材料力学课件:应力状态分析
合集下载
材料力学8-3-平面应力状态分析-课件

02
平面应力状态分析的基本概念
应力状态
1 2
定义
应力状态是指物体在某一点处的应力分布情况。
表示方法
通常采用主应力、应力张量和应力矩阵来表示。
3
分类
根据应力分量的变化规律,可分为平面应力状态、 空间应力状态和轴对称应力状态。
平面应力状态
定义
平面应力状态是指物体在某一平面内 的应力分布情况,其应力分量只有三 个,即σx、σy和τxy。
材料力学8-3-平面应力状 态分析-课件
• 引言 • 平面应力状态分析的基本概念 • 平面应力状态的分类与表示 • 平面应力状态的平衡方程与几何方程 • 平面应力状态分析的实例 • 总结与展望
01
引言
平面应力状态分析的定义
平面应力状态分析是材料力学中一个重要的概念,它主要研究物体在受力时,其内 部应力的分布情况。
特点
在平面应力状态下,物体内的剪切力分 量τxy与正应力分量σx、σy成比例关系, 即剪切力分量与正应力分量成正比。
应力分量与主应力
定义
主应力与材料性质的关系
应力分量是指物体在某一点处各个方 向的应力值,而主应力则是应力分量 中的最大和最小值。
主应力的大小反映了材料在该点所受 的应力和应变状态,与材料的弹性模 量、泊松比等性质有关。
应力集中系数
为了描述应力集中的程度,引入了应力集中系数,该系数反映了孔 边应力和平均应力的比值。
弯曲梁的平面应力状态分析
弯曲梁
当梁受到垂直于轴线的力矩作用时,梁发生 弯曲变形。
平面应力状态
在弯曲梁的横截面上,剪应力和正应力的分布情况 。
弯矩和剪力的关系
通过分析剪应力和正应力的分布和大小,可 以确定梁的弯矩和剪力之间的关系,从而进 行受力分析和设计。
高等材料力学课件第二章应力状态

§2.3 平衡微分方程
平衡
物体整体平衡,内部任 何部分也是平衡的。 对于弹性体,必须讨论 一点的平衡。
微分平行六面体单元
§2.5 平衡方程2
• x截面,应力分量 • σ x Շxy Շxz • x+dx截面,应力分量
x x xd,xx y x xy d,xx z x xd z ,x
数必须等于3个。
§2.6 主应力与应力主方向
转轴公式描述了应力随坐标转动的变化规律
结构强度分析需要简化和有效的参数
——最大正应力、最大切应力以及方位 主应力和主平面——应力状态分析重要参数 应力不变量——进一步探讨应力状态
§2.6 主应力2
主应力和主平面
切应力为零的微分面称为 主微分平面,简称主平面。 主平面的法线称为应力主 轴或者称为应力主方向。 主平面上的正应力称为主 应力。
zx zy z
代数主子式之和
应力张量元素 构成的行列式
•§2.6应主应力力6 状态特征方程
• ——确定弹性体内部任意一点主应力和应力 主轴方向。
• 主应力和应力主轴方向取决于载荷、形状和 边界条件等,与坐标轴的选取无关。
• 因此,特征方程的根是确定的,即I1、I2、I3 的值是不随坐标轴的改变而变化的。
§2.5 边界条件
弹性体的表面,应力分量必须与表面力满足面 力边界条件,维持弹性体表面的平衡。
边界面力已知——面力边界S
面力边界条件——
确定的是弹性体表面 外力与弹性体内部趋 近于边界的应力分量 的关系。
§2.5 边界条件2
面力边界条件
Fsj ijni
§2.5 边界条件3
面力边界条件描述弹性体表面的平衡, 平衡微分方程描述弹性体内部的平衡。 这种平衡只是静力学可能的平衡。 真正处于平衡状态的弹性体,还必须满足变 形连续条件。
高等材料力学课件第二章应力状态

应变与应力之间的关系
应变和应力之间存在着密切的关系。应变是材料变形程度的度量,而应力是 材料受力的表现。了解应变与应力之间的关系可以帮助我们更好地分析和控 制材料的行为。
应力的平面转动
应力的平面转动是指在不同的坐标系下,应力分量的变化。通过对应力的平 面转动进行研究,我们可以更好地理解材料在不同坐标系下的受力情况应力。掌握主应力和主应力方 向的概念可以帮助我们识别和分析材料的受力情况。
应力状态的分类
应力状态可以分为三种基本形式:平面应力、轴对称应力和空间应力。通过分类应力状态,我们可以更好地理解材 料在不同条件下的受力行为。
平面应力和轴对称应力
平面应力是指只存在于某一平面上的应力,而轴对称应力是指具有旋转对称 性的应力。通过研究平面应力和轴对称应力,我们可以更好地分析材料在不 同维度上的受力情况。
平面应力下的摩尔-库仑方程
摩尔-库仑方程是描述平面应力下材料力学行为的重要方程。通过掌握摩尔-库仑方程,我们可以更好地分析和预测 材料在平面应力下的受力行为。
高等材料力学课件第二章 应力状态
在本章中,我们将深入探讨应力的概念和定义,重点介绍主应力和主应力方 向的概念,以及应力状态的分类以及平面应力和轴对称应力的特点。
应力的定义和概念
了解应力是理解材料行为的关键。应力是材料内部的力,是单位面积上的力。通过深入研究应力的定义和概念,我 们可以更好地理解材料的力学行为。
材料力学:第八章-应力应变状态分析

Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
D
C
sO
E
s 2 , 0
s 1 , 0
D
s
结论:所画圆确为所求应力圆
应力圆的绘制与应用4
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
证: 1. 据纯剪切斜截面应变公式求e45。
2. 据广义胡克定律求 e45。
纯剪切时主应力在45度方向,
3. 比较
例 8-3 边长 a =10 mm 正方形钢块,置槽形刚体内, F = 8 kN,
m 0.3,求钢块的主应力
解:
因二者均为压应力, 故
§8 电测应力与应变花
应力分析电测方法 应变花
已知 sa , ta , sa+90 , ta +90 ,画应力圆
应力圆绘制 先确定D, E两点位置, 过此二点画圆即为应力圆
ta+90 sa+90
t
sa ,ta
D
t
sa ,ta
D
sa
ta
O
C
sO
E
sa+90 ,ta+90
C
s
E
sa+90 ,ta+90
应力圆的绘制方法(3): 由主应力画应力圆
适用范围: 各向同性材料,线弹性范围内
主应力与主应变的关系
主应变与主应力的方位重合 最大、最小主应变分别发生在最大、最小主应力方位
最大拉应变发生在最大拉应力方位 如果 s1 0,且因 m < 1/2,则
t
C OE
s 2 , 0
s 1 , 0
D
C
sO
E
s 2 , 0
s 1 , 0
D
s
结论:所画圆确为所求应力圆
应力圆的绘制与应用4
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
证: 1. 据纯剪切斜截面应变公式求e45。
2. 据广义胡克定律求 e45。
纯剪切时主应力在45度方向,
3. 比较
例 8-3 边长 a =10 mm 正方形钢块,置槽形刚体内, F = 8 kN,
m 0.3,求钢块的主应力
解:
因二者均为压应力, 故
§8 电测应力与应变花
应力分析电测方法 应变花
已知 sa , ta , sa+90 , ta +90 ,画应力圆
应力圆绘制 先确定D, E两点位置, 过此二点画圆即为应力圆
ta+90 sa+90
t
sa ,ta
D
t
sa ,ta
D
sa
ta
O
C
sO
E
sa+90 ,ta+90
C
s
E
sa+90 ,ta+90
应力圆的绘制方法(3): 由主应力画应力圆
适用范围: 各向同性材料,线弹性范围内
主应力与主应变的关系
主应变与主应力的方位重合 最大、最小主应变分别发生在最大、最小主应力方位
最大拉应变发生在最大拉应力方位 如果 s1 0,且因 m < 1/2,则
《材料力学》课件7-3空间应力状态的概念

主应力
在空间应力状态下,三个最大的主应力分别为σ1、σ2、σ3,它们分别代表了三 个方向上的最大、中间和最小主应力。
主方向
主应力方向即为主方向,表示材料在各个方向上的最大和最小应力值。
应力张量与坐标系
应力张量
是一个二阶对称张量,用于描述空间应力状态。它可以表示为三个主应力和三个剪切应力的组合。
坐标系
空间应力状态的历史与发展
历史背景
空间应力状态的概念起源于19世纪,随着材料科学和工程技 术的不断发展,人们对空间应力状态的认识逐渐深入。
发展趋势
随着数值计算方法和实验技术的进步,对空间应力状态的研 究将更加精确和深入,为解决复杂的工程问题提供更多有效 的方法和手段。
02
空间应力状态的描述
主应力与主方向
选择合适的材料和形状 ,进行切割、研磨和抛 光,确保试样表面光滑 。
通过拉伸、压缩或弯曲 等试验方法对试样施加 应力,使其产生变形。
使用应力分析仪、光学 显微镜、电子显微镜和X 射线衍射仪等设备,采 集试样表面的应力和应 变数据、形貌特征、微 观结构和成分信息等。
对采集的数据进行整理 、分析和处理,绘制应 力应变曲线、形貌图和 微观结构照片等。
感谢观看
在描述空间应力状态时,需要选择一个合适的坐标系,以便于计算和表示各个方向的应力和应变分量 。
应力不变量与偏应力分量
应力不变量
是描述空间应力状态的三个标量,它 们是主应力的函数,不随坐标系的旋 转而变化。
偏应力分量
在空间应力状态下,除了主应力之外 ,还有偏应力分量,它们描述了各个 方向上的剪切应力和扭转应力。
一个矩形截面的梁,其长 度和宽度方向受到正应力 作用,而高度方向不受力 。
特点
在空间应力状态下,三个最大的主应力分别为σ1、σ2、σ3,它们分别代表了三 个方向上的最大、中间和最小主应力。
主方向
主应力方向即为主方向,表示材料在各个方向上的最大和最小应力值。
应力张量与坐标系
应力张量
是一个二阶对称张量,用于描述空间应力状态。它可以表示为三个主应力和三个剪切应力的组合。
坐标系
空间应力状态的历史与发展
历史背景
空间应力状态的概念起源于19世纪,随着材料科学和工程技 术的不断发展,人们对空间应力状态的认识逐渐深入。
发展趋势
随着数值计算方法和实验技术的进步,对空间应力状态的研 究将更加精确和深入,为解决复杂的工程问题提供更多有效 的方法和手段。
02
空间应力状态的描述
主应力与主方向
选择合适的材料和形状 ,进行切割、研磨和抛 光,确保试样表面光滑 。
通过拉伸、压缩或弯曲 等试验方法对试样施加 应力,使其产生变形。
使用应力分析仪、光学 显微镜、电子显微镜和X 射线衍射仪等设备,采 集试样表面的应力和应 变数据、形貌特征、微 观结构和成分信息等。
对采集的数据进行整理 、分析和处理,绘制应 力应变曲线、形貌图和 微观结构照片等。
感谢观看
在描述空间应力状态时,需要选择一个合适的坐标系,以便于计算和表示各个方向的应力和应变分量 。
应力不变量与偏应力分量
应力不变量
是描述空间应力状态的三个标量,它 们是主应力的函数,不随坐标系的旋 转而变化。
偏应力分量
在空间应力状态下,除了主应力之外 ,还有偏应力分量,它们描述了各个 方向上的剪切应力和扭转应力。
一个矩形截面的梁,其长 度和宽度方向受到正应力 作用,而高度方向不受力 。
特点
材料力学 第八章:应力状态分析

2 )2
材料力学
整理可得:
(
x
2
y
)2
2
(
x
2
y
)2
x2
(3)
(3)式为以 、为变量的圆方程。
圆心坐标
(
x
y
,0)
横坐标为平均应力
2
半径
(
x
2
y
)2
2 x
为最大剪应力
材料力学
x x
y
x y
2
(
x
2
y
)2
2 x
材料力学
方法一:
27.5
x
2
y
x
y
2
cos(2 27.5) x
sin(2 27.5)
70 70 cos55 50sin 55 22
96MPa
96MPa
27.5
70MPa
62.5 50MPa 26MPa
117.5
x
上的应力对应-坐标系中的Dy点。Dy
点的横坐标
OF
、纵坐标
y
FDy
y
;连接
Dx、Dy与轴的交点C为圆心 , CDx 或
CDy 为半径画一圆,这个圆是该单元
体所对应的应力圆。
材料力学
n
y
x
y
x
x
y
F o
Dy
(y,y)
Dx(x,x) CK
材料力学
证明:
DxCK DyCF (对顶角) Dy FC DxKC (直角)
材料力学-应力状态分析

+
σ x σ y
2
cos 2α τ x sin 2α
sin 2α + τ x cos 2α
注意: 的正负号, 注意:1)σx 、σy 、τx 和 α的正负号, 2) 公式中的切应力是τx ,而非τy, 而非 的正负号。 3) 计算出的σα和τα 的正负号。
τα τ α>0
τα τ α<0
图示圆轴中, 已知圆轴直径d=100mm, 轴向拉 例 : 图示圆轴中 , 已知圆轴直径 , 力 F=500kN,外力矩Me=7kNm。求 C点α = 30°截 , 外力矩 。 点 ° 面上的应力。 面上的应力。 y
σy
τ
D
x
τx τy
σx
o A2
C
A1
σ
D
y
σ1 =
σ x +σ y
2
σ x +σ y + 2
2 +τ x
2
2
σ2 =
σ x +σ y
2
σ x +σ y 2 +τ x 2
σy
τ
D
x
τx τy
σx
o A2
2α0
C
A1
σ
D
y
2τ x 2α 0 = arctan σ x σ y
σ x σ y R= 2
+τ x2
2
σ x +σ y σ α 2
σy
σ x σ y 2 2 + τα = +τ x 2 τ
2 2
D
x
τx τy
σx
o
C D
y
σ
50MPa
材料力学:第九章 应力状态分析

Me
τx
C
F
Me
d
C
(a)
·
σx
(b)
C
T
F
解:C点所在横截面上的正应力和切应力的分布规律如图 所示, 点所在横截面上的正应力和切应力的分布规律如图b所示 点所在横截面上的正应力和切应力的分布规律如图 所示, 其值为
FN 500 × 103 N σx = = = 63.7 × 106 Pa=63.7MPa π 2 A 0.1m ) ( 4
经整理后得到 )、(2) )、( (1) 由(1)、( )式,可以求出单 ) 元体各个截面上的应力。( 。(即 点 元体各个截面上的应力。(即a点 (2) 处各个方向上的应力) ) 处各个方向上的应力)
∑F = 0
t
τ =τ′
σ α = −τ sin 2α
τ α = τ cos 2α
定义:构件内一点处各个方向上的应力集合, 定义:构件内一点处各个方向上的应力集合,称为该点处的 应力状态。 应力状态。
F F
横截面上只有正应力,且 横截面上只有正应力, 均匀分布 计算公式: 计算公式:
m
σ
F
FN
FN σ= A
等直圆杆扭转时横截面上的应力: 等直圆杆扭转时横截面上的应力:
Me m Me
m
横截面上只有切应力,呈 横截面上只有切应力, 线性分布
T
o
τρ
τmax
T⋅ρ 计算公式: 计算公式: τρ = Ip
R
τ
T 16 M e τ= = WP πd3
为了研究a点处各个方向的应力,围绕a点取一个各边长均为无 为了研究 点处各个方向的应力,围绕 点取一个各边长均为无 点处各个方向的应力 限小的六面体(称为单元体)。 限小的六面体(称为单元体)。 径向截面
τx
C
F
Me
d
C
(a)
·
σx
(b)
C
T
F
解:C点所在横截面上的正应力和切应力的分布规律如图 所示, 点所在横截面上的正应力和切应力的分布规律如图b所示 点所在横截面上的正应力和切应力的分布规律如图 所示, 其值为
FN 500 × 103 N σx = = = 63.7 × 106 Pa=63.7MPa π 2 A 0.1m ) ( 4
经整理后得到 )、(2) )、( (1) 由(1)、( )式,可以求出单 ) 元体各个截面上的应力。( 。(即 点 元体各个截面上的应力。(即a点 (2) 处各个方向上的应力) ) 处各个方向上的应力)
∑F = 0
t
τ =τ′
σ α = −τ sin 2α
τ α = τ cos 2α
定义:构件内一点处各个方向上的应力集合, 定义:构件内一点处各个方向上的应力集合,称为该点处的 应力状态。 应力状态。
F F
横截面上只有正应力,且 横截面上只有正应力, 均匀分布 计算公式: 计算公式:
m
σ
F
FN
FN σ= A
等直圆杆扭转时横截面上的应力: 等直圆杆扭转时横截面上的应力:
Me m Me
m
横截面上只有切应力,呈 横截面上只有切应力, 线性分布
T
o
τρ
τmax
T⋅ρ 计算公式: 计算公式: τρ = Ip
R
τ
T 16 M e τ= = WP πd3
为了研究a点处各个方向的应力,围绕a点取一个各边长均为无 为了研究 点处各个方向的应力,围绕 点取一个各边长均为无 点处各个方向的应力 限小的六面体(称为单元体)。 限小的六面体(称为单元体)。 径向截面
材料力学课件第7章 应力状态分析

α+
2
(2)主应力值计算 ) 方法一: 方法一: σ x +σ y σ x −σ y + cos 2α 0 − τ xy sin 2α 0 σ α =
2 2 0 σ x +σ y σ x −σ y π π σ = + cos 2 α 0 + − τ xy sin 2 α 0 + α0 + π 2 2 2 2 2
2τ xy
σ x −σ y
2τ xy 1 可取: 可取: α 0 = arctan − σ −σ 2 x y
1 2τ xy , arctan − σ −σ x y 2
π + 2来自3、主应力: 、主应力: (1)性质: )性质: ①主应力为各截面上正应力的极值。 主应力为各截面上正应力的极值。
∗ FS Sz τ= bIz
五、主平面、主应力 主平面、 1、主平面 、 •τ= 0的截面 的截面; 的截面 •过一点有三个相 过一点有三个相 互垂直的主平面. 互垂直的主平面 2、主应力 、 •主平面上的正应力 主平面上的正应力; 主平面上的正应力 •表示符号 1 、σ2、σ3( σ1 ≥σ2≥σ3 ) 。 表示符号σ 表示符号 应力状态分类: 六、应力状态分类: 1、单向应力状态: 只有一个主应力不为零。 、单向应力状态: 只有一个主应力不为零。 •可用平面图形表示应力状态。 可用平面图形表示应力状态。 可用平面图形表示应力状态 2、二向(平面)应力状态:两个主应力不为零。 、二向(平面)应力状态:两个主应力不为零。 •可用平面图形表示应力状态。 可用平面图形表示应力状态。 可用平面图形表示应力状态 3、三向应力状态 :三个主应力都不为零。 三个主应力都不为零。 、 4、简单应力状态:单向应力状态。 、简单应力状态:单向应力状态。 5、复杂应力状态:二向和三向应力状态。 、复杂应力状态:二向和三向应力状态。
2
(2)主应力值计算 ) 方法一: 方法一: σ x +σ y σ x −σ y + cos 2α 0 − τ xy sin 2α 0 σ α =
2 2 0 σ x +σ y σ x −σ y π π σ = + cos 2 α 0 + − τ xy sin 2 α 0 + α0 + π 2 2 2 2 2
2τ xy
σ x −σ y
2τ xy 1 可取: 可取: α 0 = arctan − σ −σ 2 x y
1 2τ xy , arctan − σ −σ x y 2
π + 2来自3、主应力: 、主应力: (1)性质: )性质: ①主应力为各截面上正应力的极值。 主应力为各截面上正应力的极值。
∗ FS Sz τ= bIz
五、主平面、主应力 主平面、 1、主平面 、 •τ= 0的截面 的截面; 的截面 •过一点有三个相 过一点有三个相 互垂直的主平面. 互垂直的主平面 2、主应力 、 •主平面上的正应力 主平面上的正应力; 主平面上的正应力 •表示符号 1 、σ2、σ3( σ1 ≥σ2≥σ3 ) 。 表示符号σ 表示符号 应力状态分类: 六、应力状态分类: 1、单向应力状态: 只有一个主应力不为零。 、单向应力状态: 只有一个主应力不为零。 •可用平面图形表示应力状态。 可用平面图形表示应力状态。 可用平面图形表示应力状态 2、二向(平面)应力状态:两个主应力不为零。 、二向(平面)应力状态:两个主应力不为零。 •可用平面图形表示应力状态。 可用平面图形表示应力状态。 可用平面图形表示应力状态 3、三向应力状态 :三个主应力都不为零。 三个主应力都不为零。 、 4、简单应力状态:单向应力状态。 、简单应力状态:单向应力状态。 5、复杂应力状态:二向和三向应力状态。 、复杂应力状态:二向和三向应力状态。
材料力学课件 第八章应力状态与强度理论

二向应力状态(Plane State of Stress): 一个主应力为零的应力状态。
单向应力状态(Unidirectional State of Stress): 一个主应力不为零的应力状态。
x B x
zx
xz
x
x
A
§8–2 平面应力状态下的应力分析
y
y
y
xy x
等价 y
x
xy
x z
Ox
一、解析法
30
x
y
2
sin 2
x cos2
80 (40) sin(2 30 ) 60 cos(2 30 ) 2
21.96MPa
确定主平面方位,将单元体已知应力代入 8.3,得
20 45
tan 20
2 x x y
2 (60) 80 (40)
1
0 22.5
0 即为最大主应力1 与 x 轴的夹角。主应力为
x
各侧面上剪应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
剪应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
解:由于主应力1 ,2 ,3 与主应变1 ,2 ,3 一一对应,故由已知数据可知,
已知点处于平面应力状态且 2 0 。由广义胡克定律
1
1 E
(1
3 )
3
1 E
( 3
1)
联立上式
单向应力状态(Unidirectional State of Stress): 一个主应力不为零的应力状态。
x B x
zx
xz
x
x
A
§8–2 平面应力状态下的应力分析
y
y
y
xy x
等价 y
x
xy
x z
Ox
一、解析法
30
x
y
2
sin 2
x cos2
80 (40) sin(2 30 ) 60 cos(2 30 ) 2
21.96MPa
确定主平面方位,将单元体已知应力代入 8.3,得
20 45
tan 20
2 x x y
2 (60) 80 (40)
1
0 22.5
0 即为最大主应力1 与 x 轴的夹角。主应力为
x
各侧面上剪应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
剪应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
解:由于主应力1 ,2 ,3 与主应变1 ,2 ,3 一一对应,故由已知数据可知,
已知点处于平面应力状态且 2 0 。由广义胡克定律
1
1 E
(1
3 )
3
1 E
( 3
1)
联立上式
材料力学应力分析PPT课件

y yx
D
xy
A
x
d
(y ,yx)
(
x
-
y
)2
+
2 xy
2
R
a (x ,xy)
c
x + y
2
在 -坐标系中,标定与单元体A、D面上
应力对应的点a和d
连ad交 轴于c点,c即为圆心,cd为应 力圆半径。
第40页/共123页
§2 平面应力状态分析
yy
yx
DB
A
xx
xxyy
O
C
d(y ,yx)
正应力与切应力
第15页/共123页
§2 平面应力状态分析
1、正应力正负号约定
x
应力状态
x
x
拉为正
第16页/共123页
x
压为负
§2 平面应力状态分析
切应力正负号约定
xy
yx
应力状态
使单元体 或其局部顺时 针方向转动为 正;反之为负。
第17页/共123页
§2 平面应力状态分析
角正负号约定
由x正向逆 时针转到n正 向者为正;反 之为负。
yx
a (x ,xy)
A
x
p xy
2
tg 2
p
-
x
-
xy x
+
2
y
o 2
1
d
2p
c g 1
负号表示从主应力的正方向到x轴的正方向为顺时转向
第48页/共123页
§2 平面应力状态分析
主应力与主方向的对应关系
应力状态
小(主应力中小的)偏小(σx和σy中 小的)、大(主应力中大的)偏大(σx和 σy中大的) ,夹角不比450大。
材料力学——应力分析

,则α1
405(τx0) 405(τx0)
7-2 二向应力状态分析--解析法
例题1:一点处的平面应力状态如图所示。
已知 x 60MP,a txy 30MPa, y 40MP,a 30。
试求(1) 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
y t xy
x
目录
7-2 二向应力状态分析--解析法
t
ty(xdsAin)co sy(dsAin)sin0
y
Ft 0
td Atx(ydc Ao )sco sx(dc Ao )ssin ty(xdsAin)siny(dsAin)co s0
目录
7-2 二向应力状态分析--解析法
{ 利用三角函数公式
co2 s 1(1co2s)
2
sin 21(1co2s)
d d (x y)si2 n2 txc y o 2 s
设α=α0 时,上式值为零,即
t (xy )s2 i0 n 2xc y 2 o 0 s 0
2 (x σ 2 σ y) si0n τ x 2 c yα o0s 2 2α α 0 τ 0
即α=α0 时,切应力为零 目录
2
2 s ic n o s si2 n
并注意到 t yx t xy 化简得
t 1
1
2 (xy) 2 (xy)c2 o s xs y 2 in
t1 2(xy)si2 ntxy co 2s
目录
7-2 二向应力状态分析--解析法
3. 正应力极值和方向
确定正应力极值
t 1 2 (xy ) 1 2 (xy )c2 o s xs y 2 in
(2)主平面的位置
tg2α0
2τ xy σx σy
材料力学课件——应力状态理论和强度理论

Me B
Me
B Me/Wn
P Me
C Me
C
第二节 二向应力状态下斜截面上的应力
目的 — 用一点某个微元上的应力表示其它
无限多微元上的应力 伴随结果
•应力极值 — 主应力状态 •从一个斜截面的应力构造一个单元体的应力
• 分析方法:1 解析法
•
2 图解法
二向应力状态下斜截面上的应力(续)
正应力符号规定
τα M τβ
σβ (c)
cos2
1
2
sin 2
cos2
1 sin 2
2
应力状态理论(续)
P
B
A
max A
max
M W
y
y
B
B
My
I
QS
Ib
应力状态理论(续)
P
P
A
A P/A
a) 一对横截面,两对纵截面
b)横截面,周向面,直径面 各一对
c) 同b),但从上表面截取
应力
要指明
哪一点?
•那个面在
• 在哪一个面上?
哪个方位?
• 一点的应力状态:过一点不同方向面上应力的集合
•
称之为这一点的应力状态
•
State of the Stresses of a Given
Point
应力状态理论(续)
三向(空间)应力状态
Three-Dimensional State of Stresses
第七章 应力状态理论和强度理论
Theory of Stress State and Intensity
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节
材料力学课件第十一章应力状态分析和强度理论

n
薄壁圆筒的横截面面积
πD 2 F p 4
′
p
A πD
πD 2 F p 4 pD A πD 4
n
D
第十一章
"
p
应力状态和强度理论
(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象
直径平面
FN
O
FN
d
y
D Fy 0 0 pl 2 sin d plD pD 2 l plD 0 2
2
3 1
1
3 2
第十一章
4.主平面 切应力为零的截面 5.主应力
应力状态和强度理论
主面上的正应力
说明:一点处必定存在这样的一个单元体, 三个相互垂直的面 均为主平面, 三个互相垂直的主应力分别记为1 ,2 , 3 且规定按 代数值大小的顺序来排列, 即
1 2 3
F k
n
(2)当 = 45°时, max 2 min (3)当 = -45° 时, (4)当 = 90°时, 0,
x
2 0
k
11.2
二向和三向应力状态的实例
m n
分析薄壁圆筒受内压时的应力状态
z
y
D
p
m
l
n
(1)沿圆筒轴线作用于筒底的总压力为F
F
k
F
k n
p cos cos
2
F
沿截面切线方向的切应力
k pα
x
p sin
2
sin2
pα
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
绘制方法2(实际采用) t
y
sy ty
n
s
x
t t xs x
C
o
ty
sy E
D
tx
s
F
•分析
sx+sy)/2 sx-sy)/2 sx
设x面和y面的应力分别为 D(s x ,t x ), E(s y ,t y ),
由于t x t y ,
故DE中点坐标
C
s
(
x
s y
,
0)
2
为圆心,DE为直径。
15
9
应力转轴公式(斜截面上的应力公式)
s
sx
s
2
y
s
x
s
2
y
cos2
t xsin2
t
sx
s
2
y
sin2
t xcos2
应力转轴公式的意义?
应力转轴公式的适用范围?
上述关系式是建立在静力学基础上,与材料性 质无关。换句话说,它既适用于各向同性与线 弹性情况,也适用于各向异性、非线弹性与非 弹性问题。
低碳钢和铸铁的拉伸与扭转实验
低碳钢
铸铁
拉伸实验
扭转实验
由对应实验建立强度条件
4
建立复杂应力状态强度条件的研究思路:
材料物质点应力状况(寻找特征参量)
材料失效机理+关联单轴拉伸实验
•应力状态 通过构件内一点,所作各微截面的 应力状况,称为该点处的应力状态
sx
•应变状态 构件内一点在各个不同方位的应 变状况,称为该点处的应变状态 z
(sx+ sy)/2
结论:平面应力状态下各方向的应力轨迹为一个圆 ——应力圆
13
二、应力圆的绘制及应用
t
绘制方法1:
以 (s x s y , 0) 为圆心,
R
2
o
s
R
s (
x s 2
y )2
t x2
为半径作圆
(sx+ sy)/2
缺点:
•需用解析法计算圆心坐标和半径
•没有反映应力圆上的点与微体截面方位的对应关系
➢ 弯曲问题(工字梁)
s C ,max
d s1
t1
a t max
C
z
a t max
O
t t max
b s1 t1
c
s t ,max
b
s1
c
t1
d
s C ,max
y
s t ,max
y
a 点处: 纯剪切; c , d 点处: 单向应力;
b 点处: s ,t 联合作用
分别满足拉伸强度条件、扭转强度条件?
复杂应力状态下(一般情况下),如何建立强度条件 ?
sH
s
x
2
s
y
s
x
2
s
y
cos2
t
xsin2
s
同理:t H t
16
应力圆点与微体截面应力对应关系
点面对应:微体截面上的应力值与应力圆上点的 坐标值一一对应。
t
sy ty s
t
txsx
H(s ,t )
C
s
17
二倍角对应:应力圆半径转过的角度是微体截面方位角 变化的两倍,且二者转向相同。
建立强度条件
y
sy
dx
ty
dy
sx tx
dz
x
sy
5
第八章 应力应变状态分析
§8-1 引言 §8-2 平面应力状态应力分析 §8-3 应力圆 §8-4 平面应力状态的极值应力与主应力
6
物质点应力微体 一般情况(三维)
独立6分量
如果z面应力为零
7
§8-2 平面应力状态应力分析
y
sy dx
什么是平面应力状态?
10
例 求图示 s,t
已知 s x 80 MPa t x 60 MPa
s y 30 MPa 210o
t30o
60 80
s
解:
s
sx
s 2
y
s
x
s 2
y
cos2
t xsin2
30
单位:MPa
s
80 30
2
80 30 cos60o
2
(-60)sin60o
104.46MPa
t
sx
s 2
sx
ty
dy
sx
•微体有一对平行表面不受力的应力状态。
tx
由此推断
dz
x ➢ 微体仅有四个面作用有应力;
z
sy
y
➢ 应力作用线均平行于不受力表面;
平面应力状态的应力分析
问题:已知sx , sy, tx , ty, 求任意平 x 行于z轴的斜截面上的应力。
解决该问题的意义何在?
z 8
➢ 应力分析的解析法:微体中取分离体平衡。
s
s
x
s
2
y
s
x
s
2
y
cos2
t
xsin2
t
0
s
x
s
2
y
sin2
t
xcos2
(s
s
x
s
2
y
)2
t2
(s x
s
2
y
)2
t x2
圆方程
12
(s
s
x
s
2
y
)2
t2
s
(
x
s
2
y
)2t x2Fra bibliotekts—t坐标系下的圆方程
圆心坐标:
(s x s y , 0) 2
o
R s
半径:
R
s (
x s 2
y )2
t x2
sx sx
y sy
ty
n
s
t
sx tx
Fn 0
s dA t xdA cos( ) sin( ) s xdAcos( ) cos( ) t ydA sin( ) cos( ) s ydAsin( ) sin( ) 0
Ft 0
t
x t dA t xdA cos( ) cos( ) s xdA cos( ) sin( )
1
2
强度条件:保证结构或构件不致因强度不够而破坏的条件。
拉压杆强度条件:
s max=
FN A
max
s
圆轴强度条件:
t max
T Wp
max
t
梁的强度条件:
s max
M Wz
max
[s ]
t max
F SS z ,max I z
max
[t ]
建立强度条件的依据?
3
建立强度条件的依据? 材料基本实验
y
sin2
t xcos2
t
80 30 sin60o
2
60 cos60o
=8.35MPa
还可取何值
150o; 30(o x轴向左)
N 180o 不改变 s t 11
§8-3 应力圆
应力转轴公式
s
sx
s
2
y
sx
s
2
y
cos2
t xsin2
t
sx
s
2
y
sin2
t xcos2
在 s 平t面上, s的 ,轨t迹 ?
sy ty
n
s
t t x s x
t
H (s , t )
2
C
D(s x , t x ) s
微体互垂截面,对应应力圆同一直径两端 微体平行对边, 对应应力圆同一点
18
➢ 几种简单受力状态的应力圆
单向受力状态
sx
sx
t
纯剪切受力状态
ty tx
t
双向等拉
sy
t ydA sin( ) sin( ) s ydA sin( ) cos( ) 0
dA n
tx
s t
t
s
sx
s 2
y
sx
s 2
y
cos(2 ) t x
sin(2 )
t
sx
s 2
y
sin(2 ) t x
cos(2 )
ty sy
符号规定:s—拉伸为正;t—使微体顺时针转者为正 —以x轴为始边,指向沿逆时针转者为正
y
sy ty
n
s
x
t t xs x
t
sH
H s , t
D tH
C 220tx
s
o
ty
F
•绘图:以ED为直径, C为圆心作圆
•面应力: 考察H点应力
sy E
sx+sy)/2 sx-sy)/2 sx
s H OC CH cos(20 2 ) OC CDcos20cos2 CD sin20sin2