无穷级数求和问题地几种方法-无穷级数求和地方法
级数求和方法总结
级数求和方法总结级数求和问题是无穷级数中的重点也是难点,同时具有较强的技巧*。
以下是小编整理的级数求和方法总结,欢迎阅读。
一、定义法这是以无穷级数前n项求和的概念为基础,以拆项,递推等为方法,进行的求和运算。
这种方法适用于有特殊规律的无穷级数。
二、逐项微分法由于幂函数在微分时可以产生一个常系数,这便为我们处理某些幂函数求和问题提供方法.当然从实质上讲,这是求和运算与求导(微分)运算交换次序问题,因而应当心幂级数的收敛区间(对后面的逐项积分法亦如此).有时候,所求级数的通项为另一些函数的导数,而以这些函数为通项的级数易于求和,则可将这些函数逐项求导。
三、逐项积分法同逐项微分法一样,逐项积分法也是级数求和的一种重要方法,这里当然也是运用函数积分时产生的常系数,而使逐项积分后的新级数便于求和。
【拓展延伸】数列求和的方法一、分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列构成,则求这个数列的前n项和Sn时可以用分组求和法求解。
一般步骤是:拆裂通项??重新分组??求和合并。
例1求Sn=1×4+2×7+3×10+…+n(3n+1)的和解由和式可知,式中第n项为an=n(3n+1)=3n2+n∴Sn=1×4+2×7+3×10+…+n(3n+1)=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n)=3(12+22+32+…+n2)+(1+2+3+…+n)=3×16n(n+1)(2n+1)+n(n+1)2=n(n+1)2二、奇偶分析求和法求一个数列的前n项和Sn,如果需要对n进行奇偶*讨论或将奇数项、偶数项分组求和再求解,这种方法称为奇偶分析法。
例2:求和:Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)分析:观察数列的通项公式an=(-1)n(2n-1)可知Sn与数列项数n的奇偶*有关,故利用奇偶分析法及分组求和法求解,也可以在奇偶分析法的基础上利用并项求和法求的结果。
无穷级数求和问题的几种方法-无穷级数求和的方法
⽆穷级数求和问题的⼏种⽅法-⽆穷级数求和的⽅法⽬录摘要 (2)1⽆穷级数求和问题的⼏种⽅法 (2)利⽤级数和的定义求和 (2)利⽤函数的幂级数展开式求和 (3)利⽤逐项求积和逐项求导定理求和 (4)逐项求极限 (5)利⽤Flourier级数求和 (7)构建微分⽅程 (9)拆项法 (9)'将⼀般项写成某数列相邻项之差 (10)2总结 (12)3参考⽂献 (12)$⽆穷级数求和问题的⼏种⽅法摘要:⽆穷级数是数学分析中的⼀个重要内容,同时⽆穷级数求和问题,也是学⽣学习级数过程中较难掌握的部分.然⽽,⽆穷级数求和没有⼀个固定的⽅法可循.本⽂结合具体例⼦,根据⽆穷级数的不同特点,介绍⼏种常⽤的求⽆穷级数的和的⽅法和技巧. 关键词:数项级数;幂级数;级数求和⽆穷级数是数学分析中的⼀个重要内容,它是以极限理论为基础,⽤以表⽰函数,研究函数的性质以及进⾏数值计算的⼀种重要⼯具.然⽽数学分析中注重函数的敛散问题,却对⽆穷级数求和问题的⽅法介绍的⽐较少,所以求和问题是学⽣学习级数过程中较难掌握的部分.⽆穷级数求和没有⼀个固定的⽅法可循.本⽂结合具体例⼦,根据不同的⽆穷级数的不同特点,介绍⼏种常⽤的求⽆穷级数的和的⽅法和技巧. 1利⽤级数和的定义求和定义[1]若级数1n n u ∞=∑的部分和数列{}n S 收敛于有限值S ,即1lim lim n n n n n S u S ∞→∞→∞===∑,则称级数1n n u ∞=∑收敛,记为1n n u S ∞==∑,此时S 称为级数的和数;若部分和数数列{}n S 发散,则称级数1n n u ∞=∑发散.例1 /例2求级数()∑∞=--1112n n q n ,1≤q 的和 .解: 2311357(21)n n S q q q n q -=+++++- (1) 2341357(23)(21)n n n qS q q q q n q n q -=+++++-+- (2)(1)-(2)得:11(1)12(21)1n n n q q S q n q q ---=+---12112(21)1(1)1n nn q q S q n q q q--=+-----212lim 1(1)n n qS q q →∞=+--即级数和2121(1)q S q q =+--. 2利⽤函数的幂级数展开式求和利⽤函数的幂级数展开式可以解决某些级数的求和问题.下⾯是⼏个重要的幂级数展开式:例(01,!xnn e x x n ∞==-∞<<+∞∑1,111n n x x x ∞==-<<-∑ 01ln(1),11!n x x x n ∞=-=--≤<∑3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-等等. 例2 求0(1)(21)!nn nn ∞=-+∑的和.解 : 0(1)(21)!nn n n ∞=-+∑0(21)11(1)(21)!2n n n n ∞=+-=-?+∑ 0111(1)2(2)!(21)!n n n n ∞=??=--??+??∑=001111(1)(1)2(2)!2(21)!n n n n n n ∞∞==---+∑∑ 注意到3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-242cos 1(1),()2!4!(2)!nx x x x x n =-+-+-+-∞<+∞>得1(1)(cos1sin1)(21)!2nn n n ∞=-=-+∑.3利⽤逐项求积和逐项求导定理求和定理[2]设幂级数()nnn a x x ∞=-∑的收敛半径为R ,其和函数为()x S ,则在00(,)x R x R -+内幂级数可以逐项积分和逐项微分.即:对00(,)x R x R -+内任意⼀点x ,有:10000()()()1xx nn nn x x N n a a x x x x S x dx n ∞∞+==-=-=+∑∑10000()()()n n n n n n d d a x x na x x S x dx dx ∞-==??-=-=??∑∑并且逐项积分和逐项求导后的级数(显然是幂级数),其收敛半径仍为R . 例3[]3 计算⽆穷级数()() +-++?-+--14534231215432n n x xxxxnn之和(1)x <.解:对于级数()xxnn n+=∑-∞=111(1)x <. ^两边从0积分到x 得()()x nx n n n+=++∞=∑-1ln 11,(1)x <,两边从0积分到x 得()()()()()()x x x x dt t n n xn n nx++-+=+=++?∑-+∞=1ln 1ln 1ln 21021,(1)x <上式右边是原级数. 故级数和()()x x x x S ++-+=1ln 1ln ,(1)x <.例4 求幂级数()()x nn n n n 2112111??-+∑-∞=的和函数()x S .解:令2t x =,幂函数()11111(21)n n n t n n ∞-=??-+??-??∑的收敛半径 '11(21)lim 11(1)(21)n n n R n n →∞+-=+++故原函数的收敛半径1R ==,从⽽收敛区间为(1,1)-,⽽知级数2122211(1)(),(1,1)1n nnn n x xx x x ∞∞-==-=--=∈-+∑∑,记1211()(1),(0)0(21)n n n x x n n ??∞-==-=-∑,'121'12()(1),(0)021n n n x x n ??∞--==-=-∑且''12212212()(1)22(1),(1,1)1n n n n n n x xx x x∞∞---===-?=-?=∈-+∑∑ 于是(1,1)x ∈-,对上式,从0到x 作积分得'''0 ()()()2arctan x x x d x x ??==?,'()()()2arctan xxx x d x xdx ??==??=122012(arctan 2arctan ln(1)1x x dx x x x x -=-++?因此222()2tan ln(1),(1,1)1x f x x x x x x=+-+∈-+. 4逐项求极限如果函数在端点处⽆定义,那么可⽤求极限的⽅法讨论在端点处的和函数. 例5 []4 求幂级数121(1)1n nn x n +∞=--∑的和函数.,解:(1)容易验证该幂级数的收敛域为[]1,1-.(2)再求幂级数在其收敛区间(1,1)-上的和函数,下⾯⽤逐项求导的⽅法求解.设1122()(1)1n n n x f x n +∞-==--∑,(1,1)x ∈- 则有1'12()(1)1n n n x f x n +∞-==--∑ 1n x x n ∞==-∑再设1()(1)nnn x g x n ∞==-∑,(1,1)x ∈-⼜有1'11()(1)1n nn x g x n x -∞==-=-+∑-于是对上式两边进⾏积分,得1()()(0)1xg x dt g t=-++?ln(1)x =-+ 并有'()()ln(1)f x xg x x x ==-+.再进⾏积分,⼜得0()ln(1)(0)xf x t t dt f =-++?221ln(1)224x x x x -=+-+(3)最后讨论幂级数在其收敛域上的和函数.因为函数221()ln(1)224x x x f x x -=+-+在1x =处左连续,⽽幂级数在1x =处收敛,所以等式》21(1)ln(1),1224n n n x x x x x n +∞-=--=+-+-∑ 在1x =处也成⽴.但因()f x 在1x =-处⽆定义,故要改⽤逐项求极限来确定该幂级数在1x =-处的值,即由22111lim ()lim ln(1)224x x x x x f x x ++→-→-??-=+-+ 11ln(1)3lim 1241x x x x +→-??-+=?++?12131lim 14(1)x x x +→-+=+-+34= 得到112123lim ((1))41n n x n x n ++∞-→-==--∑11212lim ((1))1n n x n x n ++∞-→-==--∑ 1122(1)(1)1n n n n +∞-=-=--∑2211n n ∞==-∑ %所以原幂级数的和函数为221ln(1),(1,1]224()3,14x x x x x S x x ?-+-+∈-??=??=-??.5利⽤Flourier 级数求和求某些数值级数的和可选择某个特殊的函数在[]0,2π或[],ππ-上展成傅⾥叶级数,然后再去适当的x 值或逐项积分即可.例6[5]求21(1)nn n ∞=-∑的和.解:21(1)n n n ∞=-∑可以看作是余弦函数21(1)cos nn nx n∞=-∑在0x =时的值,因此可以考虑适当选取⼀个偶函数()f x ,满⾜21(1)()cos nf x nxdx nπππ--=?对于上式左端利⽤分部积分,得到'''22111()cos ()cos ()cos f x nxdx f x nx f x nxdx n n πππππππππ---??=-='''(3)233111()cos ()sin ()f x nx f x nx f x n n nπππππππππ---??-+ 注意到$cos cos()(1)nn n ππ=-=-有1(1)1()cos ()()()sin n f x nxdx f f f x nxdx n n πππππππππ---??=--+?取21()4f x x =,则21(1)()cos nf x nxdx nπππ--=?同时211()6f x dx n πππ-=?,这样21()4f x x =在[],ππ-上的Flourier 级数为 222111(1)cos 412n n x nx nπ∞=-==+∑ `令0x =,得2=-=∑ 例7[4]证明: 441190k k π∞==∑.证明:将函数2()()2xf x π-=展成傅⾥叶级数222001()26xa dx ππππ-==22211()cos 2k xa kxdx k πππ-=, 0k b =是2221cos ()(),02212k xkxf x x k πππ∞=-==+≤≤∑由柏塞⽡尔等式(函数2()( )2xf x π-=连续)2224040111()()22k k k a xa b dx k πππ∞=-++=∑?,有2422444011111ππππππππ∞-=-+===∑?即441190k k π∞==∑. 6构建微分⽅程如果某些级数的⼀般项的分母类似于阶乘的级数时,可以利⽤经过逐项积分或逐项积分后得到的级数之和函数与原级数的和函数构成微分⽅程,然后解微分⽅程来求其和.例8 求级数11112242462468-+-+之和.解:设幂级数246821()(1)2242462468(2)!!nn x x x x x S x n -=-+-++-+则3572'1()(1)224246(2(1))!!nn x x x x S x x n -=-+-++-+24681()2242462468x x x x x ??=--+-+(1())x S x =-于是所得⼀阶微分⽅程:'()(1())S x x S x =-,其通解为22()1,x S x Ce-=+由(0)0S =得1C =- 因此得22121()(1)1(2)!!x nn N xS x Ce n ∞--==-=-∑从⽽121111(1)12242462468S e --+-+==-.7拆项法⽆穷级数求和时,有时根据⼀般项的特点,将⼀般项进⾏拆分来简化运算过程.例9 求幂级数121(1)n n n n x ∞-=-∑的和函数.解:先求幂级数的收敛域.因为1n =,且级数121(1)n n n ∞-=-∑与21所以幂级数的收敛域为(1,1)-. 由于2(1)(2)3(1)1n n n n =++-++因此12111111(1)(1)(1)(2)3(1)(1)(1)n nn nnnn n n n n n n x n n x n x x ∞∞∞∞---====-=-++--++-∑∑∑∑12''11'11(1)()3(1)()1n n n n n n x xx x ∞∞-+-+===---++∑∑ 12''11'1())3((1)())1n n n n n n x xx x∞∞-+-+===---++∑∑ 32'''()3()111x x x x x x=-++++ 【23(1)x x x -=+,(1,1)x ∈-因为幂级数的收敛域为,所以所求和函数为23()(1)x x S x x -=+,(1,1)x ∈-.8将⼀般项写成某数列相邻项之差⽤这⼀⽅法求⽆穷级数的和,⾸先需要解决:已知1n n u ∞=∑,如何求n v当111n n n n m u b b b ++-=,其中(1,2,)i b i =形成公差为d 的等差数列时,1111n n n n m v md b b b ++-=-(m 为待定因⼦).于常数项级数1n n u ∞=∑,如果能将⼀般项写某数列{}n v 的相邻两项之差:1n n n u v v +=-且极限lim n n u v ∞→∞=存在,则21321111()()()n k n n n n S u v v v v v v v v ∞++===-+-+。
数列与级数的8种求和方法专题讲解
数列与级数的8种求和方法专题讲解简介本文将介绍数列和级数的8种常见求和方法,包括递推公式、几何级数、等差数列求和、等比数列求和、伪等差数列求和、伪等比数列求和、特殊级数求和和无穷级数求和。
1. 递推公式递推公式是通过前一项和该项之间的关系来逐项求和的方法,通常用于求解迭代式数列的和。
递推公式可以通过给定的初始项以及递推关系进行求和。
2. 几何级数几何级数指的是一个数列中的各项与其前一项之比保持恒定的数列。
求解几何级数的和可以通过使用几何级数公式来进行计算。
3. 等差数列求和等差数列是一个数列中的各项与其前一项之差保持恒定的数列。
求解等差数列的和可以通过等差数列求和公式进行计算。
4. 等比数列求和等比数列是一个数列中的各项与其前一项之比保持恒定的数列。
求解等比数列的和可以通过等比数列求和公式进行计算。
5. 伪等差数列求和伪等差数列是一个数列中的各项与其下标之差保持恒定的数列。
求解伪等差数列的和可以通过伪等差数列求和公式进行计算。
6. 伪等比数列求和伪等比数列是一个数列中的各项与其下标之比保持恒定的数列。
求解伪等比数列的和可以通过伪等比数列求和公式进行计算。
7. 特殊级数求和特殊级数指的是具有特殊性质的级数,如调和级数、斐波那契级数等。
求解特殊级数的和需要根据其特定的性质和规律进行计算。
8. 无穷级数求和无穷级数是指一个无穷多项的级数。
求解无穷级数的和需要使用极限的概念,并根据级数的收敛性和发散性进行判断和计算。
以上是数列与级数的8种常见求和方法的专题讲解。
每种求和方法都有其适用的情况和特点,在实际问题中需要选择合适的方法进行求解。
希望本文能为读者提供一些有用的参考和指导。
无穷级数求和公式推导
无穷级数求和公式推导无穷级数求和是数学中重要的概念之一,它将无限个数相加并求得其总和。
在数学中,我们可以使用一些公式来推导无穷级数的和,其中最著名的是等比级数求和公式和调和级数求和公式。
一、等比级数求和公式的推导等比级数是指一个数列中的每一项与前一项之比都相等的数列。
假设等比级数的首项为a,公比为r,则等比级数可以表示为:S = a + ar + ar^2 + ar^3 + ...为了推导等比级数求和公式,我们可以使用以下方法。
我们假设等比级数的和为S,即S = a + ar + ar^2 + ar^3 + ...接下来,我们将等比级数的每一项乘以公比r,并将两个等式相减,可以得到:rS = ar + ar^2 + ar^3 + ar^4 + ...接着,我们将上述两个等式相减,得到:S - rS = a化简得到:S(1 - r) = a因此,我们可以得到等比级数求和公式:S = a / (1 - r)这就是等比级数求和公式的推导过程。
二、调和级数求和公式的推导调和级数是指一个数列中的每一项的倒数之和。
调和级数可以表示为:S = 1 + 1/2 + 1/3 + 1/4 + ...为了推导调和级数求和公式,我们可以使用以下方法。
我们可以将调和级数的部分项相加,并将其表示为一个数列的和:S = 1 + 1/2 + 1/3 + 1/4 + ...接下来,我们将调和级数的每一项倒数与1相加,并将其表示为一个数列的和:1/S = 1 + 1/2 + 1/3 + 1/4 + ...然后,我们将上述两个等式相加,可以得到:S + 1/S = 2(1 + 1/2 + 1/3 + 1/4 + ...)化简得到:S^2 + S = 2S(1 + 1/2 + 1/3 + 1/4 + ...)进一步化简得到:S^2 + S = 2S^2再次化简得到:S^2 = S因此,我们可以得到调和级数求和公式:S = ∞这就是调和级数求和公式的推导过程。
大学数学无穷级数的收敛性与求和
大学数学无穷级数的收敛性与求和大学数学:无穷级数的收敛性与求和无穷级数是数学中一个重要的概念,它由一系列无穷多项的代数和组成。
在数学中,我们对于一个无穷级数的收敛性和求和有着浓厚的兴趣和研究。
本文将讨论无穷级数的基本概念、收敛性判定方法以及求和公式。
一、无穷级数的概念无穷级数的概念可表示为:S = a₁ + a₂ + a₃ + ... + aₙ + ...其中,a₁,a₂,a₃,...,aₙ代表级数的每一项。
根据级数的无穷性质,我们可以看到级数的项数n无限大。
因此,无穷级数可以看作是无限多项求和的结果。
二、无穷级数的收敛性对于无穷级数的研究,我们最关注的问题之一就是它的收敛性。
在数学中,无穷级数可能出现以下三种情况:1. 收敛:如果一个无穷级数的部分和数列存在有限的极限值,即Sₙ的极限存在,则称该级数是收敛的。
我们可以用符号表示为:S = a₁ + a₂ + a₃ + ... + aₙ + ...= lim Sₙ (n→∞)2. 发散:如果一个无穷级数的部分和数列没有有限的极限值,即Sₙ的极限不存在,则称该级数是发散的。
3. 不确定:在某些情况下,我们无法判断一个无穷级数的收敛性,这种情况被称为不确定。
三、无穷级数的收敛性判定为了确定一个无穷级数的收敛性,数学家们发展了许多判定方法。
下面介绍其中几种主要的方法:1. 正项级数判别法:如果一个无穷级数的每一项都是非负数,并且部分和数列有界,则该级数是收敛的。
2. 比较判别法:如果一个无穷级数的每一项都大于等于另一个级数的对应项,而另一个级数是收敛的,则该级数也是收敛的。
类似地,如果一个无穷级数的每一项都小于等于另一个级数的对应项,而另一个级数是发散的,则该级数也是发散的。
3. 比值判别法:对于一个无穷级数,如果存在一个正常数r,使得级数的项的绝对值与n的幂次之比的极限为r,则有以下结论: - 当r<1时,级数收敛;- 当r>1时,级数发散;- 当r=1时,判定不确定。
无穷级数求和方法解析
116
i n
1
4
'h )=
• * ) = ------- h l n ( 1 — n ) , 其中 n 1一n
n= i
n
(一 1 , 1), 所以
/ n ), /(n ) 的通解为/ n ) 2 2 n! . = 1 ( n — 1) ! 2 n c e n 。又 当 n = 〇时 , c / n ) = 1, 所以级数的和为/ n ) 2 6. 7. 8. 参考文献: [1] [2] 华东师范大学数学系.数学分析( 第四版, 下 册 ) M ]. 程 海 来 .一 些 无 穷 级 数 的 求 和 [ ] . 大 学 数 学 , 2013, 北京: 高等教育出版社, 2 0 10. = cn . 定义法求和( 略) 错位相减法求和( 略) 裂项法求和( 略)
— — n s i n (c n )— = n7 cJ — n n 2n = (— 1) n — 2,3,… ) . n 2 (其中 n = 1 ,
0
—
— fn
n 2J
—^ x cs o( s n n )— co
0
由 狄 利 克 雷 收 敛 条 件 可 知 / —) = —
n
3
¥ (_ |)n --- 2 — c o s ( n n .), 其中 0 < —< n 。现在令 n = n 得 : n2
S n
^^
n x n=
3 —n
-+ l n (1— n )
(1
— n )2
3 . 利 用傅 里 叶 级 数 求 和 【 例 3】 求 级 数 ][;
n2
解: 构造傅里叶函数/ — ) = — , 其 中 n 6 [0, n] , 作偶 延拓得: 呈―. )= — , 一n ^ n ^ n . 由此可知傅里叶系数为: 6 n = 0,其 中 n = 1 , 2,3,… 2—
高等数学中的无穷级数求和
高等数学中的无穷级数求和引言:无穷级数是高等数学中的一个重要概念,它在数学分析、物理学、工程学等领域中有着广泛的应用。
无穷级数求和的问题一直以来都是数学家们关注的焦点之一。
本教案将以高等数学中的无穷级数求和为主题,通过分析和讨论不同类型的无穷级数求和方法,帮助学生深入理解无穷级数的性质和求和技巧。
一、级数的定义与性质1.1 级数的定义无穷级数是由一列数的和组成的,形如:S = a1 + a2 + a3 + ...其中,a1、a2、a3...为级数的项。
1.2 级数的收敛与发散级数的和S存在时,称该级数收敛,否则称级数发散。
1.3 级数的部分和级数的部分和Sn表示级数前n项的和,即:Sn = a1 + a2 + a3 + ... + an二、常见的无穷级数求和方法2.1 等差数列求和当级数的项满足等差数列的形式时,可以利用等差数列求和公式进行求和。
例如:S = 1 + 3 + 5 + ...可以将其转化为等差数列的求和问题。
2.2 几何级数求和几何级数是指级数的项之间的比值为常数的级数,形如:S = a + ar + ar^2 + ...其中,a为首项,r为公比。
2.3 幂级数求和幂级数是指级数的项是幂函数的系数,形如:S = a0 + a1x + a2x^2 + ...其中,a0、a1、a2...为系数。
三、常见的无穷级数求和技巧3.1 逐项求和法逐项求和法是指将级数的每一项分别求和,然后将这些部分和相加得到级数的和。
这种方法适用于某些特殊的级数,如幂级数。
3.2 积分法积分法是指将级数的每一项进行积分,然后求出积分结果的极限值。
这种方法适用于某些特殊的级数,如幂级数。
3.3 求导法求导法是指将级数的每一项进行求导,然后求出导数结果的极限值。
这种方法适用于某些特殊的级数,如幂级数。
四、经典的无穷级数求和问题4.1 调和级数求和调和级数是指级数的每一项为倒数的级数,形如:S = 1 + 1/2 + 1/3 + ...调和级数是一个经典的发散级数,但可以通过取部分和的方式得到一个无穷大的极限。
无穷级数求和的方法与技巧
n =1
(x ) Σ 2
x 0
∞
( n- 1 )
= 1 , 2- x
∴S (x ) =
1 dt=ln2- ln (2- x ) 。 乙S'(t)dt= 乙 2t
0
责任编辑
李叶亚
(上接第 95 页 ) 9π , 得解。 16
ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ
所以 P ≤ =F1(1) · F2(1)= 3 π · 3 π= 9 π2。 X≤1,Y≤1 ≤ 4 4 16 从上面例子的解法二可以看出, 针对这类问题, 也可以 利用联合分布函数的特点直接判断独立性,较为简便地解 决问题。 参考文献
[1] 复旦大学编.概率论.北京:人民教育出版社,1979:129:142. [2] 浙江大学编 . 概率论与数理统计 .4 版 . 北京 : 高等教育出版社 , 2009:60~67. [3] 王明慈,沈恒范主编.概率论与数理统计.北京:高等教育出版社, 2007:44~52. [4] 刘国旗.关于二元随机变量独立性的判定条件.安徽建筑工业学 院学报:自然科学版 2001,9(2):76~78.
n =1 ∞ n =1 n =1 ∞ ∞
(un±vn ) 收敛, 且Σ (un±vn ) =Σun±Σvn。 当把级数分成两
n =1 n =1 n =1 ∞
个或多个 (有限个) 收敛级数的和时, 注意一定要保证 Σun
n =1 ∞
推广:对于实数 a≠0,- 1, b 为任意实数,无穷级数Σ
n =1
与Σvn 均收敛。
∞
1.2 拆项法 主要适用于无穷级数的通项为分式,分式的分母是因 式之积的形式的级数。 1 和。 (n+1 ) n =1 n 解: 由于 un= 1 =1 - 1 , n (n+1 ) n n+1 所以: sn=1- 1 + 1 - 1 +…+ 1 - 1 =1- 1 , 2 2 3 n n+1 n+1 1 所以 s=lim sn=lim(1) =1. n→∞ n→∞ n+1 例 1: 求无穷级数的Σ
无穷级数求和的若干方法
陕西理工学院函授本科毕业论文题目无穷级数求和的若干方法学生姓名专业名称数学与应用数学无穷级数求和的若干方法摘 要:本文介绍了十种无穷级数求和的方法,并通过举例说明这些方法的应用.关键词:无穷级数;级数收敛;级数发散;求和无穷级数包括数项级数和函数项级数.它是表示函数性质的一个重要工具,也是对函数进行数值计算的一个重要手段.我们较常见到的无穷级数求和多为数项级数和幂级数的求和,无穷级数求和问题是无穷级数中的难点,因此这里给出的十种方法主要是针对上述两种级数,并通过例题讲述这些求和方法的应用.1 定义法[1]这是利用无穷级数和的定义来求级数和的一种方法,这种方法用于级数前n 项部分和数列比较好求的级数,在此我又把其分为以下三类.(1) 直接法:适用于1k k u ∞=∑为等差或等比级数或通过简单变换易化为这两种级数.例1 求级数()1121n n n q∞-=-∑的和,()1q <.解 ()2113521n n S q q n q -=++++- (1) n S 中各项的系数1、3、5、是公差为2的等差数列,(1)的两边同乘以q 得:()233521nn qS q q q n q =++++- (2)(1)-(2)得:()()211122221n n n q S q q q n q --=++++-- ()()211221n n q q q n q -=++++--()()1211211n n q q n q q--=+---()()()1221121111n nn q q q S n q qq --=+----- 因为1q <,所以()1121n n n q ∞-=-∑()()22121lim 111n n q qS q q q →∞+==+=---. (2) 拆项法:()()10011lim lim n n n n n n n n n a b b b b b b ∞∞-→∞→∞===-=-=-∑∑.例2 求级数1n ∞=的和.解n u==1n S n⎛=++++-⎝⎝1=即1n ∞=lim 1n n S →∞==.(3) 递推法:是利用问题本身所具有的递推关系来求解问题的一种方法. 例3 求级数211arctan2n n ∞=∑的和. 解 21111228arctan arctan arctanarctan 11283128S +=+==- 311121arctan arctan arctan arctan arctan 2818318S =++=+213318arctanarctan 2141318+==- 由数学归纳法可证: arctan 1n nS n =+πlim lim arctan arctan114n n n n S n →∞→∞===+, 故211arctan 2n n∞=∑π4=. 2 阿贝尔法[2](即构造幂级数法)若级数0n n a ∞=∑收敛,则0n n a ∞=∑1lim nn x n a x -∞→==∑.由0n n a ∞=∑构造一个幂级数0n n n a x ∞=∑是很简单的,而幂级数的和函数可通过逐项微分或积分得到,故易得0n n a ∞=∑的和.例4 级数1212nn n ∞=-∑的和. 解 令()221212n n n n f x x ∞-=-=∑,x . 之所以这样构造幂级数,是为了消去系数中的因子()21n -.逐项积分()222101121122xxn n n n on n n f x dx x dx x ∞∞--==-==∑∑⎰⎰2112nn x x ∞=⎛⎫= ⎪⎝⎭∑ 22212212x xx x x ==--, 即()0xf x dx ⎰22xx =-. 上式两边对x 求导: ()()22222x f x x +=-,故1212n n n ∞=-∑=()()222112lim lim 32x x x f x x --→→+==-. 3 逐项微分法[2]由于幂函数在微分时可以产生一个常系数,这便为我们处理某些幂函数求和问题提供方法.当然从实质上讲,这是求和运算与求导(微分)运算交换次序问题,因而应当心幂级数的收敛区间(对后面的逐项积分法亦如此).例5 级数()11nn x n n ∞=+∑ 的和函数()S x ,其中1x <.解 ()111111111n n n n n n n n x x x x n n n n n n ∞∞∞∞====⎛⎫=-=- ⎪+++⎝⎭∑∑∑∑ 令()11n n x S x n ∞==∑,()211nn x S x n ∞==+∑.由()111n n S x x ∞-='=∑11x =-,则()()101ln 11x S x dx x x ==---⎰;类似地()()()121111ln 1ln 111n n x S x x x x x n x x+∞===--+=---⎡⎤⎣⎦+∑, 故()()()()1211ln 11S x S x S x x x ⎛⎫=-=--+ ⎪⎝⎭.有时候,所求级数的通项为另一些函数的导数,而以这些函数为通项的级数易于求和,则可将这些函数逐项求导.例6 求级数()()21021n n n x ∞+=+∑的和函数,在区间()1,1-内.解()()21021n n n x∞+=+∑()()22121nn n n x n x x x∞∞+=='=+=∑∑210n n x x ∞+='⎛⎫= ⎪⎝⎭∑ ()()222220111n n x x x x x x x x x ∞=''+⎛⎫⎛⎫=== ⎪ ⎪-⎝⎭⎝⎭-∑ . 4 逐项积分法同逐项微分法一样,逐项积分法也是级数求和的一种重要方法,这里当然也是运用函数积分时产生的常系数,而使逐项积分后的新级数便于求和.例7 求级数()()21021n n n x ∞+=+∑的和函数,这儿1x <.解 令()S x =()2021n n n x ∞=+∑,1x <.而()()22122211xxnn n n n n xS x dx n x dx xx x x∞∞∞+====+===-∑∑∑⎰⎰, 故()()2222111x x S x x x '+⎛⎫== ⎪-⎝⎭-, 则()()21021n n n x∞+=+∑=()()()22211x x xS x x +=-.5 逐项微分、积分有时在同一个级数求和式中既需要逐项微分,又需要逐项积分,这往往是将一个级数求和问题化为两个级数求和问题才会遇到.例8 求级数211nn n x n ∞=+∑的和函数,这儿1x <. 解 ()21111111111n n n n nn n n n n n n n x nx x n x x x n n n∞∞∞∞∞∞======+=+=+-+∑∑∑∑∑∑ ()0011111x x n n n n x n x dx x x n ∞∞==''⎡⎤⎡⎤=+-+⎢⎥⎢⎥-⎣⎦⎣⎦∑∑⎰⎰dx ()()2120112ln 11111x n n x x x x x dx x x x x x ∞+='-⎛⎫=-+=--- ⎪----⎝⎭∑⎰ ()()2ln 11xx x =--- ()1x <.6 通过函数展开法数项级数的求和也可通过函数幂级数或傅里叶级数展开后赋值而得到(当然它们常与幂级数逐项微分、积分技巧配合使用).(1) 幂级数的赋值法:根据所给数项级数的特点构造一个容易求和的幂级数,在此幂级数的收敛域内有一点0x ,当0x x =时所得的常数项级数恰是要求和的级数.设所求级数的和为S ,幂级数的和为()S x ,则()0S S x =.例9 求级数113nn n ∞=∑的和. 解 作()1n n x S x n ∞==∑,由()1111n n S x x x ∞-='==-∑,则()()0ln 11xdxS x x x==---⎰()1x < 令13x =,则113nn n ∞=∑123ln 1ln ln 332⎛⎫=--=-= ⎪⎝⎭. (2) 傅里叶级数的赋值法:利用函数的傅里叶级数展开再赋值是求数项级数和的一个重要手段.例10 求级数()1211n n n +∞=-∑的和.解 把()22f x x =在[]π,π-上展成余弦级数π2200242ππ3a x dx ==⎰()π220282cos 1πn n a x nxdx n==-⎰ ()1,2,n = 00b =()1,2,n =()()22128π1cos 3n n f x nx n ∞==+-∑ ()ππx -≤≤令0x =,则 ()221280π13n n n ∞==+-∑,故()1211n n n +∞=-∑2π12=. 7 复数法[1](三角级数求和法)这是求三角级数和常用的方法,为了求级数0cos n n a nx ∞=∑及0sin n n a nx ∞=∑的和,常把它们视为复数域内的幂级数0nn n a z ∞=∑(其中ixz e =)的实部和虚部.如果0nn n a z ∞=∑的和好求,则级数0cos n n a nx ∞=∑及级数0sin n n a nx ∞=∑的求和问题就已解决.例11 求级数1sin n nxn ∞=∑的和函数. 解 ()1111sin Im Im Im nix inxnn n n n e nx e z n n nn∞∞∞∞=======∑∑∑∑,其中ix z e =令()1nn z f z n∞==∑()1z < ()111111n n n n f z zz z z∞∞-=='===-∑∑, ()()()()ln 1ln 1ln 1cos isin ix f z z e x x =--=--=---sin ln 1cos isin i arctan 1cos x x x x -⎡⎤=---+⎢⎥-⎣⎦ ()1sin ln 22cos iarctan21cos xx x=--+-, 故1sin n nx n ∞=∑()sin πIm arctan arctan cot 1cos 22x x x f z x -⎛⎫==== ⎪-⎝⎭ ()02πx <<. 8 积分法(1) [2]积分概念实际上可视为无穷级数求和概念的拓广,但相对来说,定积分较无穷级数好处理,因而有些级数求和问题可化为定积分问题去考虑,但它与定积分的递推公式有关.例12 求级数()111n n n-∞=-∑的和.解 令101n n x I dx x =+⎰,考虑到111110011n n n n n x x I I dx x dx x n---++===+⎰⎰. 当01x ≤≤时,由于1n n x x -≤,故1n n I I -≤, 于是112n n n I I I n -≤+=,即12n I n ≤,又1121n n n I I I n +≥+=+, 即122n I n ≥+.综合上两式有11222n I n n≤≤+ ()1n ≥,故lim 0n n I →∞=.再者递推可有 ()()()11101111n n n n n I I n-∞--=-=---∑, (3)又()11000ln 1ln 21dxI x x==+=+⎰.将(3)式两边取极限()n →∞且0n I → 则()111n n n-∞=-∑()100lim 1ln 2n n n I I I -→∞⎡⎤=+-==⎣⎦.(2)[3]利用公式()()101111a bn x x dx n a n b b a x -∞=-=++--∑⎰,()a b ≠. 来求无穷级数的和,当a 、b 为非负整数时,利用此公式求级数的和特别简单,下面我们验证此公式的正确性.作函数()11n a n b n x x f x b a n a n b ++∞=⎛⎫=- ⎪-++⎝⎭∑ 1x <()()1111n a n b n f x x x b a ∞+-+-='=--∑111a b x x b a x x ⎛⎫=- ⎪---⎝⎭1x <由于()00f =,故()001111a b a bxx x x x x f x dx dx b a x b a x--==----⎰⎰. 而()()11n n a n b ∞=++∑()10lim x f x →-=,所以()()101111a b n x x dx n a n b b a x -∞=-=++--∑⎰. 例13 求级数()()1112n n n ∞=++∑的和.解 此级数与上面公式比较知1,2a b ==从而()()1112n n n ∞=++∑2101211x x dx x --=--⎰1012xdx ==⎰. 9 化为微分方程求解有些级数的和函数经过微分后,再与原来的级数作某种运算后,可以组成一个简单的微分方程,这样级数求和问题就化为微分方程的求解问题.例14 求()202!nn x n ∞=∑的和函数,()x -∞<<+∞.解 设()()202!n n x S x n ∞==∑,考虑到()()()21211021!21!n n n n x x S x n n -+∞∞=='==-+∑∑, 则()()()()2210002!21!!n n nx n n n x x x S x S x e n n n +∞∞∞==='+=+==+∑∑∑,于是()12dx dx x x xS x e e e dx C e Ce --⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰.又()01S =,则12C =,这样可有 ()()12x xS x e e chx -=+=. 10 利用无穷级数的乘积[2]有些级数可视为两个无穷级数的乘积,这时便可将所求级数和问题化为先求两个级数积(当然它们应该好求),再计算它们的乘积,当然这基于下面的结论:若级数n a ∑与n b ∑均收敛,又n c ∑也收敛,其中0110n n n n c a b a b a b -=+++,则n n n c a b =⋅∑∑∑.若n a ∑,nb∑都收敛且至少其中之一绝对收敛,其中nc∑收敛于nna b ⋅∑∑.例15 求级数1111123n n x n ∞=⎛⎫++++ ⎪⎝⎭∑的和函数()S x ,其中1x <.11 解 考虑()00n n n n x a x ∞∞===∑∑为绝对收敛级数,且()100nn n n x b x n ∞∞==+=∑∑收敛,这里1x <.又()11111101123n n n n n n x x c x x x x x x n n n --⎛⎫=⋅+⋅++⋅+⋅=++++ ⎪-⎝⎭, 则()()()100n n nn n n c x a x b x ∞∞∞====⋅∑∑∑, 再由011nn x x ∞==-∑,()1ln 1n n x x n ∞==--∑, 故()()()()1ln 1ln 111n n x x S x c x x x ∞=--==-=--∑. 无穷级数求和的方法远不止这十种,还有待于继续探索和总结,有些求和问题用一种方法求解很麻烦,甚至不可能,它需要多种方法的灵活交错使用,有些题目则可以多种方法求解,比如例13用定义法求和也可以(拆项相消就可求出部分和),这就要求我们熟练掌握上述方法,根据具体的题型寻找简单可行的途径来求解.参考文献:[1] 陈文灯,黄先开,曹显兵,施明有.高等数学复习指导[M].北京:清华大学出版社,2007:516-524.[2] 陈文灯,吴振奎,黄惠青.高等数学解题方法和技巧[M].北京:中国财政经济出版社,2004:334-345.[3] 周翠莲,于兰芳.无穷级数求和的方法[J].承德民族师专学报:自然科学版,1996,(2):15-18.。
探求无穷级数求和的几种常用方法
2n − 1 2(n −1) 。 x 2n
证明 : 级数的前项部分和 1 1 1 1 sn = + + ++ 1 ⋅ 6 6 ⋅11 11 ⋅16 (5n − 4 )(5n + 1)
解 :级 数 的 收 敛 域 是 (− 2, 2 ) . 设 和 函 数 是 s(x) ,即 ∞ 2n − 1 2(n −1) s (x ) = ∑ n x 。 2 n =1 从 0 到 x 积分并逐项积分 , 得到
n =1 ∞
3 5 7 例3: 证明级数 1 − + − + 收敛 , 并求其和。 2 4 8
证明 :sn = 1 − +
3 2
1 5 7 n −1 2n − 1 − + + (−1) , 两边乘以 , 再相 2 2 2 23 2n −1
. sn = ∑ uk , n = 1, 2, . 若极限 lim sn = s 存在 , 称级数 ∑ un 收敛 , 和
k =1
∞
n
∞
n →∞
1 , ] gn -1 2n 加 ,得 到 3 sn = 1 - 12 + g + ]-1 gn -1 1 n -2 + -1 n 2 2 2 2 2
两边乘以
2 2 2 , 求出 sn, 再求极限 lim sn = . 所以级数收敛 , 和是 。 9 n →∞ 3 9
n =1
称级数 ∑ un 发散 . 本文考虑在级 是 s, ∑ un = s ; 若极限 lim sn 不存在 , n →∞
2
2
2
3 利用错位相减法求和
对于级数 ∑ un ,写出 sn = u1 + u2 + + un . 用一个适当的数 q
无穷级数的求和
无穷级数的求和Investigate of the summation ofinfinite series专业: 应用化学精细化工**: ***学号: ************摘要本文介绍了运用裂项相消, 错位相减, 逐项微分, 逐项积分, 运用特殊级数的和这几种方法求级数的和, 并通过实例说明了这些方法的应用.关键词: 级数; 求和; 幂级数; 傅里叶级数简介无穷级数求和是无穷级数中的主要内容,针对无穷级数求和归纳为6种方法.即利用无穷级数和的定义、递推、构造成幂级数、傅里叶级数、幂级数的逐项求导或逐项积分、微分方程,以下让我通过简单的例子,通过分析,总结归纳出无穷级数求和的解题技巧,使求解这类问题有章可循目录摘要 (I)简介 (II)1 引言 (1)2 裂项相消法 (1)3 错位相减法 (2)4 逐项微分法 (6)5 逐项积分法 (8)6 运用特殊级数的和求和法 (9)参考文献 (13)1 引言无穷级数(简称级数)是高等数学的一个重要组成部分. 它是表示函数, 研究函数性质以及进行数值计算的一种重要工具. 众所周知, 收敛级数都有和, 然而求出收敛级数的和常常是较困难的. 因此, 本文将讨论运用裂项相消, 错位相减, 逐项微分, 逐项积分, 运用特殊级数的和来求级数的和, 并通过实例说明了这些方法的应用.为行文的简洁, 本文中未特别申明的符号与文献[1]一致.2 裂项相消法设1n u n ∞=∑, 1n n n u v v +=-, 则1n u n ∞=∑的部分和为11n n s v v +=-.若 1lim n n v A +→∞=, 则1lim n n s A v →∞=-.也就是说1n u n ∞=∑的和为 1A v -.我们称上述求级数和的方法为裂项相消法.利用裂项相消法求级数的和, 关键是怎样将级数的通项拆成前后有抵消部分的形式, 通常经过变形, 有理化分子或分母, 三角函数恒等变形等处理可达到裂项相消的目的. 以下用具体例子来进行说明.例1 求无穷级数11(2)n n n ∞=∑+的和.解 因为1111()(2)22n n n n =-++,所以1111111111[(1)()()](1)232422212n S n n n n =-+-+⋅⋅⋅+-=+--+++,于是lim n n S S →∞=1111(1)2212n n =+--++34=. 所以113(2)4n n n ∞==∑+.如果一个级数的通项是一个三角函数式, 则可考虑利用三角函数公式, 将其化简为两式之差以便运用裂项相消法.例2 求级数 201arctan1n n n ∞=∑++ 的和.解 先考虑变换问题的数学形式, 由21(1)arctanarctan 11(1)k kk k k k+-=++++,联想到正切的差角公式tan tan tan()1tan tan αβαβαβ--=+,再设 tan 1,k k αβ=+=, 则原级数的部分和为2111arctan1arctan arctan arctan371arctan1(arctan 2arctan1)(arctan 3arctan 2)[arctan arctan(1)][arctan(1)arctan ]arctan(1),n S n n n n n n n =+++⋅⋅⋅+++=+-+-+⋅⋅⋅+--++-=+所以201arctanlim lim arctan(1)12nn n n S n n n π∞→∞→∞===+=∑++. 如果一个级数的通项是一个分母为若干根式之积的分式, 则可考虑将其分母或分子有理化以便运用裂项相消法.例3求和n ∞=∑.解 先对通项分母中的和式进行有理化, 得==,于是, 有(1n S =-++⋅⋅⋅++1=-,所以lim lim(11n n n n S ∞→∞→∞===-=∑.3 错位相减法设{}n u 为等差数列, 公差为d , {}n v 为等比数列, 公比为q , 则称0n n n u v ∞=∑为混合级数,这类级数的求和问题一般采用错位相减法.事实上, 设112233n n S u v u v u v u v n =+++⋅⋅⋅+, (1)两边同时乘以公比q 得112233n n n qS u v q u v q u v q u v =+++⋅⋅⋅+,即12233411n n n n n qS u v u v u v u v u v -+=+++⋅⋅⋅++, (2)(5)式减去(6)式得11231(1)()n n n n q S u v d v v v u v +-=+++⋅⋅⋅+-,112311lim lim[]1()n n n n n n S S qu v d v v v u v +→∞→∞+++⋅⋅⋅+-==-.我们这种求级数和的方法为错位相减法.例4 求级数113n n n∞-=∑的和. 解 因为21231333n n n-=+++⋅⋅⋅+S , (3)23112333333n n n=+++⋅⋅⋅+S , (4) (7)式减去(8)得23112111113333333n n n n n n --==++++⋅⋅⋅++S S S ,即1(1)3313(1)12323313n n n n n n n S -=-=---, 于是2313lim lim[(1)]32332n n n n n n S →∞→∞=--=, 所以 339lim 224n n S →∞=⨯=, 故 11943n n n ∞-==∑.4 逐项微分法定理[2]1 若在[,]a b 上, 1()n n u x ∞=∑的每一项都具有连续导数'()n u x 一致收敛于()x δ,又1()n n u x ∞=∑收敛于()S x , 则'()()S x x δ=, 即11()()nn n n d du x u x dx dx∞∞===∑∑, 且1()n n u x ∞=∑一致收敛于()S x .这定理说明了和号同求导运算可以交换, 它也称为逐项微分的定理. 但要注意的是, 仅仅在条件“1()n n u x ∞=∑一致收敛”之下, 即使'()n u x 存在且连续, 也不能保证和号同求导数号可以交换.例5 求级数357(1)357x x x x x -+-+⋅⋅⋅≤的和.解 令357()357x x x F x x =-+-+,在收敛域[]1,1-内逐项微分, 得()24621'11F x x x x x=-+-+⋅⋅⋅=+. 注意到(0)0F =, 所以20()arctan 1xdtF x x t ==+⎰, 于是当1x ≤时, 有357arctan 357x x x x x -+-+⋅⋅⋅=.例6 求级数11111(1)3521n n --+-⋅⋅⋅+-+⋅⋅⋅-的和.解 令35121111(1)3521n n x x x x x n --=-+-⋅⋅⋅+-+⋅⋅⋅-S(),逐项求导得2412321'()1(1)1n n S x x x x x --=-+-⋅⋅⋅+-+⋅⋅⋅=+, 所以2001()'()arctan 1x x S x S x dx dx x x ===+⎰⎰.因为级数12111(1)21n n n x n -∞-=-∑-在1x =处收敛, 所以 (1)arctan14S π==,即11111(1)35214n n π--+-⋅⋅⋅+-+⋅⋅⋅=-. 例7 求级数210(21)!n n x n +∞=∑+的和函数.解 ()-∞+∞该级数的收敛区间为,, 令()213501(210)!3!5!n n x x x y x n +∞===+++⋅⋅⋅∑+,2240'()12!2!4!n n x x x y x n ∞===+++⋅⋅⋅∑,所以234()'()12!3!4!x x x x y x y x x e +=+++++⋅⋅⋅=,()()'()x y x y x y x e +=即满足微分方程, 此方程为一阶线性微分方程,其通解为1()2x x y x e ce -=+.例8 求幂级数221[(1)!](2)(1)(2)!n n n x x n ∞=-<∑的和. 解 在 1x < 上对()S x 逐项求导, 可知2211[(1)!]'()2(2)(21)!n n n S x x n ∞-=-=-∑,2221[(1)!]4(2)(22)!n n n x n ∞-=--∑. 由此可得 2(1)''()'()4x S x xS x --=. 在这两端乘以 212(1)x --, 我们有'())'1x x =<,解得()(1)S x x =+<.5 逐项积分法定理2[2]设1()n n u x ∞=∑在[,]a b 上一致收敛于()S x , 并且每一()n u x 都在[,]a b 上连续, 则11()()()b bb x n aaan n u x dx S x dx u x dx ∞∞====∑∑⎰⎰⎰,亦即和号可以与积分号交换. 又在[,]a b 上, 函数项级数1()x n an u t dt ∞=∑⎰也一致收敛于()x aS t dt ⎰.该定理也称为逐项积分定理.例9 求级数234234(1)x x x x x ++++⋅⋅⋅<的和.解 令234()234F x x x x x =++++⋅⋅⋅, 其收敛域为(1,1)-, 在收敛域内逐项积分, 得234234234234123()234111(1)(1)(1)234111()()234ln(1)1x F t dt x x x x x x x x x x x x x x x x x=+++⋅⋅⋅=-+-+-+⋅⋅⋅=++++⋅⋅⋅-++++⋅⋅⋅=+--⎰,其中1x <, 于是21'()[ln(1)],11(1)n n x xF x nx x x x x ∞===+-=<∑--.例10 求下列级数的和()S x(1) 410(2)1()()412n n x S x x n +∞==<+∑; (2) 0()()(1)21nn x S x x n ∞=-=<+∑.解 (1) 在 12x <上对()S x 作逐项积分, 可知 222444000()111121arctan(2)ln ().24122x x xnn n n dtS x tdt t dt t x x x x∞∞=====-+=+<-∑∑⎰⎰⎰(2) 对 01x <<, 令 2x t =, 有2220002220001()(1)(1)2111((1))1arctan .n t nn n n n t t n n n t S t x dtn t dt x dt t t x t t ∞∞==∞==-=-+=-=+=∑∑⎰∑⎰⎰由此知()arctan S x = 对 10x -<<, 令 2x t =-, 有222200001111()ln 21121n t t n n n t dt tS t x dx n t t x t t ∞∞==+-====+--∑∑⎰⎰,由此可得()S x =6 运用特殊级数的和求和法这种方法的基本思想是: 将待求和的级数用一些已知级数来表示, 通过代入已知级数求得待求级数的和. 以下运用例子来说明该方法.例11 求123423434845165632S =-+-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅. 解 原式可以用级数表示如下1111(1)()(1)(2)2nn n k n S n n ++==-⋅∑++.考虑级数111(1)(1)(2)nn n k n x n n ++=-⋅∑++, 其收敛半径为1, 故当12x =时收敛, 设其和函数为()f x , 下面在区间()0,1内求()f x . 由于21(1)(2)21n n n n n =-++++,所以1111112111122()(1)(1)212(1)(1)2112[ln(1)]ln(1)22(1)ln(1)2,n n n n n n n n n n n x x f x n n x x x n n n xx x x x x x x++++∞∞=-++++∞==---∑∑++∞=-+-∑∑++-=+-+++-=++-令12x =, 即得13()5ln 222S f ==-. 例12 (1)求级数111111()()()2346812++++++⋅⋅⋅的和;(2)求级数111()23n n n ∞=+∑的和.解 (1) 由于111111111111()()[()()]2346223211111111[()][()]2422363211111122112311221211(1),232n n n n n n nn n S ----=++++⋅⋅⋅++=++⋅⋅⋅+++⋅⋅⋅--=⋅+⋅--=-+- 所以1215lim[1(1)]2323n n n n S S →∞==-+-=, 故11115()()23463++++⋅⋅⋅=. (2) 因为22111111()()()232323n n n S =++++⋅⋅⋅++22111111()()222333n n =++⋅⋅⋅+++⋅⋅⋅+1111(1)(1)3322111123n n --=+--, 所以13lim 122n →∞=+=, 从而1113()232n n n ∞=+=∑.例13 求下列级数的和: (1)112n n n∞-=∑; (2)12(1)!n n n ∞=+∑+. 解 (1)由于1211,(1)(1)n n nx x x ∞-==<∑-, 令()11111157111317f x -+-+-+⋅⋅⋅+=12x =,得112n n n∞-=∑的和, 因此 111211211()422(1)n n x n n n n x -∞∞-======∑∑-.(2)由于当x -∞<<+∞时, 有 212!!nxx x e x n =+++⋅⋅⋅++⋅⋅⋅, 故令1x =即得11112!!e n =+++⋅⋅⋅++⋅⋅⋅, 于是有11112(1)111(1)!(1)!!(1)!n n n n n n n n n n ∞∞∞∞====+++==+∑∑∑∑+++ (1)(2)23e e e =-+-=-.例14 求下列常数项级数之和:(1) 111113579-+-+-⋅⋅⋅;(2) 111111135791113+--++--⋅⋅⋅;(3) 11111157111317-+-+-+⋅⋅⋅.解 将()4f x π=在[]0,π内展开为正弦级数有()0,1,2,3,n a n ==⋅⋅⋅, 01()2sin 40()n n b nx dx n n πππ⎧⎪==⎨⎪⎩⎰为奇数为偶数,所以()()()11sin sin 3sin 2104321f x x x n x x n ππ==++⋅⋅⋅+-+⋅⋅⋅≤≤-. (1) 当2x π=时, 有1111135794π-+-+-⋅⋅⋅=.(2) 当4x π=时,有1111111357911134+--++-⋅⋅⋅=. (3) 当3x π=时,有11111157111317-+-+-+⋅⋅⋅=.例15 求2221111357++++⋅⋅⋅的和. 解 将函数[],x ππ-在上展成傅里叶级数得[]224cos3cos5(cos ),,235x xx x x ππππ=-+++⋅⋅⋅∈-. 令x π=, 则222211113578π++++⋅⋅⋅=.例16 求和0cos !n nxn ∞=∑.解 令 ixz e =, 则0!nZ n z e n ∞==∑. 因为 ()()cos 000cos sin ,cos sin sin sin !!!n Z x n n n z nxnx i e e x i x n n n ∞∞∞====+=+⎡⎤∑∑∑⎣⎦, 按实部和虚部分别相等的关系, 即得()()cos 0cos cos sin ,,!x n nxe x n ∞==-∞+∞∑.利用四则运算等将所给级数转化为()S x 代数方程再求解, 这种思维方式和求解方法与错位相减法类似, 只不过在错位相减法中两边同乘的是等比级数的公比q , 在这里则需依具体情况而定, 同乘以关于x 的某个代数式再两式相减以得化简.例17 求级数21n n nx ∞=∑的和.解 因为该级数的收敛半径1lim1nn n a R a →∞+==, 又因为当1x =±时,该级数发散,所以级数收敛域为(-1,1).()21n n nx S x ∞==∑设, 则()24623n S x x x x nx =+++⋅⋅⋅++⋅⋅⋅ , (5) ()2468223n x S x x x x nx +=+++⋅⋅⋅++⋅⋅⋅, (6)(9)式减去(10)得()()222468211x x S x x x x x x -=++++⋅⋅⋅=-,故()()()222,1,11x S x x x =∈--.转化为微分方程求解, 即研究它的导数或其与它本身有何特点及相关联系, 看其是否满足某微分方程及定解条件. 找出求和级数所满足的微分方程及定解条件, 再解该方程.参考文献[1] 刘玉琏. 数学分析讲义(下册)[M], 北京: 高等教育出版社, 2003. [2] 陈传璋. 数学分析讲义下册[J], 北京: 高等教育出版社, 2004. [3] 张春平. 无穷级数的求和探讨[J], 沈阳师范大学学报, (3) 2008, 20-21. [4] 郑春雨. 数项级数和的求法例谈[J], 海南广播电视大学学报, (3)2006, 96-97. [5] 蔡炯辉. 胡晓敏, 收敛级数求和的初等方法[J], 玉溪师范学院院报, (6)2006, 95-98. [6] 华东师范大学数学系, 数学分析下册(第三版)[M], 北京:高等教育出版社, 2003. [7] 汪晓勤, 韩祥临. 中学数学中的数学史[M], 北京: 科学出版社, 2002. [8] 同济大学数学教研室, 高等数学(下册), 北京: 高等教育出版社, 1996. [9] 宣立新主编. 高等教育(上、下册), 北京: 高等教育出版社, 2000.[10] 高建福. 无穷级数与连分数[M], 合肥: 中国科学技术大学出版社, 2007, 43. [11] 朱文辉, 张亭. p 级数的求和[J], 大学数学, (3) 2005, 114-116 [12] R.R. Goldberg. Fourier Transforms[M]. cambridge, 1961.[13] Peppard, Kim. “College Algebra Tutorial on Geometric Sequences and series ”. New York: Halsledpress, 1981.。
浅谈无穷级数求和的方法
浅谈无穷级数求和的方法作者:杨瑞云杨丽敏来源:《决策与信息·下旬刊》2013年第06期摘要无穷级数包括数项级数和函数项级数,它是表示函数性质的一个重要工具,也是对函数进行数值计算的一个重要手段。
我们较常见到的无穷级数求和多为数项级数和幂级数的求和,无穷级数求和问题是无穷级数中的难点,因此这里给出的几种方法主要是针对上述两种级数,并通过例题讲述这些求和方法的应用。
关键词微分法积分法复数法中图分类号:O173 文献标识码:A一、定义法这是以无穷级数前n项求和的概念为基础,以拆项,递推等为方法,进行的求和运算。
这种方法适用于有特殊规律的无穷级数。
二、逐项微分法由于幂函数在微分时可以产生一个常系数,这便为我们处理某些幂函数求和问题提供方法.当然从实质上讲,这是求和运算与求导(微分)运算交换次序问题,因而应当心幂级数的收敛区间(对后面的逐项积分法亦如此).有时候,所求级数的通项为另一些函数的导数,而以这些函数为通项的级数易于求和,则可将这些函数逐项求导。
三、逐项积分法同逐项微分法一样,逐项积分法也是级数求和的一种重要方法,这里当然也是运用函数积分时产生的常系数,而使逐项积分后的新级数便于求和。
四、复数法(三角级数求和法)级数求和的方法还有很多,本文简单介绍几种常用的方法,其它方法更待研究和探讨。
(作者单位:河南水利与环境职业学院)参考文献:[1]蓝以中.高等代数简明教程(上册)[M].北京:北京大学出版社,2002.[2]丘维声.高等代数学习指导书(上册)[M].北京:清华大学出版社,2005[3]周翠莲,于兰芳.无穷级数求和的方法[J].承德民族师专学报:自然科学版,1996.。
无穷级数求和公式大全
无穷级数求和公式大全摘要:1.引言:介绍无穷级数求和公式的重要性和应用领域2.无穷级数的分类:根据项数和项之间的关系分类3.常见无穷级数求和公式:举例介绍常见的无穷级数求和公式4.求和公式的推导方法:介绍几种常用的推导方法5.应用实例:通过具体实例演示无穷级数求和公式的应用6.结论:总结无穷级数求和公式的特点和优势正文:一、引言在数学领域,无穷级数求和公式是一种重要的工具,它在数列、概率、微积分等多个领域都有着广泛的应用。
通过掌握无穷级数求和公式,我们可以更加方便地处理和分析各种问题。
二、无穷级数的分类无穷级数可以根据项数和项之间的关系进行分类,常见的分类有以下几种:1.项数有限的级数:例如等差数列求和、等比数列求和等。
2.项数无限的级数:根据项之间的关系,又可以分为等差数列、等比数列、斐波那契数列等。
三、常见无穷级数求和公式在数学中,有许多常见的无穷级数求和公式,例如:1.等差数列求和公式:Sn = n(a1 + an)/2,其中Sn 表示前n 项和,a1 表示第一项,an 表示第n 项。
2.等比数列求和公式:Sn = a1(1 - q^n)/(1 - q),其中Sn 表示前n 项和,a1 表示第一项,q 表示公比。
3.斐波那契数列求和公式:Sn = (1/√5)((1 + √5)/2)^n - (1/√5)(1 -√5)^n。
四、求和公式的推导方法求和公式的推导方法有很多,常见的有以下几种:1.数列求和法:通过对数列进行求和,推导出无穷级数的求和公式。
2.裂项相消法:将级数中的项进行裂项处理,然后通过相消求和的方法推导出求和公式。
3.积分法:通过对级数进行积分,求出原级数的求和公式。
五、应用实例假设有一个等比数列:1, 2, 4, 8, 16,...,其公比为2。
我们可以通过等比数列求和公式求出前n 项和:Sn = a1(1 - q^n)/(1 - q) = 1(1 - 2^n)/(1 - 2) = 2^n - 1。
无穷级数求和7个公式
无穷级数求和7个公式
无穷级数求和7个公式:1/(1+K),1/(1+K),
[1/(1+K)][1/(1+K)^n-1]/[1/(1+K)-1],
[1/(1+K)][1/(1+K)^n-1]/[-K/(1+K],(1/K)*[1-1/(1+K)^n],
1/(1+K)^n。
无穷级数是研究有次序的可数或者无穷个数函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。
只有无穷级数收敛时有一个和,发散的无穷级数没有和。
无穷级数用解析的形式来逼近函数,一般就是利用比较简单的函数形式,逼近比较复杂的函数,最为简单的逼近途径就是通过加法,即通过加法运算来决定逼近的程度,或者说控制逼近的过程,这就是无穷级数的思想出发点。
无穷级数求和的若干方法
无穷级数求和的若干方法作者:赵萍来源:《科技创新导报》2016年第25期摘要:无穷级数求和的方法有很多,也很有技巧性,是高等数学中的一个重要内容。
该文主要通过例题的形式介绍关于无穷级数求和的主要方法和技巧,包括定义法、裂项相消求和法、逐项微分或积分求和法、转化为函数项级数求和法等,目的是加深对这部分知识的理解和掌握。
关键词:无穷级数求和级数收敛中图分类号:G633 文献标识码:A 文章编号:1674-098X(2016)09(a)-0179-02无穷级数是高等数学中的一个重要内容,其中关于无穷级数的求和问题既是重点又是难点。
下面该文通过例题的形式,概括笔者在多年的教学实践中的经验和总结,系统全面的介绍无穷级数求和的方法和技巧。
我们首先需要注意的是对无穷级数的求和,第一要考虑它的敛散性质,常数项的级数在收敛的过程中才能够求和,函数项的级数在它的收敛范围内也是可以进行求和的。
关于无穷级数求和的若干方法如下。
(1)定义法。
从级数的相关定义我们可以看到,级数的实质其实就是无穷多项进行累加产生的结果,不可以直接依据一般意义下的有限项的加法法则将这些逐项的相加,一般的教材写出的计算方法都是先将级数的前n项的和计算出来,然后再使用极限的办法解决多项积累的这种问题。
这种方法与我们中学学过的数列知识是有着很密切的联系的,基本上就是使用中学学过的求和法,之后再进行求和的计算,方法不但简单而且容易把解题的相关技巧进行掌握。
(3)逐项微分或积分求和法。
值得注意的是,在这种方法的应用过程中积分与微分的先后顺序不是绝对的,要因题而异。
(4)转化为函数项级数求和法。
这种方法主要针对数项级数,有的数项级数可以借助于函数项级数求和。
综上所述,级数求和的方法涉及了很多的数学知识,属于综合性的数学问题。
该文仅以例题的形式介绍了最常用的几种方法,希望能加深学生对这部分知识的理解,并提高计算能力。
也希望大家在今后的学习中积极探索,总结好的新的方法,让级数在数学和其他的领域里面得到更好的使用,实现级数的价值。
无穷级数求和的几种常见方法
1 ! 2n- 2n
n=1 x
∞
x2n- 2, 其收敛域为 (- ( 2 , ( 2 )
' ∞ '
Hale Waihona Puke S(x)=x・ sin x & = 1 (sin x+x cos x) % 2 2 +1 ! 2n+n!
2 n=0 n ∞
例 2 : 求级数
xn 的和函数 :
( 解题提示 : 系数为若干项代数和的幂级数 , 求和函数时应先将级 数写成各个幂级 数 的 代 数 和 , 然 后 分 别 求 出 它 们 的 和 函 数 , 最 后 对 和 函数求代数和 , 即得所求级数的和函数 ) 。 解 : 易求出其收敛域为 (- ∞, +∞)。 令 S( x) =
科技信息
○ 职校论坛 ○
SCIENCE & TECHNOLOGY INFORMATION
2008 年
第 19 期
无穷级数求和的几种常见方法
吴 媚 ( 南京化工职业技术学院 江苏 南京
201148 )
摘 要】 本文将常见的几种无穷级数的求和方法加以归纳 , 并提出了详细的解题步骤 , 这样在解题时可做到有的放矢 , 并根据不同的题型 【 选择不同的方法 , 降低了解题的困难。同时为了便于理解 , 选取了几个具有典型的例子 , 更好的掌握求和的方法。 关键词】 幂级数 ; 数项级数 ; 求和 【
n+1 !(- 1) (2n+1)!
n n=0
∞
求得和函数 S(x), 因此
x2n+1 的和函数。
例 4 : 求幂级数
'
!a =lim S(x)
n n=0 x→1-
解 : 可求出收敛域为 (- ∞, +∞), 令 S( x) =
1 ! 2n- 2n
无穷级数求和的方法与技巧
无穷级数求和的方法与技巧
无穷级数是一种无限项的数列,可以表示为
$\sum_{n=1}^{\infty} a_n$。
下面是一些求和的方法和技巧:
一、比较法:如果有两个无穷级数的前几项之和相等,则这两个无穷级数的和也相等。
二、分治法:如果一个无穷级数可以表示为两个无穷级数的和,则可以分别求出两个无穷级数的和,再相加。
三、前缀和法:通过计算无穷级数的前几项之和,可以得到无穷级数的渐近值。
四、解析法:通过解析无穷级数的生成函数,可以直接得到无穷级数的和。
五、数值计算法:通过计算机等工具,可以通过数值计算的方法求出无穷级数的和。
级数求和方法总结
级数求和方法总结级数求和问题是无穷级数中的重点也是难点,同时具有较强的技巧性。
以下是的级数求和方法总结,欢送阅读。
这是以无穷级数前n项求和的概念为根底,以拆项,递推等为方法,进行的求和运算。
这种方法适用于有特殊规律的无穷级数。
由于幂函数在微分时可以产生一个常系数,这便为我们处理某些幂函数求和问题提供方法.当然从实质上讲,这是求和运算与求导(微分)运算交换次序问题,因而应留神幂级数的收敛区间(对后面的逐项积分法亦如此).有时候,所求级数的通项为另一些函数的导数,而以这些函数为通项的级数易于求和,那么可将这些函数逐项求导。
同逐项微分法一样,逐项积分法也是级数求和的一种重要方法,这里当然也是运用函数积分时产生的常系数,而使逐项积分后的新级数便于求和。
假设一个数列的通项公式是由假设干个等差数列或等比数列或可求和的数列构成,那么求这个数列的前n项和Sn时可以用分组求和法求解。
一般步骤是:拆裂通项――重新分组――求和合并。
例1求Sn=1×4+2×7+3×10+…+n(3n+1)的和解由和式可知,式中第n项为an=n(3n+1)=3n2+n∴Sn=1×4+2×7+3×10+…+n(3n+1)=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n)=3(12+22+32+…+n2)+(1+2+3+…+n)=3×16n(n+1)(2n+1)+n(n+1)2=n(n+1)2求一个数列的前n项和Sn,如果需要对n进行奇偶性讨论或将奇数项、偶数项分组求和再求解,这种方法称为奇偶分析法。
例2:求和:Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)分析:观察数列的通项公式an=(-1)n(2n-1)可知Sn与数列项数n的奇偶性有关,故利用奇偶分析法及分组求和法求解,也可以在奇偶分析法的根底上利用并项求和法求的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无穷级数是数学分析中的一个重要容,它是以极限理论为基础,用以表示函数,研究函数的性质以及进行数值计算的一种重要工具.然而数学分析中注重函数的敛散问题,却对无穷级数求和问题的方法介绍的比较少,所以求和问题是学生学习级数过程中较难掌握的部分.无穷级数求和没有一个固定的方法可循.本文结合具体例子,根据不同的无穷级数的不同特点,介绍几种常用的求无穷级数的和的方法和技巧.
, ,
两边从0积分到 得
,
上式右边是原级数.
故级数和
, .
例4 求幂级数 的和函数 .
解:令 ,幂函数 的收敛半径
故原函数的收敛半径 ,从而收敛区间为 ,而知级数
,
记 ,
且
于是 ,对上式,从0到 作积分得 ,
=
因此
.
4逐项求极限
如果函数在端点处无定义,那么可用求极限的方法讨论在端点处的和函数.
例5 求幂级数 的和函数.
摘要 ………………………………………………………………………………2
1无穷级数求和问题的几种方法 …………………………………………………2
1.1利用级数和的定义求和 …………………………………………………2
1.2利用函数的幂级数展开式求和 ………………………………………3
1.3利用逐项求积和逐项求导定理求和 ……………………………………4
解:(1)容易验证该幂级数的收敛域为 .
(2)再求幂级数在其收敛区间 上的和函数,下面用逐项求导的方法求解.设
,
则有
再设
,
又有
于行积分,又得
(3)最后讨论幂级数在其收敛域上的和函数.因为函数
在 处左连续,而幂级数在 处收敛,所以等式
在 处也成立.但因 在 处无定义,故要改用逐项求极限来确定该幂级数在 处的值,即由
Keywords: Item series; Power series; Summation of Series
Abstract:The infinite series is an important part of mathematical analysis, and infinite series summation problem is a difficult part to master for students. However, infinite series summation has not a fixed method to follow. Combined with a concrete example, according to the different characteristics of the infinite series, we introduce several common methods and skills for infinite series in this paper .
1利用级数和的定义求和
定义 若级数 的部分和数列 收敛于有限值S,即 ,则称级数 收敛,记为 ,此时S称为级数的和数;若部分和数数列 发散,则称级数 发散.
例1求级数 , 的和 .
解: (1)
(2)
(1)-(2)得:
即级数和
.
2利用函数的幂级数展开式求和
利用函数的幂级数展开式可以解决某些级数的求和问题.下面是几个重要的幂级数展开式:例
Several Methods of Problem of Infinite Series Summation
LiuYanhong
Mathematical sciences college,mathematics and applied mathematics
Advisor Liu Guanting
当 ,其中 形成公差为 的等差数列时, ( 为待定因子).
于常数项级数 ,如果能将一般项写某数列 的相邻两项之差:
且极限 存在,
则
,
所以
.
例10 求级数 之和.
解:一般项
=
令
则
,
.
例11 求 的和.
解:
则
.
总之,穷级数求和没有一个固定的方法可循,其实无穷级数求和方法很多,我们要善于发现和总结.这里只介绍了一些常用的方法和技巧,希望对大家计算求和问题有一定的帮助.
1.4逐项求极限 ……………………………………………………………5
1.5利用 级数求和 …………………………………………………7
1.6构建微分方程 ……………………………………………………………9
1.7拆项法 …………………………………………………………………9
1.8将一般项写成某数列相邻项之差 ………………………………………10
等等.
例2 求 的和.
解 :
=
注意到
得
.
3利用逐项求积和逐项求导定理求和
定理 设幂级数 的收敛半径为 ,其和函数为 ,则在 幂级数可以逐项积分和逐项微分.即:对 任意一点 ,有:
并且逐项积分和逐项求导后的级数(显然是幂级数),其收敛半径仍为 .
例3 计算无穷级数 之和 .
解:对于级数 .
两边从0积分到 得
参考文献:
传璋.数学分析 .:高等教育.1983.
裘兆泰.王承国.数学分析学习指导 .:科学.2004.
素峰.关于无穷级数求和问题的探讨.学院学报,2008,23(4):100-101.
吴良森.毛羽辉.数学分析学习指导书 .:高等教育出版.2004.
玉琏.奎元.数学分析讲义学习辅导书 .:高等教育.1987.
2总结 ………………………………………………………………………………12
3参考文献 …………………………………………………………………………12
无穷级数求和问题的几种方法
摘要:无穷级数是数学分析中的一个重要容,同时无穷级数求和问题,也是学生学习级数过程中较难掌握的部分.然而,无穷级数求和没有一个固定的方法可循.本文结合具体例子,根据无穷级数的不同特点,介绍几种常用的求无穷级数的和的方法和技巧.
,
其通解为
由 得
因此得
从而
.
7拆项法
无穷级数求和时,有时根据一般项的特点,将一般项进行拆分来简化运算过程.
例9 求幂级数 的和函数.
解:先求幂级数的收敛域.因为 ,且级数 与 都发散,所以幂级数的收敛域为 .
由于
因此
,
因为幂级数的收敛域为,所以所求和函数为
, .
8将一般项写成某数列相邻项之差
用这一方法求无穷级数的和,首先需要解决:已知 ,如何求 ?
得到
所以原幂级数的和函数为
.
5利用 级数求和
求某些数值级数的和可选择某个特殊的函数在 或 上展成傅里叶级数,然后再去适当的 值或逐项积分即可.
例6 求 的和.
解: 可以看作是余弦函数 在 时的值,因此可以考虑适当选取一个偶函数 ,满足
对于上式左端利用分部积分,得到
=
注意到
有
取
,
则
同时
,
这样 在 上的 级数为
令 ,得
例7 证明: .
证明:将函数 展成傅里叶级数
,
是
由柏塞瓦尔等式(函数 连续)
,
有
即
.
6构建微分方程
如果某些级数的一般项的分母类似于阶乘的级数时,可以利用经过逐项积分或逐项积分后得到的级数之和函数与原级数的和函数构成微分方程,然后解微分方程来求其和.
例8 求级数 之和.
解:设幂级数
则
于是所得一阶微分方程: