高压光纤电流互感器(HIGH VOLTAGE CURRENT OPTIC FIBER SENSOR)

合集下载

高压电流互感器

高压电流互感器

高压电流互感器高压电流互感器是一种电气设备,用于测量和监测高压电路中的电流。

它是将高电压电流转换为低电压电流的一种器件,通常用于电力系统中。

在本段,我们将介绍高压电流互感器的概念和作用,并提供一些背景信息。

高压电流互感器是一种用于测量和监测高压电流的设备。

它的工作原理基于互感器的原理,通过将高压电流转换为可测量的低电流,以便于仪器进行准确的测量和分析。

基本组成部分高压电流互感器由以下几个基本组成部分构成:一组绕组:高压电流互感器通常包含主绕组和次绕组。

主绕组连接到高压电源,而次绕组则连接到测量仪器。

铁芯:铁芯是互感器的核心部分,它通过电磁感应的原理,将高压电流的磁场转移到次绕组中。

绝缘材料:高压电流互感器的绝缘材料在工作时起到绝缘作用,确保电流传输的安全性。

工作时的安全性措施在高压电流互感器的工作过程中,需要注意以下安全性措施:绝缘保护:由于高压电流的特性,必须使用合适的绝缘材料和绝缘包装,以确保测量和传输过程中的安全。

安装固定:高压电流互感器的安装必须牢固可靠,以避免任何摇晃或松动,从而降低潜在的危险和错误读数的可能性。

人员保护:工作人员在操作高压电流互感器时,应遵循相关的安全操作规程,并采取适当的个人防护措施。

请注意,在实际应用高压电流互感器时,应遵循相关的安全规范和标准,确保工作的安全性和准确性。

在这篇文档中,我们将探讨高压电流互感器的应用领域,包括电力系统、工业场所和实验室等。

我们还会提及一些具体的应用案例,并说明如何选择合适的型号和规格。

高压电流互感器主要应用于以下领域:电力系统:高压电流互感器在电力系统中广泛应用,用于测量和监测高压电流。

它们可以帮助电力公司监控电网的运行状态,并确保高压线路的安全运行。

工业场所:高压电流互感器在工业场所中用于检测和测量高压电流,保护设备和工人的安全。

它们被广泛应用于高压电机、变压器和发电机等设备的监测和控制。

实验室:高压电流互感器在实验室中用于进行电力实验和研究。

4、光纤电流互感器简介

4、光纤电流互感器简介

数字科技 引领未来电力
四、全光纤电流互感器的特点
全数字闭环控制技术
• 全数字闭环控制技
术保证了全光纤电子 式互感器的动态范围 和精确度 • 开环控制从原理上 来说,就无法在大动 态范围内保持精确度

四、全光纤电流互感器的特点
共光路、差分信号解调技术
数字科技 引领未来电力

三、全光纤电流互感器的原理
法拉第磁光效应原理
数字科技 引领未来电力

三、全光纤电流互感器的原理
数字科技 引领未来电力

三、全光纤电流互感器的原理
数字科技 引领未来电力

三、全光纤电流互感器的原理
数字科技 引领未来电力
通过相位调制器和闭环控制电路产生相位偏置、调制 信号和反馈信号,利用四分之一波片进行线偏振光与 圆偏振光的相互转化。载流导线周围产生的磁场使传 感光纤中正交的两个圆偏振光产生相位差,这个相位 差与导线中的磁场强度(电流强度)成正比,通过测 量干涉光强可以检测出相位差,从而得到被测电流大 小。
二、光学电流互感器发展现状
国内发展现状
南瑞航天研制的全光纤电子式电流互感器现状 各种安装方式的全光纤电子式电流互感器 通过原武汉高压研究院的型式试验,精度达到0.2s级
通过的委托试验达到了0.1级精度
挂网试运行一年半多,运行稳定可靠 已实现国内应用,有几十套投入运行,最高应用的电压 等级为500kV
二、光学电流互感器发展现状
国内发展现状
企业和研究院的产品研制
西安同维研制成功磁光玻璃式OCT,并且 有少量工程应用
数字科技 引领未来电力
部分企业正在跟踪或研制全光纤电子式
电流互感器 南瑞航天研制成功光纤电子式电流互感 器,并且有少量工程应用

光纤电流互感器生产工艺

光纤电流互感器生产工艺

光纤电流互感器生产工艺光纤电流互感器(Fiber Optical Current Transducer,简称FOCT)是一种光纤电流互感器(Fiber Optical Current Transducer,简称FOCT)是一种利用光纤作为传感元件的电流测量设备。

它将电流信号转换为光信号,通过光纤传输到光接收器,再将光信号转换回电信号,从而实现对电流的测量。

光纤电流互感器具有抗电磁干扰、绝缘性能好、传输距离远等优点,因此在电力系统、工业自动化等领域得到了广泛的应用。

光纤电流互感器的生产工艺主要包括以下几个步骤:1. 光纤选材:光纤电流互感器的传感元件是光纤,因此光纤的性能直接影响到互感器的性能。

常用的光纤材料有石英玻璃、聚合物等。

石英玻璃光纤具有损耗低、抗电磁干扰性能好等优点,但价格较高;聚合物光纤具有成本低、柔韧性好等优点,但损耗较大。

根据实际应用需求选择合适的光纤材料。

2. 光纤制备:光纤制备包括光纤拉制和光纤切割两部分。

光纤拉制是将光纤预制棒在高温下拉伸成细丝的过程,需要控制拉伸速度、温度等参数以保证光纤性能。

光纤切割是将拉制的光纤按照规定的长度进行切割的过程,需要保证切割端面平整、无损伤。

3. 光源选择:光源是光纤电流互感器的核心部件,其性能直接影响到互感器的测量精度和稳定性。

常用的光源有半导体激光器、发光二极管(LED)等。

半导体激光器具有波长稳定、功率高等优点,但价格较高;LED具有成本低、寿命长等优点,但波长稳定性较差。

根据实际应用需求选择合适的光源。

4. 光探测器选择:光探测器是将光信号转换为电信号的关键部件,其性能直接影响到互感器的测量精度和稳定性。

常用的光探测器有光电二极管(PIN)、雪崩光电二极管(APD)等。

光电二极管具有响应速度快、线性度好等优点,但灵敏度较低;雪崩光电二极管具有灵敏度高、响应速度快等优点,但线性度较差。

根据实际应用需求选择合适的光探测器。

5. 光学组件设计:光学组件是光纤电流互感器的核心部分,其设计直接影响到互感器的测量精度和稳定性。

高压电流互感器

高压电流互感器

高压电流互感器概述高压电流互感器(High Voltage Current Transformer)是一种专门用于测量高压电力系统中电流的装置。

它可以将高电压的电流信号转换为低电压的信号,以满足检测、测量、控制、保护、计量等电力系统功能需求。

高压电流互感器一般分为电流互感器和电压互感器两种,而本文主要介绍电流互感器。

原理电流互感器的工作原理是基于电磁感应的。

当高压线路中的电流通过互感器的一侧线圈时,就会在另一侧感应出与原电流成比例的电流。

这样,电流互感器就能将原本难以测量的高电流信号转化为在测量仪器范围内方便测量的低电流信号。

结构电流互感器的结构通常由铁芯、一次侧线圈、二次侧线圈、外壳、支架等几个部分组成。

其中,铁芯是互感器最为重要的组成部分之一,其材质通常为硅钢板或纯铁心。

一次侧线圈和二次侧线圈各自固定在铁芯上,通过铜箔或铜线相连接,并由支架固定整体装在互感器外壳内。

分类根据互感器输出信号的电流等级和应用领域的不同,电流互感器可以分为多个不同的分类。

1.按输出信号电流等级分:100A、500A、1000A、2000A、5000A等2.按应用领域分:保护性互感器、计量互感器、采样互感器、信号互感器等3.按使用环境分:户外互感器、户内互感器、GIS互感器等4.按结构特点分:油浸式互感器、干式互感器、母线互感器等应用电流互感器是电力系统中不可缺少的基础设备之一,其主要应用领域包括:1.保护与控制:在电力系统中,电流互感器常用来保护和控制变压器、发电机、线路等设备的运行,并实现对电路中电流和功率的控制。

2.计量与结算:电力公司通过电流互感器中转换出来的低电流信号实现对电网中的电能进行精确的测量,以方便计量与结算。

3.监测与诊断:电流互感器能够帮助电力系统实时监测设备的状态,并根据电流信号的变化提供相应的诊断信息,以预防和避免设备的故障和损坏。

总结高压电流互感器的作用在电力系统中不可忽视。

通过电流互感器,我们可以方便地获取高压线路中的电流信息,并将其转化为易于测量和控制的低电流信号。

全光纤电流互感器介绍

全光纤电流互感器介绍
长期可靠性 抗电磁干扰
运行能耗 安全性能
电磁感应 电磁线圈
否 否 差 小
窄 差 好 大 差
有源电子式
电磁感应 空心线圈
否 是 差 小
窄 差 差 大 好
电子式互感器
无源电子式
磁光玻璃式
全光纤式
法拉第效应
法拉第效应
光学玻璃
光纤
可测但精度低 可测且精度高
















全光纤电流互感器的优势
度漂移
→ PCS‐9250系列全光纤互感器在结构设计和 工艺选择上着手,采用特殊的光纤缠绕方式 ,有效地抑制了温度漂移
PCS-9250全光纤互感器技术难点
¾光学互感器系统长期运行后,光源的输出功 率可能随时间而产生衰减现象,会影响系统
的精度和F稳OC定T性技术难题及我们的解决办法
→ PCS‐9250系列全光纤互感器采用了特殊 的电路处理方案,同时开发了独有的算法系 统,消除了光源功率不稳造成的影响,保证 了系统运行的精度和稳定性
¾传感光纤 环直接套 在变压器 套管底部 挂式全光纤电流互感器
¾因地制宜,可以 灵活安装在线路 上各个位置
¾便于站内改造
全光纤电流互感器被测电流类型
¾AC用
¾DC用
直流用全光纤电流互感器优势
¾传感光纤环可无差别的测量直流和交流电流 ,可沿用交流互感器技术和结构
¾其安装方法和电子式互感器类似,不同之处 是GIS集成式全光纤电流互感器无需安装远 端模块。
GIS互感器安装结构(单相)
¾每一个传感光 纤环能同时提 供保护和测量 电流

《全光纤电流互感器技术规范》

《全光纤电流互感器技术规范》

《全光纤电流互感器技术规范》编制说明T/CES(/Z) XXXX-XXXX目次1 编制背景 (3)2 编制主要原则 (3)3 与其他标准文件的关系 (3)4 主要工作过程 (3)5 标准结构和内容 (3)6 条文说明 (4)1编制背景全光纤电流互感器是基于法拉第效应,通过传感光纤测量电流。

它特别适合高压、特高压电力传输系统的应用,具有技术先进、无磁场饱和、精度高、高压隔离特性优异、无灾难性危险(爆炸)、体积小重量轻等特点。

随着全光纤电流互感器技术的日益成熟,技术法规及相关标准的建立,全光纤电流互感器必将逐步取代传统的电磁式电流互感器而成为电网监测的最主要手段。

IEC和国家标准中没有全光纤电流互感器技术方面的有关内容,迫切需要编制全光纤电流传感器技术规范。

为促进全光纤电流互感器在高压、特高压电力传输系统的应用,明确全光纤电流互感器的设计和配置要求,规范全光纤电流互感器的试验类型、试验项目和试验方法,满足生产厂商、设计单位和使用单位的迫切需要,特制定本标准《全光纤电流互感器技术规范》。

制定本标准有利于推动全光纤电流互感器技术的规范化发展,推动该新技术在电力行业的应用。

2编制主要原则本标准的编写格式按GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》的要求编写。

3与其他标准文件的关系本标准以国家标准《互感器第8部分:电子式电流互感器》(GB/T 20840.8)和《高压直流输电系统直流电流测量装置第1部分:电子式直流电流测量装置》(GB/T 26216.1)为蓝本。

根据110kV及以上交流系统和±100kV及以上直流输电系统用全光纤电流互感器的特点,规定了其使用条件、基本参数、结构和配置要求、技术要求、试验、标志、使用期限、包装、运输及贮存。

4 主要工作过程2019年1月,成立标准起草编写工作组;2019年6月,工作组在充分调研国内外相关标准的基础上,编制了本标准大纲,确定了编写工作的具体时间节点;2019年7月,召开第一次工作组会,开始标准起草;2019年8~9月,编写工作组根据变电站内配置的数字式和模拟式电能质量监测装置的具体检测情况编制了检测规范的初稿,召开了内部讨论会,确定了检测规范框架和初步内容;2019年10月,形成征求意见稿,上网征求标准意见。

全光纤电流互感器的原理

全光纤电流互感器的原理

全光纤电流互感器的原理
全光纤电流互感器(FOCT,Fiber Optic Current Transformer)是一种利用光纤传输信号来测量和监测电流的装置。

其原理基于电流通过导体产生的磁场对光纤的影响。

具体原理如下:
1. 光纤传感器:光纤传感器由一对光纤组成,其中一条光纤作为发送光纤,用来发送光信号;另一条光纤作为接收光纤,用来接收光信号。

2. 光调制器:发送光纤连接到光调制器,光调制器一般采用光电二极管。

当电流通过光调制器产生的电路时,它会产生电流的变化。

这种变化会导致光调制器中的光发生调制,即光的强度发生变化。

3. 磁场感应:将电流通过被测导体上,即可产生一个与电流成正比的磁场。

当电流通过导体时,磁场会穿过光纤传感器的某一部分。

这个磁场的变化会导致光纤产生剪切应力。

4. 剪切应力的传递:剪切应力会传递给接收光纤,导致接收光纤中的光发生相应的调制。

通过测量接收光纤中光的强度变化,可以得到电流大小,实现电流的测量和监测。

全光纤电流互感器具有抗电磁干扰、高精度、宽带宽等特点,适用于高压、大电流等复杂环境中对电流的测量和监测。

常用电气自动化英语单词

常用电气自动化英语单词

电气常用专业单词(1048个)able[`eibl]adj.能够abnormal[ b`n :m l]adj.异常abort[ `b :t]中断,停止absent[` bs nt]adj.不在的,缺少的acceleration[ k.sel `rei n]n.加速,加速度access[` kses]vt.存取,进入,接近action[` k n].动作actuator[` ktjueit ]n.操作(执行)机构,执行器address[ `dres]地址adjust[ `d st]调整,校正adjustablewrench活扳手adjustable[ `d st bl]可调整的adjustingscrew调整螺钉adjustment[ `d stment]调节、调节装置aircompressor空压机[k m`pres ]压缩机airexhaustfan排气扇[ig`z :st]排气,抽完air[e ]风,空气alarm[ `lam]报警align[ `lain]定位,对准,调整alternatingcurrentAC交流电[ :l`t :n t]轮流,交替ambienttemp环境温度ambient[` mbi t]周围的,环境的ammeter[` mit ]n.电流表,安培计amp[ mp]n.安培ampere[` mp ]n.安培amplifier[` mplifai ]n.放大器,扩音器analoginput[` n l g]模拟量输入analogoutput模拟量输出analogsignal模拟信号[` n l g][`signl]analog[` n l g]模拟analog-to-digitalA/D模数转换[`did it l] anglevalve角伐angle[` gl]角度applicationprogram应用程序[. pli`kei n]请求,应用arc[a:k]电弧,弧光area[`e ri ]面积,区域arrester[e`rest ]避雷器assembleline装配线,生产线[ `sembl]assemble[ `sembl]安装,组装asynchronousmotor异步马达[ei`si n s] atomizing[` tm s.fi ]雾化attention[ `ten n]注意autoreclose自动重合闸autoformer自耦变压器automatic[. :t ` tik]AUTO自动automaticvoltageregulator自动调压器[`regjuleit ] auxiliary[ :g`zilj i]AUX辅助的avoid[ `v id]避免,回避avometer[ `v mit ]万用表,安伏欧表计axis[` ksis]轴,轴线backpressure背压backup支持,备用backwash反冲洗baffle[`b fl]隔板bagfilter除尘布袋balance[`b l ns]平衡,称,天平ball[bc:l]球bar[ba:]巴,条杆base[beis]基础、根据battery[`b t ri]n.电池bearing[`b ri ]BRG轴承bell[bel]铃,钟(ring铃声,环)belttension皮带张力[`ten n]belt[belt]带,皮带birate[baireit]n.比特率binary[`bain ri]二进制,双bit[bit]比特(二进制)black[bl k]黑色blade[bleid]叶片bleed[bli:d]放气,放水blow[bl u]吹blown[`bl un]熔断的blue[blu:]蓝色boilerBLR[`b il ]锅炉bolt[b ult]螺栓、拧螺丝boolean[`bu:li n]n.逻辑boost[bu:st]BST增压,提高boostpumpBP升压泵bore[b :]孔,腔both[b ]双方,两者都bottom[`b t m]底部bracket[`br 支架,托架,括号brake[breik]刹车,制动器,闸break[breik]断开,断路、破裂、折断breakercoil跳闸线路breaker[`breik ]断路器,隔离开关brown[braun]棕色brush[br ]电刷,刷子bucket[`b kit]斗,吊斗buffern.[`b f 缓冲器bump[b mp]碰,撞击burner[`b :n ]燃烧器button[`b tn]按钮bypass/bypassBYP旁路byte[bait]字节(八位)cabinet[`k binit]厨柜,机箱、柜cable[`keibl]电缆calculator[`k lkjuleit ]计算器caliber[`k lib ]管径、尺寸、大小cam[k m]凸轮cancel[`k ns l]取消、省略capacitance[k `p sit ns]n.容量,电容capacitor[k `p sit ]n.电容器=capacitator card[ka:d](电子)板、卡carton[`ka:t n]纸板箱casualty[`k ju lti]人身事故、伤亡、故障center[`sent ]中心centralcontrolroom中控室centralprocessingunitCPU中央处理器centrifugalfan离心风机centrifugal[sen`trifjug ]离心的change[t 改变character[`k rikt ]字符chargeindicator验电器、带电指示器:d 充电,电荷 chassisearth机壳接地chassis[` si]底座、机壳check[t ek]检查chimney[`t mni]烟囱、烟道circuit[`s :kit]n.电路circuitbreaker电路断路器circuitdiagram电路图[`dai gr circuitry[`s :kitri]n.电路,线路circulatingwaterpump循环水泵circulating循环[`s :kjuleiti ]clamp[kl mp]夹具、钳classofinsulation绝缘等级[.insju`lei n] class[kla:s]类、等级、程度clean[kli:n]清洁的、纯净的cleanse[kle 净化、洗净、消毒CLEARINGOFFAULT故障清除clockwise[`kl kwaiz]顺时针、右旋的clog[kl g]障碍,塞满,粘注close[kl uz]关闭closed-loop闭环[lu:p]coarse[k :s]粗的、不精确的code[k ud]代号、密码coder[`k ud ]编码器coil[k il]n.线圈cold[k uld]冷,冷的,感冒collect[k `lekt]收集colour[`k l ]颜色command[k `ma:nd]命令、指挥communication[k .mju:ni`kei 通信、通讯compensation[k mpen`sei n]补偿,矫正component[k m`p un nt]元件compressair压缩空气[ ]compress[k m`pres]压缩compressor[k m`pres ]压缩机computer[k m`pju:t ]计算机condensate[k n`denseit]冷凝、使凝结condition[k n`di n]条件、状况、环境conduct[`k nd kt]传导conductivity[.k nd k`tiviti]导电率conductor[k n`d kt ]n.导体,导线configure[k n`fig ]组态congealer[k n`d i:l ]冷却器、冷冻器connect[k `nekt]连接connection[k `nek n]联接connector[k `n kt ]联接器、接线盒console[k n`s ul]控制台constant[`k nst nt]恒定的contact[`k nt kt]n.接触,触点,vt.接触,联系contacttoearth接地、触地、碰地[ : ] contact[`k nt kt]触点contactor[`k nt kt ](电流)接触器、触头continuous[k n`tinju s]连续的control[k n`tr l]CNTR/CNTPL控制controlpanel控制盘[`p nl]面板,仪表板,屏幕controlvalve调节阀[v lv]controller[k n`tr ul ]控制器convert[k n`v :t]n.转换vt.使转变,转换…. conveyor[k n`vei ]传送带,输送机cooktop[`kukt p]n.炉灶cool[ku:l]冷的cooler[`ku:l ]冷却器coolingfan冷却风机[f n]coolingtower冷却塔[`tau ]塔,城堡coolingwaterpump冷却水泵cooling[`ku:li ]冷却copy[`k pi]拷贝core[k :]铁心、核心、磁心correct[k `rekt]正确的,改正correction[k `rek n]修正、改正corrosion[k `r u n]腐蚀counter[`kaunti ]n.计数器couple[`k pl]CPL联轴器curdle[`k :dl]凝固currency[`k r nsi]流动、流通current[`k r nt]n.电流,水流、当前、气流currenttransformerCT电流互感器[tr ns`f :m ] cursor[`k :s ]光标curve[k :v]曲线cutter[`k t ]切削工具,刀具ccycle循环、周期、周波cylinder[`silind ]CYL汽缸,圆柱体cymometer[sai`m mit ]频率表,频率计damage[`d mid ]损坏、破坏dangerzone危险区[z un]danger[`deind ]危险、危险物dangerous[`deind r s]危险的dank[d k]潮湿database数据库[beis]底部,基层,灯座datapool数据库[pu:l]data[`deit ]数据deactivate[di:` ktiveit]使无效deadband死区[ded][b nd]区,队debugging[di:`b gi ]n.调试deceleration[di:.sel `rei n]n.减速,减速度decrease[di:`kri:s]DEC减少deep[di:p]深度、深的、深default[di`f :lt]n.默认(值),缺省(值)degree[di`gri:]度、等级delaytime延时[di`lei]延迟,滞后relay[`ri:lei]继电器delay[di`lei]延迟,滞后delete[di`li:t]删除,作废defective[di`fektiv]有缺陷的,损坏,次品,不完全description[dis`krip n]说明、描述detect[di`tekt]发现、检定detector[di`tekt ]检测器,探测器deviate[`di:vieit]背离、偏差device[di`vais]设备、仪器,装置diagnosis[.dai g`n usis]诊断diagram[`dai gr m]图形、图表diameter[dai` mit ]直径dielectric[.daii`lektrik]介质、绝缘的dieselgenerator柴油发电机[`di:z l][`d en reit ]发电机,振荡器differential[.dif `ren ]差别的,差动的,微分differentialpressureDP/DSP差压[`pre ]digitalinput/output数字量输入/输出[`did itl]数字的,数字digitalsignal数字信号[`did itl][`signl]digital[`did itl]数字的digital-to-analogD/A数/模转换[` l g] directcurrentDC直流(电)[di`rekt]直接的disassembly[.dis `sembli]拆卸disastershutdown事故停机[` tda n]停工(机),关机disaster[di`za:st ]事故、故障discharge排除、放电、卸载disconnectswitch隔离开关disconnect断开,分离disconnector隔离器、隔离开关discrete[dis`kri:t]adj.不连续的,离散的discreteinput开关量输入discreteoutput开关量输出disk[disk]磁盘diskette[dis`ket]磁盘,磁碟display[di`splei]显示、列屏dissipation[.disi`pei n]n.分配,分发distance[`dist ns]距离,间隔distilledwaterDISTLWTR蒸馏水[dis`tild]由蒸馏得来的distributedcontrolsystemDCS集散控制系统distributed[dis`tribju:tid]分布的distributingboard配电盘[dis`tribju:ti ][b :d]double[`d bl]两倍的,双重的dowelpin定位销[`dau l]销子[pin]down[daun]向下的,向下download下载downtime停机时间drainDRN疏水、排放drawing[`dr :i ]画图.制图,图样、牵引drill[dril]钻孔、钻头、钻床drivenail钉钉子drive[draiv]驱动、强迫drop[dr p]滴,点滴,落下dry[drai]干、干燥duct[d kt]风道、管道dustcatcher除尘器、吸尘器[`k t ]捕捉器dust[d st]灰尘duty[`dju:ti]责任,义务dynamic[dai`n mik]动态的dynamometer[.dain `m mit ]功率表earthconnector接地线、接地[ : ][k `n ktearthfault接地故障[f :lt]earthlead接地线、接地[li:d]引线,领导earth大地[ : ]eccentricity[eksen`trisiti]偏心、扰度edit[`edit]编辑efficiency[i`fi ns]效率ejected[i`d ekt]喷射,驱逐,被放出的ejection[i`d ek n]弹出,排出,喷出,喷射electricfailure触电[i`lektrik]电的[`feilj ]故障,失败electricspark电火化[spa:k]electric[i`lektrik]电的、电动的、导电的electricalmachine电机[m ` i:n]机器,机械electricalservice供电[`s :vis]维修,服务,管理electrical[i`lektrikl]电的、电气的electric-hydrauliccontrol电/液控制[hai`dr :lik][k n`trol] electrician[ilek`tri n]电工electrode[i`lektre d]电极electronic[ilek`tr nik]电子的、电子学的electrostatic[i`lektr u`st tik]静电的electrotechnics[i`lektr u`tekniks]电工学、电工技术element[`elim nt]元件、零件、单元elevator[`eliveit?]n.电梯,升级机emergency[i`m :d nsi]EMERG紧急事故empty[`empti]排空enable[i`neibl]使能够,允许enclosure[in`kl u ]n.密封,外壳,包围encoder[in`k ud ]编码器endcover端盖end末端、终结energymeter电度表energy[`en d i]能、能量engineer[.end i`ni ]工程师enter[`ent ]开始、使进入entry[`entri]输入equipment[i`kwipm 设备error[`er ]错误escapevalve安全阀[is`keip]event[i`vent]事件exceed[ik`si:d]超过excess[ik`ses]超过、过度exciter[ik`sait ]励磁机exit[`eksit]出口expansion[iks` n n]EXP膨胀explosion[iks`pl u n]爆炸external[eks`t :nl]外部的、表面的extra-highvoltage超高压[`ekstr ]额外的,特大的factor[`f kt ]因素、因数factory[`f kt ri]工厂、制造厂failure[`feilj ]FAIL失败,故障false[f :ls]假的、错误的fan[f n]风扇、风机fault[f :lt]故障faultless[`f :ltlis]没有缺陷、完美的faultyoperation误操作[`f :lti][. p `rei n]运算,工作features[`fi:t ]特点feed[fi:d]馈、供给feedback[`fi:db k]反馈fiberoptic光纤[`faib ]光纤,纤维[` ptik]光学上的,视觉的field[fi:ld]n.现场,原野file[fail]文件、锉刀fill[fil]装填filter[`filt ]n.过滤器,滤波器,滤网,filterdifferentialpressureFILTRDP滤网压差final[`fain ]最后的firepump消防水泵fire[`fai ]燃烧、火焰fireproof[`fai pru:f]防火的、阻燃的fixed[fikst]固定的、固定、确定、保护屏flank[fl k]侧翼、侧面flashlamp闪光灯flashlight闪光flash[fl ]闪光、闪烁、闪蒸float-charge浮充电[fl ut]浮动[t a:d ]充电,电荷flow[fl u]流量、流动flowmeter[`fl umi:t ]流量计fluegas烟气[g s]气体,煤气,毒气,汽油flue[flu:]烟道fluid[`fluid]液体flux[fl ks]n.流量,通量forbid[f `bid]禁止forcedraftfan送风机[dr :ft]通风force[f :s]强制form[f :m]形式、形状、形成、构成format[`f :m t]形式、格式frequency[`fri:kw nsi]频率friction[`frik n]n.摩擦,摩擦力from[fr m]从、来自、今后fullspeed额定频率fully[`fuli]充分的、完全的fume[fju:m]烟,冒烟function[`f k n]功能fuseholder保险盒[`h uld ]fuse[fju:z]保险丝、熔断器fusiblecutout熔断开关[`fju:z bl]溶解的,可融的[`k taut]断流,保险装置gauge[ ed ]仪表、标准gearpump齿轮泵[ i ][p mp]gearshifthousing变速箱[ ift]换挡,变化[`h uzi ]外壳,套gear[ i ]齿轮gearbox齿轮箱generalcontrolpanel总控制屏[`d en r l]普通的,全面的,综合的generator[`d en reit ]n.发电机glandseal轴封[ l nd]填料函盖,密封压盖[si:l]封,密封,填料glass-paper砂纸goon继续goal[ ul]目的、目标graphics[` r fiks]调节阀grease[ ri:s]图形green[ ri:n]绿色ground[ ra nd]地面,场所、接地earth[ : ]地球,接地、大地,泥土guide[ aid]领路人、向导half[h :f]一半、一半的haltinstruction停机指令[h :lt]停机,中断,暂停[in`str k n] halve[ha:v]vt.二等分,平分hammer[`h m ]锤子hand[h nd]手,指针handle[`h ndl]vt.触摸,运用,买卖,处理,操作vi.搬运,易于操纵handwheel[`h ndwi:l]手轮,驾驶盘hardware[`h :dw ]硬件havoc[`h v k]n.严重破坏vt.损害heat[hi:t]热、加热heater[`hi:t ]加热器heating[`hi:ti ]加热,供暖hertz[`h :ts]HZ赫兹highpressureHP高压history[`hist ri]历史hold[h uld]保持hopper[`h p ]漏斗、料斗hose[h uz]软管、水龙带hotcircuit通电线路[`s :kit]hotstart热态启动[st :t]hot[h t]热的,热情的,辣的hydraulic[hai`dr :lik]水力的,液压的,油压的,水压的I/Opoint输入/输出点inboard[`inb :d]内侧idle[`aidl]空闲的,空载的、无效的ignitor[ig`nait ]点火,点燃,点火器impedance[im`pi:d ns]阻抗import[im`p :t]进口、输入、引入impulse[`imp ls]脉冲、冲击、冲量inch[int ]IN英寸inching[`int i ]缓动、点动increase[in`kri:s]INC增加increment[`inkrim nt]增量,加1,递增index[`indeks]索引、指标,指针,指数indicate[`indikeit]指示,显示,表明indicator[`indikeit ]指示器inductance[in`d kt ns]电感,自感应inductionmotor异步电动机[in`d k n]感应[`m ut ] inductivereactance感抗[in`d ktiv]电感的,感应的[ri` kt ns]电抗inductor[in`d ]n.电感器,感应器inhibit[in`hibit]禁止,抑制,约束init初使化initial[i`ni l]初始的,最初的inlet[`inlet]入口input/outputI/O输入/输出insert[in`s :t]插入inside[`in`said]内侧、内部inspection[in`spek n]观察、检查inspector[in`spekt ]n.检测install[in`st :l]安装instruction[in`str k n]n.指令,指导,指示,说明书,instrumentpanel仪表盘[`p nl]instrument[`instrum nt]仪器insufficient[.ins `fi nt]不足的,不够的insulate[`insjuleit]绝缘、隔离insulation[.insju`lei n]绝缘insulator[`insjuleit ]n.绝缘体integer[`intid ]整数integral[`inti r l]积分,积分的interface[`int .feis]n.分界面,界面,接口interface[`int .feis]接口interference[.int `fi r ns]干扰、干涉intermediaterelay中间继电器[.int `mi:dj t]中间的,中级,中频internal[in`t :nl]内部的,内部interrupt[.int `r pt]中断into[`intu]向内、进入,到…里,进入到…之内inverter[in`v :t ]逆变器、反相器、非门isolator[`ais leit ]隔离器、刀闸,分离器,绝缘体job[d b]工作jumper[`d mp ]跳线、跨接junctionbox接线盒[`d k n]key[ki:]键销、钥匙、键槽keyboard[`ki:b :d]键盘kilovolt-ampereKVA千伏安[`kil v lt` mpe ]kink[ki k]弯曲、缠绕knack[n k]技巧、窍门、诀窍knife-switch闸刀开关label[`leibl]标号、标签,商标,标志laboratory[l `b r t ri]实验室ladderdiagram梯形图[`l d ][`dai gr m] ladderlogicDiagram逻辑梯形图[`l d ik][`dai gr m] ladder[`l d ]梯子、阶梯lamp[l mp]n.灯、光源last[la:st]最后的,末尾的leak[li:k]泄漏,漏,漏洞(动词)leakage[li:kid ]n.漏,泄漏,渗漏least[li:st]最少的、最小的left[left]左length[le ]长度level[`levl]液位、水平lever[`li:v ]杆,杠杆,控制杆lifebelt[laifbelt]安全带、保险带lift[lift]提、升lightrun空转[lait][r n]light[lait]光,灯,轻,淡,日光,光亮,点,点燃,照亮lightning[`laitni ]雷电limit[`limit]LMT极限、限制limitswitch[`limit]限位开关limiter[`limit ]限制器、限位开关line[lain]线、直线list[list]列表、目录liter[`li:t ]公升little[`litl]小的,少许,少的load[l ud]n.负荷,负载loadthrownon带负荷[ r un]localattendant现场值班员[ `tend nt]维护人员,值班人员,服务员localrepair现场检修[ri`p ]修理,修补local[`l uk l]当地的,局部,本地location[l u`kei n]位置,定位,单元,场所lock[l k]闭锁、密封舱、固定logger[`1 ]记录器、拖车logic[`l d ik]逻辑long[l ]长loop[lu:p]环、回路loose[lu:s]松的、不牢固的loosen[`lu:sn]松开、松动loss[l s]损失、减少low[l u]低lower[`l u ]较低的、降低low-half下半[h :f]luboilpump润滑油泵luboil润滑油lubricate[`lu:brikeit]LUB润滑machine[m ` i:n]机器,机械magnet[`m nit]磁mainwire电源线[`wai ]main[mein]主要的,主群组maintain[men`tein]维修、维持、保养maintenancemanual检修手册[`m nju l]maintenance[`meintin ns]维护、维护,检修、小修make[meik]制造,是成为makesure确定[ u ]的确,对…有把握makeup补充(补给)malfunction[m l`f k n]故障,出错、误动、失灵management[`m nid m nt]管理、控制、处理man-machineinteraction人机对话[m n][m :` i:n][.int ` k n] man-machineinterfaceMMI人机接口[`int .feis]界面,接口manometer[m `n mit ]压力表manualrejectMRE手动切换[ri`d ekt]拒绝,排斥manual[`m nju l]手动、手册manual/AutostationM/ASTATION手动/自动切换站mark[m :k]型号、刻度、标志、特征mastercontrolroom主控室、中央控制室[k n`tr l]master[`m :st ]主人,主要,控制,师傅,正版material[m `ti ri l]n.材料,原料maximum[`m ksim m]最大,最大值,最高,mean[mi:n]平均,平均值、中间的measure[`me ]度量、测量,量,尺寸mechanicaltripvlv机械跳闸阀[mi`k nikl][trip]脱扣,解扣mechanical[mi`k nikl]机械的、力学的mechanism[`mek niz m]机械、力学、方法、装置、机构medial[`mi:dj l]中间的、平均的medium[`mi:dj m]中间的、中等的、装置、介质、工质melt[melt]溶解,熔化memory[`mem ri]存储,存储器,记忆menu[`menju:]n.菜单metal[`metl]金属meter[`mi:t ]n.仪表,米,表meterswitch仪表开关methodofoperation运行方式[. p `rei n]操作,运转method[`me d]方法、规律、程序microphone[`maikr f n]麦克风、话筒,传声器,扩音器microprocessor[maikr u`pr uses ]n.微处理器middle[`midl]MID中间的,中间,当中,中型mill[mil]磨、磨粉机、压榨机,铣刀mind[maind]头脑、精神、介意minimum[`minim m]最小的minoroverhaul小修[main ]次要,副修科目[.auv `h :l]检修,大修minute[mai`nju:t]分钟misfill误装mishandle[`mis`h ndl]胡乱操作、误操纵misread[mis`ri:d]错读miss[mis]过错,避免,小姐,姑娘,故障,失败missoperation误动作、误操作[. `rei n]mistake[mis`teik]错误、事故mixer[`miks ]n.搅拌器,混合器,混频器modem[`m ud m]调制解调器modify[`m difai]修改、更改modulatingvalve调节阀[`m djuleit][v lv]module[`m dju:l]n.模块,组件,模数moisture[`m ist ]湿度、湿汽mold[m uld]模具monitor[`m nit ]n.监听器,监视器,监控器vt.&vi.监控month[m n ]月morethan超过[m :]更多的[ n]与…相比较,比motorMTR马达[`m ut ]motorwinding电动机组绕组[`waindi ]绕组,线圈,绕,缠mount[maunt]安装、固定mouse[maus]鼠标move[mu:v]移动multimeter[`m ltimit ]万用表nail[neil]钉子、钉钉子naughtline零线[`n :t]零,无neck[nek]颈,管颈needlepointvlv针阀[`ni:dlp int] negativepressureNEGPRESS负压negative[`neg tiv]负的network[`netw :k]网络neutralline中性线[`nju:tr l]中性的newly[`nju:li]最近,重新、新地nipper[`nip ]钳子、镊子noiseremove消音器[n iz][ri`mu:v]noise[n iz]噪音no-loading空载nominalpower额定功率[`n minl]标称的,额定的[`pau ] nominal[`n minl]标称的、额定的normalclosedcontact常闭触点[`k nt kt]触头,触点,接点normal[`n :m l]正常的、常规的normally[`n :m li]正常地notavailable无效、不能用[ `veil bl]可用的,有用的nozzle[`n zl]喷嘴number[`n mb ]数字、号码、数目nut[n t]螺母、螺帽occur[ `k :]发生ohm[ um]n.欧姆oilbreaker油开关[`breik ]oilgun油枪[g n]oillevel机油平面[`levl]oil[ il]油oiler[` il ]注油器,油商oilless[ lles]缺油的on/off开/关online[ nlain]联机的,在线的opencircuit开路[` up n][`s :kit]open-loop开环[lu:p]operatingpanel操作盘[` p reiti ][`p nl] operation[. p `rei n]操作、运行operationallog运行记录[ . p `rei n][l ] operatorkeyboard操作员键盘[`ki:b :d] operatorstation操作员站[`stei n]operator[` p reit ]操作员optionswitch选择开关optional[` p n l]可选的,选择orbit[` : 轨道,轨迹orientation[. rien`tei n]方位,定向,定位original[ `rid n l]初始的、原始的out出、出口outboard[`autb :t]外侧的outage[`autid ]断电,停机,出故障outlet[`autlet]出口output[`autput]产量、产品、输出oven[` vn]n.烤箱overcurrent过流[`k r nt]overloading过载[`l udi ]overvoltage过压[`v ltid ]over[` uv ]结束,上面的,过分的overcool[` uv ku:l]过冷却overflow[` uv `fl u]溢流overhaul[. uv `h :l]大修,检修overhead[` uv hed]顶部,高空,架空overheat[. uv `hi:t]使过热overload[` uv `l ud]n.过载overloadprotection过载保护[` uv `l ud][pr `tek n] package[`p kid ]组件、包,插件packaging[`p kid i ]n.包装panel[`p nl]屏、盘parameter[p `r mit ]参数part[p :t]部分、部件password[`p :sw :d]口令,密码peak[pi:k]峰值percent[p `sent]PCT百分数percentage[p `sentid ]百分比perfect[`p :fikt]完全的、理想的performance[p `f :m ns]完成、执行、性能periodicinspection定期检查[in`spek n]periodic[pi ri` dik]周期的、循环的peripheralequipment外围设备[i`kwipm nt] peripheral[p `rif r l]周围的,外围设备,周边的permanent[`p :m n nt]永久的、持久的permit[p `mit]允许PG编程器phasenottogether缺相、失相[feiz]相[t ` e ]共同phase[feiz]PH阶段、状态、方面、相phasesequence相序[`si:kw ns]次序,顺序,时序phasevoltage相电压phase-failureprotection断相保护[`feilj ]phase-in同步photoelectricity[.f ut uilek`trisiti]光电piezometer[.pai `z mit ]压力计pilot[`pail t]导向、辅助的、控制的pipe[paip]管、管道plan[pl n]计划plant[pl :nt]工场、车间plastic[`pl stik]塑料PLC(programmableLogicController)可编程序逻辑控制器pliers[`plai z]钳子、老虎钳plugsocket插座[`s kit]plug[pl ]塞子、栓、插头plus[pl s]加pneumatic[nju`m tik]气动的point[p int]点pointer[`p int ]指针,指示器pole[p ul]极、柱,极点,电极,电杆pollution[p `lu: n]污染portion[`p : n]一部分position[p `zi n]POS位置potential[p `ten l]电势,电位potentialtransformerPT电压互感器[p `ten l][tr ns`f :m ] powerfailure停电[`pau ][`feilj ]故障,失败power[`pau ]PWR功率、电源,能力,动力PPI(point-to-pointInterface)点对点接口preblow预吹preferential[.pref `ren l]n.优先的,优先权perform[p `f :m]预先形成,预制,预成型坯,粗加工的成品preheat[`pri:hi:t]预热preheater[`pri:hi:t ]预热器preliminary[pri`limin ri]准备工作present[pri`zent]出现preset[`pri:`set]预设、预置press[pres]压,按,压力pressure[`pre ]PRES压力primary[`praim ri]初级的、一次的principle[`prins pl]原理、原则printer[`print ]打印机probe[pr ub]探头process[pr `ses]过程、方法production[pr `d k n]生产、产品、作品program[`pr u r m]程序programmable[`pr ugr m bl]adj.可设计的,可编程的prohibit[pr `hibit]禁止proportional/integral/derivativePID比例/积分/微分protection[pr `tek n]PROT保护、预防protocol[`pr ut k l]n.协议pull[pul]拖,拉pulse[p ls]脉冲、脉动pumpbody泵体pump[p mp]泵purge[p :d ]净化、吹扫pushandpullswitch推拉开关pushbutton按钮push[pu ]推pushbutton[pu `b tn]n.按钮pyod[`pai d]热电偶quality[`kw liti]质量quit[kwit]停止、离开、推出rackearth机壳接地[r k]机架,机柜,导轨[ : ] radiationfin散热片[.reidi`ei n]辐射,发散fin]散热片radiator[`reidieit ]n.散热器,冰箱raise[reiz]升高range[reind ]范围、量程rate[reit]速度,速率ratedpower[`reitid]额定功率rated[`reitid]额定的、比率的ray[rei]光线、射线readout读出、结果传达reading读数realtime实时的[`ri: l]receivetank回收箱、接收箱[ri`si:v][t k]receive[ri`si:v]收到,接到,接收,接待recipe[`resipi]处方、配方reclosing重合闸recoverytime恢复时间[ri`k v ri]recovery[ri`k v ri]恢复、再生rectification[.rektifi`kei n]整流、检波、调整rectifier[`rektifai ]n.整流器,矫正器red红色reduction[ri`d k n]还原、缩小、降低redundancy[ri`d nd nsi]冗余、多余reference[`refr ns]REF参考、参照、证明书reflux[`ri:fl ks]倒流、回流register[`red ist ]寄存器regulate[`re juleit]调节、控制relay[`ri:lei]n.继电器release[ri`li:s]释放reliability[i `biliti]可靠性、安全的relief[ri`li:f]去载、卸载、释放、解除relievevalve安全阀、减压阀[ri`li:v][v lv]remove除去、拆卸renewal[ri`nju l]更新、更换repair[ri`p ]修理repairer修理工、检修工repeat[ri`pi:t]重复、反复replace[ri`pleis]重新、启动、更换、替换replacementparts备件、替换零件[ri`pleism nt][p :t] request[ri`kwest]REO请求require[ri`kwai ]要求reserveparts备件[ri`z :v]reserved[ri`z :vd]备用的reset[`ri:set]复位resist[ri`zist]n.阻抗resistance[ri`zist ns]n.电阻、阻抗resolution[.rez `lju: n]n.分辨率response[ris`p ns]响应restart[ri:`st :t]重新启动retighten[ri`tait n]重新紧固retract[ri`tr kt]可伸缩的、缩回returnoil回油[ri`t :n]return[ri`t :n]返回reverserotation反转[ri`v :s]rig[ri ]安装、装配、调整right[rait]右right-of-way公用线路ring[ri ]环roller[`r ul ]滚筒、辊子rotaryswitch转换开关[`r ut ri]rotate[r u`teit]旋转rotation[r u`tei n]旋转,转动,回转rotor[`r ut ]转子routine[ru:`ti:n]例行的、日常的routinginspection日常检查、日常检测[in`spek n] routingmaintenance日常维护[`ru:ti ][`meintin ns] rubber[`r b ]橡胶runback返回run运行safe[seif]安全的、可靠的、稳定的safetycap安全帽safety[`seifti]安全sample[`s mpl]取样、举例sampling[`s :mpli ]采样、抽样、取样saw[s :]锯scale[skeil]刻度、衡量、比例尺、测量、铁锈水垢scan[sk n]扫描schedule[` ekju:l]时间表、计划表screen[skri:n]]屏幕screwdriver螺丝刀screwsocket螺口插座screw[skru:]螺杆、螺丝、旋转seal[si:l]密封search[s :t ]寻找、查找second[`sek nd]秒、第二seep[si:p]渗出、渗漏seepage[`si:pid ]渗漏现象select[si`lekt]选择selector[si`lekt ]选择器self-hold[self][h uld]自保持self-running自启动send[send]发送,寄,发射sensor[`sens ]传感器sequence[`si:kw ns]顺序、序列servicemanual维修说明书series[`si ri:z]n.连续,串联service[`s :vis]维修.保养.服务、伺服servo[`s :v u]伺服servomotor[`s :v u.m ut ]伺服电机setup安装、调整、建立set[set]设定shaft[ :ft]轴、手柄、矿井shake[ eik]摇动、振动shield[ i:ld]屏蔽shift[ ift]值、替换shock[ k]震动,使受电击shortcircuit短路short[ :t]短的、短路、使短路should[ ud]应该,将要show[ u]展览,显示,指示shutoff关闭[ t]关闭,关上shut[ t]关上,更加shutdown[` tda n]停止、停机siccative[`sik tiv]干燥剂,使干燥的,side[said]侧边siemens[`si:m z]西门子sifter[`sift ]筛子、滤波器sign[sain]标记、注册signallamp信号灯signal[`si nl]信号,发信号silencer[`sail ns ]消音器simulation[.s imju`lei n]n.仿真,模拟simulator[`simjuleit ]仿真机singlebladeswitch单刀开关[bleid]刀刃,刀片single[`si l]单个的、个体的site[sait]现场size[saiz]尺寸、大小skip[skip]空指令、跳跃smoke[sm uk]烟、冒烟smokes-stack烟囱[st k]烟囱,堆,堆栈smooth[smu: ]平滑的、光滑的socketwrench套筒扳手socket[`s kit]插座software[`s ft ]软件solenoid[`s ulin id]电磁线圈solidwrench呆扳手solid[`s lid]固体、坚固的、固体的source[s :s]源、电源spanner[`sp n ]扳手spare[sp ]备用的、空余的spareparts备件、备品spark[sp :k]火花specialtool专用工具special[`spe l]特别的、专门的specification[.spesifi`kei n]技术要求,说明书speed[spi:d]速度spraynozzle喷嘴[sprei]喷雾,喷射springclutch弹簧离合器[kl ]离合器spring[spri ]弹簧、春天stack[st k]烟囱,堆栈stall[st :l]停车、阻止standard[`st nd d]标准standby[`st ndbai]备用、待机star[st :]星、星形连接startup启动start[st :t]启动、开始starter[`st :t ]n.启动器,启动钮startingconditions启动条件[`sta:ti ]启动,开始,出发start-upsequence启动程序[`si:kw ns]程序,次序,顺序,序列state[steit]状态statement[`steitm nt]声明、语句station[`stei n]站、台,岗位,身份,地点,发电厂,位置statorcoil定子线圈statorcore定子铁芯[k :]stator[`steit ]定子statusdisplay状态显示status[`steit s]状态stability[st `biliti]稳定性steam[sti:m]STM蒸汽step[step]步,步幅step-by-step步进式,逐步,按部就班的step-by-stepmotor步进电动机step-downtransformer降压变压器step-uptransformer升压变压器still[stil]仍然,还,更stop[st p]停止storagebattery蓄电池storage[`st rid ]储存strainer[`strein ]滤网,过滤器streamline[`stri:mlain]流水线stretching[`stret i ]拉伸,伸长suctionpump真空泵[`s k n]吸入,抽气,superheater[`sju:p hi:t ]过热器supply[s `plai]供给support[s `p :t]支持、支撑sure[ u ]确信的、可靠的switch[swit ]n.开关,电闸switchblade开关闸刀[bleid]刀刃,刀片switch[swit ]开关、切换switchingoff断开[`swit i ]switchingon接通switchingpushbutton开关按钮symbol[`simb l]符号synchro[`si kr u]同步,同步机synchronization[.si kr nai`zei n]同步synchronizer[`si kr naiz ]同步器syren[`sai r n]汽笛、报警器syringe[`sirind ]注油器systemunit主机system[`sist m]系统tab[t b]表格,制表tachogenerator[`t k `d en reit ]测速发电机tandem[`t m]串联tank[t k]箱temperaturecompensation温度补偿[k mpen`sei n] temperature[`temprit ]温度tensile[`tensail]拉力的、张力的tension[`ten n]压力、拉紧、张力terminal[`t :minl]n.终端,接线端,电路接头test[test]检测、试验tester[`test ]检测者、检测器text[tekst]出口thermalconduction热传导[` :m l]热的[k n`d k n]传导,导电thermalcouple热电偶[`k pl]电偶,偶合thermal[` :m l]热的,热量的,由热驱动的thermometer[ `m mit ]温度计thermostat[` :m st t]自动调温器,稳定调节装置,恒温器throttle[` r tl]节流thrust[ r st]冲击、推力thyristor[ ai`rist ]晶闸管tight[tai]紧密的、紧固的tighten[`tait n]扣紧、变紧time-lagrelay延时继电time-lag时间间隔timing[`taimi ]n.计时器,定时器toggleswitch[`togl]拨动开关token[`t uk n]标志tong-testammeter钳式电流表[t ]钳toolbox工具箱tool[tu:l]工具torquewrench扭力扳手torque[t :k]扭矩、力矩total[`t utl]总计的trainingofficer培训主管[`treini ]训练,练习transducerXDUCER传感器、交流器,变频器transfer转换transformerXFORMER变压器,传感器,发送器transmission传输transmitterXMItEER变送器transwitch可控硅开关travel[`tr vl]过程、运转、进行、移动trigger[`tri ]触发器trip[trip]跳闸、断开tri-wayvlv三通阀trouble[`tr bl]事故、故障、干扰true[tru:]真实的、调整、校正try[trai]尝试试图努力tune[tju:n]调节,曲调tuning[`tju:ni ]调谐turn[t :n]转动、转向twistdrill麻花钻[twist]扭转,扭曲type[taip]类型、标志unbolt[` nb ult]取下螺栓unclean[` n`kli:n]脏的undergroundcable地下电缆[` nd 地下的undervoltage欠压、电压低uninterruptedpowersupplyUPS不间断电源[` nint `r ptid]连续unit[`ju:nit]单元、单位unload[` n`l ud]减负荷,卸载,放电unlock[` n`l k]打开、解锁、释放unprotected[` npr `tektid]未保护的、无屏蔽的untight[ n`tait]松动的up向上update[ p`deit]更新、修改、校正upgrade[` p reid]升级(优先级)提高/改进up-half上部、上半[h :f]upper[` p ]上部的,上面的use[ju:s]使用,利用user[`ju:z ]用户,使用者uninsulate[ n`insjuleit]不绝缘vacuum[`v kju m]n.真空,空间,真空吸尘器vacuumpump真空泵valid[`v lid]有效地、正确valleyload低谷负荷[l ud]负载,负荷value[`v lju:]数值valve[v lv]n.VLV阀valvedisk阀芯valveseat阀座vane[vein]叶片variable[`v ri bl]变量variator[`v rieit ]变化器,变速器v-belt三角皮带[belt]ventilation[venti`lei n]VENT通风ventilator[`ventileit ]通风机,风扇,通风设备vertical[`v :tik l]VERT垂直的vessel[`vesl]容器vibrate[vai`breit](使)震动,摇摆vibration[vai`brei n]振动viscosity[vis`k siti]粘度videodisplayunitVDU显示器[`vidi u][di`splei] vision[`vi n]视觉,视力,显示visor[`vaiz ]护目镜、观察孔voltage[`vaultid ]n.电压,伏特数voltagedrop电压降[`v ultid ][dr p]滴,落下voltagetransformer电压互感器voltmeter[`v l t.mi:t ]n.电压表volume[`w lju:m]容积、体积walltemp壁面温度[w :l]墙,墙壁warning[`w :ni ]报警wash[w ]洗washer[`w ]垫圈、补垫waste[weist]浪费、废物watch[w t ]手表,注视watchdog[`w t d ]看门狗water[`w :t ]WTR水wattage[`w tid ]n.瓦特数wear[wi ]穿,磨损weather[`we ]天气week[wi:k]星期、周weight[weit]重量,重力weld[weld]焊接wheel[wi:l]轮,车轮,轮子,转盘while[wail]一会儿white[wait]白色winch[wint ]卷扬机.windings[`waindi ]绕组windows[`wind z]窗口wire[`wai ]电线、金属丝、接线without[wi `aut]没有,不wood[wud]木、木制的word[w :d]字,词work[w :k]工作workshop[`w :k p]车间,工场wormdrive蜗杆转动worm[w :m]涡轮、螺杆wrench[rent ]扳手,拧wrong[r ]错误的、失常的wyeY形接法year[j ]年yellow[`jel u]黄色zerodrift零点漂移[drift]zero[`zi r u]零,零位zone[z un]区、层、带。

光纤电流互感器介绍精选全文

光纤电流互感器介绍精选全文
安装在共体GIS法兰中示意图

数字科技 引领未来电力
安装在西门子GIS法兰照片

数字科技 引领未来电力
安装在分体GIS法兰示意图

数字科技 引领未来电力
安装在高压套管的示意图



数字科技 引领未来电力
2.2 ECT国内外发展现状
国外发展现状
➢ ABB、西门子(20世纪90年代)
研制成功开环方案的磁光玻璃式OCT 长期稳定性和可靠性存在较大隐患(缺陷)
➢ ABB、Nxtphase(2004年)
研制成功新型闭环光纤电流互感器 采用光纤熔接、数字处理、闭环控制技术,大大提高稳定性 和可靠性(优势) 通过IEC的相关标准,准确度达到0.2级
数字科技 引领未来电力
挂 网 现 场

数字科技 引领未来电力
华东500kV苏州东50 引领未来电力
华东500kV苏州东500kV间隔安装示意图
2040

数字科技 引领未来电力
1/4波片 相位调制器
反射镜
光纤电流传感器原理框图
光源
耦合器1
偏振器 00
耦合器2
SLD
载流 导体
传感光纤环
PIN 信号处理
相位调制器
光纤陀螺原理框图
陀螺光纤环
光电流互感器与光纤陀螺的原理对照

数字科技 引领未来电力
独立绝缘子安装示意图

光学式

项目
电磁式互感器 光电

混合式 磁光玻璃式
全光纤式

测量原理
电磁感应 电磁感应 法拉第效应 法拉第效应

敏感元件
电磁线圈 空心线圈 光学玻璃

Alstom全光纤电流互感器介绍

Alstom全光纤电流互感器介绍

NXCT 全光纤电流互感器绿色、低炭、环保、节能 智能化电网的重要基石! 智能化电网的重要基石!TechnologyGRID阿海珐输配电 ITR 拥有丰富的技术资源支 持RPV Italy RMM Mexico ITR+Capacitors Bushing RMW USA ITR RMG Brazil ITR+Coil阿海珐输配电 AREVA T&D 互感器集团 ITR LINENxtPhase O/E ITRITR+Bushing+Capacitors+Air Core Coil阿海珐输配电互感器(上海)有限公司RMC China ITR+Bushing +CapacitorRMK India RML Germany ITRRMT Finland Nokian CapacitorsITR+Coil+BushingPresentation title - 01/01/2010 - P 2© ALSTOM 2010. All rights reserved. Information contained in this document is provided without liability for information purposes only and is subject to change without notice. No representation or warranty is given or to be implied as to the completeness of information or fitness for any particular purpose. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.电流互感器分类电磁式电流互感器 (材料耗用大,绝缘复杂)混合型光电互感器 (有源式光电互感器 ) 电 流 互 感 器 在高压侧采用Rogwski线圈, 将被测电流转换成电压信号 ,再将电压信号转换成光信号传输。

一种偏置型的光纤传导高压电流互感器

一种偏置型的光纤传导高压电流互感器

电子基础1.设计方案■ 1.1整体设计方案新型电光混合式C T 整体结构如图1所示,本系统主要 由两个电流互感器,偏置电路,激光发射模块,光纤,以及 激光接收模块;通过电磁式电流互感器在远端将电网上的信 号耦合至激光发射模块,再通过装在绝缘套筒内部的光纤, 传至在底座内部的近端激光接受管,最后经滤波、模数转换、 数据处理、通信模等电子器件。

图1新型电光混合式CT 整体结构示意图■ 1.2-次侧设计方案本文提出的设计方法如图2(b )所示,额定负载与发光 二极管并联接入二次绕组,二次电流分流后经过电容耦合后 接入激光二极管电路后使其发光。

因为信号为交流正弦信 号,在流经LED 1时,只有在电压为正且满足激光二极管导 通压降下时才能正常的发光,所以信号不能全部传递出来。

根据上面的问题,在图2(b )的右侧添加了电压Uo ,将信号 的最低电压值抬升至发光二极管开启值,这便可以使完整的 信号通过激光二极管。

电压U 。

由图2(a )电压抬升电路提 供,该电路由_整流桥和DC-DC 稳压模块组成。

整流桥将76丨电子制作2〇n 年7月互感器二次侧交流信号进行整流滤波转换为直流信号,再通 入DC -DC 稳压模块将电压稳定在U 。

,最后提供给图2(b )电 路。

由于二次绕组置于悬浮电平、毋须接地,母线与二次绕 组间的绝缘要求降低,可使用较小的磁芯进而降低整机重量 和成本。

将图2(b )中与LED 1串联的电阻定义为,通过LED 1的电流为iR 1,与UQ 串联的电阻定义为R 2,流过其电流大小为iR 2,额定负载为R ,通过额定负载的电流为iR 。

当U o =0时,设LED 1正向工作电压为VF ,当二次电流L 位于正半 周期时且LED 1两端电压%大于VF 时,LED 1才发光。

图2电压抬升电路图与发光模块电路图图3发光模块在UtpO 时,^电流波形与i R1电流波形一种偏置型的光纤传导高压电流互感器作者/应慧娟、徐熠刚2、赵德\吴轶2、施笑琴、郁栋2、李兵\周晋怡2(1.金华市质量技术监督检测院2.中国计量大学机电工程学院求是电子科技协会)浙江省质量技术监督系统科研计划项目,项目编号:20140370摘要:随着电网电压等级的不断提升,电流互感器绝缘的设计难度不断的加大,成本、体积和重量也随之不断增加,严重阻碍了电网的发展。

光纤电流互感器无铁心仪表设计

光纤电流互感器无铁心仪表设计

光纤电流互感器无铁心仪表设计光纤电流互感器(Optical Fiber Current Sensor, OFCS)是一种新兴的电流传感器技术,用于测量和检测电力系统中的电流。

相比传统的电流互感器,光纤电流互感器具有无铁心、免维护、抗干扰能力强等优势,被广泛应用于电力系统、高压输变电工程和其他相关领域。

设计一款光纤电流互感器无铁心仪表是一项关键的任务。

如何选择合适的光纤传感器、设计高性能的电路、保证信号的精确传输和处理,是这个任务中需要考虑的关键因素。

首先,选择合适的光纤传感器对于仪表设计至关重要。

光纤传感器的核心是光纤的材质和结构,关系到传感器的灵敏度和抗干扰能力。

在选择光纤传感器时,应考虑材质的稳定性、光纤的尺寸和结构的可靠性。

此外,为了提高传感器的灵敏度和精确度,可以考虑采用多根光纤并联的方式,增加电流信号的采集面积,减小测量误差。

其次,设计高性能的电路是实现光纤电流互感器无铁心仪表的关键环节。

电路设计应考虑到光纤传感器信号的微弱性和干扰抑制的需求。

在接收电路设计上,应建立高灵敏度的光电转换模块,以确保将光信号转换为电信号的准确性和可靠性。

同时,利用微电子技术,设计可调节增益、抗干扰能力强的前置放大电路,以有效抑制外界电磁干扰对传感信号的干扰。

此外,还可以采用数字滤波技术,对采集的信号进行滤波处理,提高传感器的抗干扰能力和准确度。

在信号的精确传输和处理方面,需要考虑光纤电流互感器无铁心仪表的整体传输和处理系统。

首先,保证传输线路的稳定性和信号的完整性,选择低损耗、低延迟的光纤传输介质,确保信号的快速传输和准确度。

同时,为了提高传感器的精确度和稳定性,设计一套相应的信号调理和处理算法是必要的。

这其中包括对信号的采样、量化、滤波、校准等步骤。

通过合适的算法,将传感器采集到的微弱光信号转化为可读取的电流数据,提供给用户进行检测和应用。

最后,考虑到无铁心仪表的实际应用环境,光纤电流互感器无铁心仪表的设计还需要考虑防护性能和安全可靠性。

特高压全光纤电流互感器关键技术及试验研究

特高压全光纤电流互感器关键技术及试验研究

特高压全光纤电流互感器关键技术及试验研究
姜鹏飞;柏耀星;李灿;周飘
【期刊名称】《电力电子技术》
【年(卷),期】2022(56)4
【摘要】为提高全光纤电流互感器(POCT)运行可靠性,结合POCT的技术原理及结构,从POCT宽频率传变技术、宽温度传变技术及抗振技术3个实用化关键技术方面对其进行了研究及试验,研究结果表明:缩短延迟环长度、采用滤波器降采样、优化光纤熔接工艺及降低偏振串音串扰等措施提高了POCT幅频特性,实现了在国标要求频率响应比差3%的范围内,频率范围可达3.5 kHz;Verdet常量及一次传感环内的1/4波片受温度较敏感是POCT产生测量误差的主要原因,通过对户外温度实时测量并提出了温度误差补偿方案,实现了在-40~85℃宽温度范围内测量比差可达±0.1%;通过绝缘凝胶固定光纤的设计,不仅避免了光纤受振动应力集中导致测量偏差及光纤断裂的可能性,也大大提高了POCT的应用需求。

【总页数】4页(P35-38)
【作者】姜鹏飞;柏耀星;李灿;周飘
【作者单位】许继集团有限公司
【正文语种】中文
【中图分类】TM452
【相关文献】
1.全光纤电流互感器在淮北发电厂110kV系统挂网试验研究
2.全光纤电流互感器在淮北发电厂110kV系统挂网试验研究
3.全光纤电流互感器在110kV系统的挂网试验研究
4.新型特高压全光纤直流电流互感器性能研究
5.±800kV特高压直流全光纤电流互感器研制及应用研究
因版权原因,仅展示原文概要,查看原文内容请购买。

hfct标准 -回复

hfct标准 -回复

hfct标准-回复什么是HFCT标准?HFCT(High Frequency Current Transformer,高频电流互感器)是一种用于检测电力设备运行状态的专用传感器。

它能够通过对电力设备中电流的检测来获取设备的运行数据,并进一步分析该数据以评估设备的可靠性和故障状况。

HFCT标准是指HFCT传感器的规范和要求。

为了提供一种统一的HFCT传感器规范,以便各种设备制造商和行业用户能够在同样的准则下进行设备评估和故障诊断,HFCT标准从传感器的物理要求、技术性能和使用环境等方面进行了详细的规定。

下面将一步一步回答HFCT标准的主要内容。

第一步:物理要求HFCT传感器的物理要求包括尺寸、形状和材料等方面的要求。

传感器的尺寸应该适合安装在电力设备内部或连接到电力设备上,并能够与设备的电流回路相适配。

传感器的形状可以根据具体的设备要求进行优化,以实现最佳的接触和耦合。

传感器的外壳材料应该具有良好的机械强度和绝缘性能,能够在设备的高温环境中稳定运行。

第二步:技术性能HFCT传感器的技术性能包括灵敏度、频响范围、线性度和噪声等方面的要求。

灵敏度是指传感器对电流信号的响应能力,应该在合理范围内。

频响范围是指传感器能够正常工作的频率范围,应该足够广泛以适应各种设备的工作频率。

线性度是指传感器输出与输入之间的关系是否呈线性关系,应该尽可能接近线性。

噪声是指传感器输出中的杂散信号,应该尽可能降低以提高传感器的精度和稳定性。

第三步:使用环境HFCT传感器的使用环境包括温度、湿度、电磁干扰等方面的要求。

由于电力设备通常工作在较高的温度下,传感器应该具有较高的工作温度范围和稳定性。

湿度和电磁干扰对传感器性能也有一定影响,传感器应该能够在潮湿和电磁干扰较强的环境中正常工作。

综上所述,HFCT标准涵盖了传感器的物理要求、技术性能和使用环境等方面的规定,并帮助设备制造商和行业用户选择合适的传感器进行设备评估和故障诊断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Abstract—Various applications of a fiber optic current sensor are explored. Flexibility and inherent beneficial features of the technology make it appropriate for many applications, including some novel protection applications. These applications include regular high-voltage AC metering and protection, accurate wide dynamic range metering, high voltage DC, high current DC, portable calibration reference, generator monitoring, generator protection, and high-current AC applications. Some novel uses of the technology, including optical summation of currents where conductors are quite large or far from one another, are also discussed.Index Terms-- current measurement, high-voltage techniques, optics, optical current sensor, transducers, optical fiber devices, power measurement.I. I NTRODUCTIONPTICAL voltage and current sensors used for high-voltage (HV) and/or high-current (HC) measurements can offer several attractive features. These benefits include • High accuracy over wide dynamic range,• Wide bandwidth from dc to > 100th harmonic,• Light-weight and small size:• Excellent seismic performance,• Safe, easy, flexible, and cost-effective installation, • User-adjustable turn-ratio,• No CT saturation,• Excellent phase accuracy,• Voltage and current sensing in one device, and• Safety & environmental benefits:• No oil or SF6,• No open secondaries,• No ferro-resonance, and• Galvanic isolation from HV line.Fiber-optic current sensors offer additional advantages of flexible form factor, “window-CT” design, and ability to measure very high currents. The combination of all these features creates a great deal of flexibility in the use of optical voltage and current sensors. In other words, the same optical products or technology can be used for several applications where traditionally different types of products or evenF. Rahmatian is with NxtPhase T&D Corp., Vancouver, BC V6M 1Z4 Canada (e-mail: frahmatian@).J. N. Blake is with NxtPhase T&D Inc., Phoenix, AZ 85027 USA (e-mail: jblake@). different technologies were used. In this paper we provide a review of this application flexibility for a fiber optic current sensor (NXCT) technology.II. A PPLICATIONSThe NXCT uses an in-line fiber optic interferometric design described in detail in [1] and [2]. The sensing head is in the form of an optical fiber encircling the current carrying conductor in a full turn or several turns. It effectively and accurately integrates the magnetic field around the current carrying conductors that it encircles, via the Faraday Effect, measuring the net current through its aperture. The sensing fiber can be packaged in fixed size windows or in a flexible cable.Figure 1 shows a 362 kV class NXCT with several primary conductor connection options for used in air-insulted substations (AIS). The sensing fiber packaging is the same for all these configurations, and the window aperture is 110 mm in diameter, rated for 4000 A continuous operation. The options shown use different clamps for holding the primary conductor. Figure 1.b shows a flat conductor bar, supplied for connection to standard 4-hole or 6-hole NEMA connections. Figure 1.c shows the dual cable clamp option, allowing the user to run cables through the CT and reduce the number of HV current carrying connections, which are a source of heat and reliability issues for HC CTs. Figure 1.d, shows yet another clamp option, for mounting the NXCT on a 4” solid bus in the substation. In addition to saving on electrical interfaces at high voltage and high current, this option (suspension) can allow elimination of civil work and costs associated with pedestal-mount CTs and can be very attractive in seismically active regions.Figure 2 shows 145 kV class optical CTs, mounted conventionally, using the 6-hole NEMA conductor bar. In this application, high accuracy (0.15S class) over a wide dynamic range was the main motivation for using the NXCT. The optical current sensor can offer better than 0.15% class accuracy from 0.1% to 200% of rated current [3]. Energy measurements where wide dynamic range is required, e.g., with Independent Power Produces (IPPs) and wind farms, are ideal applications for the NXCT due to its linearity.Figure 3 shows 72 kV class NXCTs, mounted horizontally from other substation structures. In this case, the light weight (<65 kg), solid insulation (no oil to leak), and high accuracy features combined to provide a very cost-effective solution forApplications of High-V oltage Fiber OpticCurrent SensorsFarnoosh Rahmatian, Member, IEEE-PES, and James N. BlakeO© 2006 IEEE. Reprinted with permission from the 2006 IEEE PES General Meeting.This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for endorsement of any of NxtPhase's products or services. Internal or personal use of this material is permitted. However resale or redistribution must be obtained from the IEEE by sending a blank email message topubs-permissions@. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.the user, providing significant savings in the civil work for theinstallation.Figure 4 shows accuracy measurement data for an NXCT for primary currents from 2 A to 3600 A. The optical sensor shows 0.1% accuracy over this entire range. The measurements are taken using three different metrological circuits over this current range, such as those given in [4] -[6]. The error bars around data points in Figure 4 show the uncertainties of the measurements.Figure 5 shows an NXCT attached to a 420 kV class live tank circuit breaker. Here, the solid bus clamp is used, and the NXCT is suspended from the breaker. As compared to using a conventional free-standing CT for this application, the(b)(a)(c)(d)Figure 1. A 362 kV class NXCT (a) with several primary conductor connection options: (b) flat conductor bar with standard 6-hole NEMA pads, (c) dual cable clamp, and (d) 4” solid bus suspension clamp.Figure 3. Zero foot-print installations: two 69 kV NXCT systems installed horizontally off existing civil structures.Figure 2. A 0.15S class 138 kV NXCT system installed for an IPP revenue metering application.1101001000Current (A)-0.8-0.6-0.4-0.200.20.40.60.8E r r o r (%)-0.8-0.6-0.4-0.200.20.40.60.8Figure 4. Accuracy measurement results from 2 A to 3600 A of primary current for an NXCT optical current sensor. The red line shows boundaries of 0.2S accuracy class requirements per IEC 60044-8.NXCT offers significant cost savings by eliminating the footing and civil work, reducing the need for substation real-estate, excellent seismic performance, and no CT saturation. In summary, this solution provides a very attractive alternative to using conventional HV CTs.The dynamic range of measurement provided by NXCT can also be exploited for protection applications. For example, a key application where use of conventional magnetic wire-wound CTs presents significant safety challenges is on low ratio CTs for protection of series or shunt capacitor banks. In these applications, usually a very sensitive CT (low ratio) is used to detect a small in-balance current which may appear when a small subset of capacitors has failed. The challenge is, however, that in case of a major capacitance unbalance (for example if a significant portion of capacitors are externally shorted for a short period of time), significant voltages and energy can appear on the secondary side of a magnetic-core wire-wound CT. Use of an optical CT completely eliminates this safety concern. However, to address this application effectively, the optical CT has to be designed and fabricated to yield acceptable signal-to-noise ratio. The primary current rating of the CTs used for these applications is usually less than 25 A. Protection settings of the relays used in this application are usually set at <10% of the rated current, 2.5 A in this case. Therefore, the noise on the output of the CT should be significantly less than 2.5 A (primary equivalent) to avoid any false trips.Figure 6 shows the measurement result made on a 40 fiber-turn NXCT manufactured for this application. The ratio setting of this NXCT is 25A:1A, and the bandwidth is limited to 300 Hz for this application. The NXCT generally shows 200 mA-turn/√Hz of equivalent-to-primary-current noise. Accordingly, the expected noise for a 40 fiber-turn CT is 5 mA/√Hz, or about 100 mA (rms) for a 300 Hz bandwidth sensor. Many relays for this application filter the power frequency signal with a filter time constant of about one second, effectively further eliminating the noise to less than 5 mA. Both of these levels (5 mA and 100 mA) are significantly less than 2.5 A, satisfying the application requirement. Figure 6 shows compliance of this NXCT with the requirements of 0.5% and 1% accuracy classes specified in IEC 60044-8, for a rated current of 25 A. The uncertainty of the measurements given in Figure 6 is less than 0.07%.The same NXCT represented in Figure 6 is also configured to provide a separate analog output rated at 25A:200mV, suitable for use at up to 40 times rated current (1000 A), with an output bandwidth of 6 kHz. The rated time delay of this NXCT is 50 µs. This output can be used for usual instantaneous over current protection application. Wider bandwidth of this output (6 kHz, as compared to 300 Hz)translates into an effective noise about 5 times largerFigure 5. An NXCT-420 mounted on a 420 kV class live tank circuit breaker.Figure 6. Accuracy results for an NXCT-245 rated at 25A:1A, IEC class 1, used for unbalance shunt capacitor bank protection.-5-4-3-2-101234501020304050Primary Current (A)R a t i o E r r o r (%)-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.5P h a s e E r r o r (d e g r e e s )Figure 7. Accuracy measurements on a second output of the same NXCT-245 of Figure 6, rated at 25A:200 mV, with 40 times over current capability.-0.20-0.15-0.10-0.050.000.050.100.150.2002004006008001000Primary Current (A)R a t i o E r r o r (%)-0.12-0.09-0.06-0.030.000.030.060.090.12P h a s e E r r o r (d e g r e e s )(equivalent to 0.5 A rms of primary current). Figure 7 shows results of accuracy measurements on the 200 mV rated output of this device at up to 800 A rms. The test equipment used was an Arbiter 931A Power System Analyzer together with a traceable reference magnetic CT, giving <0.07% uncertainty in the measurements reported here.The NXCT can also be used in high-voltage DC (HVDC) applications. The HVDC sensor is practically the same as the HV AC product, as the real bandwidth of the CT starts at DC. Both protection and high-accuracy metering applications (better than 0.2% class) can be served with the NXCT.Figure 8 shows the sensing head of a flexible form factor (F3) fiber optic CT, NXCT-F3. The flexible sensing head is an all-dielectric fiber cable which can be wrapped around the current carrying conductor to measure current. NXCT-F3 provides a whole new level of flexibility in application because of its form factor and all-dielectric structure. Some of its key features are:• Ability to measure very high currents, in excess of 500kA,• Very easy installation around large conductors,• No need to break the current carrying path for installingthe head,• Capability to be installed on live lines (depending on userpractices),• Insensitive to conductor positioning through the currentsensing loop,• Ability to measure AC, DC, and high frequency currents These features make the NXCT-F3 ideal for application such as DC current measurement at very high currents (e.g., aluminum smelters and electro-chemical processes), electric power generation applications (measurement, protection, and monitoring), retrofit applications, live-line measurement, portable calibration systems, and HVDC testing.Figure 9 shows 0.1% class NXCT-F3’s installed at a chemical plant, operating at nominal DC currents of 25 kA to 50 kA. The flexible and light sensor-head cable is routed around the large DC conductor, with the open end of the loop plugging back into the box to make one complete loop. Ability to measure DC, as well as AC, compact size, ability tobe installed without breaking the large rigid bus, and insensitivity to positioning have made the NXCT-F3 an ideal solution for high current DC applications.A novel application for the NXCT-F3 in AC power systems is protection based on net zero current measurements (requiring very large low ratio CTs). In many applications, the net multi-conductor vector sum current (or zero sequence current in case of a 3-phase system) is zero under normal operating conditions. In the case of a high-impedance fault, for example, the net current may not be zero (due to the addition of the fault current), and this information can be used for fault protection applications. Using conventional magnetic core CT technologies, it can be very difficult to measure several currents with enough accuracy to detect small differences between them, especially when each conductor is carrying large currents. The NXCT-F3 can be installed such that all the conductors of interest are inside one sensing loop, and the net sum current is measured. The sensing loop can be several meters in diameter, or have irregular shapes to include conductors from various phases. For example, a 200 MW generator may be producing 10 kA to 20 kA at 10 kV. As this large current flows through the generator, the two conductors connected to the generator should have exactly the same current (sum of currents into a node should be zero). However, if a high-impedance stator fault occurs in the generator, and some current “leaks through it,” the input and output currents will not be the same; they may be different by 10 A for example. The NXCT-F3 with its thin and long sensing loop can be easily wrapped around both conductors such that it effectively measures the vector sum (difference in this case) of the currents. It can easily detect 10 A net difference, even when each individual conductor is carrying 20 kA. One NXCT-F3 can actually be wrapped around all three phases (in typical three-phase generation plants) and be used for high-impedance fault protection on the entire system. To do the same with six (one per conductor) separate 20 kA conventional magnetic CTs is most likely not possible due to the accuracy requirements. Even if the technical issues areFigure 8. Sensing head of an NXCT-F3. The flexible sensing head is an all-dielectric fiber cable permanently attached to the grey enclosure at one end. The other end of the sensing cable will be secured in the same enclosure after wrapping the cable around the current carrying conductor(s). Figure 9. 0.1% class NXCT-F3 current sensor systems used in high-current DC applications. The NXCT-F3 is used for metering, protection, and process control at 25 to 50 kA DC. The sensing head cable is routed through an insulating conduit in this installation.worked out, the cost and size of a hypothetical 10 kV, 20 kA conventional CT core that can encompass all 6 conductors is prohibitively high and impractical.Similar solutions maybe used at higher voltages too. For example, a three-phase 69 kV system may be operating at 2000 A/phase nominal current, with phase-to-phase fault current level of 20 kA, while a transformer ground fault current is limited to 100 A. The solution for transformer ground fault protection with conventional CTs would require installing three perfectly matching 69 kV CTs, and rating the CTs such that while they can continuously operate at 2000A, they would produce accurate and well detectable signals at100A (both individually and superimposed on 2000A). Further more, the CT’s need to be linear to much better than 0.5% (100A in 20,000 A) at up to 20,000 to avoid false operation for the transformer ground fault protection scheme under phase-to-phase faults. The optical solution can use one (as opposed to three) NXCT-F3 that wraps around all three conductors, without touching the HV elements. Simply, a loop of sensing cable, 6 meters wide and 2 meters high, can be placed around all three HV buses in the substation (phase-to-phase spacing at 72 kV can be ~ 1 meter). The installation would be much safer, faster, and less expensive than that of a three-phase conventional solution, and the solution will not be affected by phase-to-phase faults. Additionally, the output ofthe NXCT can be scaled for the 100A net primary current so that relay input dynamic range doesn’t become an issue.Similarly, an NXCT-F3 is an easy-to-retrofit, accurate, and safe solution when high accuracy metering or power quality measurements are needed for medium voltage high current generators or other high-current applications such as AC/DC converter systems. Figure 10 show the frequency response of an NXCT-F3 with 20 kHz bandwidth, used for testing thyristor valves of HVDC Converters. The data is normalizedrelative to sensors DC sensitivity. The system has about 33 µstime delay, accuracy of 0.2% at 80 kA, and maximum current measurement capability of 100 kA. The metrology used for measurements at frequencies above 60 Hz had <1% uncertainty. Another application for NXCT or NXCT-F3 is power cable monitoring. For example, NXCTs can be mounted at the two ends of a HV underground cable and measure the differencebetween the current entering and the current exiting the cable. The relay connected to the NXCTs can be located at one end of the cable, and fiber optics can be run along the power cable without any concerns about CT signal degradation and electromagnetic interference. Similar solutions with conventional CTs would create significant challenges with respect to electrical wiring, burden issues related to long wire runs, and electromagnetic interference on CT secondary wires from the high-current power cable running in parallel.Owing to the characteristics of optical fibers (thin, flexible, insulating) the NXCT sensing head can also be easily integrated into other substation devices. For example, the same NXCT technology is already integrated into some GIS switchgear. At 420 kV, for instance, the GIS-NXCT gives significant reduction in the size of the CT compartment, from ~ 150 cm to 6 cm, and overall results in a 10% to 15% smaller GIS Bay. GIS systems are usually used where real estate is a significant limitation (either cost or other practical limitations) and size reduction can have very significant value. Fiber optic CTs can be integrated into various live-tank and dead-tank equipment and completely eliminate the footprint of the CTs in HV substations.Flexibility also extends beyond the initial installation for all CTs of this type. The “turns ratio” of the fiber optic CT is aparameter set in software. The device is inherently linear, so an NXCT set with one ratio at installation can be changed to a new ratio at a later point in time as required with a simple lap top connection and no change to hardware. This feature is a benefit in any application where flexibility is desired such as a wind farm where turbines are added and generation capacity is growing resulting in the need for a change in CT ratio. III. S UMMARY AND C ONCLUSION In this paper, several applications of the NXCT optical fiber sensor are explored, and data related to its accuracy, linearity, dynamic range, bandwidth, and noise considerations are provided. The inherent features and attractivecharacteristics of the technology allow the same sensor to beused effectively for many different applications. Several of these applications, both in AC and in DC systems, have beenpresented. Further, some of the sensor’s unique features, particularly its simple and safe dielectric design and its flexible form factor, enable some novel applications, whichotherwise could not be practically addressed. An outstandingexample of these new applications is protective relaying basedon optical summation of currents where conductors are quitelarge or far from one another. Finally, as power systemtechnologists gain more familiarity with optical sensors and their characteristics, it is expected that further new concepts and applications will be uncovered. IV. R EFERENCES0.00.20.40.60.81.01.20500010000150002000025000Frequency (Hz)N o r m a l i z e d A m p l i t u d eFigure 10. Amplitude sensitivity of an NXCT-F3 rated at 100 kA peakas a function of frequency.[1] G. A. Sanders, J. N. Blake, A. H. Rose, F. Rahmatian, and C. Herdman, “Commercialization of Fiber-Optic Current and Voltage Sensors at NxtPhase,” 15th Optical Fiber Sensors Conference, Portland, OR , May 2002, pp. 31-34.[2] J. Blake, P. Tantaswadi, R. T. de Carvalho, “In-line Sagnacinterferometer current sensor,” IEEE Trans. Power Delivery , vol. 11, Jan. 1996, pp. 116-121.[3] J. N. Blake and A. H. Rose, “Fiber-Optic Current Transducer Optimizedfor Power Metering Applications,” Proceedings of the IEEE T&D meeting, Dallas, TX, Sept. 2003, pp. 1-4.[4] IEEE Standard Requirements for Instrument Transformers , IEEEStandard C57.13, 1993.[5] E. So, R. Arseneau, and D. Bennett, “A current-comparator-basedsystem for calibration of optical instrument transformers with analog and digital outputs,” in Dig. CPEM 2002, Ottawa, ON, Canada, Jun. 2002, Dig. No. 02CH37279, p. 252.[6] E. So, “The application of the current comparator technique ininstrumentation and measurement equipment for the calibration of nonconventional instrument transformers with non standard rated outputs,” IEEE Trans. Power Del ., vol. 7, no. 1, pp. 46–52, Jan. 1992.V. B IOGRAPHYFarnoosh Rahmatian (S’89, M’91) was born in 1969. He received the B.A.Sc. (Hon.), M.A.Sc., and Ph.D. degrees from the University of British Columbia, Vancouver, BC, Canada, in 1991, 1993, and 1997, respectively, all in electrical engineering. From 1997 to 2004, he was a Director of Research & Development at NxtPhase Corporation, also in Vancouver, working on precision high-voltage optical instrumenttransformers for use in high-voltage electric power transmission systems. Since 2004, he has been the Director of Optical Systems at NxtPhase T&D Corporation, focusing on application and commercial use of optical voltage and current sensors.Dr Rahmatian has also been an adjunct professor at the Department of Electrical and Computer Engineering at the University of British Columbia, a member of IEC TC38 Working Group on instrument transformers, Standards Council of Canada, Canadian Standards Association, IEEE Power Engineering Society, IEEE Lasers and Electro-Optics Society, and an active member of IEEE/PES working group working on optical instrument transformer systems. Dr. Rahmatian has received an R&D 100 award for the development of the optical fiber current and voltage sensor in 2002.James Blake was born in Oakland, CA in 1959. He received his B.S.E.E. from U.C. Berkeley in 1981, and his Ph.D. in Electrical Engineering from Stanford University in 1988. He worked as a microwave antenna engineer at Ford Aerospace in Palo Alto, CA from 1981 to 1984. From 1988 to 1991 he was a Research Scientist at Honeywell in Phoenix, AZ working on fiber optic gyroscopes. From 1991 to 1999 Dr. Blake was a Professor of Electrical Engineering at Texas A&M University in College Station, TX. His research at Texas A&M concentrated on fiber optic gyros, flowsensors and current sensors. Since 1999, Dr. Blake has been Director of Research and Development at NxtPhase in Phoenix, AZ where he has concentrated on commercializing fiber optic current sensors for high-voltage applications. Also, Dr. Blake formed Precision Lightwave Instruments in 1998 to work on fiber-optic current standards. Dr. Blake has received an R&D 100 award for the development of the optical fiber current and voltage sensor in 2002.。

相关文档
最新文档