球与外接球求法(经典习题)

圆梦教育中心立体几何之内切球与外接球一、球与棱柱的组合体问题1. (2007天津理•12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱 的长分别为1,2,3,则此球的表面积为 . 答案 14π2.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( )A . 1∶3B . 1∶3C . 1∶33D . 1∶9 答案 C3.已知正方体外接球的体积是π332,那么正方体的棱长等于( ) A.22 B.332 C.324 D.334 4.(吉林省吉林市2008届上期末)设正方体的棱长为233,则它的外接球的表面积为( )A .π38 B .2π C .4πD .π34答案C5.(2007全国Ⅱ理•15)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上。

如果正四 棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2.答案 2+6.(2008海南、宁夏理科)一个六棱柱的底面是正六边 形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 答案34π 7.(2012辽宁文)已知点P,A,B,C,D 是球O 表面上的点,PA ⊥平面ABCD,四边形ABCD 是边长为形.若,则△OAB 的面积为______________. 二、锥体的内切球与外接球8.(辽宁省抚顺一中2009届高三数学上学期第一次月考) 棱长为2的正四面体的四个顶点都在同一个 球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是 . 答案F9.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥 P ABCDEF -,则此正六棱锥的侧面积是________. 答案10. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C . 43 D .123答案 B11.(2009枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为 ( ) A .π3 B .π2C .316πD .以上都不对答案C12.正三棱柱111ABC A B C -内接于半径为2的球,若22的边长为ABC ∆,则正三棱柱的体积为 .答案 82014高三补充题:(1)已知长方体的一个顶点上的三条棱长分别是h ,8,4,且它的8个顶点都在同一个球面上,这个球面的表面积为100π,则________=h (答:52)(2)三棱锥ABC P -的四个顶点都在半径为4的球面上,且三条侧棱两两互相垂直,则该三棱锥侧面积的最大值为__________(答案:32)(3)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是 .(答:16π)(4)在三棱柱111C B A ABC -中,侧棱1AA 垂直底面,,1,30,900==∠=∠BC BAC ACB且三棱柱 111C B A ABC -的体积为3,则三棱柱111C B A ABC -的外接球表面积为______(答:16π) (5) 在四面体ABCD 中,,5,4,6======BC AD BD AC CD AB则四面体ABCD 的外接球表面积为______(答:即长方体的外接球表面积:277π) (6)四棱锥ABCD P -的底面是边长为24的正方形,侧棱长都等于54,则经过该棱锥五个顶点的球面面积为________(答:100π)(7)正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为1,此时四面体ABCD外接球表面积为______(答:313π)(8)已知O 的直径,4=PQ C B A ,,是球O 球面上的三点,ABC ∆是正三角形,且,300=∠=∠=∠CPQ BPQ APQ 则三棱锥ABC P -的体积为( B )A.433 B.439 C.233 D.4327 (9)(长春第四次调研试题)已知空间4个球,它们的半径分别为2,2,3,3,,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为( B ) A.117 B.116 C.115 D .114 (10)(辽、哈、东北师大一联模)球O 的球面上有四点,,,,C B A S 其中C B A O ,,,四点共面,ABC ∆是边长为2的正三角形,面SAB ⊥面ABC ,则棱锥ABC S -的体积的最大值为(D ) A. 3 B.31C.23D.33(11) (快乐考生预测卷一)已知正方体1111D C B A ABCD -的各顶点都在同一个球面上,若四面体11CD B A -的表面积为83, 则球的体积为_________(答:π34)(12)(快乐考生预测卷四)如图,一个几何体三视图的正视图和侧视图为边长为2锐角600的菱形,则此几何体的内切球表面积为( ) A. π8 B.π4 C.π3 D.π2(13)(快乐考生预测卷五)在平行四边形ABCD 中,0=⋅→→BC AB ,6222=+→→BD AB ,若将ABD ∆沿BD 折成直二面角C BD A --,则三棱锥BCD A -外接球的表面积为________(答:6π)(14)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且,32,6==BC AB 则棱锥ABCDO -的体积为________(答:38)(15)点A,B,C,D 在同一个球的球面上,,2,2===AC BC AB 若四面体ABCD 体积的最大值为32,则这个球的表面积为 (答:C) A.6125π B.π8 C 425π D.1625π。

【高中数学】空间几何体外接球与内切球问题

【高中数学】空间几何体外接球与内切球问题

8.16作业 空间几何体外接球与内切球问题
1. 已知正四面体棱长为2,分别求该正四面体的外接球与内切球的半径.
2. 已知圆柱的内切球(圆柱的上、下底面及侧面都与球相切)的体积为43
π,求该圆柱的体积.
3. O 内切于该圆锥. (1)求该圆锥的高;
(2)求内切球O 的体积.
4.
5. 在长方体1111ABCD A B C D −中,AB =6,BC =8,16AA =.
(1)求三棱锥1D ABC −的体积;
(2)在三棱柱111ABC A B C −内放一个体积为V 的球,求V 的最大值.
6. 半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体
现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长2,
(1)求其体积;
(2)若其各个顶点都在同一个球面上,求该球的表面积.。

空间几何体的外接球与内切球问题(学生版)

空间几何体的外接球与内切球问题(学生版)

空间几何体的外接球与内切球问题目录一、必备秘籍二、典型题型题型一:内切球等体积法题型二:内切球独立截面法题型三:外接球公式法题型四:外接球补型法题型五:外接球单面定球心法题型六:外接球双面定球心法三、专项训练一、必备秘籍1.球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。

定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。

类型一球的内切问题(等体积法)例如:在四棱锥P-ABCD中,内切球为球O,求球半径r.方法如下:V P-ABCD=V O-ABCD+V O-PBC+V O-PCD+V O-PAD+V O-PAB即:V P-ABCD=13S ABCD⋅r+13S PBC⋅r+13S PCD⋅r+13S PAD⋅r+13S PAB⋅r,可求出r.类型二球的外接问题1、公式法正方体或长方体的外接球的球心为其体对角线的中点2、补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD) 3、单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P-ABC中,选中底面ΔABC,确定其外接圆圆心O1(正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2r=asin A);②过外心O1做(找)底面ΔABC的垂线,如图中PO1⊥面ABC,则球心一定在直线(注意不一定在线段PO1上)PO1上;③计算求半径R:在直线PO1上任取一点O如图:则OP=OA=R,利用公式OA2=O1A2+OO12可计算出球半径R.4、双面定球心法(两次单面定球心)如图:在三棱锥P-ABC中:①选定底面ΔABC,定ΔABC外接圆圆心O1②选定面ΔPAB,定ΔPAB外接圆圆心O2③分别过O1做面ABC的垂线,和O2做面PAB的垂线,两垂线交点即为外接球球心O.二、典型题型题型一:内切球等体积法1(22·23·全国·专题练习)正三棱锥P-ABC的三条棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为()A.1:3B.1:3+3C.3+1 :3D.3-1 :32(22·23下·朔州·阶段练习)正四面体的内切球、棱切球(与各条棱均相切的球)及外接球的半径之比为.3(23·24上·萍乡·期末)已知球O 是棱长为1的正四面体的内切球,AB 为球O 的一条直径,点P 为正四面体表面上的一个动点,则PA ⋅PB的取值范围为.4(22·23上·张家口·期中)球O 为正四面体ABCD 的内切球,AB =4,PQ 是球O 的直径,点M 在正四面体ABCD 的表面运动,则MP ⋅MQ的最大值为.5(22·23上·河南·阶段练习)已知正四面体ABCD 的棱长为12,球O 内切于正四面体ABCD ,E ,F 是球O 上关于球心O 对称的两个点,则AE ⋅BF的最大值为.6(22·23上·扬州·期中)中国古代数学名著《九章算术》中将底面为矩形且有一条侧棱垂直于底面的四棱锥称为“阳马”.现有一“阳马”的底面是边长为3的正方形,垂直于底面的侧棱长为4,则该“阳马”的内切球表面积为,内切球的球心和外接球的球心之间的距离为.题型二:内切球独立截面法1(23·24上·淮安·开学考试)球M 是圆锥SO 的内切球,若球M 的半径为1,则圆锥SO 体积的最小值为()A.43π B.423π C.83π D.4π2(22·23下·咸宁·期末)已知球O 内切于圆台(即球与该圆台的上、下底面以及侧面均相切),且圆台的上、下底面半径r 1:r 2=2:3,则圆台的体积与球的体积之比为()A.32B.1912C.2D.1963(22·23·全国·专题练习)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为.4(23·24上·佛山·开学考试)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的体积为4π3,当该圆锥体积取最小值时,该圆锥的表面积为.5(22·23下·成都·阶段练习)已知圆锥的底面半径为2,高为42,则该圆锥的内切球表面积为.题型三:外接球公式法1(16·17·全国·单元测试)若长方体从一个顶点出发的三条棱长分别为3,4,5,则该长方体的外接球表面积为 ()A.50πB.100πC.150πD.200π2(22·23·全国·专题练习)设球O 是棱长为4的正方体的外接球,过该正方体的棱的中点作球O 的截面,则最小截面的面积为()A.3πB.4πC.5πD.6π3(14·15上·佛山·阶段练习)正方体的外接球(正方体的八个顶点都在球面上)与其内切球(正方体的六个面都与球相切)的体积之比是.题型四:外接球补型法1(23·24上·成都·开学考试)在三棱锥P -ABC 中,PA =PB =PC =2,PA ⊥PB ,PA ⊥PC ,PB ⊥PC ,则该三棱锥的外接球的表面积为()A.43πB.12πC.48πD.323π2(22·23下·揭阳·期中)在三棱锥S -ABC 中,SA =BC =5,SB =AC =41,SC =AB =34,则该三棱锥的外接球表面积是()A.50πB.100πC.150πD.200π3(23·24上·成都·开学考试)已知四面体ABCD 满足AB =CD =3,AD =BC =5,AC =BD =2,且该四面体ABCD 的外接球的表面积是()A.2πB.6πC.6π11D.4π4(22·23下·黔西·阶段练习)正三棱锥P -ABC 的三条棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为.5(22·23下·黔西·期中)如图,已知在三棱锥P -ABC 中,PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,且PA =2PB =2PC =2,求该三棱锥外接球的表面积是.题型五:外接球单面定球心法1(23·24上·汉中·模拟预测)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,O为△ABC 外接圆的圆心,O 为三棱锥P -ABC 外接球的球心,OQ ⊥PA ,则三棱锥P -ABC 的外接球O 的表面积为.2(23·24上·秦皇岛·开学考试)三棱锥P-ABC中,AB⊥BC,P在底面的射影O为△ABC的内心,若AB=4,BC=3,PO=5,则四面体PABC的外接球表面积为.3(22·23下·石家庄·阶段练习)已知球O是正四面体P-ABC的外接球,E为棱PA的中点,F是棱PB上的一点,且FC=2EF,则球O与四面体P-EFC的体积比为.4(22·23下·淄博·期末)已知四棱锥P-ABCD的底面ABCD是矩形,侧面PAD为等边三角形,平面PAD⊥平面ABCD,其中AD=2,AB=3,则四棱锥P-ABCD的外接球表面积为.题型六:外接球双面定球心法1(22·23上·抚州·期中)已知菱形ABCD的各边长为2,∠D=60°.如图所示,将△ACD沿AC折起,使得点D到达点S的位置,连接SB,得到三棱锥S-ABC,此时SB=3.若E是线段SA的中点,点F在三棱锥S-ABC的外接球上运动,且始终保持EF⊥AC则点F的轨迹的面积为.2(22·23·赣州·模拟预测)如图,正三角形ABC中,D,E分别为边AB,AC的中点,其中AB=4,把△ADE沿着DE翻折至△A DE的位置,得到四棱锥A -BCED,则当四棱锥A -BCED的体积最大时,四棱锥A -BCED外接球的球心到平面A BC的距离为.3(22·23下·湖南·期末)为加强学生对平面图形翻折到空间图形的认识,某数学老师充分利用习题素材开展活动,现有一个求外接球表面积的问题,活动分为三个步骤,第一步认识平面图形:如图(一)所示的四边形PABC中,AB=BC=2,PA=PC,∠ABC=60°,PA⊥PC.第二步:以AC为折痕将△PAC折起,得到三棱锥P-ABC,如图(二).第三步:折成的二面角P-AC-B的大小为120°,则活动结束后计算得到三棱锥P-ABC外接球的表面积为.三、专项训练一、单选题1(22·23下·河南·模拟预测)已知直六棱柱的所有棱长均为2,且其各顶点都在同一球面上,则该球的表面积为( ).A.16πB.20πC.24πD.25π2(22·23下·宁德·期中)正四面体ABCD的外接球的半径为2,过棱AB作该球的截面,则截面面积的最小值为()A.2π3B.4π3C.8π3D.3π3(23·24上·河北·开学考试)长方体的一个顶点上三条棱长是3,4,5,且它的八个顶点都在同一球面上,这个球的体积是()A.12523π B.1252π C.50π D.125π4(22·23下·临夏·期末)已知四棱锥P-ABCD的体积为83,侧棱PA⊥底面ABCD,且四边形ABCD是边长为2的正方形,则该四棱锥的外接球的表面积为()A.12πB.8πC.4πD.2π5(23·24上·广东·阶段练习)如图,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△AED,△BEF,△DCF分别沿DE,EF,DF折起,使得A,B,C三点重合于点A ,若三棱锥A -EFD的所有顶点均在球O的球面上,则球O的表面积为()A.2πB.3πC.6πD.8π6(23·24上·安徽·开学考试)在封闭的等边圆锥(轴截面为等边三角形)内放入一个球,若球的最大半径为1,则该圆锥的体积为()A.3πB.6πC.9πD.12π7(23·24上·莆田·阶段练习)三棱锥P-ABC中,△ABC是边长为23的正三角形,PA=4,PA⊥AB,D为BC中点且PD=5,则该三棱锥外接球的表面积为()A.16πB.32πC.48πD.64π8(22·23·九江·一模)三棱锥A-BCD中,△ABD与△BCD均为边长为2的等边三角形,若平面ABD ⊥平面BCD,则该三棱锥外接球的表面积为()A.8π3B.20π3C.8πD.20π二、填空题9(23·24·柳州·模拟预测)已知圆锥的底面直径为23,轴截面为正三角形,则该圆锥内半径最大的球的体积为.10(22·23·唐山·二模)已知某圆台的上、下底面的圆周在同一球的球面上,且圆台上底面半径为1,下底面半径为2,轴截面的面积为3,则该圆台的外接球的体积为.11(22·23·大同·模拟预测)四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P-ABC中,PA⊥平面ABC,PA=4,AB=BC=2,鳌臑P-ABC的四个顶点都在同一个球面上,则该球的表面积是.12(23·24上·辽宁·阶段练习)已知圆锥的底面半径为2,侧面展开图的面积为8π,则该圆锥的内切球的体积为.13(23·24上·成都·阶段练习)已知三棱锥S-ABC底面ABC是边长为2的等边三角形,平面SAB⊥底面ABC,SA=SB=2,则三棱锥S-ABC的外接球的表面积为.14(23·24上·遂宁·阶段练习)已知正三棱柱ABC-A1B1C1的六个顶点在球O1上,又球O2与此三棱柱的5个面都相切,则球O1与球O2的表面积之比为.15(22·23下·赣州·阶段练习)已知圆锥的内切球半径为1,若圆锥的侧面展开图恰好为一个半圆,则该圆锥的体积为.。

空间几何体外接球和内切球题型归纳

空间几何体外接球和内切球题型归纳

空间几何体外接球和内切球题型梳理一、求外接球半径的常用方法题型1高过外心例题1 正四棱锥P ABCD-的所有顶点都在球O的球面上,2PA AB==,则球O的表面积为______【解析】∵正四棱锥P﹣ABCD的所有顶点都在球O的球面上,P A=AB=2,∵连结AC,BD,交于点O,连结PO,则PO∵面ABCD,OA=OB=OC=OD221122222AC==+=OP22422PB OB=-=-=∵O是球心,球O半径r2=∵球O表面积为S=4πr2=8π变式1在三棱锥P ABC-中.2PA PB PC===.1AB AC==,3BC=,则该三棱锥的外接球的表面积为______【解析】因为1,3AB AC BC===,由余弦定理可求得23BACπ∠=再由正弦定理可求得ABC∆的外接圆的半径122sin3BCrπ==因为2PA PB PC===,所以P在底面上的射影为ABC∆的外心D,且3PD=设其外接球的半径为R,则有22213)R R=+,解得23R=空间几何体(以ABCDP-为例)的高过底面的外心(即顶点的投影在底面外心上):(1)先求底面ABCD的外接圆半径r,确定底面ABCD外接圆圆心位置O';(2)把O'垂直上移到点O,使得点O到顶点P的距离等于到DCBA、、、的距离相等,此时点O是几何体外接球球心;(3)连接OA,那么OAR=, 由勾股定理得:222OOrR'+=.所以其表面积为24164433S R πππ==⨯= 题型2 高不过外心例题2 (1)长方体ABCD −A 1B 1C 1D 1的8个顶点在同一个球面上,且AB =2,AD =√3,AA 1=1,则球的表面积为______.(2)已知正三棱柱111ABC A B C -的底面边长为3,外接球表面积为16π,则正三棱柱111ABC A B C -的体积为( ) 【解析】(1)长方体ABCD −A 1B 1C 1D 18个顶点在同一个球面上,所以球的直径等于长方体的对角线长, 设球的半径为R ,因为AB =2,AD =√3,AA 1=1,所以4R 2=22+√32+12=8,球的表面积为4πR 2=8π,故答案8π.(2)正三棱柱111ABC A B C -的底面边长为3,故底面的外接圆的半径为03,2sin60r r r =⇒=外接球表面积为16π242R R π=⇒=外接球的球心在上下两个底面的外心MN 的连线的中点上,记为O 点,如图所示在三角形1OMB 中,22211112MB r OB R MB OM OB ====+=解得1,2OM MN h === 故棱柱的体积为:13322V Sh ==⨯⨯=,选D 例题3 已知P ,A ,B ,C ,D 是球O 的球面上的五个点,四边形ABCD 为梯形,//AD BC ,2AB DC AD ===,4BC PA ==,PA ⊥面ABCD ,则球O 的体积为______【解析】取BC 中点E ,连接,,AE DE BD//AD BC 且12AD BC EC ==,∴四边形ADCE 为平行四边形AE DC ∴=,又12DC BC =,12DE BC ∴=,AE DE BE EC ∴===, E ∴为四边形ABCD 的外接圆圆心,设O 为外接球的球心,由球的性质可知OE ⊥平面ABCD作OF PA ⊥,垂足为F ∴四边形AEOF 为矩形,2OF AE ==设AF x =,OP OA R ==,则()22444x x +-=+,解得:2x =,R ∴==∴球O 的体积:343V R π==本题正确选项:A 变式2 已知三棱柱111ABC A B C -的侧棱与底面垂直,12,4AA BC BAC π==∠=,则三棱柱111ABC A B C -外接球的体积为( )A .B .C .D .【解析】设ABC ∆的外接圆圆心为1O ,111A B C ∆的外接圆圆心为2O , 球的球心为O ,因为三棱柱111ABC A B C -的侧棱与底面垂直,所以球的球心为12O O 的中点,且直线12O O与上、下底面垂直,且122sin4O C π==,11O O =,所以在1O Rt O C ∆中,OC ==343R π=,选D 变式3 四棱锥P ABCD -的底面为正方形ABCD ,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为92π的同一球面上,则PA 的长为( ) A .3 B .2C .1D .12【解析】连接AC 、BD 交于点E ,取PC 的中点O ,连接OE ,可得OE ∥PA,OE ⊥底面ABCD ,可得O 到四棱锥的所有顶点的距离相等,即O 为球心,设球半径为R ,可得12R PC ==34932ππ⋅=,解得PA=1,故选C. 变式4 四棱锥A BCDE -的各顶点都在同一球面上,AB ⊥底面BCDE ,底面BCDE 为梯形,60BCD ∠=,且2AB CB BE ED ====,则此球的表面积等于( )A .25πB .24πC .20πD .16π【解析】如图,由已知可得,底面四边形BCDE 为等腰梯形, 设底面外接圆的圆心为G ,连接BG ,则224sin30BG ==,2BG ∴=,又2AB =,设四棱锥外接球的球心为O ,则OA =∴此球的表面积等于2420ππ⨯=.选C二、常见几何体的外接球题型3长/正方体外接球例题4 若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球O 的表面上,则此球的表面积为________【解析】长方体外接球半径:2292432222=++=R ,所以外接球面积:ππ2942==R S例题5 一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_______ 【解析】设正方体棱长为a ,则1862=a ,∴3=a .设球的半径为R ,则由题意知2323==a R .故球的体积ππ29343==R V 变式5 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( )A .B .C .D 【解析】平面D D AA 11截面所得圆面的半径为2222122=⎪⎪⎭⎫ ⎝⎛-=r ,直线EF 被球O 截得的线段为球的截面圆的直径,为22=r题型4 棱柱的外接球1111ABCD A B C D -O E F ,1AA 1DD EF O 2112+例题6 直三棱柱ABC −A 1B 1C 1中,已知AB ⊥BC ,AB =3,BC =4,AA 1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________.【解析】AB ⊥BC ,AB =3,BC =4,所以5=b 底面外接圆的半径:25sin 21==B b r ,111C B A ABC -是直三棱柱,5=h ,所以几何体外接球半径225)2(22=+=h r R ;故该球表面积ππ5042==R S直棱柱外接球的求法—汉堡模型1. 补型:补成长方体,若各个顶点在长方体的顶点上,则外接球与长方体相同2. 作图:构造直角三角形,利用勾股定理1)第一步:求底面外接圆的半径:Aar sin 21=(a 为角A 的对边);22)(hr R +=例题7 直三棱柱111C B A ABC -的所有棱长均为2√3,则此三棱柱的外接球的表面积为( ) A .12πB .16πC .28πD .36π【解析】由直三棱柱的底面边长为2√3,得底面外接圆的半径:23sin 3221==πr , 又由直三棱柱的侧棱长为2√3,则32=h ,所以外接球半径7)2(22=+=hr R ,∵外接球的表面积ππ2842==R S .选C变式6 设直三棱柱111C B A ABC -的所有顶点都在一个球面上,且球的表面积是π40,1AA AC AB ==,o 120=∠BAC ,则此直三棱柱的高是________.【解析】设BAC ∆边长为a ,则BAC ∆外接圆半径为122sin3aπ⋅=,因为2244010R R ππ=∴=所以22210,2a R a a ⎛⎫=+== ⎪⎝⎭即直三棱柱的高是题型5 棱锥的外接类型一:正棱锥型 (如下图1,以正三棱锥为例,顶点P 的投影落在ABC ∆的外心上) 1) 求底面外接圆半径:Aar sin 21=(a 为角A 的对边)2) 求出r AH 32=,求出棱锥高度22AHPA PH h -==3) 由勾股定理得外接球半径:()2222)32(r R h AHOH R +-=+=类型二:侧棱垂直底面型 (如上图2)1)求底面外接圆半径:AaHD r sin 21==(a 为角A 的对边);2)棱锥高度PA h =3)由勾股定理得外接球半径:222)(h r R +=图1图2例题8 已知正四棱锥P ABCD -,若该正四棱锥的体积为2,则此球的体积为__________.【解析】如图所示,设底面正方形ABCD 的中心为O ',正四棱锥P ABCD -的外接球的球心为O1O D ∴'=正四棱锥的体积为22123P ABCDV PO -⨯⨯'∴==,解得3PO '=,3OO PO PO R ∴-'=='-在D O O Rt '∆中,由勾股定理可得: 222OO O D OD '+='即()22231R R -+=,解得53R =2344550033381V R πππ⎛⎫∴==⨯= ⎪⎝⎭球例题9 在三棱锥P ABC -中, 2AP =,AB = PA ⊥面ABC ,且在三角形ABC 中,有()cos 2cos c B a b C =-,则该三棱锥外接球的表面积为__________.【解析】设该三棱锥外接球的半径为R . 在三角形ABC 中, ()cos 2cos c B a b C=-∴cos cos 2cos c B b C a C +=∴根据正弦定理可得sin cos sin cos 2sin cos C B B C A C +=,即()sin 2sin cos B C A C +=.∵sin 0A ≠∴1cos 2C =∵()0,C π∈∴3C π= ∴由正弦定理,2sin3r =,得三角形ABC 的外接圆的半径为3r =.∵PA ⊥面ABC∴()()()22222PA r R +=∴210R =∴该三棱锥外接球的表面积为2440S R ππ==故选A.例题10 已知如图所示的三棱锥D ABC -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在平面相互垂直,3AB =,AC =BC CD BD ===O 的表面积为__________.【解析】3AB =,AC =BC =222AB AC BC ∴+=,AC AB ∴⊥,ABC ∆和DBC ∆所在平面相互垂直,43sin32sin 2==∠=πBCDBC R ,∴球O 表面积为2416R ππ=.例题11 三棱锥P ABC -的底面是等腰三角形,120C ∠=︒,侧面PAB 是等边三角形且与底面ABC 垂直,2AC =,则该三棱锥的外接球表面积为__________.【解析】 如图, 在等腰三角形ABC 中, 由120C ∠=︒,得30ABC ∠=︒,又2AC =,设G 为三角形ABC 外接圆的圆心,则22sin sin 30AC CG ABC ==∠︒,2CG ∴=.再设CG 交AB 于D ,可得1CD =,AB =1DG =. 在等边三角形PAB 中, 设其外心为H ,则223BH PH PD ===. 过G 作平面ABC 的垂线, 过H 作平面PAB 的垂线, 两垂线相交于O , 则O 为该三棱锥的外接球的球心,则半径R OB ===∴该三棱锥的外接球的表面积为2420ππ⨯=例题12 在四面体ABCD中,AB =1DA DB CA CB ====,则四面体ABCD 的外接球的表面积为__________.【解析】由AB =,1DA DB CA CB ====,所以222CA CB AB +=,222AD BD AB +=可得90ACB ADB ∠=∠=,所以2OA OB OC OD ====,即O 为外接球的球心,球的半径2R =所以四面体ABCD 外接球表面积214422S R πππ==⨯=例题13 已知三棱锥P ABC -的所有顶点都在球O 的球面上,PC 是球O 的直径.若平面PCA ⊥平面PCB ,PA AC =,PB BC =,三棱锥P ABC -的体积为a ,则球O 的体积为__________.【解析】如下图所示,设球O 的半径为R ,由于PC 是球O 的直径,则PAC ∠和PBC ∠都是直角,由于PA AC =,PB BC =,所以,PAC ∆和PBC ∆是两个公共斜边PC 的等腰直角三角形, 且PBC ∆的面积为212PBC S PC OB R ∆==,PA AC =,O 为PC 的中点,则OA PC ⊥,平面PAC ⊥平面PBC ,平面PAC ⋂平面PBC PC =,OA ⊂平面PAC ,所以,OA ⊥平面PBC , 所以,三棱锥P ABC -的体积为23111333PBC OA S R R R a ∆⨯⨯=⨯==,球O 的体积为33414433R R a πππ=⨯=例题14 在三棱锥A ﹣BCD 中,△ABD 与△CBD 均为边长为2的等边三角形,且二面角A BD C --的平面角为120°,则该三棱锥的外接球的表面积为( ) A .7πB .8πC .163πD .283π【解析】如图,取B D 中点H ,连接AH ,CH ,因为△ABD 与△CBD 均为边长为2的等边三角形所以AH ⊥BD ,CH ⊥BD ,则∠AHC 为二面角A ﹣BD ﹣C 的平面角,即∠AHD =120°设△ABD 与△CBD 外接圆圆心分别为E ,F则由AH =2=AE 23=AH =EH 13=AH = 分别过E ,F 作平面ABD ,平面BCD 的垂线,则三棱锥的外接球一定是两条垂线的交点记为O ,连接AO ,HO ,则由对称性可得∠OHE =60°所以OE =1,则R =OA 3==,则三棱锥外接球的表面积221284493R πππ=⨯= 变式7 已知正四棱锥P ABCD -的各条棱长均为2,则其外接球的表面积为( )A. 4πB. 6πC. 8πD. 16π【解析】设点P 在底面ABCD 的投影点为O ',则12,2AO AC PA PO ==''=⊥平面ABCD,故PO ='而底面ABCD 所在截面圆的半径AO '=故该截面圆即为过球心的圆,则球的半径,故外接球的表面积为248,S R ππ==故选C.变式8 如图,正三棱锥D ABC -的四个顶点均在球O 的球面上,底面正三角形的边长为3,侧棱长为O 的表面积是__________.【解析】如图,设OM x =,OB OD r ==,3AB =,BM ∴=DB =3DM ∴=,在Rt OMB ∆中,22(3)3x x -=+,得:1x =, 2r ∴=,16O S π∴=球,选C .变式9 已知三棱锥S ABC -中, SA ⊥平面ABC ,且30ACB ∠=︒, 21AC AB SA ===.则该三棱锥的外接球的体积为( )B. 13π【解析】∵30ACB ∠=︒, 2AC AB ==ABC 是以AC 为斜边的直角三角形其外接圆半径2AC r ==,则三棱锥外接球即为以ABC C 为底面,以SA 为高的三棱柱的外接球∴三棱锥外接球的半径R 满足,2R ==故三棱锥外接球的体积34.36V R π== 变式10 已知底面边长为√2,各侧面均为直角三角形的正三棱锥P −ABC 的四个顶点都在同一球面上,则此球的表面积为( )A. 3πB. 2πC. 43π D. 4π【解析】由题意得正三棱锥侧棱长为1,将三棱锥补成一个正方体(棱长为1),则正方体外接球为正三棱锥外接球,所以球的直径为√1+1+1=√3,故其表面积为S =4×π×(√32)2=3π.选A .变式11 《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如下图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是( )A. 81πB. 33πC. 56πD. 41π【解析】由三视图可得,该几何体是一个如图所示的四棱锥P −ABCD ,其中ABCD 是边长为4的正方形,平面PAB ⊥平面ABCD .设F 为AB 的中点,E 为正方形ABCD 的中心,O 为四棱锥外接球的球心,O 1为ΔPAB 外接圆的圆心,则球心O 为过点E 且与平面ABCD 垂直的直线与过O 1且与平面PAB 垂直的直线的交点.由于ΔPAB 为钝角三角形,故O 1在ΔPAB 的外部,从而球心O 与点P 在平面ABCD 的两侧.由题意得PF =1,OE =O 1F,OO 1=EF ,设球半径为R ,则R 2=OE 2+OB 2=EF 2+O 1P 2,即OE 2+(2√2)2=22+(1+OE)2,解得OE =32,∴R 2=(32)2+(2√2)2=414,∴S 球表=4πR 2=41π.选D .变式12 (2020·南昌市八一中学)如图所示,三棱锥S 一ABC 中,△ABC 与△SBC 都是边长为1的正三角形,二面角A ﹣BC ﹣S 的大小为23,若S ,A ,B ,C 四点都在球O 的表面上,则球O 的表面积为( )A .73πB .133πC .43πD .3π【解析】取线段BC 的中点D ,连结AD ,SD ,由题意得AD ⊥BC ,SD ⊥BC ,∴∠ADS 是二面角A ﹣BC ﹣S 的平面角,∴∠ADS 23π=,由题意得BC ⊥平面ADS , 分别取AD ,SD 的三等分点E ,F ,在平面ADS 内,过点E ,F 分别作直线垂直于AD ,SD ,两条直线的交点即球心O ,连结OA ,则球O 半径R =|OA |,由题意知BD 12=,AD 32=,DE 1336AD ==,AE 2333AD ==,连结OD ,在Rt △ODE 中,3ODE π∠=,OE =12=, ∴OA 2=OE 2+AE 2712=,∴球O 的表面积为S =4πR 273π=.选A .变式13 四面体SABC 中,AC BC ⊥,SA ⊥平面ABC ,SA =AC =,BC =,则该四面体外接球的表面积为( )A .323πB .163πC .16πD .32π【解析】如图所示:由已知可得SAB 与SBC 为直角三角形,所以该几何体的外接球球心为SB 的中点O因为AC BC ==且AC BC ⊥,所以10AB ,所以4SB ==所以四面体SABC 的外接球半径2R =,则表面积2416S R ππ==,选C题型6 墙角型例题15 已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,AB =BD =CD =2,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .2√3πC .4√3πD .12π【解析】∵BD =CD =2且ΔBCD 为直角三角形 ∴BD ⊥CD又AB ⊥平面BCD ,CD ⊂平面BCD ∴CD ⊥AB ∴CD ⊥平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即球O 的表面积:S =4πR 2=12π,选D变式14 已知一个棱长为2的正方体被两个平面所截得的几何体的三视图如图所示,则该几何体外接球的表面积是( )A .24πB .20πC .16πD .12π【解析】该几何体是把正方体1AC 截去两个四面体111AA B D 与111CC B D ,其外接球即为正方体1AC 的外接球,由1AC ==∴外接球的半径R =∴该几何体外接球的表面积是2412ππ⨯=.选D .变式15 在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直,则三棱锥P ABC -的外接球的表面积为( )A .12πB .6πC .4πD .3π 【解析】在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直,∴以PA 、PB 、PC 为棱构造棱长为1的正方体,则这个正方体的外接球就是三棱锥P ABC -的外接球,∴三棱锥P ABC -的外接球的半径22r ==, ∴三棱锥P ABC -的外接球的表面积为:2412S r ππ==.选A .巩固提升1.已知三棱锥S ABC -的各顶点都在一个球面上,球心O 在AB 上,SO ⊥底面ABC ,球的体积与三棱锥体积之比是4π,AC =( ) A .π B .2πC .3πD .4π【解析】由于OA OB OC OS ===,且SO ⊥平面ABC ,所以π2ACB ∠=设球的半径为R ,根据题目所给体积比有34π114π332R R =⋅⋅,解得1R =故球的表面积为4π.2.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的表面积为()A.√6πB.6πC.9πD.24π【解析】如图所示,该几何体为四棱锥P−ABCD.底面ABCD为矩形,其中PD⊥底面ABCD.AB=1,AD=2,PD=1.则该阳马的外接球的直径为PB=√1+1+4=√6.∴该阳马的外接球的表面积为:4π×(√62)2=6π.选B.3.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,已知其俯视图是正三角形,则该几何体的外接球的体积是()A B C.193πD.223π【解析】根据三视图可知,几何体是底面为矩形,PAB垂直底面ABCD,如图所示:还原长方体的长是2,宽为1设四棱锥的外接球的球心为O,则过O作OM垂直平面PAB,M为三角形PAB的外心,作ON垂直平面ABCD,则N 为矩形ABCD 的对角线交点,11,23OM ON ===所以外接球的半径2222219()212R ON AN R =+=+=∴=所以外接球的体积34354V R π==,选A 4.如图,边长为2的正方形ABCD 中,点E 、F 分别是AB 、BC 的中点,将ΔADE ,ΔBEF ,ΔCDF 分别沿DE ,EF ,FD 折起,使得A 、B 、C 三点重合于点A ′,若四面体A ′EDF 的四个顶点在同一个球面上,则该球的表面积为( )A .5πB .6πC .8πD .11π【解析】由题意可知△A ′EF 是等腰直角三角形,且A ′D ⊥平面A ′EF .三棱锥的底面A ′EF 扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,正四棱柱的对角线的长度就是外接球的直径,直径为:√1+1+4=√6.∴球的半径为√62,∴球的表面积为4π·(√62)2=6π.选B .5.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球O 的球面上,则球O 的表面积是:( )A .8πB .12√3πC .12πD .48π【解析】由三视图还原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2.把该三棱柱补形为正方体,则正方体对角线长为√22+22+22.∴该三棱柱外接球的半径为:√3.则球O 的表面积是:4π×(√3)2=12π.选C .6.已知三棱锥O −ABC 的底面ΔABC 的顶点都在球O 的表面上,且AB =6,BC =2√3,AC =4√3,且三棱锥O −ABC 的体积为4√3,则球O 的体积为( )A .32π3B .64π3C .128π3D .256π3【解析】由O 为球心,OA =OB =OC =R ,可得O 在底面ABC 的射影为△ABC 的外心,AB =6,BC =2√3,AC =4√3,可得△ABC 为AC 斜边的直角三角形,O 在底面ABC 的射影为斜边AC 的中点M ,可得13•OM •12AB •BC =16OM •12√3=4√3,解得OM =2, R 2=OM 2+AM 2=4+12=16,即R =4,球O 的体积为43πR 3=43π•64=2563π.选D .7.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.现有一如图所示的堑堵,AC BC ⊥,若12A A AB ==,则堑堵111ABC A B C -的外接球的体积为( )A B .8π C D .43π【解析】由题意,在直三棱柱111ABC A B C -中,因为AC BC ⊥,所以ABC ∆为直角三角形,且该三角形的外接圆的直径22r AB ==,又由12AA =,所以直三棱柱111ABC A B C -的外接球的直径2R ==所以R =3344333V R ππ==⨯=,故选C. 8.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( )A .6πB .12πC .32πD .48π【解析】由题得几何体原图如图所示,其中SA ⊥平面ABC,BC ⊥平面SAB,SA=AB=BC=2,所以,SC =设SC 中点为O,则在直角三角形SAC 中,在直角三角形SBC 中,OB=12SC =所以,所以点O所以四面体外接球的表面积为4=12ππ.选B9.已知在三棱锥P ABC -中,1PA PB BC ===,AB =AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( )A B .3 C .2π D .3π【解析】根据题意, 21===AB PB PA , ,PAB ∆∴是直角三角形又 平面PAB ⊥平面ABC ,所以,三棱锥P ABC -外接球半径等于ABC ∆的外接圆半径 AB BC ⊥,21==AB BC ,,32==∴AC R ∴球的表面积为243R ππ=故选D 。

空间几何体的外接球内切球问题

空间几何体的外接球内切球问题

P DS CAO空间几何体的外接球、内切球问题外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。

1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。

练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=︒,则此球的表面积等于 。

2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为 。

3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为 ( )A . π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。

练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( )A .26a πB .29a πC .212a πD .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于(A )4π (B )3π (C )2π (D )π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法 练习1.在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC ====ABCD 的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径. 练习:1.正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EF S ABCD -的底面边长为1S A B C D 、、、、、E 、F 都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为_ C_ A_ O_ D _ BA.3B.13π C.23π D.3二.棱柱的外接球底面有外接圆的直棱柱才有外接球。

高考数学中的内切球和外接球问题(附习题)

高考数学中的内切球和外接球问题(附习题)

高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力•研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为_________________ 27—例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为_________________ 3届.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 _________ .14.例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().CA. 16兀B. 20兀C. 24兀D. 32兀3•求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知 8,底面周长为3,则这个球的体积为的半径的常用公式.二、构造法(补形法) 1、构造正方体例5若三棱锥的三条侧棱两两垂直,且侧棱长均为 ' 3,则其外 接球的表面积是 __________________ 护.例3若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外 接球的表面积是 ________ .2故其外接球的表面积S=4「:R =9二.小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分 别为a 、b 、c,则就可以将这个三棱锥补成一个长方体, 于是长方体的 体对角线的长就是该三棱锥的外接球的直径•设其外接球的半径为R ,该六棱柱的顶点都在同一个球面上, 且该六棱柱的体积为 解 设正六棱柱的底面边长为x ,咼为h,则有6x =3, 9 3 2U 6 x h,841 x ,2_ h = . 3.二正六棱柱的底面圆的半径 接球的半径R ^-:r 2d 2.体积:小结本题是运用公式R 2 1r = 2 ,球心到底面的距离4兀3VR 3. 3d 2求球的半径的,该公式是求球则有 2R 二、•. a 2 b 2 c 2 .出现“墙角”结构利用补形知识,联系长方体。

2024高考数学专项立体几何系统班7、外接球与内切球

2024高考数学专项立体几何系统班7、外接球与内切球

第7讲外接球与内切球知识与方法1.外接球与内切球是全国高考常考题型,模型杂、方法多,但归纳起来不外乎两大类处理方法.(1)补形:将几何体补全成长方体、正方体、直棱柱等常见几何体,计算外接球半径.(2)构建平面截球模型:寻找截面圆心以及球心到截面的距离,通过222R r d =+计算外接球半径.2.设球的半径为R ,有5个常用计算公式.(1)正方体外接球半径:R =,其中a 为正方体棱长,如图1.(2)长方体外接球半径:R =a ,b ,c 分别为长方体的长、宽、高,如图2.(3)正四面体外接球半径,4R a =,其中a 为正四面体棱长,如图3.(4)直三棱柱外接球半径:R =,其中r 为底面外接圆半径,h 为直三棱柱的高,如图4.(5)圆柱外接球半径:R =,其中r 为底面圆半径,h 为圆柱的母线长,如图5.提醒:①上面列出了一些简单模型的外接球半径计算公式,需结合图形将其记住,还有一些其他模型可以通过补形的方法转化为上述模型处理;②一些不能通过简单补形求解的模型,如球内接正棱锥,球内接圆锥等,可以通过分析几何关系,转化为平面截球模型计算外接球的半径.题组一1.(★★)已知一个正方体的所有顶点在一个球面上.若这个正方体的表面积为18,则这个球的体积为_______.【解析】设正方体的棱长为a ,则2618a =,故a =3322R a ==,其体积34932V R ππ==.【答案】92π2024高考数学专项立体几何系统班7、外接球与内切球【提炼】正方体棱长a 与其外接球半径R 之间的关系为32R =.2.(★★★)如图,在等腰梯形ABCD 中,22AB DC ==,60DAB ∠=︒,E 为AB 中点,将ADE 与BEC 分别沿ED ,EC 向上折起,使点A ,B 重合于点P ,则三棱锥P DCE -的外接球的体积为()【解析】由题意,可将平面图形等腰梯形ABCD 补全为正三角形FAB ,如图,那么在完成题干所描述的翻折后,还可将CDF △沿着CD 翻折,使得点F 也与点P 重合,显然此时得到的是一个棱长为1的正四面体,即三棱锥P DCE -是棱长为1的正四面体,其外接球半径R =343V R π==.【答案】C【提炼】正四面体的棱长为a ,则其外接球半径为64a ,内切球半径为612a ,证明方法可参考附赠的小册子《高考数学常用二级结论》.3.(★★)长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为______.【解析】长方体的外接球半径R =,其中a ,b ,c 分别为长、宽、高,故R =O 的表面积2414S R ππ==.【答案】14π【提炼】设长方体的长、宽、高分别为a ,b ,c ,则其外接球半径2R =4.(★★)已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.323π B.4π C.2π D.43π【解析】首先得知道什么是正四棱柱,它指的是底面为正方形、侧棱与底面垂直的四棱柱,也是一种特殊的长方体,高考这种名词都是直接给,必须清楚其结构特征.外接球半径1R ==,故该球的体积34433V R ππ==.【答案】D5.(★★)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【解析】设正四棱柱底面边长为a ,则2416a =,即2a =,其外接球的半径2242R ==,故所求球的表面积2424S R ππ==.【答案】C 6.(★★★)一个正四棱柱的各个顶点在一个直径为2的球面上,如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为______cm 2.【解析】设正四棱柱的高为h cm ,则1112=,故h =,即该棱柱的表面积(2S =+cm 2.【答案】2+题组二7.(★★★)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为()B. C.132D.【解析】这道题可能不少同学会有这么一个困惑,就是题干没给出三棱柱111ABC A B C -为直三棱柱,是不是题干有问题呢?当然不是,事实上,斜棱柱是没有外接球的,所以题干的说法本身就隐含了三棱柱111ABC A B C -为直三棱柱这一条件.本题的直三棱柱可通过补形为长方体来计算外接球半径,如图,三棱柱111ABC A B C -与长方体有相同的外接球,该球的半径为34121322R ==.【答案】C 8.(★★★)3______.【解析】本模型一般称为墙角三棱锥,可补形为正方体(或长方体)来处理.如图,将三棱锥B ACD -补全为正方体,并放到了球体之中,可以看到二者有相同的外接球,正方体棱332R =,故外接球表面积249S R ππ==.【答案】9π【提炼】三条侧棱两两垂直的三棱锥(墙角三棱锥)可补形为长方体或正方体来计算外接球半径.题组三9.(★★★)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为()A.2a π B.273a π C.2113a π D.25a π【解析】如图,设G 为ABC △的中心,ABC △外接圆半径233323r AG ==⨯=,1122a OG AA ==,球的半径22712R r OG a =+,故球的表面积22743S R a ππ==.【答案】B【提炼】①设直三棱柱底面外接圆半径为r ,高为h ,则其外接球半径222h R r ⎛⎫=+ ⎪⎝⎭;②关键是计算底面三角形外接圆半径,对于直角三角形,外接圆半径等于斜边长的一半,若是倍,等于高的23倍;若是普通的三角形,则可利用正弦定理计算外接圆半径.10.(★★★)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA -==,120BAC ∠=︒,则此球的表面积等于______.【解析】如图,在ABC △中,由余弦定理得222122222122BC ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得BC =.由正弦定理得42sin BC r BAC ==∠,解得2r =,故1112OG AA ==,所以球的半径R ==,故球的表面积2420S R ππ==.【答案】20π题组四11.(★★★)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A. B. C. D.【解析】如图,先计算ABC △外接圆的半径r ,设ABC △边长为a .则2122a ⋅⋅=,解得6a =,所以62sin 60r =︒,解得r =,所以2OG ==,当D 点位于GO 延长线上时,三棱锥D ABC -的高最大,底面积不变,此时体积最大,最大值为()1243V =⨯+=【答案】B【提炼】本题三棱锥D ABC -的体积最大时,D ABC -是正三棱锥,正三棱锥外接球的计算问题,解题的关键是构建AOG △,在这个三角形中,满足222OA AG OG =+,即222R r d =+,其实这就是前一小节的平面截球模型,只要是正棱锥,都可以采用这个办法处理.12.(★★★)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.814πB.16πC.9πD.274π【解析】如图,由题意,得14PO =,1AO =设外接球的半径为R ,则OA OP R ==,故14OO R =-.在1OO A △中,22211AO OO AO +=,即()2224R R +-=,解得94R =,故该球的表面积28144S R ππ==.【答案】A【提炼】正四棱锥外接球的有关计算,关键是构建1AOO ,在这个三角形中,利用22211OA AO OO =+建立等量关系,其实就是平面截球模型的处理方法.13.(★★★)正四棱锥S ABCD -点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_____.【解析】解法1:如图1,设正方形ABCD 的中心为1O ,由题意,11AO =,11SO =.设正四棱锥外接球球心为O ,半径为R ,则OA R =,11OO R =-,在1AOO 中,22211OO AO AO +=,故()2211R R -+=,解得1R =,即外接球体积为34433V R ππ==.解法2:设正方形ABCD 的中心为1O ,由题意,11AO =,11SO ==,因为11SO AO =,所以1O 即为球心,球的半径为1,体积34433V R ππ==,本题实际的图形是图2.【答案】43π14.(2021·全国甲卷·理·11·★★★)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC BC ⊥,1AC BC ==,则三棱锥O ABC -的体积为()A.212B.312C.24D.34【解析】如图,由题意,2AB =,设D 为ABC △的外心,则1222AD AB ==,2222OD OA AD =-=,所以1112211332212O ABC ABC V S OD -=⋅=⨯⨯⨯⨯ .【答案】A题组五15.(★★)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.34πC.2π D.4π【解析】如图,由题意得1OA =,112OO =,故132O A =,圆柱体积233124V ππ⎛⎫=⋅= ⎪ ⎪⎝⎭.【答案】B【提炼】圆柱外接球半径222h R r ⎛⎫=+ ⎪⎝⎭,其中r 为底面圆半径,h 为圆柱的高.16.(★★★★)如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.【解析】设圆柱的底面半径为r ,高为h ,则2224h r R rh +=≥,当且仅当2h r =时等号成立,故圆柱的侧面积2S rh π=的最大值为22R π,此时球的表面积与圆柱的侧面积之差为222422R R R πππ-=.【答案】22R π题组六17.(★★)正方体的内切球与其外接球的体积之比为()A. B.1:3C.1:D.1:9【解析】设正方体的棱长为a ,则其内切球、外接球的半径分别为12aR =,2R =,故正方体的内切球与其外接球的体积之比3113224343R V V R ππ==.【答案】C【提炼】设正方体的棱长为a ,则其内切球的半径2a R =.18.(★★)如图,圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是______.【解析】如图,设球的半径为R ,则213223423V R R V R ππ⋅==.【答案】3219.(2020·新课标Ⅲ卷·理·15·★★★)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_______.【解析】如图,该圆锥内半径最大的球即圆锥的内切球,设其半径为R ,则OB OG R ==,1AB AG ==.由题意得PG =OP R =-,2PB PA AB =-=.在POB 中,222OB PB OP =+,故()224R R +=,解得22R =,即球的体积3433V R π==.【答案】2320.(★★★★)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是()A.4π B.92π C.6π D.323π【解析】要解决这道题,得先搞清楚一件事,那就是最大的球到底是和棱柱的侧面相切,还是与底面相切?如图,可求得底面直角三角形的斜边10AC =,将底面Rt ABC △单独拿出来分析其内切圆半径r ,图中BP NQ r ==,故8PC r =-,即8CM PC r ==-,PN BQ r ==,故6AQ r =-,即6AM AQ r ==-,所以8614210AC CM AM r r r =+=-+-=-=,解得2r =,由123r AA >=知最大球的半径为32,体积3439322V ππ⎛⎫=⨯=⎪⎝⎭.【答案】B题组七21.(★★★)已知A,B是球O的球面上两点,90AOB∠=︒,C为该球面上的动点.若三棱锥O ABC-体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【解析】设球O的半径为R,当点C位于如图所示位置(OC⊥平面AOB)时,三棱锥O ABC-的体积最大,最大值为321136326RR R⨯⨯==,即6R=,故球O的表面积24144S Rππ==.【答案】C22.(★★★)已知三棱锥S ABC-的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA AC=,SB BC=,三棱锥S ABC-的体积为9,则球O的表面积为________.【解析】如图,由题意知,SAC△,SBC△都是以SC为斜边的等腰直角三角形,设球O的半径为R,故31129323S ABCRV R R R-=⋅⋅⋅⋅==,即3R=,故球O的表面积2436S Rππ==.【答案】36π第8讲经典模型之对棱相等知识与方法四面体ABCD 中,AB CD m ==,AC BD n ==,AD BC t ==,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类四面体的外接球问题.如图,设长方体的长宽高分别为a 、b 、c ,则222222222a b t b c n a c m ⎧+=⎪+=⎨⎪+=⎩,三式相加可得2222222m n t a b c ++++=,而显然四面体和长方体有相同的外接球,设外接球半径为R ,则22224a b c R ++=,所以R =.典型例题【例题】四面体ABCD中,AB CD ==AC BD ==,5AD BC ==,则该四面体外接球的体积为_______.【解析】由题意,四面体ABCD是对棱相等模型3464233R V R π⇒===.【答案】3变式1三棱锥A BCD -中,6AB CD ==,5AC BD AD BC ====,则该三棱锥外接球表面积为()C.432π D.43π【解析】由题意,四面体ABCD是对棱相等模型24432R S R ππ⇒====.【答案】D 变式2A 、B 、C 、D四点在半径为2的球面上,且5AC BD ==,AD BC ==,AB CD =,则四面体ABCD 的体积为______.【解析】由题意,四面体ABCD 是对棱相等模型,设AB CD x ==,则R x ==ABCD补全为如图所示的长方体,设长方体的长、宽、高分别为a 、b 、c ,则222222413425a b b c a c ⎧+=⎪+=⎨⎪+=⎩,解得:453a b c =⎧⎪=⎨⎪=⎩,所以四面体ABCD 的体积1134543452032V =⨯⨯-⨯⨯⨯⨯⨯=.【答案】20强化训练1.(★★★)四面体ABCD中,AB CD ==AC BD ==,AD BC ==,则四面体ABCD 外接球的表面积为()A.25πB.45πC.50πD.100π【解析】由题意,四面体ABCD是对棱相等模型,2524502R S R ππ====.【答案】C2.(★★★)半径为1的球面上有不共面的A 、B 、C 、D 四点,且AB CD x ==,BC AD y ==,AC BD z ==,则222x y z ++=()A.16B.8C.4D.2【解析】由题意,四面体ABCD是对棱相等模型,22218R x y z =⇒++=【答案】B3.(★★★)四面体ABCD 中,5AB CD ==,AC BD ==,AD BC ==接球的半径为()A.2B. C.132 D.13【解析】由题意,四面体ABCD是对棱相等模型,132R =【答案】C4.(★★★)在四面体ABCD 中,2AB CD ==,AC BD AD BC ====接球的表面积为_______.【解析】由题意,四面体ABCD是对棱相等模型,2144R S R ππ==⇒==【答案】4π5.(★★★★)在三棱锥P ABC -中,2PA BC ==,PB AC =,PC AB =,且4PB PC ⋅=,则三棱锥P ABC -的外接球的表面积的最小值为________.【解析】设PB AC x ==,PC AB y ==,则4xy =,所以三棱锥P ABC -的外接球半径62R =≥,当且仅当2x y ==时取等号,所以三棱锥P ABC -的外接球的表面积的最小值为246ππ⨯=⎝⎭.【答案】6π6.(★★★★)四面体ABCD 的顶点都在球O 的表面上,4AB BC CD DA ====,AC BD ==,E 为AC 中点,过点E 作球O 的截面,则截面面积的最大值与最小值之比为()A.5:42D.5:2【解析】四面体ABCD是对棱相等模型,所以R =,将四面体ABCD 放入长方体如图,截面面积的最大值为215S R ππ==,当截面面积最小时,截面与OE 垂直,其中O 为球心,设FA a =,FB b =,FC c =,则222222216182216a a b a c b OE b r c b c =⎧⎧+=⎪⎪+=⇒=⇒=⇒=⎨⎨⎪⎪=+=⎩⎩,即截面面积的最小值为222S r ππ==,故12:5:2S S =.【答案】D。

空间几何体的外接球与内切球

空间几何体的外接球与内切球
sin3 = 22+ 32= 7,所以四棱锥 S-ABCD 外接球的表面积为 4πR2=4π×( 7)2=28π.
总结 提炼
外接球双面定球心法 如图,在三棱锥P-ABC中: ①选定底面△ABC,定△ABC外接圆圆心O1; ②选定面△PAB,定△PAB外接圆圆心O2; ③分别过O1作平面ABC的垂线,过O2作平面PAB的垂线,两垂 线交点即为外接球球心O.
平面SAD∩平面ABCD=AD,O1E⊂平面ABCD,所以O1E⊥ 平面SAD,同理SE⊥平面ABCD.
设等边三角形 SDA 的外接圆的圆心为 O2,过 O2 作 O1E 的平行线,过 O1 作 SE 的平 行线,两平行线交于点 O,则 OO1⊥平面 ABCD,OO2⊥平面 SAD,所以 O 为四棱锥 S-ABCD 外接球的球心,设外接球的半径为 R.由题知等边三角形 SDA 的外接圆半 径 SO2=23SE=23 SA2-AE2=23 SA2-12AD2=2(或在等边三角形 SDA 中,由正弦定 理得2 π3=2SO2,解得 SO2=2).又因为 OO2=12AB= 3,所以 R=OS= O2S2+O2O2
空间几何体的外接球与内切球
视角 1 外接球补形法
1 (1)若四面体 ABCD 的每个顶点都在球 O 的球面上,AB,AC,AD 两两垂直,
且 AB= 3,AC=2,AD=3,则球 O 的表面积为
( B)
A.64π
B.16π
C.4π
D.π
【解析】 四面体 ABCD 的外接球 O 即为以 AC,AB,AD 分别为长、宽、高的长方体 的外接球,所以球 O 的外接球半径 R=12 AB2+AC2+AD2=2,所以球 O 的表面积 S =4πR2=16π.
总结 提炼
内切球等体积法

外接球内切球的9大类题型梳理

外接球内切球的9大类题型梳理

外接球内切球的9大类题型梳理与球有关的组合体问题,一种是内切,一种是外接,解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.例如:球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 1. 球的表面积为S=4πR 2 2. 球的体积为V =43πR 3多面体、旋转体与球接、切问题的求解策略(1)过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题. (2)利用平面几何知识寻找几何体元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. (3)若球面上4点P ,A ,B ,C 构成的3条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,用4R 2=a 2+b 2+c 2求解.一.球的性质应用例题1 已知三棱锥S ABC -的顶点都在球O 的球面上,ABC 是边长为6的正三角形,SC 为球O 的直径,且8SC =,则此三棱锥的体积为( )A .43B .63C .123D .163【解析】因为△ABC 是边长为6的正三角形,所以△ABC 外接圆的半径r =23,SC 为球O 的直径,且8SC =,球O 半径R =4,所以点O 到平面ABC 的距离()22224232d R r =-=-=,SC 为球O 的直径,点S 到平面ABC 的距离为2d =4, 此棱锥的体积为111326641233322ABCV S d =⨯=⨯⨯⨯⨯⨯=,选C .巩固1 已知三棱锥O ABC -中,A ,B ,C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ∠=︒,且三棱锥O ABC -的体积为3,则球O 表面积为( ) A .323πB .16πC .52πD .64π【解析】由题意2AB BC ==,ABC 1120=||||sin 32ABC S AB BC ABC ∆∠=︒∠=, 1333O ABC ABC V S h h -∆==∴=.又ABC ∆的外接圆的半径222sin 2sin 30oAB r C ===因此球O 的半径222313R =+=球的表面积:2452S R ππ==,选C巩固2 已知三棱锥P-ABC 中,PA=4,AB=AC=23,BC=6,PA ⊥面ABC ,则此三棱锥的外接球的表面积为() A .16πB .32πC .64πD .128π【解析】∵底面ABC 中,2AB AC ==,6BC =,∴1cos 2BAC ∠=- ∴3sin BAC ∠=,∴ABC 的外接圆半径1 2323r =⨯= PA ⊥面ABC ,∴三棱锥外接球的半径()22222232162PA R r ⎛⎫=+=+= ⎪⎝⎭,所以三棱锥P ABC -外接球的表面积2464S R ππ==,选C .二.最值问题例题2 已知三棱锥P ABC -的顶点都在半径为53的球面上,1AB =,3BC =,2AC =,则三棱锥P ABC -体积的最大值为( )A .3 B .1 C .3D .53【解析】如图,设球心为O ,由1AB =,3BC =,2AC =可得ABC ∆为直角三角形,斜边AC 的中点O '为球小圆的圆心,接OO ',OA ,则OO '⊥平面ABC ,由53OA =,1O A '=可得43OO '=,故三棱锥P ABC -最大体积为113453()3333ABC S O P ∆⨯⨯'=+=,选A .巩固1 在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的面积的最大值与最小值之差为16π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O , 记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =, 则球心O 到平面ABC 的距离为x ,即1OO x =,连接1O A ,则15O A =,∴2225R x =+.在ABC 中,取AC 的中点为E ,连接11,O D O E , 则1132O E AB ==,124DE AC ==, 所以113O D =在1Rt OO D 中,213OD x =+ 由题意得到当截面与直线OD 垂直时,截面面积最小, 设此时截面圆的半径为r ,则()22222251312r R OD x x =-=+-+=,所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2R π, 所以21216R π-π=π,228R =, 球的表面积为2112R 4π=π. 选C.巩固2 已知ABC ∆的三个顶点落在半径为R 的球O 的表面上,三角形有一个角为3π且其对边长为3,球心O 到ABC ∆所在的平面的距离恰好等于半径R 的一半,点P 为球面上任意一点,则P ABC -三棱锥的体积的最大值为( ) A .83B .73C .93D .73【解析】设ABC ∆外接圆的圆心为1O ,则1OO ⊥平面ABC ,所以12R OO =设ABC ∆外接圆的半径为r ,3AB c ==,3C π∠=由正弦定理可得:32sin3rπ=,解得:3r =由球的截面圆性质可得:2222132R R OO r ⎛⎫=+=+ ⎪⎝⎭,解得:2R =所以点P 到平面ABC 的距离的最大值为:13R OO +=.在ABC ∆中,由余弦定理可得:2222232cos 2a b ab C a b ab ab ab ab =+-=+-≥-= 当且仅当3a b ==时,等号成立,所以()max 9ab =. 所以193sin 23ABCS ab π∆,当且仅当3a b ==时,等号成立. 当三棱锥P ABC -的底面面积最大,高最大时,其体积最大. 所以三棱锥P ABC -的体积的最大值为1939333P ABC V -==选C三.球直径灵活应用例题3 已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( ) A .26B .3 C .23D .22【解析】作出图形,设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC , 延长CO 1交球于点D ,则SD ⊥平面ABC ∵CO 1=233323⨯=, ∴11613OO =-=SD=2OO 126, ∵△ABC 是边长为1的正三角形, ∴S △ABC =34,∴132623436S ABC V -=⨯⨯=三棱锥.四.球与其它几何体的综合例题4 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A .3500cm 3πB .3866cm 3πC .31372cm 3πD .32048cm 3π【解析】设球的半径为R cm ,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4cm ,球心到截面圆的距离为()2R -cm 所以由()22242R R +-=,得5R = 所以球的体积为()333445005cm 333V R πππ==⨯= 选A巩固1 四面体ABCD 中,已知1DA DB DC ===,且DA DB DC 、、两两相互垂直,在该四面体表面上与点A 距离为23的点形成一条曲线,则这条曲线的长度是( ) A .3π B .3π C .53π D .3π【解析】在四面体表面上与点A 距离为33的点形成一条曲线 曲线分别与,,,AB BD AC CD 交于,,,E H F G3,cos 223AD Rt ADH DAH AH ∆∠===13,62DAH DH AH π∴∠===,4612HAE πππ∠=-=,同理12GAF π∠=, 23312318FG HE ππ∴==⨯=,232333,339236EF GH ππππ=⨯==⨯=, EF FG GH HE ∴+++323332ππππ==. 选B.五.球定义的灵活应用例题5 如图,在底面为矩形的四棱锥E ABCD -中,DE ⊥平面ABCD ,F ,G 分别为棱DE ,AB 上一点,已知3CD DE ==,4BC =,1DF =,且FG ∥平面BCE ,四面体ADFG 的每个顶点都在球O 的表面上,则球O 的表面积为( )A .12πB .16πC .18πD .20π【解析】在棱CD 上取一点H,使得HD=1////CD DE FH CE FH =∴,,则平面BCE又//FG 平面BCE ,FG FH F ⋂=,∴平面//FGH 平面BCE , 又平面FGH ⋂平面ABCD=GH ,平面BCE ⋂平面ABCD=BC,//BC GH ∴,AG ∴= HD=1,故四面体ADFG 可以补成一个长方体,且长,宽,高分别为4,1,1所以球O 的表面积为2222114418.ππ++=选C巩固1 如图所示,在三棱锥P ABC -中,AB BC ⊥,3AB =,2BC =,点P 在平面ABC 内的投影D 恰好落在AB 上,且1AD =,2PD =,则三棱锥P ABC -外接球的表面积为( )A .9πB .10πC .12πD .14π【解析】由已知可知PD ⊥平面ABC ,∴平面PAB ⊥平面ABC , 又因为AB BC ⊥,BC ∴⊥平面PAB ,∴可构造直三棱柱PAB MNC -, 直三棱柱PAB MNC -的外接球就是三棱锥P ABC -的外接球, 且球心O 为直三棱柱上下底面三角形外接圆圆心连线的中点.在PAB △5102sin4π=,∴外接球半径为2101412⎛⎫+= ⎪⎝⎭,∴三棱锥P ABC -外接球的表面积为214414ππ⎛⎫= ⎪⎝⎭,选D .六.多面体放球中的解题策略例题6 已知二面角P ﹣AB ﹣C 的大小为120°,且∠P AB =∠ABC =90°,AB =AP ,AB +BC =6.若点P ,A ,B ,C 都在同一个球面上,则该球的表面积的最小值为( ) A .45πB .2887πC .1447πD .727π【解析】设AB =x ,(0<x <6),则6BC x =-,由题意知三棱锥外接球的球心是过△P AB 和△ABC 的外心E ,H , 且分别垂直这两个三角形所在平面的垂线的交点O , OB 为三棱锥外接球半径,取AB 的中点为G ,如图, 由条件知,3,222x x xEG GH GB ==-= 在△EGH 中,由余弦定理得222223323cos 92222342x x x x x EH x π⎛⎫⎛⎫⎛⎫=+--⨯⨯-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴△EGH 的外接圆直径2392423sin3EH x OG x π==-+2222224371272934221277x x OB OG GB x x ⎛⎫⎛⎫⎛⎫=+=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当127x =时,OB 2的最小值为727, ∴该球的表面积的最小值为228847OB ππ⨯=. 选B .巩固1 等腰三角形ABC 的腰5AB AC ==,6BC =,将它沿高AD 翻折,使二面角B ADC --成60︒,此时四面体ABCD 外接球的体积为( )A .7πB .28πC .19196π D .287π【解析】由题意,设BCD ∆所在的小圆为1O ,半径为r , 又因为二面角B AD C --为060, 即060BDC ∠=,所以BCD ∆为边长为3的等边三角形, 又正弦定理可得,03223sin 60r ==即23BE =设球的半径为R ,且4=AD ,在直角ADE ∆中,()22222244(23)28R AD DE R =+⇒=+=, 所以7R =,所以球的体积为3344287(7)33V R ππ==⨯=, 选D .巩固2 在三棱锥S ABC -中,AB BC ⊥,2AB BC ==,22SA SC ==,二面角S AC B --的余弦值是33-,若S A B C ,,,都在同一球面上,则该球的表面积是( ) A .6πB .8πC .12πD .18π【解析】取AC 的中点D ,连接SD BD ,.因为SA SC AB BC ==,,所以SD AC BD AC ⊥⊥,, 可得SDB ∠即为二面角S AC B --的平面角,故3cos SDB ∠=. 在直角SDC △中,226SD SC CD -=2BD =,由余弦定理得22232cos 26226()SB BD SD BD SD BDS =+-⋅⋅∠=+- 解得123SB ==在SCB 中,22228412)SC CB SB +=+==, 所以SCB 为直角三角形,同理可得SAB 为直角三角形,取SB 中点E , 则3SE EB ==,在Rt SCB △与Rt SAB 中,32SBEA ==,32EC SB == 所以点E 3243)12S ππ=⨯⨯=. 选C巩固3 已知三棱锥S ABC -中,23AB AC BC ===,SB SC ⊥,平面SBC ⊥平面ABC ,则三棱锥的外接球的表面积为()A .8πB .12πC .16πD .18π【解析】如图,取BC 的中点D ,连接AD ,SD ,则AD BC ⊥, 又平面SBC ⊥平面ABC ,平面SBC平面ABC AD =,AD ⊂平面ABC ,所以AD ⊥面SBC ,又SD ⊂平面SBC , 所以AD SD ⊥,在AD 上取一点O ,使得OA OS =,则O 为球心, 设球的半径为R , 因为SB SC ⊥,所以SBC ∆为直角三角形, 又D 为BC 的中点, 所以132SD BC ==3233AD ==, 又在Rt SOD ∆中,222SO DO DS =+,即()2223+3R R =-,解得2R =.所以外接球表面积为2416S R ππ==. 选C.巩固4表面积为的球面上有四点,且是边长为的等边三角形,若平面平面,则三棱锥体积的最大值是【解析】∵,故当到面的距离最大时,三棱锥的体积最大,由图可知即当,为中点时,三棱锥的体积最大,作,面,连接,由,得,由于,得,故,,故,,,,故答案为七.球的截面问题例题7 如图,正四面体A ﹣BCD 的棱长为a ,点E 、F 分别是棱BD 、BC 的中点,则平面AEF 截该正四面体的内切球所得截面的面积为_____.【解析】根据题意知,平面AEF 截该正四面体的内切球所得截面一定是圆,设圆心为P ,内切球的球心为O ,作AN ⊥平面BCD ,则N 为底面三角形的中心 在等边三角形BCD 中,2333BN == 在Rt ABN ∆中,由勾股定理知,2222363aAN AB BN a a ⎛⎫=-=-= ⎪ ⎪⎝⎭由图可知,AO 为四面体外接球的半径,设AO BO R ==在Rt BON ∆中,由勾股定理可得,2223633R a a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得6R = 所以正四面体A ﹣BCD 的内切球半径为r =666ON AN OA =-==, 因为OP ⊥AM ,AN MN ⊥,所以~AOP AMN ∆∆,又因为113366212MN BH a a ==⨯= 由AM 2=NM 2+AN 2可得AM 114a =,∴OP AO MN AM =,64311a a a =,解得OP 1811a = ∴平面AEF 截该正四面体的内切球所得截面圆半径r 12233r OP =-=平面AEF 截该正四面体的内切球所得截面的面积为22(3333a ππ⨯=巩固1 已知三棱锥S ABC -的所有顶点在球O 的球面上,SA ⊥平面ABC ,ABC ∆是等腰直角三角形,2SA AB AC ===,D 是BC 的中点,过点D 作球O 的截面,则截面面积的最小值是______.【解析】点D 是Rt ABC ∆的外心,过点D 作DO ⊥平面ABC 使112DO SA == O 是外接球球心,半径设为R ,OA OS R ==在直角梯形SADO 中,2SA =,1OD =,2AD =3R =过点D 作球O 的截面当OD ⊥222R OD -=∴截面面积的最小值是2π八.内切球问题例题8 图(1)为棱长为1的正方体,若正方体内有两个球相外切且又分别与正方体的三个面相切,则两球半径之和为________.【解析】如图(2)作出正方体的体对角面,易知球心1O 和2O 在AC 上 过点1O ,2O 分别作AD ,BC 的垂线,垂足分别为E ,F 设球1O 的半径为r ,球2O 的半径为R 由1AB =,3AC =13AO r =,23O C R =∴3()3r R r R +++=333231R r +==+九.翻折问题与球例题9 在平行四边形ABCD 中,22AB =,3BC =,且2cos 3A =,以BD 为折痕,将BDC 折起,使点C 到达点E 处,且满足AE AD =,则三棱锥E ABD -的外接球的表面积为__________.【解析】解:在ABD △中,22AB =3BC =,且2cos A = 由余弦定理,得2222cos BD AB AD AB AD A =+-⋅ 即:(2222223222393BD =+-⨯⨯=,解得:3BD = 在四面体ABED 中,3AE BD ==,3AD BE ==,22AB ED ==三组对棱长相等,可将四面体ABED 放在长方体中设长方体的相邻三棱长分别为x ,y ,z ,设外接球半径为R 则229x y +=,229y z +=,228z x += 则22213x y z ++=,即213R =13R =所以,四面体E ABD -外接球的表面积为:2134413π4R ππ=⨯=巩固1 在矩形ABCD 中,4BC =,M 为BC 的中点,将ABM 和DCM △分别沿AM ,DM 翻折,使点B 与C 重合于点P .若150APD ∠︒=,则三棱锥M PAD ﹣的外接球的表面积为_____.【解析】由题意可知,MP PA MP PD PD PA P ⊥⊥⋂,,=, 所以可得PM ⊥面PAD , 设ADP △外接圆的半径为r , 由正弦定理可得AD 2sin APDr =∠,即42sin150r =︒,4r =, 设三棱锥M PAD ﹣外接球的半径R ,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则222PM 116172R r ⎛⎫=+=+= ⎪⎝⎭,所以外接球的表面积为2468S R ππ==.巩固2 在平面五边形ABCDE 中,60A ︒∠=,63AB AE ==,BC CD ⊥,DE CD ⊥,且6BC DE ==.将五边形ABCDE 沿对角线BE 折起,使平面ABE 与平面BCDE 所成的二面角为120︒,则沿对角线BE 折起后所得几何体的外接球的表面积是________.【解析】由题意知,ABE △是正三角形,BCDE 是矩形设ABE △的中心为1O ,矩形BCDE 的中心为2O过1O 作垂直于平面ABE 的直线1l ,过2O 作垂直于平面BCDE 的直线2l由球的性质可知,直线1l 与2l 的交点O 为几何体ABCDE 的外接球的球心取BE 的中点F ,连接12,O F O F易得1313323O F ==,21632O F =⨯=,12120O FO ︒∠= 连接OF ,显然1OFO 与2OFO 全等,从而160O FO ︒∠=,133OO =,连接OA ,则OA 为所求几何体外接球的半径,又13263623O A ==, 则22211273663OA OO O A =+=+=, 故所得几何体外接球的表面积为24π252πS OA =⋅=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学空间几何体的外接球与内切球常见题型本文介绍了空间几何体的外接球与内切球的经典类型,其中第一种类型为墙角模型,即三条棱两两垂直,不需要找球心的位置即可求出球半径。

具体方法是找到三条两两垂直的线段,然后使用公式2R=a+b+c或2R=a^2+b^2+c^2来求出R。

例如,在已知各顶点都在同一球面上的正四棱柱的高为4,体积为16的情况下,可以求出该球的表面积为32π。

第二种类型为对棱相等模型,补形为长方体。

在这种情况下,需要找到对棱相等的空间几何体,并补成长方体。

例如,如果三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积为36π。

除此之外,文章还给出了一些具体的例子,如正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

同时,文章还提到了一些需要注意的引理,如正三棱锥的对棱互相垂直等。

需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要进行删除或修改。

题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)首先,我们可以画出一个长方体,标出三组互为异面直线的对棱,如图2-1所示。

设出长方体的长宽高分别为a,b,c,AD=BC=x,AB=CD=y,AC=BD=z,列方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2根据墙角模型,我们可以得到2R=a+b+c=2(x^2+y^2+z^2)/(x^2+y^2+z^2),化简得到R=sqrt(2)/2*(x^2+y^2+z^2)/(x^2+y^2+z^2),求出R即可。

例2(1)如下图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。

2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。

3)正四面体的各条棱长都为2,则该正面体外接球的体积为。

4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是。

类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)首先,我们需要确定球心O的位置,O1是△XXX的外心,则OO1⊥平面ABC。

接着,我们可以算出小圆O1的半径r和高h(h也是圆柱的高),然后根据勾股定理求得外接球半径R。

例如,一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长为3,则这个球的体积为8.又例如,直三棱柱ABC-A1B1C1.1.已知三角形ABC,AB=AC=AA1=2,∠BAC=120°,求该球的表面积。

解析:由题意可知,三角形ABC为等边三角形,且AA1为该等边三角形的中线,因此可以得知AA1=BC=2.根据正弦定理,可以求出球的半径R=√3.然后,根据球的表面积公式S=4πR^2,代入半径R的值即可得到该球的表面积为4π。

2.已知平面PAC⊥平面ABC,且AB⊥BC(即AC为小圆的直径),且P的射影是△ABC的外心,则三棱锥P-ABC的三条侧棱相等,三棱P-ABC的底面△ABC在圆锥的底上,顶点P点也是圆锥的顶点。

求该圆锥的外接球的表面积。

解析:根据题意,可以得知△ABC的外心O1即为圆锥的底面圆心,因此可以先求出该圆的半径r=AC/2.然后,根据勾股定理,可以求出圆锥的高PO1=√(PA^2-r^2),其中PA为P 点到圆心O1的距离。

再根据勾股定理,可以得到圆锥的半径R=√(PA^2+PO1^2)。

最后,根据球的表面积公式S=4πR^2,代入半径R的值即可得到该圆锥的外接球的表面积。

3.已知平面PAC⊥平面ABC,且XXX(即AC为小圆的直径),且PA⊥AC。

求三棱锥的外接球半径。

解析:根据题意,可以得知P点在△ABC的垂线上,因此可以利用勾股定理求出三棱锥的高PO=√(PA^2+AC^2/4)。

然后,根据勾股定理,可以求出三棱锥的底面边长BC=√(AC^2-4r^2),其中r为小圆的半径。

再根据勾股定理,可以得到三棱锥的外接球半径R=√(PO^2+BC^2/12)。

最后,根据球的表面积公式S=4πR^2,代入半径R的值即可得到该圆锥的外接球的表面积。

4.已知直三棱柱ABC-A1B1C1中,AB=4,AC=6,A=A1,AA1=4.求该直三棱柱的外接球的表面积。

解析:根据题意,可以得知A点在直三棱柱的底面中心,因此可以求出该直三棱柱的高h=√(AA1^2-AB^2/4)=√(15)。

然后,根据勾股定理,可以求出直三棱柱的底面对角线BD=√(AB^2+AC^2)=2√(13)。

再根据勾股定理,可以得到直三棱柱的外接球半径R=√(h^2+BD^2/4)=√(229/4)。

最后,根据球的表面积公式S=4πR^2,代入半径R的值即可得到该直三棱柱的外接球的表面积。

注:此题中没有格式错误和明显有问题的段落,因此无需删除和改写。

1.正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为23,则该球的表面积为多少?解题步骤:根据正四棱锥的性质,可以得知该四棱锥的底面是一个正方形,可以将其拆分成四个等边三角形。

由于顶点在同一球面上,可以将该四棱锥看做是一个棱锥,根据棱锥的公式,可以得出该球的表面积为$4\pi\sqrt{5}$。

2.正四棱锥S-ABCD的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为多少?解题步骤:根据正四棱锥的性质,可以得知该四棱锥的底面是一个正方形,可以将其拆分成四个等边三角形。

由于顶点在同一球面上,可以将该四棱锥看做是一个棱锥,根据棱锥的公式,可以得出该球体积为$\frac{8}{3}\pi$。

3.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是多少?解题步骤:根据正三棱锥的性质,可以得知其底面是一个正三角形,可以将其拆分成三个等边三角形。

由于底面的三个顶点在该球的一个大圆上,可以将其看做是一个棱锥,根据棱锥的公式,可以得出该正三棱锥的体积为$\frac{1}{3}\pi$。

4.在三棱锥P-ABC中,PA=PB=PC=3,侧棱PA与底面ABC所成的角为60,则该三棱锥外接球的体积为多少?解题步骤:根据题设,可以得知该三棱锥是等边三角形棱锥,且外接球的球心与等边三角形的外心重合。

根据勾股定理,可以求出外接球的半径为3.因此,该三棱锥外接球的体积为$27\sqrt{3}\pi$。

5.已知三棱锥S-ABC的所有顶点都在球O的表面上,三角形ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为多少?解题步骤:根据题设,可以得知该三棱锥是等边三角形棱锥,且其高为$\sqrt{3}$。

根据棱锥的公式,可以求出该三棱锥的体积为$\frac{1}{3}\sqrt{3}$。

例5:一个几何体的三视图如图所示,则该几何体外接球的表面积为多少?解析:根据三视图可以确定该几何体为正方体,其外接球为正方体内切球,因此球面积为$6\pi$,选项C。

例6:1)三棱锥P-ABC中,平面PAC垂直平面ABC,△PAC 和△ABC均为边长为2的正三角形,则三棱锥P-ABC外接球的半径为多少?解析:连接P和BC,可得到高为$\sqrt{3}$,根据勾股定理可得到$PC=2\sqrt{2}$,因此球的半径为$\frac{PC}{2}=\sqrt{2}$。

2)在直角梯形ABCD中,XXX,∠A=90,∠C=45,AB=AD=1,沿对角线BD折成四面体A'-BCD,使平面A'BD 垂直平面BCD,若四面体A'-BCD的顶点在同一个球面上,则该球的表面积为多少?解析:连接AC和BD,可得到AC=BD=√2.由于A'B=BD=√2,且∠A'BD=90°,因此A'B是球的直径。

又因为A'B=√2,所以球的半径为$\frac{\sqrt{2}}{2}$,球面积为$2\pi$。

3)在四面体S-ABC中,AB垂直BC,AB=BC=2,二面角S-AC-B的余弦值为-3,则四面体S-ABC的外接球表面积为多少?解析:连接AC和BS,可得到$AS=\sqrt{5}$,$CS=\sqrt{3}$。

由于AB=BC,所以AS=CS,因此S在ABCD 平面的垂线中点上。

又因为ABCD为正方体,所以S到ABCD各面的距离相等,即S到ABCD各面的距离均为$\frac{\sqrt{5}}{2}$。

因此,球的半径为$\frac{\sqrt{5}}{2}$,球面积为$5\pi$。

4)在边长为23的菱形ABCD中,∠BAD=60,沿对角线BD折成二面角A-BD-C为120的四面体ABCD,则此四面体的外接球表面积为多少?解析:连接AC和BD,可得到$AC=BD=23\sqrt{3}$。

由于A-BD-C为120°,因此A和C在球的直径上。

又因为AC=BD,所以球的直径为AC=BD=23√3,球的半径为$11.5\sqrt{3}$,球面积为$2646\pi$。

5)在四棱锥ABCD中,∠BDA=120°,∠BDC=150°,AD=BD=2,∠A-BD-C的大小为120°,则此四面体的外接球的体积为多少?解析:连接AC和BD,可得到$AC=BD=2\sqrt{3}$。

由于A-BD-C为120°,因此A和C在球的直径上。

又因为AC=BD,所以球的直径为AC=BD=2√3,球的半径为$√3$。

根据四面体的体积公式可得到球的体积为$\frac{4}{3}\pi(\sqrt{3})^3=12\pi$。

1)在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为()。

解:首先,根据勾股定理可得AC=5.将四面体ABCD的对角线AC作为直径,可以得到其外接球的半径R=5/2.根据四面体的体积公式V=1/3*S(ABC)*h,其中S(ABC)为三角形ABC的面积,h为点D到三角形ABC所在平面的距离。

由于四面体ABCD是直二面角,所以点D到三角形ABC所在平面的距离等于点B到三角形ABC所在平面的距离,即3/2.因此,V=1/3*6*3/2=3,所以四面体ABCD的外接球的体积为3π。

2)在矩形ABCD中,AB=2,BC=3,沿BD将矩形ABCD折叠,连接AC,所得三棱锥A-BCD的外接球的表面积为。

解:首先,根据勾股定理可得BD=√13.由于三棱锥A-BCD是正三棱锥,所以其高AH和侧棱BC相等,都为3.根据勾股定理可得AC=√22,所以三棱锥A-BCD的底面面积为S (BCD)=3/2*2*3=9.根据三棱锥的表面积公式S=1/2*P*L,其中P为底面周长,L为侧棱的斜高,可以得到三棱锥A-BCD的表面积为S=1/2*10*3=15.由于三棱锥A-BCD的外接球的球心O在高线AH上,所以OH=R,其中R为外接球的半径。

相关文档
最新文档