华北电力大学硕士研究生课程考试试题(A卷)矩阵论答案

合集下载

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

1 4
1 3
0 0


Jordan
标准形。
1 0 2
解:求 E A 的初等因子组,由于
1 1 E A 4 3
0 0

1
3
0
1 3 4
0 0
1 0 2
0
1
2
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E


1 1
0 2
1 1
2 1

1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
0 2
1 0
23
于是有
1 A 1
2
110
1 0
0 2
1 0
23 BC
A C H CC H 1 BH B 1 BH

A C H B H AC H 1 B H
六、(10
分)求矩阵
A



行 0
2 0 31
1
0
0 0 0 0 1 1 1
可求得:
1 0 0 P 1 1 0
1 1 1
1 0 0
P 1


1
1
0
2 1 1
1 B 1
2
0 1 1

C


1 0
对任意 k F ,有 k V1 ,且 k V2 ,因此知 k V1 V2 ,故知V1,V2 为 V 的子空 间。

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题

习题3-22设A,B均是正规矩阵,试证:A 习题3 22设A,B均是正规矩阵,试证:A 均是正规矩阵 相似的充要条件是A 与B相似的充要条件是A与B酉相似
因为A,B是正规矩阵,所以存在U,V∈ A,B是正规矩阵 存在U,V 证:因为A,B是正规矩阵,所以存在U,V∈Un×n 使得 A=Udiag(λ B=Vdiag(µ A=Udiag(λ1,…,λn)U*, B=Vdiag(µ1,…,µn)V*, , , 其中λ A,B的特征值集 其中λ1,…, λn,,µ1,…,µn分别是A,B的特征值集 , , 分别是A,B 合的任意排列. 合的任意排列. 必要性: 相似, ,i=1…,n, ,n,于是 必要性:若A与B相似,则λi=µi,i=1 ,n,于是 B=VU*AUV*=W*AW, W=UV*∈Un×n 即得证A 酉相似. 即得证A与B酉相似. 充分性:显然,因为,酉相似必然相似. 充分性:显然,因为,酉相似必然相似.
习题3 习题3-14
#3-14: =E,则存在 则存在U #3-14:若A∈Hm×n,A2=E,则存在U∈Un×n使得 U*AU=diag(Er,-En-r). 存在U 证:存在U∈Un×n使得 A=Udiag(λ A=Udiag(λ1,…,λn)U*, , (*) 其中λ 的特征值的任意排列 任意排列. 其中λ1,…,λn是A的特征值的任意排列. , ∵ A2=E=Udiag(1,…,1)U* 和 =E=Udiag(1, ,1)U =Udiag(λ Udiag(λ A2=Udiag(λ1,…,λn)U*Udiag(λ1,…,λn)U* , , =Udiag(λ =Udiag(λ12,…,λn2)U* , =1,即 1,i=1,…,n,. ∴ λi2=1,即λi=±1,i=1, ,n,. 1(设共有 取λ1,…,λn的排列使特征值1(设共有r个)全排在 , 的排列使特征值1(设共有r 前面, (*)式即给出所需答案 式即给出所需答案. 前面,则(*)式即给出所需答案.

研究生期末试题矩阵论a及答案

研究生期末试题矩阵论a及答案
计算 ,
,
可得谱分解式 (10分)
六、当 时, ;当 时,存在 与 使得 ,从而有
,(4分)
对于 ,有
,(7分)
对于 ,有
所以 是 中的矩阵范数.(10分)
七、解

, ,
.(10分)
八、容易求出矩阵A的最小多项式为 ,所以 ,于是
由此知 的内插多项式表示为
.(6分)
将矩阵A代入上式得
.
当 时, ,故
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为
,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵,判断该变换是否为可逆变换.
解:因 , ,故 为 上的变换, 不是 上的变换。(4分)
又对于线性空间 中任意矩阵 , , ,故为线性变换。(6分)
七、(10分)已知函数矩阵

其中 ,试求 , , , .
八、(10分)已知矩阵 ,写出矩阵函数 的Lagrange-Sylvester内插多项式表示,并计算 .
.
长 春 理 工 大 学
研 究 生 期 末 考 试标准答案及评分标准
科目名称:矩阵论命题人:姜志侠
适用专业:审核人:
开课学期:2012——2013学年第 一 学期□开卷√闭卷
长 春 理 工 大 学
研 究 生 期 末 考 试试 题
科目名称:矩 阵 论命题人:姜志侠
适用专业:理 工 科审核人:
开课学期:2013 ——2014 学年第 一 学期□开卷 √闭卷
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为 ,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵.

研究生矩阵论课后习题答案(全)习题二

研究生矩阵论课后习题答案(全)习题二

研究生矩阵论课后习题答案(全)习题二习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ??-??-+-??; (2)22220000000(1)00000λλλλλλ-?-??-??; (3)2222232321234353234421λλλλλλλλλλλλλλ??+--+-??+--+-+---??;(4)23014360220620101003312200λλλλλλλλλλλλλλ++?? -----??. 解:(1)对矩阵作初等变换23221311(1)10010000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-→-→?-++,则该矩阵为Smith 标准型为+)1(1λλλ;(2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ??--??-??;(3)对矩阵作初等变换故该矩阵的Smith 标准型为+--)1()1(112λλλ; (4)对矩阵作初等变换在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ-??-??. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ-----??;(2)1001000λαββλαλαββλα+-+?+??-+??;(3)100100015432λλλλ--?-??+??;(4)0012012012002000λλλλ+++??+??. 解:(1)该λ-矩阵的右上角的2阶子式为1,故而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ??++??--+--+??;(2)322322 2212122122λλλλλλλλλλ??-+--+??-+--??. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687------??;(2)452221111-----??;(3)3732524103---??--??;(4)111333222-----??;(5)***********????-????--??;(6)1234012300120001??. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ??-→??-+??,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-;(2)设该矩阵为A ,则310001000(1)E A λλ-→??-??,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ?? -→??-+??,故A 的初等因子为从而A 的Jordan 标准形为1000000i i -?? ; (4)设该矩阵为A ,则21000000E A λλλ??-→??,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000; (5)设该矩阵为A ,则210001000(1)E A λλλ??-→??+??,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001--??; (6)设该矩阵为A ,则1234012300120001E A λλλλλ-------??-=??--??-?? ,该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001. 5.设矩阵142034043A ??=--??,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη==-,100050005?? Λ=??,则1A P P -=Λ.,故4455144441453510354504535A P P -??-?=Λ=-. 6.设矩阵211212112A --=--??-??,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1 P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ--=-+→- ---,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ??=??.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x --= ?--??解之,得12100,111X X== ? ? ? ?-.其通解为1122k X k X +=1212k k k k ?? ?-??,其中21,k k 为任意常数.考虑方程组11212121211111122200021110002k k k k k k k k k -- -→-+----,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ??= ? ???.则相似变换矩阵123100[,,]010111P X X X ??==??-??.7.设矩阵102011010A ??=-??,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --??-+=--??.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++L ,则12121n n n n n A a A a A a A a I O ---+++++=L ,即123121()n n n n n A A a A a A a I a I ----++++=-L ,因为A 可逆,故(1)0nn a A =-≠,则9.设矩阵2113A -??=,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I -----++-=-==-.10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2n A 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-;(2)422575674-??----??;(3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a --?=??--??--??. 解:(1) 设311020111A -=??,则231110002002011100(2)I A λλλλλλ---=-→-----,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -=----??,则2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。

研究生课程-《矩阵分析》试题及答案

研究生课程-《矩阵分析》试题及答案

第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。

由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。

故1x ,2x ,3x 是线性无关的。

(2)用反证法。

假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。

所以,1x +2x +3x 不是σ的特征向量。

二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。

四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

B.
1 2 1
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E


1 1
0 2
1 1
2 1

1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
令 g n n2 2 1 n2 2 1 2 1
2 1 n2 1 2 1 1 n3 n4 1 3
由 Hamilton-Cayley 定理知 gA 0
et e 2t
a0 a0
a1 2a1
于是解得:
a0 a1
2et e2t

e 2t et
从而:
f A e At gA a0 E a1 A

数值分析及工程应用2017-2018-A卷

数值分析及工程应用2017-2018-A卷

华北电力大学研究生课程考试试题(A 卷)2017 ~2018 学年第 一 学期课程编号: 50920881 课程名称: 数值分析及工程应用年 级: 2017级研究生 开课单位: 数理学院 命题教师: 甄亚欣 考核方式: 闭卷考试 考试时间: 120 分钟 共 2 页所有试题答案写在答题纸上,答案写在试卷上无效。

一、填空题(每空3分,共30分)1. 计算球体积要使相对误差限为1%,则度量半径R 时允许的相对误差限为 。

2.计算61)−1.414≈。

在4位机上计算,利用以下二种计算格式,试问哪一种算法误差较小。

__ _。

(A(B3. 01()()()(),n f x x x x x x x =−−−(0,1,,)i x i n =互异且p n ≤,则01[,,,]p f x x x = 。

4. 设)5,4,3,2,1,0(=i x i 是互异节点, )(x l i 为Lagrange 插值基函数,则∑==++525)()12(i i i i x l x x。

5. 设{}0()k k x ϕ∞=是区间[]0,1上权函数为()x x ρ=的最高次项系数为1的正交多项式序列,其中0()1x ϕ=,则120()x x dx ϕ=⎰ 。

6. 用迭代格式,(),(,,,)+==+=1301231012n n x x x k ,求方程−−=3310x x 在[]1.8,2内的实根是 (收敛或发散)的。

7.()()()−=≈∑⎰111为奇数nk k k f f x n x dx A 是Newton-Cotes 求积公式,则=∑1nn kkk A x= 。

8. 设有矩阵⎥⎦⎤⎢⎣⎡−=4032A ,则1A =_______。

9. 以下算法实现了什么功能?(()()()1:1:0* 0,1,),(;输入,输出)p a n for k n p x p a k e n x n a i i p d==−=+⋯=−10. 对'(),()=−−+=2100201y y x x y 用Euler 方法求解,步长h 的取值范围为 ,才能使计算稳定。

应用统计-统计模拟题2

应用统计-统计模拟题2

1华北电力大学研究生课程考试试题(A 卷)一、判断题(判断对错并说明原因,每题4分,共20分)(1) 多元回归模型完成参数估计后需要做经典假设检验、统计检验和经济意义检验。

这三类检验的先后顺序无关紧要。

(2) 确认性因子分析可以做假设检验,探索性因子分析则不行,。

(3) 对于同一个研究对象,最短距离法和最长距离法得出的分类结果是一样的。

(4) 因子分析中公因子可以写成原始变量的线性组合。

(5) 结构方程模型中的结构模型也是一个回归模型,所以可以用最小二乘法求解。

二、(20分)对1960-1982年美国子鸡需求有如下回归:se : 0.116 0.025 ( ) t : ( ) ( ) -5.865 r 2=0.98其中:y-子鸡需求量,x 2-可支配收入,x 3-子鸡价格,se-各偏回归系数(包括截距项)OLS 估计值的标准误,t-各偏回归系数单零检验的t 统计量(1) 将缺数填入,你会不会拒绝x 2和x 3的偏回归系数为0的假设?α=0.05 (2) 解释系数0.452和-0.372的含义,并给出两个系数95%的置信区间。

(3) 建立ANOV A 表,并进行方程显著性检验,α=0.05三、(20分)根据信息基础设施的发展状况,对世界19个国家和地区进行聚类分析。

现分别用最长距离法和类平均法得到谱系图如图1、图2,对两种分类方法的类中心检验如表1和表2。

图1 最长距离法谱系图图2 类平均法谱系图表1 最长距离法分类的类中心检验.0000.0000.0000.0:868.491865.5284.18497.17:98.0063.0025.0116.0:ln 372.0ln 452.0033.2ˆln 2232==-=-+=∑i i i i e p F t R se x x y2表2 类平均法分类的类中心检验(1)分别对两种分类法的分析结果做出解释(2)你认为采用哪种分类好?为什么?如果你有更好的方法确定分类,请说明做法。

矩阵论第二版答案

矩阵论第二版答案

矩阵论第二版答案【篇一:华北电力大学硕士研究生课程考试试题(a卷)矩阵论答案】14)一、判断题(每小题2分,共10分)1. 方阵a 的任意一个特征值的代数重数不大于它的几何重数。

(x)见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n,后者小于等于n?,?,?,?m是线2. 设12性无关的向量,则 dim(span{?1,?2,?,?m})?m.正确,线性无关的向量张成一组基v,v3.如果12 是v 的线性v?vv12子空间,则也是的线性子空间.错误,按照线性子空间的定义进行验证。

a(?)4. n阶?-矩阵是可逆a(?)的充分必要条件是的秩是n .见书60页,需要要求矩阵的行列式是一个非零的数5. n阶实矩阵a是单纯矩阵的充分且必要条件是a的最小多项式没有重根. 见书90页。

二、填空题(每小题3分,共27分)?210???a??021?,??003(6)??则ea的jordan标准型为?e?0??0?21e200??0?,3?e?。

【篇二:矩阵论简明教程课后习题与答案解析】mite正定矩阵的充分必要条件是,存在hermite正定矩阵b,使得a=b2。

解:若a是hermit正定矩阵,则由定理1.24可知存在n阶酉矩阵u, 使得??1??uhau=?????2???, ?i﹥0,i=1, 2, ?,n. ????n??于是??1????2??ha=u?u ??????n????1??1?????h??2= u??uu?????????n???2????h?u ??n??令?1??b=u????2????h?u ?n??则a=b2.反之,当a=b2且b是hermit正定矩阵时,则因hermit 正定矩阵的乘积仍为hermit正定矩阵,故a是hermit 正定的.14. 设a?cn?n是hermite矩阵,则下列条件等价:(1)a是mermit半正定矩阵。

(2)a的特征值全为非负实数。

研究生矩阵论课后习题答案 全 习题一

研究生矩阵论课后习题答案 全 习题一
0
2.求下列线性空间的维数与一个基:
(1) Rn×n 中全体对称(反对称、上三角)矩阵构成的实数域 R 上的空间;
(2)第 1 题(4)中的空间;
(3)实数域 R 上由矩阵 A 的全体实系数多项式组成的空间,其中
⎡1 0 0 ⎤
A = ⎢⎢0 ⎢⎣0
ω 0
0 ω2
⎥ ⎥ ⎥⎦

=
−1 + 2
3i ,ω2 = ω,ω3 = 1
们的和不属于这个集合,因此此集合对向量的加法不封闭. (3)是. 封闭性显然成立.下面证明此集合满足线性空间的八个要求.
任取该集合中的三个元素,设为α = (a,b), β = (c, d ),γ = ( f , g) ,以及任意实
数 k, l ,则有 ① α ⊕ β = (a + c, b + d + ac) = β + α ; ② (α ⊕ β ) ⊕ γ = (a + c,b + d + ac) ⊕ γ
其中 k 为实数, f (x), h(x), d (x) 是实系数多项式.V1 中含有 A 的零多项式,为V1 的
零元素. f ( A) 有负元 − f ( A) ∈V1 .由于矩阵加法与数乘运算满足其它各条,故V1 关
于矩阵加法与数乘运算构成实数域上的线性空间. (2)否.例如以那个已知向量为对角线的任意平行四边形的两个邻边向量,它
i=1 j=i
关,故它们是 Rn×n 中全体上三角矩阵所构成的线性空间的一组基,该线性空间的
维数是 n(n +1) . 2
(2)数 1 是该空间的零元素,于是非零元素 2 是线性无关的,且对于任一正
实数 a ,有 a = 2log2 a = log2 a o 2 ,即 R+中任意元素均可由 2 线性表示,所以 2 是

华北电力大学研究生课程考试试题(AB卷)

华北电力大学研究生课程考试试题(AB卷)

华北电力大学研究生课程考试试题(A/B卷)
20 ~20 学年第学期
课程编号:课程名称:
年级:开课单位:命题教师:
考核方式:考试时间:分钟共页
须知:
1、请用A4纸打印试题,包括论文题目、大作业题目、或能说明考试内容的描述,可续页。

2、命题教师必须于考前一周将试题交各院系,由各院系统一交研究生院培养办备案。

学位课要求
A、B卷,百分制记分。

3、采用课程论文、大作业、完成课程规定的项目等课下考核方式的课程,请在“研究生考试考场
记录表”中注明,于提交书面成绩单时一并交各院系。

4、“考核方式”栏为开卷/闭卷、笔试/口试、课程论文、大作业、完成课程规定的项目,请标写清
楚。

5、考前到各院系领取专用答题纸。

共页第页。

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

矩阵论试题(2011级硕士试题)一、(10分)设函数矩阵 ()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin 求:()⎰tdt t A 0和(()⎰20t dt t A )'。

解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 00sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A ;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。

解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-== ()321332αααβασ++-== 因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。

()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛133223*********1111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。

硕士研究生课程考试试题A

硕士研究生课程考试试题A

华北电力大学硕士研究生课程考试试题(A 卷)2012~2013学年第一学期课程编号:50920021 课程名称:矩阵论 年 级:2012 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数:3页一、判断题(每小题1分,共12分)(1)若,1A ≤)(ρ则E+A 必定可逆。

(2)A 与T A 一定相似。

(3)可逆矩阵序列的极限矩阵若存在必定可逆。

(4)欧氏空间上的正交变换在一组基下的矩阵一定是正交矩阵。

(5)矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=7310152110a 4a 0241A 是否可逆依赖a 的取值。

(6)记∞•是矩阵的无穷范数,则.e e A A ∞≤∞(7)f 是线性空间V 上的一个线性变换,λ是f 的一个特征值,则f 的相应于λ的特征向量的全体构成V 的一个子空间。

(8)记n 阶可逆方阵⎪⎪⎭⎫ ⎝⎛=21A A A ,则。

2121kerA kerA kerA kerA ⊕=+ (9)矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛125.013.0-5.065.04.01.01.032.02.01.04.01可逆且与对角阵相似。

(10)m m m n n n m m n n B A B A ⨯⨯⨯⨯=⊗。

(11)B A ,为两个同阶方阵,则A B A e e e B +⋅=。

(12)⎪⎪⎪⎭⎫ ⎝⎛100001 是⎪⎪⎭⎫ ⎝⎛100001的一个减号逆。

二、填空题(每小题3分,共24分)(1)⎪⎪⎪⎭⎫ ⎝⎛+-=)1ln(1e 1-n 2n n sin A 1n n n )(,则=∞→)(n n A lim ( )。

(2)⎪⎪⎪⎭⎫ ⎝⎛=1-00520761A ,则=234A -2A -A ( )。

(3)已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=11281256862,214142421A B ,则=⊗)(B A tr ( )。

(4)()(){}T T =02-1423span V 1,,,,,,则⊥1V =( )。

研究生矩阵论课后习题答案(全)习题三

研究生矩阵论课后习题答案(全)习题三

习题三1.证明下列问题:(1)若矩阵序列{}m A 收敛于A ,则{}Tm A 收敛于T A ,{}m A 收敛于A ;(2)若方阵级数∑∞=0m m m A c 收敛,则∑∑∞=∞==⎪⎭⎫ ⎝⎛00)(m mT m Tm m m A c A c .证明:(1)设矩阵,,2,1,)()( ==⨯m a A n n m ij m则,)()(n n m ji Tm a A ⨯=,)()(n n m ij m a A ⨯=,,2,1 =m设,)(n n ij a A ⨯=则n n ji T a A ⨯=)(,,)(n n ij a A ⨯=若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有ij m ij m a a =∞→)(lim ,则ji m ji m a a =∞→)(lim ,ij m ij m a a =∞→)(lim ,n j i ,,2,1, =,故{}T m A 收敛于TA ,{}m A 收敛于A .(2)设方阵级数∑∞=0m m mA c的部分和序列为,,,,21m S S S ,其中mm m A c A c c S +++= 10.若∑∞=0m m mA c收敛,设其和为S ,即S A cm m m=∑∞=0,或S S m m =∞→lim ,则T Tm m S S =∞→lim .而级数∑∞=0)(m mTmA c的部分和即为TmS ,故级数∑∞=0)(m m T m A c 收敛,且其和为T S ,即∑∑∞=∞==⎪⎭⎫ ⎝⎛00)(m m T m Tm m m A c A c .2.已知方阵序列{}m A 收敛于A ,且{}1-m A ,1-A 都存在,证明:(1)A A m m =∞→lim ;(2){}11lim --∞→=A A m m .证明:设矩阵,,2,1,)()( ==⨯m a A n n m ij m ,)(n n ij a A ⨯=若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有ij m ij m a a =∞→)(lim .(1) 由于对任意的n j j j ,,,21 ,有,lim )(k kkj m kj m a a =∞→ n k ,,2,1 =, 故∑-∞→nn n j j j m nj m j m j j j j m a a a 2121)()(2)(1)()1(limτ=∑-nn n j j j nj j j j j j a a a 21212121)()1(τ,而∑-=nn n j j j m nj m j m j j j j m a a a A 2121)()(2)(1)()1(τ,∑-=nn n j j j nj j j j j j a a a A 21212121)()1(τ,故A A m m =∞→lim .(2) 因为n n m ij m m A A A ⨯-=)(1)(1,n n ij A AA ⨯-=)(11. 其中)(m ij A ,ij A 分别为矩阵m A 与A 的代数余子式.与(1)类似可证明对任意的n j i ,,2,1, =,有ij m ij m A A =∞→)(lim ,结合A A m m =∞→lim ,有n n m ij m m A A ⨯∞→)(1lim)(=n n ij A A⨯)(1, 即{}11lim --∞→=A A m m .3.设函数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321sin cos sin )(t t e t t t t t t A t , 其中0≠t ,计算),(),(lim 0t A dt d t A t →),(22t A dtd ,)(t A dt d)(t A dt d . 解:根据函数矩阵的极限与导数的概念与计算方法,有(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=→→→→→→→→→→001011010lim 0lim 1lim lim lim sin limlim cos lim sin lim )(lim 300200000t t e ttt ttt A t t t t tt t t t t t ;(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''''''''=22323002sin cos 1sin cos )(01)()()sin ()(cos )(sin )(t t e t t t t t tt t e t t t t t t A dt dt t ; (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==t e t t t t t t t A dtd dt d t A dt d t 6002cos 2sin )2(0cos sin ))(()(222;(4)=)(t A dt d '3201sin cos sin t t e tt t t tt)2cos 2(sin )sin cos 2(]1)cos (sin sin 3[32t t t t t t t t t t t t t e t +--+--++=(5))(t A dt d =22302sin cos 1sin cos t t e t t t t t tt -- )sin cos (sin 3cos 32t t t t t e t t -+=.4.设函数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-00302)(222x e e x xe e x A x xx x , 计算⎰10)(dx x A 和⎪⎭⎫ ⎝⎛⎰20)(x dt t A dx d . 解:根据函数矩阵积分变限积分函数的导数的概念与计算方法,有(1)⎰10)(dx x A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎰⎰⎰⎰⎰⎰-0030210102110210102xdx dx e dxe dx x dxxe dxe xx x x ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=-0023011311)1(21212e e e ;(2)⎪⎭⎫ ⎝⎛⎰20)(x dt t A dx d =)(22x xA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-00302224222222x e e x ex e x x x x. 5.设,))(,),(),((21Tn t y t y t y y =A 为n 阶常数对称矩阵,Ay y y f T =)(,证明:(1)dt dy A y dt df T 2=; (2)dtdy y y dt d T222=. 证明:(1)y A y Ay y Ay y dtdfT T T '+'='=)()(y A y Ay y T T T '+'=))((y A y T '=2dtdyA y T 2=,(2)dtdy y yy dt d y dt d TT 2)(22==. 6.证明关于迹的下列公式:(1)X X X tr dX d XX tr dX d T T 2)()(==; (2)T T T B B X tr dX d BX tr dX d ==)()(;(3)X A A AX X tr dXd T T )()(+=.其中m m ij m n ij n m ij a A b B x X ⨯⨯⨯===)(,)()(.证明:(1)因为∑∑====mi nj ij TTx X X tr XX tr 112)()(,而ij m i n j ij ij x x x 2)(112=∂∂∑∑==, 故X X X tr dXd XX tr dX d T T 2)()(== (2)因为n n mk kj ik x b BX ⨯=∑=)(1,则∑∑====n j mk kj jk TTx b B X tr BX tr 11)()(,而ji n j mk kj jk ij b x b x =∂∂∑∑==)(11, 故T T T B B X tr dXd BX tr dX d ==)()(. (3) 因为,212221212111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n m m Tx x x x x x x x x X⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========mk kn mk m k k mk mk k mk mk kn k mk k kmk k k mk kn k mk k k mk k k x a xax a x a x axa x a x a x a AX 112111212211211121111故)()()()(11ln 111111∑∑∑∑∑∑======++++=m l mk kn lk m l m k kj lk lj m l m k k lk l Tx a x x a x x a x AX X tr 则))(()(11∑∑==∂∂=∂∂m l mk kj lk lj ij Tij x a x x AX X tr x )]([111∑∑∑===∂∂+∂∂=mk kj lk ij lj mk kj lk ij ljml x a x x x a x x ∑∑==+=ml lj li mk kj ik x a x a 11故X A A X A AX AX X tr dXdT T T )()(+=+=. 7.证明:T T T T T T dXdb a dX da b b a dX d +=)(, 其中)(),(X b X a 为向量函数.证明:设Tm T m X b X b X b X b X a X a X a X a ))(,),(),(()(,))(,),(),(()(2121 ==,则∑==mi i i TX b X a X b X a 1)()()()(,故它是X 的数量函数,设)()()(X b X a X f T =,有),,,())()((21n TTx f x f x f X b X a dXd ∂∂∂∂∂∂= ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∑∑==m i n i i i n i m i i i i i x X b X a X b x X a x X b X a X b x X a 1111)()()()(,,)()()()( ∑∑∑===∂∂∂∂∂∂=mi i ni m i i i mi i i X b x X a X b x X a X b x X a 11211))()(,,)()(,)()(( ))()(,,)()(,)()((11211∑∑∑===∂∂∂∂∂∂+mi n i i m i i i mi i i x X b X a x X b X a x X b X aTT T TdXdb a dX da b +=. 8.在2R 中将向量Tx x ),(21表示成平面直角坐标系21,x x 中的点Tx x ),(21,分别画出下列不等式决定的向量Tx x x ),(21=全体所对应的几何图形:(1) ,11≤x (2) ,12≤x(3) 1≤∞x .解:根据,1211≤+=x x x ,122212≤+=x x x{}1,max 21≤=∞x x x ,作图如下:9.证明对任何nC y x ∈,,总有)(212222y x y x x y y x T T --+=+. 证明:因为y y x y y x x x y x y x yx T T T T T +++=++=+)()(22y y x y y x x x y x y x y x T T T T T +--=--=-)()(22故x y y x y x y x T T +=--+)(212222 10.证明:对任意的nC x ∈,有12x x x≤≤∞.证明:设Tn x x x x ),,,(21 =,则{}nn n x x x x x x x xx x x x +++=+++==∞21122221221,,,,,max由于{}22122221221)(),,,(max n nn x x x x x x x x x +++≤+++≤ ,故21222x xx≤≤∞,即12x x x≤≤∞.11.设n a a a , ,,21是正实数,证明:对任意nT n C x x x X ∈=),,(21, ,2112⎪⎭⎫ ⎝⎛=∑=ni i i x a X是nC 中的向量范数.证明:因为(1),02112≥⎪⎭⎫ ⎝⎛=∑=ni i i x a X 且00=⇔=X X ; (2)X k x a k x a k kx a kX ni i i ni i i ni i i =⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∑∑∑===2112211222112;(3)对于nT n C y y y Y ∈=),,(21, ,T n n y x y x y x Y X ),,(2211+++=+, ,则21212122)(2Y X Y X y a x a y x a YX ni ii ni ii ni ii i +=++≤+=+∑∑∑===故Y X Y X +≤+.因此2112⎪⎭⎫⎝⎛=∑=ni i i x a X 是nC 中的向量范数. 12.证明:ij nj i a n A ≤≤=,1m ax是矩阵n n ij a A ⨯=)(的范数,并且与向量的1-范数是相容的.证明:因为(1) 0m ax ,1≥=≤≤ij nj i a n A ,且O A =⇔0=A ;(2) A k a n k ka n kA ij nj i ij nj i =≥=≤≤≤≤,1,1m ax m ax ;(3) B A b n a n b a n B A ij nj i ij nj i ij ij nj i +=+≥+=+≤≤≤≤≤≤,1,1,1m ax m ax m ax(4)设Tn x x x X ),,,(21 =,则T nj j nj n j j j n j j j x a x a x a AX ),,,(11211∑∑∑==== ,故∑∑∑===+++=nj j njnj j jnj j jx ax ax aAX 11111∑∑∑=≤≤=≤≤=≤≤+++≤nj j nj nj nj j j nj nj jjnj x a x a xa 11121111max max max11,1max X A xa n nj jijnj i =≤∑=≤≤因此ij nj i a n A ≤≤=,1m ax 是与向量的1-范数相容的矩阵范数.13.设nn CA ⨯∈,且A 可逆,证明:11--≥AA .证明:由于I AA =-1,1=I ,则111--≤==A A AA I ,故11--≥AA .14.设nn CA ⨯∈,且,1<A 证明:A I -可逆,而且有(1)AA I -≤--11)(1;(2)AA I A I -≤---1)(1.证明:(1)由于A A I I A I 11)()(---+=-,故A A I I A A I I A I 111)()()(----+≤-+≤-,即 AA I -≤--11)(1.(2)因为A I A I =-+)(,两边右乘1)(-+A I ,可得11)()(--+=+-A I A A I I ,左乘A ,整理得11)()(--+-=+A I AA A A I A ,则111)()()(---++≤+-=+A I A A A A I AA A A I A ,即 AA I A I -≤---1)(1.15.设C l k CB A nn ∈∈⨯,,,证明:(1)Al k klkA ee e )(+=,特别地A A e e --=1)(;(2)当BA AB =时,BA AB BA ee e e e +==;(3)A e Ae e dtd At At At==;(4)当BA AB =时,B A B A B A sin cos cos sin )sin(±=±. 证明:(1)∑∑∑∞==-∞=+⎥⎦⎤⎢⎣⎡=+=000)()()(!1!)(n n m m n m m n n n n Al k lA kA C n n A l k e∑∑∑∑∞=∞=∞=∞=+++=+=-0000)()(!!)!()!(1)()()!(1m l l m m l lm m m l lA kA m l m l m l lA kA C m l l m nlA kA l l m m m l l m e e kA l kA m lA kA m l =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==∑∑∑∑∞=∞=∞=∞=0000)(!1)(!1)()(!!1.又因为A A A A O e e e e I --+===)(,故A A e e --=1)(.(2)当BA AB =时,二项式公式∑===+nm mm n m n nB AC B A 0)(成立,故∑∑∑∞==-∞=+⎪⎭⎫ ⎝⎛=+=000!1)(!1n n m m m n m n n nBA B A C n B A n e∑∑∑∑∞=∞=∞=∞=+=+=-0000!!1)!(1m l m l m l ml m m l B A m l B A C m l l m nBA m m l l e eB m A l =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=∑∑∞=∞=00!1!1同理,有A B l l m m BA e e A lB m e=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∞=∞=+00!1!1, 故B A A B B A e e e e e +==.(3)由于幂级数∑∞=0!1n nn t A n 对给定的矩阵A ,以及任意的t 都是绝对收敛的,且对任意的t 都是一致收敛的,因此科可对此幂级数逐项求导,则A l ll n n n n n n At Ae l t A A n t A t A n dt d e dt d ==-=⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=-∞=0110!)!1(!1, 同理,有A e A l t A e dt d Al ll At =⎪⎪⎭⎫ ⎝⎛=∑∞=0! 故A e Ae e dtd At At At==. (4) 因为-+-++=432!41!31!21A iA A iA I e iA )!51!31()!41!21(5342 -+-+-+-=A A A i A A IA i A sin cos +=故)(21sin iA iAe e iA --=.又当BA AB =时,B A A B B A e e e e e +==,则()()iB iA iBiA B A i B A i e e e e i e e i B A --+-+-=-=+2121)sin()()( )]sin )(cos sin (cos )sin )(cos sin [(cos 21B i B A i A B i B A i A i---++= B A B A sin cos cos sin += 同理,可得B A B A B A sin cos cos sin )sin(-=-16.求下列三类矩阵的矩阵函数2,sin ,cos A e A A (1)当A 为幂等矩阵(A A =2)时;(2)当A 为对合矩阵(I A =2)时;(3)当A 为幂零矩阵(O A =2)时.解:(1) A A =2,设矩阵A 的秩为r ,则A 的特征值为1或0, A 可对角化为J O O O I AP P r =⎥⎦⎤⎢⎣⎡=-1,则11001sin 1sin sin sin --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P P JP P AA PJP )1(sin )1(sin 1==-,11111cos 1cos cos cos --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P P JP P A110011cos 11cos 1111--⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=P P P PA I PJP I )11(cos )11(cos 1-+=-+=-111122--⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P e e P P Pe e J A1100111111--⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=P e e P P PA e I PJP e I )1()1(1-+=-+=-(2) 当I A =2时,矩阵A 也可对角化,A 的特征值为1或1-, A 可对角化为J AP P =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--=-11111 ,其中1有m 个. 则111sin 1sin 1sin 1sin sin sin --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--==P P JP P AA PJP )1(sin )1(sin 1==-111cos 1cos 1cos 1cos cos cos --⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==P P JP P A I )1(cos =eI P e e e e P P Pe e J A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==--1122(3)当O A =2时, A 的特征值均为0,则存在可逆矩阵P ,使得11,--==PJP A J AP P ,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m J J J 1,又O A =2,则O P PJ A ==-122,于是O J J J m =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2212故Jordan 块k J 的阶数最多为2,不妨设0=k J ),,1(r k =,B J k =⎥⎦⎤⎢⎣⎡=0010),,1(m r k +=,即 ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B B J 0则1=k iJ e ,1=-k iJ e ),,1(r k =;⎥⎦⎤⎢⎣⎡=101i ekiJ ,⎥⎦⎤⎢⎣⎡-=-101i e k iJ ),,1(m r k +=. 故=--k k iJ iJ e e 0),,1(r k =,B ii e e k k iJ iJ 210020=⎥⎦⎤⎢⎣⎡=--),,1(m r k +=, 则2=+-k k iJ iJ e e ),,1(r k =,I e e k k iJ iJ 22002=⎥⎦⎤⎢⎣⎡=+-),,1(m r k +=, 因此J iB B i e e iJiJ 210021=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-- ,Ie e iJiJ 22222=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=+- , 所以A PJP i i P e e P i e e i A iJ iJ iA iA =⋅=-=-=----11)2(21)(21)(21sin , I PIP P e e P e e A iJ iJ iA iA =⋅=+=+=----11221)(21)(21cos ,I I e e O A ==2.17.若矩阵A 的特征值的实部全为负,则O e At t =+∞→lim .证明: 设A 的特征值为0,1,<-=+=i i i i a j j b a λ,则存在可逆矩阵P ,使得11,--==PJP A J AP P ,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m J J J 1,i n i i i J ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλ11 则1121--⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==P e e e P PPe et J tJ tJ Jt Atm, 其中⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=-t tt t t i n tttJ e tete e e n t tee ei i 11111111)!1(λλλλλλλ又)sin (cos lim lim lim t b j t b e e e i i t a t t jb t a t t t i i i i +==∞→+∞→∞→λ,且0<i a ,故0lim =∞→tt i eλ,因此O e t J t i =∞→lim ,则O e At t =+∞→lim .18.计算Ate 和At sin ,其中:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110010002A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=010101010A ; (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6116100010A .解:(1)设,21=J ⎥⎦⎤⎢⎣⎡=11012J ,则⎥⎦⎤⎢⎣⎡=21J JA . 由于⎥⎦⎤⎢⎣⎡=t J tAt e e e 22,⎥⎦⎤⎢⎣⎡=t J t At 2sin 2sin sin , 且⎥⎦⎤⎢⎣⎡=t t ttJ e te e e02,⎥⎦⎤⎢⎣⎡=t t t tt J sin cos 0sin sin 2,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t tt tAte te e e e 000002,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t t t t tAt sin cos 00sin 0002sin sin . (2)该矩阵的特征多项式为,11101)(3λλλλλϕ=---=最小多项式为3)(λλ=m .19.计算下列矩阵函数:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221131122A ,求100A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=735946524A ,求Ae ;(3)⎥⎦⎤⎢⎣⎡-=4410A ,求4arcsin A; (4)⎥⎦⎤⎢⎣⎡=48816A ,求1)(-+A I 及21A 20.证明:I A A =+22cos sin ,A iI A e e =+π2,其中A 为任意方阵.证明:(1) 因为)(21sin iA iA e e i A --=,)(21cos iA iA e e A -+=, 故)2(41)(41sin 2222I e e e e A iA iA iA iA -+-=--=--,)2(41)(41cos 2222I e e e e A iA iA iA iA ++=+=--, 则I A A =+22cos sin .(2)因为矩阵iI π2的特征值均为i π2,故存在可逆矩阵P ,使得I P P P e e P e i i iI=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--1122211 πππ则A A iI A iI A e I e e e e ===+ππ2221.若A 为反实对称(反Hermite )矩阵,则Ae 为实正交(酉)矩阵.证明: 因为∑∞==0!k k A k A e ,又∑∑===⎪⎪⎭⎫ ⎝⎛nk k n k k k A k A 0**0!)(!. 故**)(A A e e =.当A 为反实对称,即A A T-=时,I e e e e e e e O A A A A A T A T====-)(,故Ae 为实正交矩阵;当A 为反Hermite 矩阵,即A A -=*时,I e e e e e e e O A A A A A A ====-**)(,故Ae 为酉矩阵.22.若A 为Hermite 矩阵,则Aie 是酉矩阵,并说明当1=n 时此结论的意义.证明:因为A A =*,故Ai Ai Ai e e e -==*)(*)(,则I e e e e Ai Ai Ai Ai ==-*)(,故Aie 是酉矩阵.当A 为一阶Hermite 矩阵时, A 为一实数,设a A =,则上述命题为1=-ai ai e e23.将下列矩阵函数表示成矩阵幂级数,并说明对A 的限制: (1)shA ,(2))ln(A I +,(3)A arctan 解:(1) ∑∞=++=012)!12(1n n A n shA , n n C A ⨯∈∀; (2) ∑∞=--=+111)1(4)ln(n nn A nA I ,1<A ; (3) ∑∞=++-=112121)1(arctan n n nA n A ,1<A . 24.设nn C A ⨯∈,证明:(1))(A tr Ae e=,(2)AA ee ≤.证明:(1)设11,--==PJP A J AP P ,其中J 为若当标准形,则1121--⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==P e e e P PPe e m J J J J A, 其中⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111111λλλe e e e iJ, 则mJ J J JJAe e e e Pe P e211===-trA J J J e e e e e n m ===++λλ 121.(2)设∑==Nk kN k A S 0!,则∑∑∑===≤≤=Nk kN k k Nk k NA k A k k A S 000!1!1!, 因为∑∞==!k kAk A e ,对上式两边取极限,得 Ak kAeA k e≤≤∑∞=0!1.25.设nn CA ⨯∈,且A 可逆,若λ是A 的任一特征值,则2211A A ≤≤-λ.证明:因为2)(A A =≤ρλ,故2A ≤λ.又对任意的nC X ∈,有2212122AX A AX A IXX--≤==,所以2212AX AX ≤-.设α是矩阵A 的特征值λ对应的特征向量,即λαα=A ,则222212αλλααα==≤-A A,故有λ≤-211A .因此2211A A ≤≤-λ.。

矩阵论考试题和答案(详细)

矩阵论考试题和答案(详细)
1 1 1 1
因此 B = Udiag (λ ,L , λ )U = Vdiag (λ ,L , λ )V H = E 。
H
1 3 1
1 3 n
1 3 1
1 3 n
-------------4
(2)因为 A ≥ 0 ,所以 A 的特征值均非负。设 A 的特征值为 λ1 ,L , λn ,且 λ1 ≥ L ≥ λn ≥ 0 , 则 A2 的特征值为 λ12 ,L , λn2 ,于是
AT Ax = AT b
的解, 所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 AT A 非奇异, 即 rank ( AT A) = n 。因为 rank ( AT A) = rank ( A) ,所以不相容线性方程组 Ax = b 的最 小二乘解唯一当且仅当 A 列满秩。 -----------4
记 P = U H V = ( pij ) ,则 diag (λ1 ,L , λn ) P = Pdiag (λ1 ,L , λn ) ,从而
λi pij = λ j pij (i, j = 1,L , n) ,
于是
1 1
λi3 pij = λ j3 pij (i, j = 1,L , n) ,

diag (λ13 ,L , λn3 ) P = Pdiag (λ13 ,L , λn3 ) ,
A + = C T ( CC
T
-----------------5
1 4 0 1 − 4
)−1 ( B T B )−1 B T
1 − 4 = 0 1 4
0 1 0
---------5
1 (2)因为 AA + b = 2 ≠ b ; 所以不相容的。 -----------3 2 1 4 -----------3 其极小最小二乘通解为 x = A + b = 2 1 − 4 (3)因为 x 是不相容线性方程组 Ax = b 的最小二乘解当且仅 x 是如下相容线性方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2)
见书 61-63 页,将矩阵做变 换即得 (8)设
'.
.4
00.2.5


1 0 0
lim
n
An
0 0
0 0
0 0

'.
.
见书 109 页,可将 A 对角化 再计算即得。
2 3
(9)
4
5 在基
1 1 1 2 0 0 0 0
0
0 ,
0
0 , 1
具体解法如下。
证明: A E3 +E3 BT
非奇异。
显 然 , B 的 特 征 值 为
2, 1, 2 , 下 证 明 :
2, 1, 2 不 是 A 的 特 征
值: (1) 方法 1:用圆盘定
理。A 的三个行圆盘分别 是
'.
.
B(12,4), B(7,2), B(8,1)
,
2, 1, 2 都不在
.
者小于等于 n
2. 设 1,2, ,m 是线
性无关的向量,则
dim(span{1,2, ,m}) m
. 正确,线性无关的向量张成 一组基 3.如果 V1,V2 是 V 的线性
子 空 间 , 则 V1 V2 也 是 V
'.
.
的线性子空间. 错误,按照线性子空间的定 义进行验证。
4. n 阶-矩阵 A() 是可逆
特征值。 方法 3:直接写出
A E3 +E3 BT ,再证明
它非奇异。
'.
.
四(8 分)、设 3 维内积空间
在基 1,2 ,3 下的矩

2 1 1
A
1 1
5 0
0 3
。求
span{1+2 +3}
的正交补空间。
'.
.
见书 28 页,内积空间在基 下的矩阵是指度量矩阵。按 照内积定义给出正交补空 间中元素应该满足的条件。 然后求解。 解:设
'.
.
五(10 分)、设 5 阶实对称
矩阵 A 满足
( A 3E)2( A 5E)3 0 ,
rank( A 3E) 1,求 A
的谱半径和 Frobenius 范
数 A F。
注意 A 满足的方程说明那 个式子是零化多项式,并不
'.
.
是最小多项式,也不是特征 多项式。只说明 A 的特征根 为 3 和-5,再根据后面的条 件才知道有 4 个 3 和 1 个-5. 然后根据范数定义得到结 果。 解:因为实对称矩阵 A 是 5 阶矩阵,且满足
.
2 1 0
A
0
2
1
,
(6) 0 0 3 则
e A 的 Jordan 标准型为
e2 1 0
0
e2
0
,
0 0 e3 。
'.
.
eA
首先写出
然后对于
若当标准型要求非对角元
部分为 1.
3 0
(7)
0 0
0
3
的 Smith 标准型为
1
0
2
'.
.
1 0
0
0 0
3
0
(
0
3)(
( A 3E)2( A 5E)3 0 ,
的 充 分 必 要 条 件 是 A( ) 的秩是 n .
见书 60 页,需要要求矩阵 的行列式是一个非零的数
5. n 阶实矩阵 A 是单纯矩
阵的充分且必要条件是 A
'.
.
的最小多项式没有重根. 见书 90 页。
题1 2 3 4 5 号 答×√××√ 案
二、填空题(每小题 3 分, 共 27 分)
'.
'.
.
(10)设
4 2 3
A
2 5
4 3
3 7


A
15。
见书 100 页,计算每行的绝
对值的和。
(11)
'.
sin 2x
lim
x0
ln(1 x sin x
)
.
1 cos x
e2x 1 2x 3
2 0
=
0
3

对矩阵中的每个元素求极 限。 12 设
'.
.
A Rmn , B R pq ,C Rmq
是已知矩阵,则矩阵方程
AXB C 的极小
范数最小二乘解是
X (A BT )+C
见书 113-115 页,将矩阵方 程拉直,再用广义逆的定义 去算。
(12)若 n 阶方阵 A 满足
'.
.
A3 0 ,则
cos A
E 1 A2 2

见书 121 页, A3 0 ,所
以后面的项都为零。
(13)方阵 A 的特征多项
'.
.
阶和 1 个 2 阶,3 和 5 都只
有 1 阶的若当块。
三(7 分)、设
12 1 3 2 0 0
1 0 2
A
1 0
7 1
18, B
0 2
1 0
2 2
,C
2 1
2 4
5 0
证明 AX XB C 有唯一
解。 见书 114 页,本题需要验证 A 和-B 没有相同的特征值,
'.
.
3, 2
1
下的坐标为 (1,1, 2,1)T 。
见书 12 页,自然基下坐标
为(2,3,4,-5)T,再写出
'.
.
过渡矩阵A,坐标即 A 的逆 乘以自然基下坐标。对于本 题来说。由于第一行实际上 只和前两个基有关,第二行 只和后两个基有关。因此不 用那么麻烦,只需要计算 (1,1)x+(1,2)y=(2,3) 就可得解为 1,1.再解(1, -3)x+(2,1)y=(4,-5) 就可以得解为 2,1.整理一 下即得坐标。
B(12,4) B(7,2) B(8,1)
中,因此 A 与 B 没有相同 的特征值,从而 0 不是
A E3 +E3 BT 的 特 征
值,故 A E3 +E3 BT 可
'.
.
逆,从而
AX XB C 有唯一解。
(2) 方法 2:求出 A 的
特征多项式,再证明
2, 1, 2 不是 A 的


'.
.
( 2)3( 3)3( 5) ,最
小多项式是
( 2)2( 3)( 5) ,则
A 的 Jordan 标准形是
diag(J (2,1), J (2, 2),3E3,5) 特征多项式决定了 A 的阶 数以及各个特征值的重根 数,即有 3 个 2,3 个 3,1 个 5.最小多项式决定了若 当块的大小,如 2 有 1 个 1
.
华北电力大学硕士研究生课程考试试题 (A 卷)(2013-2014)
一、判断题(每小题 2 分, 共 10 分) 1. 方阵 A 的任意一个特 征值的代数重数不大于它 的几何重数。(X) 见书 52 页,代数重数指特 征多项式中特征值的重数, 几何重数指不变子空间的 维数,前者加起来为 n,后
'.
=x11+x22 +x33 (span{1+2 +3})

则 (x1, x2 , x3)T 满 足 方

'.
.
(x1, x2 , x3 ) A(1,1,1)T 0
2x1+6x2 +2x3=0
它的基础解系为
1=(-3,1,0)T ,2 =(0,1, 3)T
, 因此
(span{1+2 +3}) =span{31+2,2 33}
相关文档
最新文档