正多边形和圆教学反思丁志云
《正多边形和圆》教学反思
《正多边形和圆》教学反思
《正多边形和圆》是九年制义务教育新课程标准九年级第二十四章第三节第一课时的内容。
首先出示圆形、等边三角形、正方形、正多边形及其镶嵌图形,学生观察其特点并感受生活中的数学美。
有了前边学习内接三角形、四边形的经验,研究内接正多边形显得更加容易一些,在弧相等的前提下,其所对弦、圆周角也都相等。
师生合作探究过程中,教师引出中心角、边心距等概念。
本节课使用讲练结合的方式开展教学,教师出示几道关于内接多边形、求边心距、求中心角的题目,及时巩固所学知识。
一道关于凉亭的实际问题,引导学生建立数学模型,强化抽象能力,将本节课知识推向升华。
课堂小结部分,教师为让学生更直观地看出多边形与圆的相关知识,用列表法将边数、内角、中心角、半径、边长、边心距、周长、面积绘制成一张图形,便于学生吸收知识。
遗憾的是,学生在求解边心距和中心角时没有固定的思路,根本不清楚使用的基本知识就是弦心距三角形的知识。
数学《正多边形和圆》的几点思考
数学《正多边形和圆》的几点思考各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢今学期因学校评选教学精英的需要,自己一直认真的准备着每一节课,尤其鲁教版九年级下册第四章《圆》的教学,尽管很有压力,也有些不情愿,但客观的说,收获很大,对教材的挖掘和思考较以前更深入了。
比如对本章各小节间的联系的思考,对于各知识点的编排顺序教材是有其道理的,比如,三角形的外接圆安排在第四节“确定圆的条件”之后,而三角形的内切圆则安排在切线的判定定理之后。
但是当自己在准备第七节“正多边形和圆”时,却搞不清楚为什么将本节编排在这个位置?为什么不作为第四节的第三课时出现?我这么想的理由是:第一课时确定圆的条件和三角形内接圆;第二课时引入圆内接多边形;第三课时引入院内接正多边形岂不更自然?深入想了一想,是否可以用一下几个理由来说明:1、前面已经研究了圆的概念和性质,按照常规思路应该研究圆的应用。
第七节的第一课时主要研究运用等分圆周法作正多边形,一定程度上可以理解为圆的应用。
没有放在第四节是因为本节内容更多侧重于正多边形的作法与计算,与圆的关系不甚紧密。
2、从整个第七节来看,如果完全解释为圆的应用也不完全合理,因为第二课时的正多边形计算似乎和圆的关系不大。
所以我又想到这一节与后边两节的联系,目的是否是想由此来过渡到有关圆的计算知识领域。
3、两个理由仍然说服不了自己,继续想,当自己看到第七节后边的“读一读”材料时,一种新的想法闪现,并逐渐明朗起来。
从系统的角度来分析,本章的编排遵循着这样一条思路:概念--------性质及应用-------计算及应用,第七节的出现意味着研究视角从性质应用转到计算领域。
那么第七节的主要作用在于通过探讨正多边形和圆的关系,引出有关圆的周长面积公式的推导,尽管课本把此内容放在读一读材料中,但却对圆的周长和面积公式的推导做好了铺垫,使学生对知识间的内在联系的理解更深刻,对数学学科本质有所体会,同时还对学生进行了数学素养的渗透。
24.3正多边形和圆(教案)
难点解析:以正四边形为例,引导学生观察和操作,找出对称轴,理解中心角的含义。
(2)正多边形与圆的关系:学生可能难以理解正多边形的半径、边长、中心角之间的具体关系。
难点解析:通过画图和实际测量,让学生观察正多边形的外接圆和内切圆,理解半径、边长、中心角之间的关系。
举例:正五边形的对称轴有5条,中心角为72度,内角和为540度,外角和为360边长、中心角之间的关系,以及正多边形面积公式的推导。
举例:正六边形的半径与边长之间的关系,以及如何将正六边形分割成6个等腰三角形,进而推导出正六边形的面积公式。
2.教学难点
(3)正多边形面积公式的推导:学生可能不熟悉将正多边形分割成等腰三角形的方法,以及如何利用三角函数进行面积计算。
难点解析:以正六边形为例,引导学生将正六边形分割成6个等腰三角形,并利用三角函数(如正弦、余弦)推导出面积公式。
在教学过程中,教师需针对重点和难点内容进行有针对性的讲解和强调,确保学生理解透彻。同时,通过实例和实际操作,帮助学生突破难点,提高几何图形的认识和分析能力。
3.培养学生的数学建模和解决问题能力:鼓励学生运用所学知识解决实际问题,例如计算正多边形面积、设计图案等,提高学生运用数学知识解决实际问题的能力,强化数学在实际生活中的应用价值。
三、教学难点与重点
1.教学重点
(1)正多边形的定义及性质:正多边形的定义、对称轴、中心角、内角和、外角和等基本性质是本节课的核心内容。教师需引导学生理解并掌握这些性质,以便为后续学习正多边形与圆的关系打下基础。
五、教学反思
在今天的教学过程中,我发现学生们对正多边形和圆的概念有了初步的认识,但在理解一些具体性质和关系时,还存在一定的困难。这让我意识到,在今后的教学中,需要更加关注学生的接受程度,适时调整教学方法和节奏。
2024年人教版九年级数学上册教案及教学反思第24章24.3 正多边形和圆(第1课时)
24.3 正多边形和圆第1课时一、教学目标【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系.【情感态度与价值观】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、边心距,边长之间的关系.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课出示课件2,3:观察上边的美丽图案,思考下面的问题:(1)这些都是生活中经常见到的利用正多边形得到的物体,你能找出正多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样做一个正多边形呢?学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.(板书课题)(二)探索新知探究一正多边形的对称性教师问:什么叫做正多边形?(出示课件5)学生答:各边相等,各角也相等的多边形叫做正多边形.教师问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?学生答:矩形不是正多边形,因为矩形不符合各边相等;菱形不是正多边形,因为菱形不符合各角相等;教师强调:正多边形:①各边相等;②各角相等,两个条件,缺一不可.教师问:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?(出示课件6,7)学生动手操作,交流,感受正多边形的对称性.教师归纳:正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.探究二正多边形的有关概念教师问:以正四边形为例,根据对称轴的性质,你能得出什么结论?(出示课件8,9)师生结合图形共同探究:EF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD、BC的垂直平分线,∴OA=OD,OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.AC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.出示课件10:教师问:所有的正多边形是不是也都有一个外接圆和一个内切圆?学生答:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.教师问:一个正多边形的各个顶点在同一个圆上?学生答:一个正多边形的各个顶点在同一个圆上,则这个正多边形就是这个圆的一个内接正多边形,圆叫做这个正多边形的外接圆.教师问:所有的多边形是不是都有一个外接圆和内切圆?学生答:多边形不一定有外接圆和内切圆,只有是正多边形时才有,任意三角形都有外接圆和内切圆.教师出示概念:(出示课件11)1.正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心.2.外接圆的半径叫做正多边形的半径.3.内切圆的半径叫做正多边形的边心距.4.正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360.n练一练:(出示课件12)完成下面的表格:学生计算交流并填表.探究三 正多边形的有关计算出示课件13:如图,已知半径为4的圆内接正六边形ABCDEF :①它的中心角等于 度; ②OC BC(填>、<或=); ③△OBC 是 三角形;④圆内接正六边形的面积是△OBC 面积的 倍. ⑤圆内接正n 边形面积公式:_______________________. 学生计算交流后,教师抽学生口答.①60;②=;③等边;④6;⑤1=2S ⨯⨯正多边形周长边心距出示课件14:例 有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(精确到0.1m 2).教师分析:根据题意作图,将实际问题转化为数学问题.师生共同解答:(出示课件15)解:过点O 作OM ⊥BC 于M.在Rt △OMB 中,OB =4,MB =4222BC ==,利用勾股定理,可得边心距r ==亭子地基的面积:2112441.6(m ).22S l r =⋅=⨯⨯≈ 巩固练习:(出示课件16)如图所示,正五边形ABCDE 内接于⊙O ,则∠ADE 的度数是( )A .60°B .45°C .36°D .30° 学生独立思考后自主解答:C.教师归纳:圆内接正多边形的辅助线(出示课件17)1.连半径,得中心角;2.作边心距,构造直角三角形. 巩固练习:(出示课件18)已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?学生独立思考后解答,一生板演.解:∵直角三角形两直角边之和为8,设一边长为x. ∴ 另一边长为8-x.则该直角三角形面积:S=(8-x )x ÷2,即214.2s x x =-+ 当x=2b a -=4,另一边为4时,S 有最大值244ac b a -=8.∴当两直角边都是4时,直角面积最大,最大值为8. (三)课堂练习(出示课件19-24)1.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=______度.2.填表:3.若正多边形的边心距与半径的比为1:2,则这个多边形的边数是_____.4.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为_____度.(不取近似值)5.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为,点P为六边形内任一点.则点P 到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON的度数与正n边形的边数n的关系.参考答案:1.360°解析:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°.2.3.34.412875.6.解:∵正方形的面积等于4, ∴正方形的边长AB=2. 则圆的直径AC=2, ∴⊙O 的半径=.∴⊙O 的面积为22.ππ=7.解:过P 作AB 的垂线,分别交AB 、DE 于H 、K ,连接BD ,作CG ⊥BD 于G.22∵六边形ABCDEF 是正六边形, ∴AB ∥DE ,AF ∥CD ,BC ∥EF ,∴P 到AF 与CD 的距离之和,及P 到EF 、BC 的距离之和均为HK 的长. ∵BC=CD ,∠BCD=∠ABC=∠CDE=120°, ∴∠CBD=∠BDC=30°,BD ∥HK ,且BD=HK.∴CG=12BC=.∵CG ⊥BD ,∴BD=2BG=2×=2×3=6.∴点P 到各边距离之和=3BD=3×6=18. 8.解:⑴①120°;②90°;③72°;⑵360MON n ︒∠=.(四)课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?(五)课前预习22BG BC-预习下节课(24.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.。
《正多边形和圆》教学反思
《正多边形和圆》教学反思《正多边形和圆》教学反思身为一名优秀的人民教师,课堂教学是我们的任务之一,借助教学反思我们可以快速提升自己的教学能力,优秀的教学反思都具备一些什么特点呢?下面是小编帮大家整理的《正多边形和圆》教学反思,希望对大家有所帮助。
《正多边形和圆》教学反思1昨天在学校上了《正多边形与圆》一节,在前一节课,我花了十分钟的时间已经让学生通过看书感知了中心、中心角、半径、边心距的定义,这节的教学重点是特殊的正多边形和圆中边心距、边长、半径的关系。
我先给了学生五分钟看书上正六边形的例题,在黑板上画了半径为R的正四边形、正六边形、正三角形及其外接圆,点拨例题后我以表格的形式给出学生的第一个问题是:分别用R表示正四边形、正六边形、正三角形的边长、周长、边心距和面积。
以前一直习惯于我讲学生听,这节我试着让学生讲,学生在黑边前的讲解的时候我发现其他学生听的更认真,虽然讲解的学生还存在着声音小、讲解不是太透彻等缺点,但整体还可以,多给学生机会肯定会有提高。
整节课我围绕这个问题花了很长的时间,目的是让更多的学生体会并且学会这种构造直角三角形的思想。
其中我给学生补充的知识有:有一个角是30度的直角三角形的三边比和等腰直角三角形的三边比的推导及结论,我觉得这样可以为学生的运算节省时间。
这节课的第二个问题是:探究正三角形的外接圆半径R 和内切圆的半径r的数量关系,以及它们与正三角形的高之间的数量关系。
在这个过程由两个同学去讲解,田礼厚同学通过连接半径转化R构造直角三角形,而郑文豪同学通过构造弦心距转化r构造直角三角形,同样都是转化,但转化的不一样,我觉得学生的思维表现的很活跃。
整节课设计的问题较少,重点在于让学生体会构造思想和转化思想,学生表现很积极,但是没有练习以及反馈的时间,在接下来的练习课上我觉得困扰学生的不是构造直角三角形的思想而是计算的速度及准确性,但快速准确运算又不是一天两天的功夫,我认为对于我的学生而言,每节课还得给适当的运算来锻炼学生。
9上24.14《正多边形和圆》教学反思
====Word行业资料分享--可编辑版本--双击可删====正多边形和圆(二)(教学反思)《正多边形和圆》这一节的教学目标是:让学生能将正多边形的有关计算问题转化为解直角三角形的问题来解决;通过学习使学生能认识到事物之间是普遍联系的,事物之间是可以相互转化的,并培养和训练学生的综合运用知识能力和解决实际问题的能力,渗透数形结合的思想和方法.设计时,我有如下思考:1.由于这一课运用的知识概念较多易混淆,所以设计以下教学流程.“课前延伸——课内探究——自主探究——课后提升”2.根据学生实际情况,设计内容和教法:(1)初三学生面临人生的第一次挑战,容易出现紧张的情绪,紧张的情绪会严重的影响了学生的学习效率.因此,教学过程中创设的问题情境应具有很强的实用性,转移学生的注意力,以期集中学生的注意力,达到高效率地达到本节课学习目的.(2)初三学生具有一定的概括能力、推理能力,所以在教学时,可让学生先认真思考后充分讨论,以便问题能够研究的更深入.(3)初三学生已经具备了一定自学能力,所以本节课中,多为学生创造自主学习、合作学习的时间和空间,让他们主动参与、勤于动手、从而乐于探究正多边形和圆中量与量之间关系的应用.再通过不同类型的问题的探讨,使学生深化理解本节课的知识,内化为自己的知识.3.注重创设教学情境,激活学生思维,力求让生生产生共振:从认知的角度看,情境可视为人的认知活动的信息来源.数学情境是含有相关数学知识和数学方法的情境,同时也是数学知识产生的背景,它不仅能激发数学问题的提出,也能为数学问题的解决提供相应的信息和依据.本课的教学情境的创设主要表现在:(1)以问题为导向,设计数学情境.(2)以数学知识发生为依托,设计数学情境.(3)借助多媒体.根据本课内容特点,运用色彩斑斓的图片展示及形象生动的小动画,引起学生对所学内容的学习兴趣和改善学习的乏味心理,促进学生的心理由潜伏状态转变为活跃状态.4.教学效果:这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和勇于探究,形成良好的学习品质.由于这堂课留给学生的时间很足,胆大、性格开朗的学生特别活跃,也容易引起老师的注意,而对那些胆小性格较内向的学生就注意不够.个别理解能力和接受能力慢一些的学生,给予他们的帮助还不到位,这些学生课后作业完成不够好.源-于-网-络-收-集。
正多边形和圆(教案、教学反思、导学案)
24.3正多边形和圆【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.(1)你能从图案中找出多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知1.正多边形和圆的关系问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出已知和求证.已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE 3BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了巩固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.2.正多边形的有关概念综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°(n-2)n3.正多边形和圆有关的计算问题例1(课本106页例题)有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24(m).过O点作OP⊥BC,垂足为P.在Rt△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.4.画正多边形画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:(1)用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可避免地存在误差.(2)用尺规等分圆正方形的作法:如图(1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,则可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图(2)任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,则A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图(3)由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,则∠APB 的度数为_______.2.边长为2/π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中的∠MON的度数;(2)在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;(3)试探索∠MON的度数与正n边形边数n之间的关系.(直接写出答案)【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.【答案】1.72°4.解:(1)连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与(1)相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回顾,教师再予以补充和点评.1.布置作业:从教材“习题24.3”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.24.3正多边形和圆一、新课导入1.导入课题:情景:欣赏下面图片.问题:什么叫正多边形?图中有哪些正多边形?正多边形与圆有哪些关系?2.学习目标:(1)理解正多边形及其半径、边长、边心距、中心角等概念.(2)会进行特殊的与正多边形有关的计算,会画某些正多边形.3.学习重、难点:重点:正多边形的有关概念与计算.难点:正多边形的有关计算.二、分层学习1.自学指导:(1)自学内容:教材第105页至第106页的内容.(2)自学时间:6分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①什么叫正多边形?矩形是正多边形吗?菱形呢?正方形呢?各边相等、各角也相等的多边形叫做正多边形.矩形和菱形不是正多边形,正方形是正多边形.②正多边形是轴对称图形吗?是中心对称图形吗?是轴对称图形,不一定是中心对称图形.③以正六边形为例,指出右图中正多边形的中心、半径、中心角和边心距.中心:点O.半径:OC、OE、OF.中心角:∠EOF.边心距:OM.④正n 边形的每个内角都为()n ?n -︒2180,每个外角都为n ︒360,中心角为n︒360. ⑤有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(保留小数点后一位).解:作OM ⊥BC 于M.连接OB 、OC,∵ABCDEF 是正六边形,∴△OBC 为正三角形,∴∠MOC=12∠BOC=30°,OB=BC=OC. ∴l =6BC =6OB =6×4=24(m ).在Rt △OMC 中,∵∠MOC=30°,∴MC=12OC=2m. ∴OM=OC 2-MC 2=23m.∴()OBC S BC OM m ==⨯⨯=2114234322. ∴()正六边形OBC S S .m ==≈26243416.即地基的周长为24m,面积约为41.6m2.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生完成自学参考提纲的情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)正多边形的相关概念.(2)正n 多边形的对称性.(3)填表:1.自学指导:(1)自学内容:教材第107页的内容.(2)自学时间:4分钟.(3)自学要求:阅读并画图,推理以强化理解.(4)自学参考提纲:①两种六等分圆周的方法中,第一种方法的依据是作相等的圆心角;第二种方法的依据是在圆上作相等的弧.②分别在所给的圆中画出正三角形、正方形和正六边形.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生是否明白画图的依据.②差异指导:根据学情进行指导.(2)生助生:生生互动,交流、研讨.4.强化:正多边形的画法.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、动手情况及学习效果和存在问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.(2)等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列说法中正确的是( C )A.各边都相等的多边形是正多边形B.正多边形既是轴对称图形,又是中心对称图形C.各边都相等的圆内接多边形是正多边形D.各角都相等的圆内接多边形是正多边形2.(10分)如果一个正多边形的每个外角都等于36°,则这个多边形的中心角等于(A )A.36°B.18°C.72°D.54°3.(10分) 如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使直角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是(A )A.4B.5C.6D.74.(20分) 如图,要拧开一个边长为a=6mm 的正六边形螺帽,扳手张开的开口b 至少为多少?解:如图,∠ABC=120°.AB =a,AC =b.过B 作BD ⊥AC 于点D,则AD=DC=12b. 在Rt △ABD 中,∠BAC=30°,∴BD=12AB=3mm. ∴AD AB BD =-=-=22226333(mm ).∴b=2AD=63mm.即扳手张开的开口b 至少要63mm.5.(20分) 如图,正方形的边长为4cm ,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.解:设正八边形的边长为x cm,则xx -⎛⎫⨯= ⎪⎝⎭22422.即x2+8x-16=0.解得x=-1424,x=--2424(舍去).∴剪去的四个小三角形的面积为()()⎡⎤--⎢⎥⨯⨯=-⎢⎥⎣⎦24424144832222cm2.∴正八边形的边长为()-424cm,面积为()()cm⨯--=-2444832232232.二、综合应用(20分)6.(20分) 如图,已知正五边形ABCDE中,BF与CM相交于点P,CF=DM.(1)求证:△BCF≌△CDM;(2)求∠BPM的度数.(1)证明:∵ABCDE是正五边形,∴BC=CD,∠BCD=∠CDM,又CF=DM,∴△BCF≌△CDM.(2)解:由(1)知∠FBC=∠MCD,∴∠BPM=∠FBC+∠BCM=∠MCD+∠BCM=∠BCF=35×180°=108°.三、拓展延伸(10分)7.(10分) 一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是(B)A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a4。
24.3正多边形和圆阅读与思考圆周率π(教案)
5.激发学生的创新意识,鼓励他们探索用不同方法近似计算圆周率π,培养勇于探索、创新的科学精神。
三、教学难点与重点
1.教学重点
-理解圆周率的定义及其在几何学中的重要性。
-掌握圆周率的近似值3.14,并能够运用其进行简单计算。
在实践活动中,分组讨论和实验操作让学生们动手动脑,积极参与到学习中来。他们通过测量和计算,亲自体验了圆周率π的近似值,这样的实践活动有助于加深对圆周率π的理解。然而,我也观察到部分学生在操作过程中对测量和计算方法的掌握不够准确,这提示我在今后的教学中需要加强这方面的指导。
学生小组讨论环节,大家围绕圆周率π的实际应用各抒己见,展开了热烈的讨论。在这个过程中,我努力扮演好引导者的角色,适时提出问题,激发学生的思考。成果分享时,我发现学生们能够将所学知识应用到实际问题中,这让我感到很欣慰。但同时,我也注意到部分学生的表达能力和逻辑思维有待提高,这将是我今后教学中需要重点关注和培养的能力。
3.加强对学生表达能力和逻辑思维的训练,提高他们的综合素质。
4.针对重点和难点知识,采用多种教学方法,帮助学生巩固记忆,确保理解透彻。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周率π在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
24.3正多边形和圆阅读与思考圆周率π(教案)
正多边形和圆的教学设计与反思
“正多边形和圆”的教学设计与反思课时安排:共两课时第一课时教学目标:知识与技能:1.了解多边形和圆的关系2.了解用量角器等与圆心角三等分圆,掌握用圆规作图内接正方形和正六边形,并且能尺规作图正八边形,正三角形,正十二边形。
数学思考和解决问题:通过画图培养学生的画图能力,提高学生的审美能力。
情感与态度:学生与人合作,交流,体验数学在生产,生活中的应用。
教学重点:1.会用量角器等分圆心角等分圆周。
(等分圆周法)2.会用尺规作圆内接正方形和正六边形。
教学难点:准确作图教学方法和方式手段:提出问题→解决问题→归纳总结→应用创新教学过程设计:问题1:什么叫正多边形?(复习提问)什么叫圆内多边形?互动方式:口答解答:正多边形:各边相等,各角也相等的多边形。
比如:正三角形、正方形、正五边形。
圆内接正多边形:各个顶点都在圆上的正多边形就叫做圆内接正多边形,比如圆内接正三角形。
反馈练习:(课本P105。
练习1,2)互动方式:通过口答,发表见解。
1.矩形是正多边形吗?菱形呢?正方形呢?为什么?解答:矩形各角相等,但各边不相等,它不是正多边形;菱形各边相等,但各角不相等,也不是正多边形;正方形四边,四角都相等,四正多边形。
2.各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是多边形呢?如果是,说明为什么,如果不是,举出反例。
解答:∵各边相等的圆内接多边形的各个角也相等。
∴各边相等的圆内接多边形是正多边形。
各角相等的圆内接多边形不是正多边形。
例如:矩形问题2:你会作出任意一个正多边形吗?(大约一分钟后提示:本节教你了一个作图方法,请问在课本哪个位子?)解答:课本p104。
第2段第一行“只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形”,这也是正多边形和圆的关系。
(这种方法叫做等分圆周法)分析问1:那么这种作画的根据是什么?也就是说为什么这样做,就可以得到一个正多边形呢?解答:因为根据“弧、弦、圆心角之间的关系定理”在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
初中数学_正多边形和圆教学设计学情分析教材分析课后反思
初中数学_正多边形和圆教学设计学情分析教材分析课后反思四教学设计(一)教学目标知识与技能1.了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长,边心距,中心角之间的关系.2.会进行相关的计算.过程与方法(二)、教学重、难点重点:讲清正多边形和圆中心,正多边形半径,中心角,弦心距,边长之间的关系.难点探索正多边形和圆的关系.(三)、教学准备多媒体课件(四)、教学方法分组讨论,讲练结合三学情分析学生圆的性质掌握的不牢固,课堂上注意力不持久,对数学问题缺乏兴趣。
需要教师激发学生学习数学的兴趣,帮助学生树立信心,逐步养成良好的学习习惯,提高学生分析问题解决问题的能力.效果分析进一步巩固圆的性质,巩固垂径定理的应用.让学生进一步体会垂径定理在生活中的应用的广泛性,将正多边形问题转化为三角形问题.八.观课记录记录人:时春雷本节课根据学生年龄特征,认知规律及已有的数学知识水准进行教学,所以,根据教学内容和学生实际水平,我认为教师采用了以下的教学方法:1、教师点拨、引导,充分发挥学生的主观能动性,调动学生的理解和分析能力,让学生联系实际,动脑分析,充分体现出教为主导,学为主体的教育原则。
2、采用实验讨论法,让学生在讨论实践的过程中找出应吸取的经验教训,并联系现实,使学生在尝试学习中自主地得出结论,并使结论为现实服务。
3、采用尝试教学法,指导学生自学,让学生动手寻找问题答案,使学生的思维能力和实践创造能力得到提高。
课堂中教师为每一个学生提供参与学习活动的机会,在活动中培养他们的综合能力和合作意识,把课堂还给学生充分体现教师为辅学生为主的原则。
对本节课的学习,学生的热情程度高。
动手操作和课件辅助教学提高了学生的兴趣,使学生的注意力集中,全神贯注。
学生学习态度认真,求知欲高。
从整体来说这节课是非常成功的.二、教材分析:本节课是在学生学习了圆的性质后学习,这些知识为本节的学习起着铺垫作用。
本节内容正多边形和圆也是今后进一步研究圆的性质的基础,在教材中有着承上启下的重要地位。
初中数学教学课例《圆内接正多边形》课程思政核心素养教学设计及总结反思
学生有自主学习的兴趣,但缺少思考的习惯,研究
力分析 问题只停留在表层,另外学生之间的差距有点大,部分
同学动手力有待加强。
根据《数学课程标准》中要引导学生投入到探索与
教学策略选 交流的学习活动中的教学要求本节课的教学设计为:复
择与设计 习旧知识,自学,例题讲解;探索新知;课堂小结,课
初中数学教学课例《圆内接正多边形》教学设计及总结反思
学科
初中数学
教学课例名
《圆内接正多边形》
称
1、教材分析:本节内容正多边形的知识是今后进
一步研究圆的性质的基础,在教材中有着承上启下的重
要地位。本节课从定性、定量的两个角度去讨论,挖掘
蕴含的数学知识,把感性认识转化成理性认识,具体到
抽象,让学生主动参与,亲身体验知识的发生与发展的
堂检测六个教学环节。
环节 1:复习正多边形的定义和内角和以及外角和
等知识(以复习旧知的形式引出本节新课)
环节 2:学生自主阅读课本总结圆内接多边形的定
义及相关概念。(概念性知识让学生自主完成,培养学
生的自学能力。)
环节 3::课本 97 页例题,课件练习(本环节一是
检验学生学习状况,二是让学生产生一种利用新知解决 教学过程
问题的成就感,提升学生学习积极性。)
环节 4:圆内接多边形的画法(通过教师讲解,学
生掌握画正六边形的方法。)
环节 5:本节课你学会了什么?(学生谈论总结,
回顾本节课的内容。)
环节 6:课堂检测习题(学生自主练习,检查本节
课的知识掌握情况。)
发展学生思维的课堂教学旨在将教学内容问题化 课例研究综
和活动化,让学生参与知识形成的全过程,促进学生对 述
教材分析 过程。利用正多边形与圆的关系,把形的问题转化成了
人教版九年级数学上册教案-24.3 正多边形和圆2带教学反思
24.3 正多边形和圆教学目标1. 了解正多边形和圆的有关概念;理解并掌握正多边形半径、中心角、边心距、边长之间的关系,会应用正多边形和圆的有关知识解决实际问题。
2. 通过正多边形与圆的关系的教学培养学生观察、猜想、推理、迁移的能力。
3. 通过探究正多边形在生活中的实际应用,增强对生活的热爱。
重点:1.正多边形的有关概念,特殊正多边形的有关计算。
2.掌握圆内接正多边形的半径、边心距、边长三者之间的联系。
难点:1.正多边形的半径、中心角、边心距、边长之间关系的正确理解与计算。
2.会作圆和正多边形的辅助性,构造直角三角形,运用勾股定理。
课前准备师:多媒体课件、圆形纸片生:直尺、圆规、圆形纸片教学过程一、复习回顾,引入新课问题1:观察下面多边形,找出它们的边、角有什么特点?(幻灯3)问题2:观看大屏幕上这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出正多边形来吗? (幻灯4)问题3:圆具有哪些对称性?(幻灯5)二、目标导学,探索新知目标导学1:理解正多边形的定义(幻灯6~8)问题1:什么叫正多边形?问题2:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?【教学备注】【设计意图】让学生观察、归纳出正多边形的特点【设计意图】意在暗含正多边形有一个辅助外接圆,为正多边形和圆有密切关系做好铺垫。
【教学提示】可借助圆规,或提示学生通过折叠得出结果。
【教学提示】从弧相等—弦相等—边相等;弧相【教师强调】判断一个多边形是否是正多边形,必须同时具备两个必备条件:①各边相等;②各角相等。
二者缺一不可。
问题3:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?【教师强调】正n边形都是轴对称图形,都有n条对称轴,且只有边数为偶数的正多边形才是中心对称图形。
目标导学2:了解正多边形和圆的密切关系,借助圆可以画正多边形(幻灯9~11)问题1:怎样把一个圆进行四等分?问题2:依次连接各等分点,得到一个什么图形?归纳:像上面这样,只要把一个圆分成相等的一些弧,就可以作出这个圆的正多边形,这个圆就是这个正多形的外接圆,这个正多边形也称为这个圆的内接正多边形。
正多边形和圆的教学反思
《正多边形和圆》教学反思
《正多边形与圆》一节,通过观察图片,让学生直观认识正多边形和圆。
通过小组学习合作探究,证明,感受由特殊到一般的学习方法 ,并结合图形,加深对中心、半径、边心距、中心角的理解, 然后通过自主学习例题求正六边形的边长、周长、边心距和面积,再通过练习加以巩固。
整节课设计、教学思路还是比较清晰的,注重数形结合,让学生体会构造思想和转化思想,感受由特殊到一般的学习方法,坚持让每个学生都得到发展,以“课前预习——情景引入——合作探究——自主学习——课堂小结——达标检测”为主线,充分运用现代信息技术,借助多媒体课件进行直观演示,引导学生观察、猜想、验证、交流等活动。
在学法指导上,注重调动学生积极思考,主动探究,尽可能地增加学生参与学习的时间与空间。
在教学中,学生表现很积极,但是老师不敢大胆放手给学生探究,讲得多,没有练习以及反馈的时间。
还有鼓励性的语言比较单调没有很好的激发学生的学习热情。
总之,本节课的教学过程真正体现了“教与学”的和谐统一,达到了预期的教学目标。
数学教案-正多边形和圆
数学教案-正多边形和圆一、教学目标1.了解正多边形的定义、性质及判定方法。
2.掌握圆的定义、性质及圆与正多边形的关系。
3.培养学生的空间想象能力和逻辑思维能力。
二、教学重点与难点1.教学重点:正多边形和圆的定义、性质及判定方法。
2.教学难点:圆与正多边形的关系,以及如何运用这些性质解决问题。
三、教学过程1.导入新课(1)引导学生回顾已学的多边形知识,提问:什么是多边形?多边形有哪些分类?(2)引导学生回顾圆的定义,提问:什么是圆?圆有哪些性质?2.探究新知(1)引导学生观察正多边形和圆的图形,提问:正多边形和圆有什么关系?(2)引导学生分析正多边形的性质,如:边长相等、内角相等、对称性等。
(3)引导学生分析圆的性质,如:圆的周长、面积、圆心、半径等。
(4)引导学生探讨正多边形和圆的判定方法,如:正多边形的边数、内角、对称性等。
3.实例讲解(1)讲解正多边形的性质和判定方法,以正三角形、正方形为例,让学生掌握正多边形的性质。
(2)讲解圆的性质和判定方法,以圆的周长、面积为例,让学生掌握圆的性质。
(3)讲解圆与正多边形的关系,以正三角形、正方形为例,让学生理解圆与正多边形的关系。
4.练习与讨论(1)让学生独立完成教材上的练习题,检验学习效果。
(2)组织学生进行小组讨论,解答练习题中的疑惑。
(3)教师选取部分学生的作业进行点评,指导学生掌握正确的解题方法。
5.课堂小结(2)强调圆与正多边形的关系,以及如何运用这些性质解决问题。
6.课后作业(1)让学生完成课后作业,巩固所学知识。
(2)布置一道思考题:如何利用正多边形的性质证明圆的性质?四、教学反思1.部分学生对正多边形和圆的概念理解不够深刻,需要加强巩固。
2.部分学生在解决问题时,缺乏灵活运用知识的能力,需要加强训练。
3.教学过程中,时间安排不够合理,导致部分内容未能充分展开讲解。
重难点补充:1.教学重点补充:(1)引导学生观察正多边形和圆的图形时,可以这样提问:“同学们,你们能告诉我,正多边形和圆之间有哪些相似之处和不同之处吗?”(2)分析正多边形的性质时,可以这样引导:“请大家观察这个正三角形,你们认为它有什么特殊的性质?它的边长和角度有什么关系?”(3)分析圆的性质时,可以提问:“我们之前学过圆的周长和面积,那么圆的半径和这些量之间有什么数学关系呢?”2.教学难点补充:(1)讲解圆与正多边形的关系时,可以这样设计对话:“同学们,你们知道吗,一个圆可以被一个正多边形无限分割,这是为什么?我们一起来探究一下。
初中数学_3.7正多边形与圆教学设计学情分析教材分析课后反思
正多边形和圆教学设计激情导入认定目标自主探究1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?老师点评:1.各边相等,各角也相等的多边形是正多边形.出示学习目标自学导航如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、•D、E、F都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.我们以圆内接正六边形为例证明.如图所示的圆,把⊙O•分成相等的6•段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.∵AB=BC=CD=DE=EF∴AB=BC=CD=DE=EF学生独立回顾借助图形回忆强化一生口述目标,其余生静听、领会学生独立阅读理解有关概念根据提示做出正六边形理解有关概念激情互动现在我们利用正多边形的概念和性质来画正多边形.例2.利用你手中的工具画一个边长为3cm的正五边形.分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,•应该先求边长为3的正五边形的半径.解:正五边形的中心角∠AOB=3605=72°,如图,∠AOC=30°,OA=12AB÷sin36°=1.5÷sin36°≈2.55(cm)画法(1)以O为圆心,OA=2.55cm为半径画圆;(2)在⊙O上顺次截取边长为3cm的AB、BC、CD、DE、EA.(3)分别连结AB、BC、CD、DE、EA.则正五边形ABCDE就是所要画的正五边形,如图所示.教师引导学生解决有关问题指导生互动交流,解决生自学中的困惑问题点评:1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,•正多边形的中心角,正多边的边心距.组内交流自学中的困惑问题,全组达成一致意见。
24.3正多边形和圆教案
实践活动环节,学生们分组讨论和实验操作都表现得非常积极。他们通过亲自动手,不仅加深了对正多边形和圆的理解,还学会了如何将这些知识应用于实际问题。但同时,我也发现有些小组在讨论过程中,讨论主题偏离了教学内容。为了防止这种情况再次发生,我将在下次活动中明确讨论主题和目标,并在讨论过程中适时引导,确保教学效果。
5.培养学生的团队合作意识,课堂讨论与小组活动中,学会倾听、交流、协作,共同完成学习任务,提高人际沟通能力。
三、教学难点与重点
1.教学重点
a.正多边形的定义及性质:理解正多边形的定义,掌握其内角、外角、对角线的性质,以及正多边形与圆的关系。
-举例:讲解正五边形的性质,如内角和、外角、对角线数量等。
b.正多边形面积的计算方法:掌握正多边形面积的求解公式,并能应用于实际问题。
-举例:引导学生通过画图和计算,探究正多边形内角与外角的关系,如正五边形的内角为108°,外角为72°。
b.正多边形面积公式的推导与应用:推导正多边形面积公式,并应用于解决复杂问题。
-举例:引导学生通过分割法或三角剖分法,推导正六边形面积公式,并解决实际面积计算问题。
c.正多边形与圆的对称性质在实际问题中的应用:学会将对称性质应用于设计、建筑等领域。
二、核心素养目标
1.培养学生的几何直观能力,通过观察和分析正多边形与圆的关系,提高空间想象力和图形感知能力。
2.培养学生的逻辑推理能力,运用正多边形的性质和定理进行推理和解决问题。
苏科版九年级数学上册《2.6正多边形与圆》公开课教案及反思初三数学教案及教学反思
《正多边形与圆》教案教学目标:1.知道正多边形的概念、正多边形与圆的关系;2.会画正多边形,会判定一个正多边形是轴对称图形还是中心对称图形;3.经历探索画正多边形的过程中,学会等分圆的方法.教学重难点:1.会画正多边形.2.通过阅读、探索,会用量角器和尺规画正多边形.教学过程一、创设情境学生欣赏生活中含正多边形的图案,从图片中发现各种正多边形.(设计意图:学生意识到生活中有很多正多边形的图形,体会到数学与生活是紧密相连的,引出本节课要学习的内容.)二、探究活动活动(一)探索正多边形的概念:观察下列图形,你能说出这些图形的共同特征吗?1.归纳它们的共同特征,引入正多边形的概念:各边相等、各角也相等的多边形叫做正多边形。
2.概念辨析:下列哪些多边形是正多边形?(等边三角形、正方形、矩形、菱形)(设计意图:通过辨析,学生进一步理解正多边形的概念.)活动(二)探索正多边形与圆的关系1. 学生阅读课本第142页第4小节内容,同时思考如何借助量角器画正五边形?(步骤:五等分圆心角五等分圆周,顺次连接五等分点)(设计意图:让学生带着困难和问题去阅读教材,尝试通过自主探究解决问题)圆的内接正五边形、正五边形的外接圆、正五边形的中心的概念。
3.思考:你能借助量角器用等分圆的方法画正三边形? 正四边形? 正六边形? 正n边形?4.引入圆的内接正多边形、正多边形的外接圆、正多边形的中心的概念。
活动(三)探索正多边形的对称性下图中的正多边形,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如是轴对称图形,画出它的对称轴;如是中心对称图形,找出它的对称中心。
(学生自主操作)1.操作后完成下列表格,是轴对称图形的打“√”,是中心对称图形的也打“√”.图形 轴对称图形对称轴条数中心对称图形 对称中心位置正三边形 √ 3正四边形 √ 4 √ 正四边形中心正五边形 √ 5正六边形 √ 6 √ 正六边形中心 正八边形√8√正八边形中心2. 通过填表,你能发现什么结论?(①正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正多边形和圆》教学反思
吴忠三中丁志云
在本节课中我始终遵循“以人为本,以学定教”的教学理念,通过情景问题的教学,激发学生的学习兴趣。
本节课的着重点是如何“引导”学生自主探索、合作交流,使学生在经历数学知识的形成与应用的过程中,加深对所学知识的理解,从而突破重、难点。
比如通过正三角形、正方形与圆的关系从而得出正多边形与圆的关系,联想到通过等分圆周的方法去画正多边形。
同时我还能做到全程关注每一学生的学习状态,在共同学习的过程中掌握知识。
在教学中应始终坚持“注重数学思想方法的教学,加强学习方法的指导,为其终身学习打下坚实的基础”为主旨。
渗透“特殊---一般”在“一般---特殊”的唯物辩证法思想,体会化归思想在研究问题中的运用。
如由正三角形、正方形与圆的关系进而推广到正多边形与圆的关系。
学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用。
如通过解决情景问题教师引导学生将实际问题转化成数学问题,将多边形化归成三角形来解决,体现了化归思想在解题中的应用。
不足之处在于本节课教学容量过大,学生对于圆中的正多边形的计算掌握的不够扎实。