紫外和可见光吸收光谱

合集下载

(UV-Vis)紫外-可见吸收光谱分析

(UV-Vis)紫外-可见吸收光谱分析

为紫外光区光源。
• 其中:486.13nm (F线) 和 656.28nm ( C线)
可作为波长校正。
(二).单色器 紫外-可见分光光度计的单色器的作用是
将来自光源的连续光谱按波长顺序色散,并从
中分离出一定宽度的谱带。单色器由入射狭缝、
准直镜、色散元件、物镜和出射狭缝构成。
(1).色散光件
棱镜
棱镜的色散作用是棱镜材料对不同波长的光有
A logT
实际测量,往往测量物质的透光率,再转化为吸光强度。
半导体材料中光的吸收规律 紫外-可见光的吸收主要是电子从基态到激发态的跃迁 半导体材料中,电子从基态到激发态的跃迁是和它们 的能带结构相关的。 因此光的吸收规律必然和它们的能带结构相关 直接禁带 间接禁带 ZnO,GaAs,CdS Si,Ge

B(hv E g )
2 2
3
2

3. 间接跃迁 在间接带隙的半导体材料中,由于价带顶和导带底在 K空间的位置不同,加上光子的波矢比电子的波矢小 得多,为了满足动量守恒的原则,必须要借助其他过 程,如声子参与或杂质散射来实现电子在能级间的跃 迁,这种电子跃迁方式称为间接跃迁。通过计算,可 以得到吸收系数和光子能量的关系:
m I0 4 A log 4.343 10 Nb ai Ci I i 1
将常数项和光子的吸收界面 a i 合并为单一项,
m I 以 i 表示 称为摩尔吸光系数。则 A log 0 b i Ci I i 1 I0 一般对于单一组分,上式可以写成: A log bC I
( ) B

B(hv Eg )
1 2
2
和 hv 的图谱, 就得到线性吸收边
二. 紫外-可见吸收光谱的方法和设备 紫外-可见光分光光度计是在紫外和可见光范围内, 改变通过样品的入射光波长,并测得不同入射光波 长下样品的吸光度,从而获得样品信息的分析仪器。

紫外-可见吸收光谱 - 紫外-可见吸收光谱

紫外-可见吸收光谱 - 紫外-可见吸收光谱

2.生色团(发色团) 含有n→π*或π→π*的基团。 例:C=C;C=O;C=S;—N=N— 等
3.助色团 含非键电子的杂原子饱和基团。 例:—OH,—OR,—NH—,—NR2—,—X 4.红移(长移)、蓝移(短移): 由于化合物结构变化(共轭、引入助色团)或采用不同溶
剂后: 吸收峰向长波方向移动,叫红移 吸收峰向短波方向移动,叫蓝移
第一节 紫外-可见吸收光谱
5.增色效应、减色效应 增色效应:使吸收强度增加的效应 减色效应:使吸收强度减弱的效应
6.吸收带 吸收光谱中吸收峰的位置称做吸收带 εmax>104 → 强带 εmax<102 → 弱带
第一节 紫外-可见吸收光谱
四、吸收带类型和影响因素
(一)吸收带类型 • 1.R带:由含杂原子的不饱和基团的n →π*跃迁产生(C
分子中价电子(外层电子)吸收紫外-可见光区的电磁 辐射发生电子能级跃迁
(吸收能量=两个跃迁能级之差)
第一节 紫外-可见吸收光谱
二、紫外-可见吸收光谱的电子跃迁类型
1.有机化合物紫外-可见吸收光谱的电子跃迁类型 从有机物化学键的性质来看,与紫外-可见吸收光谱有关的
电子主要有三种,即形成单键的σ 电子,形成双键π 电子以及 未参与成键的n电子。

243 nm 305 nm
迁移
长移 短移
第一节 紫外-可见吸收光谱
第一节 紫外-可见吸收光谱
4. 体系pH的影响
OH OH
O
H+
苯酚在不同pH时的紫外吸收光 谱
=O;C=N;-N=N- )
• λmax≈ 300nm, max<100
• 溶剂极性↑,λmax↓ → 蓝移(短移) 2.K带:由共轭双键的π→ π*跃迁产生

第三章 紫外-可见吸收光谱分析

第三章   紫外-可见吸收光谱分析

2.不饱和脂肪烃 .
在不饱和烃类分子中,除含有σ键外,还含有π 键,它们可以产生 σ→σ*和π→π* 两种跃迁。 如果存在共轭体系,则随共轭系统的延长, 吸收带将明显向长波方 向移动,吸收强度也随之增强 在共轭体系中, π→π*跃迁产生的吸收带又称为K(Konjugation) 带。其特点是:强度大,εmax›104;位置一般在217~280nm λmax和εmax的大小与共轭链的长短及取代基的位置有关 根据K带是否出现,可判断分子中共轭体系的存在的情况。在紫外光 根据 带是否出现,可判断分子中共轭体系的存在的情况 带是否出现 谱分析中有重要应用。
紫外- §3-3 紫外-可见分光光度法的应用 一、 定性分析 二、纯度检查 三、结构推测 四、定量分析 单组分样品的定量分析 多组分样品的定量分析
一、 定性分析
1、依据:吸收光谱的特征——形状、波长、峰数目、强度、 吸光系数。 、依据:吸收光谱的特征 形状、 形状 波长、峰数目、强度、 吸光系数。 2、方法:对比法 、方法: (1) 对比吸收光谱特征数据 (2) 对比吸光度或吸光系数的比值
3.芳香烃 .
苯有三个吸收带 E1带180∼184nm ε=47000 E 2带200∼204 nm ε=7000 苯环上三个共扼双键的 π → π*跃迁特征吸收带 B带 230-270 nm
ε=200
π → π*与苯环振动引起; 含取代基时, B带简化,红移 当苯环上有取代基时,苯的三个特征谱带都会发生显著的变化, 其中影响较大的是E2带和B谱带。
化合物 H2O CH3OH CH3CL CH3I CH3NH2
λmax(nm) 167 184 173 258 215
εmax 1480 150 200 365 600

05第5章 紫外可见吸收光谱法

05第5章 紫外可见吸收光谱法

ε=200
苯 甲苯 间二甲苯 1,3,5-三甲苯 六甲苯
其中B带为芳香族的重要特 征吸收带,常用于识别:精 精 细结构是 π → π*与苯环振动 细结构 引起;
λmax(nm) 254 261 263 266 272
ε max 200 300 300 305 300
含带有孤对电子的取代基时,由于n → π*共轭, B带强度 增大简化,红移;对于烷基取代基影响不大。
ε
能级跃迁
电子能级间跃迁 同时,总伴随有 的同时 同时 振动和转动 振动 转动能级间 转动 的跃迁。即电子光 谱中总包含 包含有振动 包含 能级和转动能级间 跃迁产生的若干谱 线而呈现宽谱带 宽谱带。 宽谱带
分子的内能: 分子的内能:电子能量Ee 、振动能量Ev 、转 动能量Er 即: E=Ee+Ev+Er 三种能级都是量子化的, 三种能级都是量子化的,且各自具有相应的能 量。
σ*
K E,B R
∆E
π*
n
π
σ
2):n→σ*跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原 子)均呈现n→σ* 跃迁。
化合物 H2O CH3OH CH3CL CH3I CH3NH2 λmax(nm) 167 184 173 258 215 εmax 1480 150 200 365 600
讨论: 讨论:
0.005~0.050eV, (1) 转动能级间的能量差ΔΕr:0.005~0.050eV,跃迁 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 约为:0.05~ eV, (2) 振动能级的能量差ΔΕv约为:0.05~1eV,跃迁产 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 较大1 20eV。 (3) 电子能级的能量差ΔΕe较大1~20eV。电子跃迁产生 的吸收光谱在紫外-可见光区,紫外— 的吸收光谱在紫外-可见光区,紫外—可见光谱或分子的电 子光谱; 子光谱;

紫外-可见吸收光谱的产生及基本原理

紫外-可见吸收光谱的产生及基本原理

判别顺反异构体
H
H C C H
C C
H
顺式
反式 λmax=295nm εmax=27000
λmax=280nm εmax=13500
共平面产生最大共轭效应, εmax大
判别互变异构体
O CH3 C H O C C H OC2H5
H O O H O H O H
酮式:λmax=272nm,εmax=16
汞灯用于波长检定。
用积分球的检测器波长<2500nm。
单色器
将光源发射的复合光分解成单色光并可从中选出一任波 长单色光的光学系统。 ①入射狭缝:光源的光由此进入单色器; ②准光装置:透镜或返射镜使入射光成为平行光束; ③色散元件:将复合光分解成单色光;棱镜或光栅; ④聚焦装置:透镜或凹面反射镜,将分光后所得单色光聚焦 至出射狭缝; ⑤出射狭缝。
a
b c
比例常数,称为吸光系数
液层厚度,单位cm 浓度。当浓度 c 以 g· L-1 为单位,液层厚度 b 以 cm 为单位 时,吸光系数的单位为:L· g-1· cm-1
紫外分光光度法定性分析
比较吸收光谱曲线法:
可以将在相同条件下测得的未知物的吸收光谱与标准谱图 进行比较来作定性分析。如果吸收光谱的形状,包括吸收光谱 的λmax、λmin、吸收峰的数目、位置、拐点以及等完全一致,则 可以初步认为是同一化合物。
OH CH3 C H O C C OC2H5
O H
O
烯醇式:λmax=243nm,εmax=16000
纯度的控制和检验
a) 根据吸收光谱判断
含10-6M蒽的苯溶液
苯溶液
b) 根据lgε判断
4.10 例如:标准菲 lg 氯仿 max( 296 nm )

紫外-可见吸收光谱

紫外-可见吸收光谱

(5)εmax越大表明该物质的吸光能力越强,用光度法测定 该物质的灵敏度越高。ε>105:超高灵敏;
ε=(6~10)×104 :高灵敏; ε<2×104 :不灵敏。 (6)ε在数值上等于浓度为1mol/L、液层厚度为1cm时该 溶液在某一波长下的吸光度。
2.紫外光谱表示法
横坐标: 波长λ, 单位是 nm
二、分光光度计的类型
types of spectrometer 1.单光束
简单,价廉,适于在给定波长处测量吸光度或透光度, 一般不能作全波段光谱扫描,要求光源和检测器具有很高 的稳定性。灵敏度高。
2.双光束
自动记录,快速全波段 扫描。可消除光源不稳定、 检测器灵敏度变化等因素的 影响,特别适合于结构分析。 仪器复杂,价格较高。
仪器
紫外-可见分光光度计
基本原理
一、基本组成
general process
光源
单色器
样品室
检测器
显示
1. 光源
在整个紫外光区或可见光谱区可以发射连续光谱,具 有足够的辐射强度、较好的稳定性、较长的使用寿命。
可见光区:钨灯作 为光源,其辐射波长范 围在320~2500 nm。
紫外区:氢、氘灯。 发射185~400 nm的连 续光谱。
由共轭体系的π→π* 跃迁产生的强吸收带, 一般
εmax>104
2). R 吸收带(源于德文 radikalartig, 基团)
由共轭体系的n→π* 跃迁产生的吸收带,因非键轨道与 π*轨道正交, 其强度弱。
εmax<100
3). B 吸收带(源于德文 benzenoid, 苯系)
芳香族化合物的特征吸收谱带, 起因于π→π* 跃迁与苯 环 振 动 的 重 叠 , 其 强 度 很 弱 ,εmax 约 为 200, λmax 出 现 在

第三章 紫外-可见吸收光谱法

第三章    紫外-可见吸收光谱法

3-1 概述
3-1 概述
紫外光
波长为10-400nm的电磁辐射,分为远紫外光 的电磁辐射, 波长为 的电磁辐射 (10-200nm)和近紫外光(200-400nm)。 )和近紫外光( )。 远紫外光可被大气中的水气、 远紫外光可被大气中的水气、氮、氧和二氧化 碳所吸收,只能在真空中研究, 碳所吸收,只能在真空中研究,故又称真空紫 外光。我们讨论近紫外光谱。 外光。我们讨论近紫外光谱。
紫外-可见吸收光谱法 第三章 紫外 可见吸收光谱法
UltravioletUltraviolet-Visible Absorption Spectrometry UV-Vis UV-
章节内容
第一节 概述 紫外-可见吸收光谱 第二节 紫外 可见吸收光谱 第三节 紫外-可见分光光度计 紫外 可见分光光度计 紫外-可见吸收光谱法的应用 第四节 紫外 可见吸收光谱法的应用
(5)出射狭缝 紫外-可见分光光度计使用石英棱镜。 棱镜单色器的缺点在于色散率随波长变 化,得到的光谱呈非均匀排列,而且传递 光的效率较低。 光栅单色器在整个光学光谱区具有良好 的几乎相同的色散能力。因此现代紫外-可 见分光光度计 多采用光栅单色器。 (三)吸收池 (四)检测器 (五)信号显示器
二、分光光度计的构造类型
的配位体强度小于NH 如:H2O的配位体强度小于 3的, 的配位体强度小于 所以, ( 所以,Cu(H2O)6呈浅蓝色,吸收峰 ) 呈浅蓝色, 794nm;Cu(NH3)6深蓝色,吸收峰 深蓝色, ; ( 663nm。 。 一些常见配位体配位场强弱顺序: 一些常见配位体配位场强弱顺序: I-<Br-<Cl-<F-<OH-<C2O4-=H2O<SCN-< 吡啶=NH3<乙二胺 联吡啶 邻二氮菲 乙二胺<联吡啶 吡啶 乙二胺 联吡啶<邻二氮菲 <NO2-<CN-

紫外-可见光吸收光谱

紫外-可见光吸收光谱

摩 尔 吸 收 系 A/bc(c, g/L) 数
A/bc(c, mol/L)
朗伯-比尔定律( Lambert-Beer 定律)
Ir I0 Ia
It
透光度 (transmittance) T=It/I0
吸光度 (absorbance) A= -lgT
Lambert – Beer 定律 1.光吸收定律的表达式及其含义 布格(Bouguer)和朗伯(Lambert)先后于1729年和1760年阐 明了光的吸收程度和吸收层厚度的关系: A∝ b 1852年比耳(Beer)又提出了光的吸收程度和吸收物浓度之 间也具有类似的关系: A∝ c 二者的结合称为朗伯-比耳定律,其数学表达式 为: A=- lgT = - lg( It / I0)= ε b c 式中:A:吸光度;T:透射率; b:液层厚度(光程长度),通常以cm为单位; c:溶液的摩尔浓度,单位mol· -1; L ε:摩尔吸光系数,单位L· -1· -1; mol cm
紫外-可见光谱 ΔE 电子 1 ~ 20ev
1 0
E1 υ υ υ
2
分 子 可 见 吸 收 光 谱
3 2 1 0 3 2 1 0 3 2 1 0
J J J
λ电子 1.25 ~ 0.06 μm
中红外光谱
1
ΔE振动 0.05 ~ 1ev λ振动 25 ~ 1.25 μm
0
E0 分子红外吸收光谱
当入射光波长一定时,待测溶液的吸光度A与其浓度和液层厚度成 正比,即
A kbc
k 为比例系数,与溶液性质、温度和入射波长有关。 当浓度以 g/L 表示时,称 k 为吸光系数,以 a 表示,即
A abc
当浓度以mol/L表示时,称 k 为摩尔吸光系数,以 表示,即

紫外-可见吸收光谱

紫外-可见吸收光谱

6.生化反应动力学的研究
如果某生化反应中一种反应物的浓度发生变化, 则可以利用紫外-可见吸收光谱研究反应进行的快慢 即反应的动力学。例如在酶反应中,底物的减少会使 其吸收幅度下降,产物的吸收峰幅度增加,因此可以 利用底物或产物吸收峰的变化来研究反应的进行情况 及其反应速度。
乳酸脱氢酶
乳酸盐 + NHD+
2. 纯度的检验
如果有机物在紫外可见光区没有明 显的吸收峰,而杂质在紫外区区有较强 的吸收,则可利用紫外光谱检验化合物 的纯度。
3. 样品浓度的测定
根据吸收定律: A=εcl
同一物质的消光系数ε是一定的,因 此在光径相同的样品池中,A与样品浓度c 成正比。
• 比较法
• 标准曲线
配置一系列不同浓度的标准溶液,在波 长最佳处分别测定标准溶液的吸光度A,然后 一浓度为横坐标,以相应的A为纵坐标绘制出 标准曲线。
1. 化合物的鉴定
利用紫外光谱可以推导有机化合物的分子骨架 中是否含有共轭体系,如CH2=CH-CH=CH2 , CH2=CH-CH=O ,CH2=CH-C≡N ,苯环等,利用 紫外光谱鉴定有机化合物远不如利用红外有效,因 为紫外光谱特征性不强。
苯丙氨酸 酪氨酸 色氨酸
具有环状共轭双键
鉴定的方法
时,测量到的透射光的强度与入射光强度之差即为样品 对入射光的吸收。
Io
It
A=lg(Io/It)
二.紫外光谱的特点
1. 紫外吸收光谱所对应的电磁波波长短,能量大, 反映分子中价电子能级跃迁的情况,主要用于
共轭体系及芳香族化合物的分析。
2. 但是由于谱峰宽,重叠多,而不是像红外吸收 光谱或核磁共振谱那样得到的是各个特定化学 键的峰。
丙酮酸盐 + NADH + H+

第三章 紫外可见吸收光谱法

第三章 紫外可见吸收光谱法

3.金属离子影响下配体的 p → p* 跃迁 显色剂大多含有生色团和助色团,与金属离子 配位时,其共轭结构发生变化导致吸收光谱发生红 移或蓝移。 例:茜素磺酸钠 弱酸性-黄色- λmax=420nm 弱碱性-紫红色- λmax=560nm
pH为4~5时与Al3+配位后,为红色,λmax=475nm,相对于 酸性茜素磺酸钠吸收峰红移,相对于碱性茜素磺酸钠吸收峰 蓝移。
480-490
490-500 500-560 560-580 580-610 610-650 650-780
绿蓝
蓝绿 绿 黄绿 黄

红 红紫 紫 蓝


绿蓝
蓝绿
3.特点:
(1) 灵敏度较高,可达10-4~10-7g/mL; (2) 准确度较高,一般为1% ~5%; (3) 仪器价格较低,操作简便、快速; (4)应用范围广。既能进行定量分析,又可进行 定性分析和结构分析;既可用于无机物化合 物分析,也可用于有机物化合物分析;还可 用于络合物组成、酸碱解离常数的测定等。
标准谱图库:46000种化合物紫外光谱的标准谱图 有一定局限性,需与红外、核磁、质谱等法相结合 进行准确鉴定。
(二)结构分析
紫外—可见吸收光谱中有机物发色体系信息分析的一般规律: (1)若在220~280nm内无吸收峰,可推断化合物不含苯环、共轭 双键、醛基、酮基、溴和碘(饱和脂肪族溴化物在200-210nm有 吸收)。
必须在配体的配位场作用下才可能产生;
一般的规律:轨道分裂能随场强增加而增加,吸 收峰波长则发生紫移。 例如:水合铜离子(Ⅱ)是浅蓝色的λmax=794nm ,而 它的氨络合物却是深蓝色的λmax=663nm 。
摩尔吸收系数ε很小,对定量分析意义不大。但可 用于络合物的结构及无机络合物的键合理论研究。

紫外-可见吸收光谱.

紫外-可见吸收光谱.
饱和烃的取代衍生物如卤代烃,其卤素原子上存 在n电子,可产生n* 的跃迁。 n* 的能量 低于*。例如,CH3Cl、CH3Br和CH3I的n* 跃迁分别出现在173、204和258nm处。
3.有机化合物的吸收光谱与分子结构
(2)不饱和烃及共轭烯烃
在不饱和烃类分子中,除含有键外,还含有 键,它们可以产生*和*两种跃迁。 *跃迁的能量小于 *跃迁。例如,在 乙烯分子中, *跃迁最大吸收波长为180nm。
第一节 紫外-可见吸收光谱 一、分子吸收光谱的产生
过程:
运动的分子外层电子---吸收外来辐射--产生电子能级跃迁----分子吸收光谱。
M h I0 M * It
一、分子吸收光谱的产生
在分子中,除了电子 相对于原子核的运动 外,还有核间相对位 移引起的振动和转动。 这三种运动能量都是 量子化的,并对应有 一定能级。左图为分 子的能级示意图。
丙酮
例:KMnO4紫红色,吸收的是绿光,λmax=525nm。它 对其它颜色的光吸收极小。吸收曲线形状是物质特有 的。当KMnO4的量不同,只使曲线沿纵座标上下移动, 但曲线形状不变。
图 KMnO----4的吸收光谱图 浓度:5、10、20、40μg/ml,1cm厚比色杯
四、分子跃迁类型及吸收光谱
max 较大 (104以上),可用于定量分析。
2.几个概念
生色团(Chromogenesis group)
有机化合物分子中含有非键或键的电子体系,
能吸收外来辐射时并引起n-* 和-*跃迁,可产生 此类跃迁或吸收的结构单元,称为生色团。
是一些具有不饱和健和含有孤对电子的基团。
如-C=C-、-C ≡ C-、—CH=O、—N=N—、-N=O 、—C≡N、—NO2等

紫外-可见吸收光谱分析

紫外-可见吸收光谱分析

• 分子、原子或离子具有不连续的量子化能级,仅当
照射光光子的能量(hυ)与被照射物质粒子的基态和 激发态能量之差相当时才能发生吸收。不同的物质微粒 由于结构不同而具有不同的量子化能级,其能量差也不 相同。所以物质对光的吸收具有选择性。
三、吸收曲线(吸收光谱)
• 吸光度(A)--波长(λ)曲线称--。 • 光吸收程度最大处的波长叫 • 最大吸收波长,用λmax表示。 • 高锰酸钾的λmax=525nm。 • 浓度不同时,光吸收曲线形状不同,最大吸收波长
1852年,比耳(Beer)发现:
• 当单色光通过液层厚度b一
• 定的有色溶液时,溶液的吸
• 光度A与溶液浓度C成正比:

A= lg(I0/I)= k2 C
• --- 比耳定律

( C--有色溶液的浓度 k2--比例常数 )
• 将朗白定律与比耳定律合并起来:

A = lg(I0/I) = K b c
物质颜色
黄绿 黄 橙 红
紫红 紫 蓝
绿蓝 蓝绿
吸收光
颜色
波长范围

40/0n-m450

450-480
绿蓝
480-490
蓝绿
490-500
绿
500-560
黄绿
560-580

580-600

600-650

650-700
二、物质对光的选择性吸收
当一束光照射到某物质或其溶液时,组成该物质的 分子、原子或离子与光子发生“碰撞”,光子的能量就 转移到分子、原子上,使这些粒子由最低能态(基态) 跃迁到较高能态(激发态):M + hυ → M* 这个作用叫物质对光的吸收。

紫外-可见吸收光谱法(UV-Vis)

紫外-可见吸收光谱法(UV-Vis)
max 1104 ; M 100
max 一般 10
增大

A 1103 7 1 Cmin 1 10 mol L b 1104 1 1107 100 1108 g mL1 1000
3 ~104;灵敏
的 >104;个别的可达 105 106
若λ1= λ2
dA b dC
ε 1 = ε2= ε 在一定的浓度范围内 A= εbC
若λ1≠ λ2
2.303 f1 f 2b 2 ( λ1 λ 2 ) 210 ( λ1 λ 2 )bc d2A 0 λ 1bc λ 2bc 2 2 dC ( f110 f 210 )
1) 液气固介质均适用 2)入射光是单色光,平行光 3)稀溶液
朗伯-比尔定律
A = Kbc
(二)朗伯-比尔定律推导
Ix dIx S I0 db b It
-dIx ∝ Ix adn dn = csdb
-dIx∝ IxaCsdb -dIx/Ix=k Cdb
b dI x I0 I x k 0 cdb It
0
0
C
A = 0.434
(四)吸光系数
1. a ( L · g –1 · cm-1) 2.ε ( L · mol–1 · cm-1)
max
A KCb
A aCb A Cb
C: g / L C: mol/ L
吸光物质结构的特征参数;
吸光物质定量分析的灵敏度参数
3. 检出限与摩尔吸光系数 若可测量的吸光度为0.001
It ln kcb I0 It kcb lg Kcb I 0 2.303
A lg T Kbc
吸光度 与透射率

紫外-可见分子吸收光谱法

紫外-可见分子吸收光谱法

NN
溶剂与溶质之相互作用增强 C H
溶质分子的振动受到限制
水中 环己烷中
振动引起的精细结构消失
蒸汽中
500
555
对称四嗪的吸收光谱
/nm
b. 溶剂极性对π →π*跃迁谱带的影响
➢ 溶剂极性增大时,由π →π*跃迁产生的吸收 带发生红移。
c. 溶剂极性对n →π*跃迁谱带的影响
➢ 溶剂极性增大,由n →π*跃迁产生的吸收谱 带发生蓝移。
(4)多通道分光光度计
以光二极管阵列作检测器
光源
透镜
光二极管阵列
试样池
光栅
三、光吸收定律
1、朗伯-比尔定律
A lg T lg I0 bc 或 A lg T lg I0 abc
I
I
2、吸光度的加和性
当溶液中含有多种对光产生吸收的物质,且各组分之
间不存在相互作用时,则该溶液对波长λ光的总吸光度A总
➢ 根据分子轨道理论,这三种电子的能级高 低为: σ<π<n <π*<σ*
三种价电子可能产生六种形式电子跃迁:
σ→ σ*, σ→ π*, π→ σ*对应的吸收光谱处于 远紫外区,研究少。
(1) n → σ* 跃迁:
➢ 吸收光谱出现在远紫外光区和近紫外光区 ➢ 某些含有氧、氮、硫、卤素等杂原子的基 团(如—NH2、—OH、—SH、—X等)的 有机物可产生n → σ* 跃迁。 例如:CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm
② 吸收峰通常位于200~400nm之间。
(7) K带
➢ 由共轭体系的π →π*跃迁产生的吸收带。
特点:
ε ① 强度大,一般 > 104 L ·mol-1 ·cm-1 ;

第九章 紫外可见吸收光谱

第九章 紫外可见吸收光谱

2. 助色团(auxochrome)
是指分子中的一些带有非成键电子对的基 团本身在紫外-可见光区不产生吸收,但是 当它与生色团连接后,使生色团的吸收带 向长波移动,且吸收强度增大。
-OH、-OR、-NHR、-SH、-Cl、 -Br、-I
3. 红移(red shift or bathochromic shift)
-CH3、-CH2CH3、 -O-COCH3
5. R带
它是由含杂原子的生色团的n→π* 跃迁
产生的吸收带,该带的特点是吸收强度很 弱,εmax<100,吸收波长一般在 270nm以上。
6. K—带
K—带(取自德文: konjuierte 共轭谱
带)。它是由共轭体系的π→π* 跃迁产生
的。它的特点是:跃迁所需要的能量较R吸 收带大,吸收峰处于217~280nm,摩 尔吸收系数εmax>104。K吸收带是共轭 分子的特征吸收带,因此用于判断化合物 的共轭结构。紫外-可见吸收光谱中应用最 多的吸收带。
1. 电荷迁移跃迁 :与有机物类似,电子从给予体向与接受 体相联系的轨道上跃迁,发生在近紫外 线区与可见光区之间。
hv
Mn+____Lb-
M(n-1)+____L(b-1)-
电子接受体 电子给予体
εmax≥104,是强吸收带
hv
Cl- ____(H2O)n
Cl ____(H2O)n -
Fe3+____OH-
KMnO4的颜色及吸收光谱
叶绿素的结构和吸收光谱
一个新配合物的吸收 光谱
9.1.1 有机化合物的电子光谱
1.跃迁类型
σ* π*
σ*
C
C
σ
C
C
Px Py Pz

第十八章 紫外-可见光谱与荧光光谱

第十八章 紫外-可见光谱与荧光光谱

发射
1.2 基本原理(紫外-可见光谱)
H为普朗克常数,6.分子吸收光谱的形成
100-800 nm

1~20 eV
远紫外光区: 100-200 nm 近紫外光区: 200-400 nm 可见光区: 400-780 nm
用紫外—可见光照射分子时,会发生电 子能级的跃迁,对应产生的光谱,称为 紫外—可见吸收光谱 (又称电子光谱)


× ×
n—σ*
π—π* :波长 200
n - π* :能隙窄,近紫
外光区及可见光区吸收 检测对象:具有不饱和结 构的化合物 饱和烃作溶剂用!
1.4 无机化合物的电子跃迁类型
(1)电荷转移跃迁 (某些有机分子也存在这种跃迁)
D—A
h
D+—A- (激发态)
D
D:Donor A: Acceptor
端引入某取代基(如甲基、乙基等)或溶剂 效应)
同时,吸收强度发生改变:
末端吸收:在仪器极限处测出的吸收
增色效应:吸光强度增大 减色效应:吸光强度减小
肩峰:吸收曲线在下降或上升处有停顿, 或吸收稍微增加或降低的峰,是由于主 峰内隐藏有其它峰
溶剂效应
极性溶剂中:
非极性溶剂

ΔE1 ΔE2
极性溶剂
第十八章
紫外-可见光谱与荧光光谱
§1
§2
紫外-可见吸收光谱
荧光光谱
§1
1.1 光谱概述
反射
紫外-可见吸收光谱
入射光
吸收光谱: 红外光谱、紫 外光谱、原子吸收光谱、核 磁共振等 散射光谱:拉曼光谱
散射
吸收
物质
透射
发射光谱:原子发射光谱、 原子荧光光谱、 X 射线荧光 光谱法、分子荧光光谱法等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紫外和可见光吸收光谱
1.紫外光谱及其产生
⑴紫外光的波长范围
紫外光的波长范围为4-400nm。

200-400为近紫外区,4-200nm为远紫外区。

由于波长很短的紫外光会被空气中氧和二氧化碳吸收,研究远紫外区的吸收光谱很困难,一般的紫外光谱仅仅是用来研究近紫外区的吸收。

⑵紫外光谱
当把一束光通过有机化合物时,某一波长的光可能吸收很强,而对其他波长的光可能吸收很弱,或者根本不吸收。

当化合物吸收一定波长的紫外光时,电子发生跃迁,所产生的吸收光谱叫做紫外吸收光谱,简称紫外光谱。

⑶电子跃迁的种类
在有机化合物分子中,由于化合物的价电子有三种类型,即σ键电子、π键电子和未成键的 n 电子,在电子吸收光谱中,电子跃迁主要是经下三种。

①σ-σ*跃迁
σ电子是结合得最牢固的价电子,在基态下,电子在成键轨道中,能级最低,而σ*态是最高能级。

σ-σ*跃迁需要相当高的辐射能量。

在一般情况下,仅在200nm以下约~150nm才能观察到,即在一般紫外光谱仪工作范围之外,只能用真空紫外光谱仪才可观察出来(在无氧和二氧化碳的情况下)。

所以测紫外光谱时,常常用烷烃作溶剂。

② n电子的跃迁
n 电子是指象N,S,O,X 等原子上未共用的电子。

它的跃迁有两种方式。

第一种方式:n-π* 跃迁
未共用电子激发跃入π*轨道,产生吸收带,称为R带(基团型的,Radikalartig德文),由n-π*引起的,在200 nm以上。

如:醛酮分子中羰基在275-295nm处有吸收带,为C=O中n-π*跃迁吸收带。

第二种方式是n→σ*跃迁,这种跃迁所需的能量大于n-π*,故醇醚均在远紫外区才出现吸收带。

~ 200nm。

如甲醇λmax183nm。

③π→π*跃迁
乙烯分子中π电子吸收光能量,跃迁到π*轨道。

吸收带在远紫外区。

当双键上氢逐个被烯基取代后,由于共轭作用,π→π*能级减小。

吸收带向长波递增。

由共轭双键产生的吸收带称为K带,其特征是摩尔消光系数大于104。

在近紫外区吸收,CH2=CH2 λmax162nm,CH2=CH-CH=CH2 λmax217nm。

mbert-Beer定律和紫外光谱图
⑴ Lambert-Beer(朗勃特-比尔)定律
当我们把一束单色光(I o)照射溶液时,一部分光(I)通过溶液,而另一部分先被溶液吸收了。

这种吸收是与溶液中物质的浓度(c)和液层的厚度成正比的。

这就是Lambert-Beer定律。

透射光强度(I)和入射光强度(I0)之比,即I/I0为透射比。

LogI/I0为透光率,A=- LogI/I0为吸光度(吸收度);c:溶液的摩尔浓度(mol/L)L:液层的厚度,单位cm;
ε:摩尔消光系数。

从理论上说,ε的大小表示这个分子在吸收峰的波长可以发生能量转移(电子从能位低的分子轨道跃迁到能位高的分子轨道)的可能性。

ε值大于104是完全允许的跃迁,而小于103跃迁几率较低,若跃进迁是禁阻的,ε值小于几十。

当c为百分浓度时,ε为百分消光系数,以表示。

⑵紫外光谱图
以吸光度或消光系数(ε或logε)为纵坐标,以波长(单位nm)为横坐标作图得到的紫外光吸收曲线,即紫外光谱图(纵坐标常常用ε或logε)。

(1)处有一个最大吸收峰,位于波长280nm,用λmax280nm表示。

最大吸收峰为化合物的特征数值。

在一般文献中,紫外吸收光谱的数据,多报导它的最大吸收峰的波长位置和摩尔消光系数。

如:
表示样品在甲醇溶液中,在252nm处有最大吸收峰,这个吸收峰的摩尔消光系数为12300。

当消光系数很大时,一般用logE或logε表示。

⑶紫外光谱图中常见的几种吸收带及常用光谱术语。

R 吸收带(来自德文 Radikalartig(基团)):为n→π*跃迁引起的吸收带如C=O,-NO2 ,-CHO.其特点εmax<100(logε<2),λmax 一般在270nm以上。

K 吸收带(来自德文 Konjugierte(共轭)):为π→π*跃迁引起的吸收带,如共轭双键。

该带的特点εmax>10000。

共轭双键增加,εmax向长波方向移动,εmax 随之增加。

B 吸收带(来自Benzenoid一词(苯系)):为苯的π→π*跃迁引起的特征吸收带,其波长在230-270nm之间,中心在254nm,ε约为204左右,
E 吸收带(Ethylenic(乙烯型)):也属于π→π*跃迁。

可分为E1和 E2带,二者可以分别看成是苯环中的乙烯及共轭乙烯键所引起的。

苯的E1为180nm,ε
max >10000; E2为200nm,2000<εmax<14000。

生色基(发色团):
共价键不饱和原子基团,能引起电子光谱特征吸收,一般为带π电子的基团。

如:C=C、C=O、C=N、NO、 NO2等。

助色基(助色团)
饱和原子基团,本身在200nm以上没有吸收,但当它与发色基团连接时,可使发色团的最大吸收峰向长波方向移动,并且使强度增加,这样的基团叫助色团,如:--OH 、–NH2、–Cl、 -SH 等。

一般为带p电子的原子或原子团。

3.紫外光谱与有机化合物分子结构的关系
一般紫外光谱是指200-400nm的近紫外区,只有π→π*n→π*跃迁才有实际意义,也就是说紫外光谱适用于分子中具有不饱和结构的,特别是共轭结构的化合物。

⑴共轭体系增长,吸收峰的波长向长波方向移动。

如:
⑵共轭链的一端引入含有未共用电子的基团(如:-NH2,-OH)和烷基时,可以产生 p-π,σ-π超共轭,使λmax向长波方向移动。

4.紫外光谱的应用
⑴推断官能团(确定不饱和化合物的结构骨架)
如在200~250nm有强吸收带(ε>10000),可能含有双键的共轭单位;在250~300nm有弱吸收(ε<100)表示可能有羰基存在。

⑵检查化合物的纯度。

相关文档
最新文档