圆锥的体积练习课(2).22页PPT

合集下载

北师大版六年级数学下册第一单元圆锥的体积复习课件 (1)

 北师大版六年级数学下册第一单元圆锥的体积复习课件 (1)
4、一个圆柱和圆锥的体积和高都相等,已知圆锥的底面积是36平方厘米, 圆柱的底面积是多少平方厘米? 5、一个圆柱和圆锥的体积和底面积都相等,圆锥的高是36厘米,圆柱的 高是多少厘米?
6、一个圆柱和圆锥的体积和底面积都相等,圆柱的高是36厘米,那么, 圆锥的高是多少厘米?
旋转问题
一个直角三角形(下图),以一条直角边为轴旋转一周,求旋转后的体积?
削圆锥
3
圆锥体积最大时与圆柱的关系是什么? 等底等高 削去的体积是多少立方分米?
答:圆锥的体积最大是 立方分米。 答:削去的体积是 立方分米?
削圆锥
4、把一个棱长为6分米的正方体木块削成一个最大的圆锥,这 个圆锥的体积是多少立方分米?削去了多少立方分米?
切圆锥
1、一个圆锥的底面直径是8厘米,高12厘米,沿底面直径将它切成两个完 全相等的部分,表面积增加多少平方厘米? 2、一个圆锥的底面半径是8厘米,高12厘米,沿底面直径将它切成两个完 全相等的部分,表面积增加多少平方厘米? 3、把一个圆锥高3厘米,沿高直切成两个完全相等的两个半圆锥,表面积 增加了18平方厘米,圆锥的底面直径是多少厘米? 4、把一个圆锥高6厘米,沿高直切成两个完全相等的两个半圆锥,表面积 增加了36平方厘米,圆锥的底面半径是多少厘米?圆锥体积是多少?
1.底面积:
2.体积: 3.质量:
圆柱和圆锥的关系 右图中,圆锥的体积与哪个圆柱的体积相等?说说你是怎么想的。
15
6 cm
6cm
2
2
cm
2
cm
2
cm
2
cm
2
cm
2
①②③④
1、等底等高的圆柱和圆锥,圆柱体积是圆锥体积的3倍, 圆锥体积是圆柱体积的 。

北师大版六年级下册《圆锥的体积练习课》优秀ppt教学课件

北师大版六年级下册《圆锥的体积练习课》优秀ppt教学课件
(米,圆锥体体 积是( 2)立方厘米。
应用题
• 一个圆锥形煤堆,高3米,底面 周长12.56米,如每立方米的煤 重1.4吨,这堆煤重多少吨?
圆锥的体积练习课
教学目标
• 1.通过练习,进一步理解和掌握圆锥体积公 式,能运用公式正确迅速地计算圆锥的体 积。
• 2.通过练习,进一步深刻理解圆柱和圆锥体 积之间的关系。
• 3.进一步培养将所学知识运用和服务于生活 的能力。
口答
1.一个圆柱体积是27立方分米,与它等 底等高的圆锥体积是( 9 )立方分米.
• 3.一个圆锥的底面周长是18.84米,高是 4米,它的体积是多少?
判断题
1.圆柱体积是圆锥体积的3倍。 (× )
2.一个圆柱木块削成一个最大的圆锥, 削去了圆柱体积的 2 。 (√ )
3
1 3
3分.一米个,圆体锥积,1底立面方积分是米13。平(方分√ )米,高是
27
填空
(1)一个圆锥体的体积是a立方分米, 和它等底等高的圆柱体体积是(3 a )立方 分米。
2.一个圆锥体积是150立方厘米,与它等 底等高的圆柱体积是( 450 )立方厘米.
求圆柱的体积。
1.圆柱的底面积是3平方米,高5米。 3×5=15(立方米)
2.圆柱的底面半径是2分米,高10分米。 3.14×22 ×10=125.6(立方分米)
3.圆柱的底面直径是2米,高3米。 3.14×12 ×3=9.42(立方米)
4.圆柱的底面周长是62.8米,高4米。 3.14×102 ×4=1256(立方米)
把圆柱体削成圆锥体
V=1413立方厘米
V=?
V=1413立方厘米
4V71=厘? 米
做一 做 • 1.一个圆锥的底面积是25平方分米,高

3.《圆锥的体积练习课》课件(09)[1]

3.《圆锥的体积练习课》课件(09)[1]

7.把一个长9.42分米、宽5分米、高2 分米的长方体铁块熔铸成一个底面半径 是3分米的圆锥,圆锥的高是多少分米?
一个圆锥形小麦堆,底面周长是 15.7米,高是3米,把这堆小麦装进 底面直径为4米的圆柱形粮囤里,可 以装多少高?
h=3米
C=15.7米
练习六
8. 小明家去年秋季收获的稻 谷堆成了圆锥形,高2m,底面 直径是3m。 (1)这堆稻谷的体积是多少? (2)如果每立方米稻谷重650kg,这堆稻谷重多少千 克(?1)13 ×3.14×(3÷2)²×2≈4.71(m³) 答:这堆稻谷的体积是4.71m³。
(2)650×4.71=3061.5(千克)
答:这堆稻谷重3061.5千克。

练习六
(3)小明家有0.4公顷稻田,平均每公顷产稻谷多 少千克?
3061.5÷0.4=7653.75(千克) 答:平均每公顷产稻谷7653.75千克。 (4)如果每千克稻谷售价为2.8元,这些稻谷能卖 多少钱?
一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米。
(1 )如果把它捏成同样底面大小的圆锥,这个圆锥的 高是多少?
15cm
(2)如果把它捏成同样高
的圆锥,这个圆锥的底面
积是多少?
36cm2
第二关——巧思考
2.有两个空的玻璃容器,先在 圆水锥倒形入12容圆×器柱13里形=注容4(满器厘,水圆米,再 柱)形把容这 器里的水深多少厘米?
侧面 底面
圆锥的侧面和底面
侧面
底面
圆锥的侧面展开图是扇 形,底面是一个圆形。
底面周长等于扇形弧线的长度。
圆锥如果从顶点沿着高切成两个半圆锥,是什么样子的?
圆锥从顶点沿着高切开后,多出了两个等腰三角形的面, 每个三角形的底是圆锥的底面直径,三角形的高就是圆 锥的高。每个三角形的面积=底面直径×高÷2

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。

2.能运用圆锥的体积计算公式解决有关的实际问题。

过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。

情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。

重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。

难点:理解圆锥的体积计算公式的推导过程。

课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。

把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。

2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。

生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。

生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。

生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。

3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。

(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。

圆锥的体积练习课上课用

圆锥的体积练习课上课用

二、回答下面的问题,并列出算式。 回答下面的问题,并列出算式。 一个圆柱形水桶,底面半径10分米 分米, 分米。 一个圆柱形水桶,底面半径 分米,高20分米。 分米 给这个水桶加个盖,是求哪个部分? ①给这个水桶加个盖,是求哪个部分? 给这个水桶加个箍,是求哪个部分? ②给这个水桶加个箍,是求哪个部分? 给这个水桶的外面涂上油漆,是求哪个部分? ③给这个水桶的外面涂上油漆,是求哪个部分? 这个水桶能装多少水,是求哪个部分? ④这个水桶能装多少水,是求哪个部分?
狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 选择了圆锥形木材。狐狸占到便宜了吗? 选择了圆锥形木材。狐狸占到便宜了吗?
18分米 分米 6分米 4分米 4分米 分米
狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 选择了圆锥形木材。狐狸占到便宜了吗? 选择了圆锥形木材。狐狸占到便宜了吗?
2米
2米 米
底面积: 平方米 底面积:4平方米
底面积:12平方米 底面积: 平方米
山羊伯伯送给狐狸和小白兔各一堆粮食, 山羊伯伯送给狐狸和小白兔各一堆粮食,狐狸 认为圆锥形的粮食多,就抢先要了圆锥形的粮堆, 认为圆锥形的粮食多,就抢先要了圆锥形的粮堆, 小白兔又笑了笑,要了圆柱形粮堆。 小白兔又笑了笑,要了圆柱形粮堆。狐狸占到便宜 了吗? 了吗?
18.84÷6= 3.14 dm2
20÷4= 5 dm
5×3.14= 15.7 dm3
一个圆柱形玻璃容器的底面直径是20厘米, 一个圆柱形玻璃容器的底面直径是20厘米, 20厘米 现在把一块石块放入容器里的水中, 现在把一块石块放入容器里的水中,水面上升 厘米。这块石块的体积是多少? 了2厘米。这块石块的体积是多少?

2022春六年级数学下册一圆柱和圆锥复习课件北师大版

2022春六年级数学下册一圆柱和圆锥复习课件北师大版
第二十九页,编辑于星期六:三点 三十五分。
典型例题分析
分析:圆锥沿底面直径经过顶点切开后表面积比原来增加了两个三角形的面
积,这两个三角形的底是圆锥的底面直径,高是圆锥的高。先求出每个三角形的面
积,已知三角形的高是6cm,根据三角形的面积公式求出底,继而求出圆 锥的底面半径。
第三十页,编辑于星期六:三点 三十五分。
第十八页,编辑于星期六:三点 三十五分。
典型例题分析
解答:圆①的周长:3.14×4=12.56(cm) 圆②的周长:3.14×5=15.7(cm) 圆③的周长:3.14×6=18.84(cm)
比较:圆②的周长等于长方形的长。
答:选择圆②作底合适。
第十九页,编辑于星期六:三点 三十五分。
典型例题分析
2
2
(2)圆锥的体积
圆锥体积的计算公式为:圆锥的体积=底面积×高× =1 Sh1,因为S
=πr ,所以V=πr h。
2
2
33
第十二页,编辑于星期六:三点 三十五分。
复习驿站
(3)如何区分是求圆柱的体积、容积还是求表面积
求做圆柱形状的物体需要的材料、圆柱形状的墙壁抹水泥面积的多少,或贴墙需 要多少瓷砖等,这样的表述是求表面积。还有一个判定方法就是看所求问题的单位,所 求问题的单位是平方的,则求表面积;所求问题的单位是立方、升、毫升的,则求体积 。求圆柱能装下多少的问题,就是求容积,用体积公式。
2
3
答:这个粮囤大约能装稻3 谷7.95立方米。
第十五页,编辑于星期六:三点 三十五分。
复习驿站
8.圆锥、圆柱的体积关系
(1)等底(面积)等高时,圆锥的体积是圆柱体积的 ,1 即圆锥的体积=
圆柱的体积× 。1

《圆锥认识》PPTPPT课件

《圆锥认识》PPTPPT课件

解释
这个公式是通过将圆锥侧面展开成一 个扇形来推导的,扇形的弧长等于圆 的周长,扇形的半径等于圆锥的斜边 长。
圆锥的底面积
公式
圆锥的底面积 = π × r^2
解释
这个公式是通过圆的面积公式推导出来的,其中r 是圆的半径。
应用
在计算圆锥的表面积时,需要加上圆锥的底面积 和侧面积。
圆锥的体积
公式
圆锥的体积 = (1/3) × π × r^2 ×h
《圆锥认识》PPT课 件
目录
CONTENTS
• 圆锥的初步认识 • 圆锥的面积和体积 • 圆锥的表面积计算 • 圆锥的展开图 • 圆锥的旋转体
01 圆锥的初步认识
圆锥的定义
圆锥定义
圆锥是由一个圆形底面和一个点 (称为顶点)通过圆心与底面圆 周上的任意一点相连所形成的立 体图形。
圆锥的表示方法
圆锥可以用顶点和底面圆心所确 定的直线(称为圆锥的轴线)以 及底面圆来表示。
解释
这个公式是通过将圆锥的体积看 作是一个圆柱的体积的三分之一 来推导的,其中r是圆柱的半径,
h是圆柱的高。
应用
在计算圆锥的体积时,需要知道 圆锥的底面半径和高。
03 圆锥的表面积计算
圆锥表面积的计算公式
圆锥表面积计算公式
圆锥的表面积 = π × r × (l + l'),其 中 r 是底面半径,l 是圆锥的斜高,l' 是圆锥的母线。
圆锥旋转体的分类
根据圆锥旋转体的形状,可以分为正圆锥旋转体和斜交圆锥旋转体。
圆锥旋转体的几何特性
圆锥旋转体的表面积
01
圆锥旋转体的表面积等于其底面圆盘的面积加上侧面圆锥的侧
面积。
圆锥旋转体的体积

圆锥的ppt课件

圆锥的ppt课件

圆锥的特性
01
02
03
圆锥的底面
圆锥的底面是一个圆,其 半径为r,圆心角为θ。
圆锥的高
圆锥的高是从顶点到圆心 的距离,记作h。
圆锥的母线
圆锥的母线是与底面圆的 边缘相切的线段,其长度 为l。
圆锥的应用
圆锥在几何学中的应用
圆锥是几何学中一个重要的基本图形,常用于研究几何性质和定理,如勾股定 理、射影定理等。
圆锥的底面展开图
圆锥的底面展开图是一个圆 这个圆的半径等于圆锥的底面半径
这个圆的周长等于圆锥底面的周长
圆锥展开图的应用
圆锥展开图在制作工艺品中应用广泛
圆锥展开图可以帮助我们理解圆锥的 几何性质和特点
通过圆锥展开图可以计算圆锥的母线 长和底面周长
05
圆锥的绘制方法
利用几何画板绘制圆锥
打开几何画板软件,选择“绘 图”菜单中的“圆锥”命令。
圆锥的母线
母线定义
圆锥的母线是从顶点到底面边缘的连线段。
母线长度
母线的长度等于从顶点到底面的垂直距离,即 l = h + r。
母线与底面半径关系
母线长度 l 与底面半径 r 的关系可以用公式 l = r + h 来表示。
03
圆锥的体积和表面积
圆锥的体积
圆锥体积的定义
圆锥体积是指圆锥所占空间的 大小。
展开后是一个扇形,扇形的半径等于 圆锥的母线长度。
侧面积
圆锥的侧面积等于展开后的扇形面积,即 S = (1/2) × l × r,其中 l 是母线长度,r 是底面半径 。
侧面积与底面周长关系
侧面积 S 与底面周长 C 的关系可以用公式 S = C × h / (2π) 来表示。

小学数学《圆锥的体积》

小学数学《圆锥的体积》
圆锥的体积在生活中的应用
圆锥的体积公式在日常生活和工程中有广泛应用,如计算土方、液 体容量等。
教学目标
理解圆锥的体积概念
01
学生应理解圆锥的体积定义,知道如何计算圆锥的体积。
掌握圆锥的体积公式
02
学生应掌握圆锥的体积公式,并能正确运用该公式进行计算。
应用圆锥的体积公式解决实际问题
03
学生应能够运用圆锥的体积公式解决生活中的实际问题,如计
圆锥的体积与其他几何形状之间的关系可以通过数学公式来表示。例如,圆锥的 体积是圆柱体积的三分之一,即V_cone = V_cylinder / 3。
圆锥的体积在现实生活中的应用
圆锥的体积在现实生活中有许多应用。例如,在建筑行业 中,工人需要计算沙堆、石堆等的体积,以便确定所需的 材料数量和运输车辆的大小。
01
02
03
圆锥体积公式
V = (1/3)πr²h,其中r是 底面半径,h是高。
计算实例
给定一个圆锥的底面半径 为3厘米,高为5厘米,代 入公式计算体积。
计算结果
V = (1/3)π(3²)(5) = 15π 立方厘米。
比较圆锥与圆柱的体积
圆柱体积公式
V = πr²h。
比较实例
一个底面半径为3厘米,高为5厘米的圆柱和一个底面半径为3厘米, 高为5厘米的圆锥,比较两者的体积。
圆锥的表面积和体积之间的关系可以通过数学公式来表示。圆 锥的表面积公式为:A = πrl + πr^2,其中r为底面半径,l为 母线长度。圆锥的体积公式为:V = (1/3)πr^2h,其中h为高。
圆锥的体积与其他几何形状的关系
圆锥的体积与其他几何形状之间存在一定的关系。例如,圆锥的体积是圆柱体积 的三分之一,而圆柱的体积是长方体体积的四分之一。

圆锥体积公式的推导(ppt)

圆锥体积公式的推导(ppt)

参考刚才我们算出的结果,我们得出:
圆锥体积=兀r² ×h×1/n ×[(n/n)² + (n-1/n )²+(n-2/n )² +…… +(1/n )² ] = 兀r ² ×h×1/n³×[ 1²+ 2²+…… (n-2)² +(n-1)² ² +n ]
圆柱体积=兀r² ×h
因为兀r² ×h=兀r² ×h 所以只要证明1/n³×[ 1² + 2²+……(n-2)² +(n-1)² ] =1/3即可。 +n²
右图为一个倒圆锥 的横截面。 想一想:把右图三 角形无限平均细分 会出现什么?
示意图
无限平均细分 后,每一个部 分就会是一个 圆柱体。横截 面如左图一样, 是一个长方体。
设圆锥高为h,底面圆的半径是r,共平均分 成n份。 每份高:h÷n=h/n 第1份半径:r 第1份底面积:S=兀r² 第一份体积:兀r² h/n 也就是 兀r ² ×h×1/n 第二份体积:兀×h/n× (n-1/n ×r)² 也就是 兀r ² ×h/n ×(n-1/n )² 等同于 兀r² ×h×1/n ×(n-1/n )²
圆柱体积=底面积 圆锥体积=底面积
高 高
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
假设左图为 一个长方体。
假设左图为 一个长方体。 底面是一个 正方形。
Hale Waihona Puke 假设左图为 一个长方体。 底面是一个 正方形。 高的长度是 底边的2倍 取它的中心。 做一个四棱 锥 以此类推, 共能做出六 个
答案是没有。n是无穷大的,n+1也就=n。 1/n³ ×1/6×n×(n+1) ×(2n+1)

人教版《圆锥的体积》(完美版)PPT课件7(共11张PPT)

人教版《圆锥的体积》(完美版)PPT课件7(共11张PPT)
=
3V 圆锥
圆锥的体积等于与它等底等高圆柱体积的
1 3
Ⅴ圆锥 = 31Ⅴ圆柱=
1 3
sh
圆锥的体积=
1 3
×底面积×高
返回
课堂练习
工地上有一堆沙子,近似于一个圆锥(如下图)。这堆沙 子的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约 重多少吨?(得数保留两位小数。)
(3)沙堆重: 6.28×1.5=9.42(t)
答:这堆沙子的体积大约是6.28m³,这堆沙 子大约重9.42吨。
小结
1. 圆锥的体积等于与它等底等高的圆柱体积的 1 。
3
2.
圆锥的体积公式用字母表示为V=
1 3
Sh
或V= 1 πr²h。 3
底面积×高
圆锥的体积等于与它等底等高圆柱体积的
目录
CONTENTS
知识讲解
课堂练习
小节
2
导入导入导导入 回顾圆柱的体积公式推导过程
V =Sh=πr2h
知识讲解
圆锥的体积与圆柱的体积有怎样的关系 呢?


圆柱和圆锥等底等高。
返回
小组活动
1次
返回
28m³,这堆沙子大约重9. 回顾圆柱的体积公式推导过程 圆锥的体积等于与它等底等高圆柱体积的 难点名称:圆锥体积公式的推导过程
28m³,这堆沙子大约重9. 28m³,这堆沙子大约重9.
难点名称:圆锥体积公式的推导过程
28m³,这堆沙子大约重9. 5t,这堆沙子大约重多少吨?(得数保留两位小数。 工地上有一堆沙子,近似于一个圆锥(如下图)。 3个圆锥的体积=1个圆柱体积 首先读题,找出已知和未知。 (2)沙堆的体积:V= Sh
答:这堆沙子的体积大约是6. Ⅴ =Ⅴ = 圆锥的体积= ×

8.3.2圆柱圆锥圆台球的表面积和体积(2)课件高一下学期数学人教A版

8.3.2圆柱圆锥圆台球的表面积和体积(2)课件高一下学期数学人教A版

2
2
最大,最大值是4 π 1 R4 2 π R2. 4
课堂小结
1.球的表面积公式: S 4 R2 . 2.球的体积公式:V 4 R3 .
3
3.与球有关的组合体问题,一种是内切,一 种是外接.解题时要认真分析图形,明确切 点和接点的位置,作出轴截面图,把空间问 题转化为平面问题来计算.
课外作业
在 Rt△O′OA 中,OA2=O′A2+O′O2,
所以
R 2=
23 3
2+1R 2,所以 4
R
=4, 3
所以
S
球=4π
R
2=64π. 9
答案:64π 9
3.在球面上有 4 个点 P, A, B,C, 若 PA, PB, PC 两两互相
垂直, PA PB PC 2cm, 求这个球的表面积和体积.
把每份看成一个类似圆台,球的表
R
面积为所有圆台的侧面积之和.
O
球体由n个这样的形状组成 与圆的周长、面积相类似,球的表面积也只与它的半 径R有关,是以R为自变量的函数.
S球 =4 R2
归纳总结 球的表面积公式:S球 4 R2 ,其中 R 为 球的半径.
注:球的表面积是半径R的二次函数,并且表 面积为半径为R的圆面积的4倍.
方体的外接球.长方体与它的外接球之间有什么关系?
思考:(1)如图,设长方体的长为 a ,宽为b ,高为
c ,对角线长为l ,球的半径为 R .则长方体外接球的
直径恰好是长方体的 一条对角线长 ,即 2R l .
(2)长方体的对角线长l 与它的长 a ,宽b ,高c 有
什么关系? l2 a2 b2 c2 .
R
o
练习
一个球的半径扩大到原来的3倍,则其表面积扩大

人教六年级数学下册圆锥的体积(练习课)

人教六年级数学下册圆锥的体积(练习课)

稻谷的占地面积
米稻谷重650kg,每千克稻谷售价
稻谷的质量
为2.8元,这些稻谷能卖多少钱?
①稻谷的体积:
②稻谷的质量:
平均每公顷产稻谷多少千克? ③每公顷的质量:
①稻谷的体积: ②稻谷的质量: ③每公顷的质量:
×3.14×(23)²×2=4.71(m³) 4.71×650 = 3061.5(kg) 3061.5÷0.4=7653.75(kg)
答:平均每公顷产稻谷7653.75kg。
4. 考考你
把一个棱长是6厘米的正方体木块,加工成一个最大
的圆锥,圆锥的体积是多少立方厘米? 可以画一个
简单的示意
×3.14×(62)²×6=56.52(cm³)
图帮助我们 思考哦!
答:圆锥的体积是56.52立方厘米。
现在可以按下暂停键,独立解答
状元成才路
12
3
V圆柱
V圆锥∶V圆柱∶V削=1∶3∶2
综合练习,提升能力 1. 一个圆锥形谷堆,高1.5米,占地面积16平方米,将 其装入粮仓,正好占粮仓容积的15%,求粮仓的容积。 (得数保留整数) 单位“1”
①谷堆体积:
×16×1.5=8(m³)
②求粮仓的容积: 8÷15% ≈ 53(m³) 答:粮仓的容积约是53m³。
圆柱
h=V圆锥 ×3 ÷ S
专项练习,归纳方法 1. 算一算
V圆锥=
1 3
V圆柱
(1)一个圆柱的体积是6cm³,与它等底等高的圆
锥的体积是多少立方厘米?6÷3=2(cm³)
(2)有一个圆柱和一个圆锥,它们的底面半径相
等,高也相等,圆锥的的体积是18dm³,圆柱的体
积是多少立方分米?
18×3=54(dm³)

圆锥体积.(倩)ppt

圆锥体积.(倩)ppt
圆锥的体积
执教:北滘镇林头小学 陈倩宜
知识迁移:
体积=底面积×高 V= s h
猜想:
圆锥体的体积也可能是 底面积×高吗?
验证:圆锥体的体积也可能是底面积×高吗?
h
h
如果用底面积×高,计算出来的体积只是与这个 再探究:同底等 圆锥同底等高的圆柱体积,并不是圆锥体积。
高的圆锥与圆柱 之间什么联系?
等底等高
实验验证
实验验证
实验验证
实验验证
实验验证Βιβλιοθήκη 验验证实验验证实验验证
实验验证
实验验证
圆锥体积刚好等于与它等底等高的圆柱体积的三分之一。
圆锥体积与它等底等高的圆柱体积关系 圆锥的体积=圆柱的体积×(
1 =( 3 1 3 1 3

)×( 底面积 ) ×( 高 )
Sh )
字母公式:V=(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档