Differential Privacy
差分隐私在数据保护中的应用
差分隐私在数据保护中的应用目录一、内容概览 (2)1. 差分隐私的定义与背景 (2)2. 数据保护的重要性 (3)3. 差分隐私在数据保护中的应用意义 (3)二、差分隐私的基本原理 (5)1. 差分隐私的概念与原理 (6)2. 差分隐私的数学表达 (7)3. 差分隐私的组成要素 (8)三、差分隐私在数据保护中的应用场景 (9)1. 个人隐私保护 (11)1.1 身份信息保护 (12)1.2 通信记录保护 (13)2. 经济数据保护 (15)2.1 金融交易记录保护 (16)2.2 商业秘密保护 (18)3. 政府数据开放 (19)3.1 公共安全数据保护 (21)3.2 政府决策支持数据保护 (22)四、差分隐私在数据保护中的技术实现 (24)1. 隐私预算与敏感度分析 (25)2. 随机化和添加噪声的方法 (25)3. 差分隐私的优化策略 (26)五、差分隐私在数据保护中的挑战与对策 (27)1. 数据质量与真实性问题 (29)2. 隐私泄露与滥用的风险 (30)3. 法律法规与政策支持 (31)六、案例分析 (32)1. 垃圾邮件过滤中的差分隐私应用 (34)2. 个人位置信息保护的应用案例 (34)3. 医疗诊断数据保护的应用案例 (36)七、未来展望 (37)1. 差分隐私与其他隐私保护技术的融合 (38)2. 差分隐私在新兴领域中的应用前景 (39)3. 差分隐私技术的发展趋势与挑战 (41)一、内容概览差分隐私(Differential Privacy)是一种在数据分析和发布过程中保护个人隐私的技术。
它通过在数据查询结果中引入随机性,使得攻击者无法通过对比查询结果来准确推断出单个数据点的信息。
差分隐私的核心思想是在保护个体隐私的同时,允许对整体数据进行分析和挖掘。
本文将详细介绍差分隐私的基本概念、原理、应用场景以及与其他隐私保护技术的比较,以期为读者提供一个全面的差分隐私入门指南。
1. 差分隐私的定义与背景差分隐私(Differential Privacy)是一种特殊的隐私保护计算模型。
dp方案是什么
dp方案是什么随着科技的不断发展和应用程序的广泛应用,数据处理变得越来越重要。
在大数据时代,处理海量数据变得尤为关键。
而DP方案(Differential Privacy)作为一种保护用户隐私的方法,在数据处理中扮演着重要的角色。
本文将探讨DP方案的定义、原理和应用,以及对个人隐私的保护意义。
一、DP方案的定义DP方案是一种隐私保护技术,通过在数据处理过程中添加一定的噪声,保护个人隐私信息的泄露。
简言之,DP通过在数据集中添加噪声,使得处理结果不能准确地反映个别个体的信息,从而有效防止数据的滥用和隐私的泄露。
DP方案坚持了个人隐私的原则,同时也对数据处理的效果和准确性提出了一定要求。
二、DP方案的原理DP方案的基本原理是在数据中注入随机噪声。
具体而言,当收集到用户数据时,DP方案会对数据进行分析和处理,以保护个人隐私。
这种处理过程可以在保持数据的整体趋势和模式不变的情况下,混淆个体的信息。
简单来说,DP方案通过在数据中添加噪声,使得攻击者无法准确地推断出个别数据的具体信息。
三、DP方案的应用DP方案在实际应用中具有广泛的应用前景。
首先,在医疗领域,DP方案可以帮助研究人员保护病人的个人隐私。
例如,在研究癌症数据时,DP方案可以保证被研究者的个人信息不被泄露,同时也可以从全球的数据集中进行分析和研究。
其次,在统计学中,DP方案也有重要应用。
传统的统计学方法往往需要对全部数据进行分析,从而可能暴露个体信息。
而DP方案通过混淆个体数据,可以对数据进行局部分析,从而保护个人隐私。
此外,DP方案还可以应用于商业领域的数据处理。
在消费者数据分析中,DP方案可以保护用户的隐私信息,从而让企业可以在不侵犯用户隐私的前提下,做出更加精准的市场分析和预测。
四、DP方案对个人隐私的保护DP方案对个人隐私的保护意义重大。
在数字化时代,个人隐私面临越来越严峻的挑战。
大规模数据的收集和利用,使得个人隐私更容易被泄露和滥用。
关于应用隐私泄露的英语作文
关于应用隐私泄露的英语作文英文回答:The proliferation of mobile applications hasdrastically altered the way we live. They have become an integral part of our lives, offering an unparalleled levelof convenience and access to information. However, with the increased reliance on apps comes a growing concern: the potential for privacy breaches.Data Collection and Privacy Invasion.Many apps collect a substantial amount of user data, including personal information, location data, and usage patterns. While some data collection is necessary for the app to function properly, the sheer volume of data being collected has raised concerns about the potential for abuse. This data can be used to create detailed profiles of users, track their movements, and even target them with personalized advertising.Third-Party Access.Apps often share user data with third parties, such as advertisers or analytics companies. These third parties may use the data to build their own profiles of users or tosell it to other companies. This lack of control over how our data is used raises serious privacy concerns, as it can lead to our personal information being used for purposes we may not be aware of or consent to.Lack of Transparency.Many apps have opaque privacy policies that aredifficult to understand. This makes it challenging for users to know exactly what data is being collected and how it will be used. The lack of transparency undermines trust between users and app developers and makes it difficult for users to make informed decisions about using an app.Potential for Misuse.The data collected by apps can be misused in a variety of ways. It could be used to track our movements, manipulate our behavior, or even blackmail us. In the wrong hands, this data could have devastating consequences for our privacy and well-being.Steps to Address Privacy Concerns.To address the privacy concerns surrounding apps, several steps can be taken:Strengthen Privacy Laws: Governments need to enact stricter privacy laws that give users more control over their data. These laws should require apps to be transparent about their data collection practices and to obtain consent from users before sharing their data with third parties.Educate Users: Users need to be aware of the privacy risks associated with using apps. They should read privacy policies carefully and only install apps from trusted developers.Promote Privacy-Enhancing Technologies: Developers should adopt privacy-enhancing technologies that minimize data collection and protect user privacy. Thesetechnologies include anonymization, encryption, and differential privacy.中文回答:移动应用隐私泄露问题。
差分隐私保护研究综述_李杨
0 引言
随着互联网技 术 的 迅 猛 发 展,数 据 的 共 享 变 得 越 来 越 便 捷,由此引发了人们对自身隐私泄露的担忧。近年来,由数据 泄露引发的社会恐慌在国内外时有发生,如美国著名互联网公 司美国在线( AOL) 泄露了大量用户的网络搜索记录,有人根 据这些搜索记录找出了对应用户的真实身份,使得大量注册用 户的上网习惯被意外曝光。由该类事件可知,保护个人隐私远 远不止隐藏数据记录中的敏感属性( 如姓名、住址、年薪等) 那 么简单,还要阻止敏感属性值与特定的实体或个人关联起来, 以防止由非敏感属性信息推测出个人的真实身份。近十几年 来数据挖掘技术的高速发展,也为隐私信息的保护带来了新的 挑战。因为数据挖掘的对象往往是海量数据,同时对这么多数 据进行访问,使得身份认证、权限控制等传统的数据库安全措 施毫无用武之地,因为这些手段只能防止敏感属性被用户直接 获取,间接推 理 获 得 敏 感 信 息 的 行 为 很 难 得 到 预 防。 由 此 可 见,隐私保护是一项应用广泛、多领域交叉的复杂的系统工程, 还有诸多方面需要深入研究并加以完善。
差分隐私保护与传统隐私保护方法的不同之处在于,它定 义了一个极为严 格 的 攻 击 模 型,并 对 隐 私 泄 露 风 险 给 出 了 严 谨、定量化的表示和证明。差分隐私保护在大大降低隐私泄露 风险的同时,极大地保证了数据的可用性。差分隐私保护方法 的最大优点是,虽然基于数据失真技术,但所加入的噪声量与 数据集大小无关,因此对于大型数据集,仅通过添加极少量的 噪声就能达到高级别的隐私保护。正是由于差分隐私保护方 法的诸多优势,使得该方法一经出现,就在国外掀起了一股研 究热潮,但在国内还未见相关文献,希望本文可以对国内隐私 保护领域的研究人员有所启迪,以吸引更多的学者参与到差分 隐私保护的研究中。
基于差分隐私的LBS用户位置隐私保护方案
the shared location information collected by the third party, a location privacy protection scheme of LBS users was proposed based on differential privacy. Firstly, the shared location data set was [reprocessed, the dictionary query mode was used to
Keywords : data security and computer security ; location data ; privacy protection ; differential privacy; availability
随着GPS、无线通信等技术的飞速发展,基于位置服务(LBS,location-based service)[1]给人们的生活起 居、外出工作和社交活动带来了巨大变化.用户通过智能设备从内容基础上获取所需的服务数据 [2].功能多样化的LBS 应用遍及人们的日常生活,其应用场景主要有导航服务、社交网络服务、兴趣点推荐服务.然而,位置服务给 用户带来诸多便利的同时,各种隐私泄露问题也层出不穷服务器获取了用户所使用的位置信息,进一 步分析用户的居住地点、身体状况和日常行为规律,甚至跟踪用户,并将用户信息发布给第三方[5].相对于 LBS应用提供的便利,用户更关注个人的隐私安全.个人隐私保护水平影响用户使用LBS应用的积极 性,因此设计强有力的位置隐私保护机制显得尤为重要.
2006_Differential Privacy
Differential PrivacyCynthia DworkMicrosoft Researchdwork@Abstract.In1977Dalenius articulated a desideratum for statisticaldatabases:nothing about an individual should be learnable from thedatabase that cannot be learned without access to the database.We givea general impossibility result showing that a formalization of Dalenius’goal along the lines of semantic security cannot be achieved.Contrary tointuition,a variant of the result threatens the privacy even of someonenot in the database.This state of affairs suggests a new measure,dif-ferential privacy,which,intuitively,captures the increased risk to one’sprivacy incurred by participating in a database.The techniques devel-oped in a sequence of papers[8,13,3],culminating in those describedin[12],can achieve any desired level of privacy under this measure.Inmany cases,extremely accurate information about the database can beprovided while simultaneously ensuring very high levels of privacy.1IntroductionA statistic is a quantity computed from a sample.If a database is a repre-sentative sample of an underlying population,the goal of a privacy-preserving statistical database is to enable the user to learn properties of the population as a whole,while protecting the privacy of the individuals in the sample.The work discussed herein was originally motivated by exactly this problem:how to reveal useful information about the underlying population,as represented by the database,while preserving the privacy of individuals.Fortuitously,the techniques developed in[8,13,3]and particularly in[12]are so powerful as to broaden the scope of private data analysis beyond this orignal“representatitive”motivation,permitting privacy-preserving analysis of an object that is itself of intrinsic interest.For instance,the database may describe a concrete intercon-nection network–not a sample subnetwork–and we wish to reveal certain properties of the network without releasing information about individual edges or nodes.We therefore treat the more general problem of privacy-preserving analysis of data.A rigorous treatment of privacy requires definitions:What constitutes a fail-ure to preserve privacy?What is the power of the adversary whose goal it is to compromise privacy?What auxiliary information is available to the adversary (newspapers,medical studies,labor statistics)even without access to the data-base in question?Of course,utility also requires formal treatment,as releasing no information or only random noise clearly does not compromise privacy;we M.Bugliesi et al.(Eds.):ICALP2006,Part II,LNCS4052,pp.1–12,2006.c Springer-Verlag Berlin Heidelberg20062 C.Dworkwill return to this point later.However,in this work privacy is paramount:we willfirst define our privacy goals and then explore what utility can be achieved given that the privacy goals will be satisified1.A1977paper of Dalenius[6]articulated a desideratum that foreshadows for databases the notion of semantic security definedfive years later by Goldwasser and Micali for cryptosystems[15]:access to a statistical database should not enable one to learn anything about an individual that could not be learned without access2.We show this type of privacy cannot be achieved.The obstacle is in auxiliary information,that is,information available to the adversary other than from access to the statistical database,and the intuition behind the proof of impossibility is captured by the following example.Suppose one’s exact height were considered a highly sensitive piece of information,and that revealing the exact height of an individual were a privacy breach.Assume that the database yields the average heights of women of different nationalities.An adversary who has access to the statistical database and the auxiliary information“Terry Gross is two inches shorter than the average Lithuanian woman”learns Terry Gross’height,while anyone learning only the auxiliary information,without access to the average heights,learns relatively little.There are two remarkable aspects to the impossibility result:(1)it applies regardless of whether or not Terry Gross is in the database and(2)Dalenius’goal,formalized as a relaxed version of semantic security,cannot be achieved, while semantic security for cryptosystems can be achieved.Thefirst of these leads naturally to a new approach to formulating privacy goals:the risk to one’s privacy,or in general,any type of risk,as the risk of being denied insurance,should not substantially increase as a result of participating in a statistical database.This is captured by differential privacy.The discrepancy the possibility of achieving(something like)seman-tic security in our setting and in the cryptographic one arises from the utility requirement.Our adversary is analagous to the eavesdropper,while our user is analagous to the message recipient,and yet there is no decryption key to set them apart,they are one and the same.Very roughly,the database is designed to convey certain information.An auxiliary information generator knowing the data therefore knows much about what the user will learn from the database. This can be used to establish a shared secret with the adversary/user that is unavailable to anyone not having access to the database.In contrast,consider a cryptosystem and a pair of candidate messages,say,{0,1}.Knowing which message is to be encrypted gives one no information about the ciphertext;in-tuitively,the auxiliary information generator has“no idea”what ciphertext the eavesdropper will see.This is because by definition the ciphertext must have no utility to the eavesdropper.1In this respect the work on privacy diverges from the literature on secure function evaluation,where privacy is ensured only modulo the function to be computed:if the function is inherently disclosive then privacy is abandoned.2Semantic security against an eavesdropper says that nothing can be learned about a plaintext from the ciphertext that could not be learned without seeing the ciphertext.Differential Privacy3 In this paper we prove the impossibility result,define differential privacy,and observe that the interactive techniques developed in a sequence of papers[8, 13,3,12]can achieve any desired level of privacy under this measure.In many cases very high levels of privacy can be ensured while simultaneously providing extremely accurate information about the database.Related Work.There is an enormous literature on privacy in databases;we briefly mention a fewfields in which the work has been carried out.See[1]for a survey of many techniques developed prior to1989.By far the most extensive treatment of disclosure limitation is in the statistics community;for example,in1998the Journal of Official Statistics devoted an entire issue to this question.This literature contains a wealth of privacy sup-portive techniques and investigations of their impact on the statistics of the data set.However,to our knowledge,rigorous definitions of privacy and modeling of the adversary are not features of this portion of the literature.Research in the theoretical computer science community in the late1970’s had very specific definitions of privacy compromise,or what the adversary must achieve to be considered successful(see,eg,[9]).The consequent privacy guaran-tees would today be deemed insufficiently general,as modern cryptography has shaped our understanding of the dangers of the leakage of partial information. Privacy in databases was also studied in the security community.Although the effort seems to have been abandoned for over two decades,the work of Den-ning[7]is closest in spirit to the line of research recently pursued in[13,3,12].The work of Agrawal and Srikant[2]and the spectacular privacy compromises achieved by Sweeney[18]rekindled interest in the problem among computer scientists,particularly within the database community.Our own interest in the subject arose from conversations with the philosopher Helen Nissenbaum.2Private Data Analysis:The SettingThere are two natural models for privacy mechanisms:interactive and non-interactive.In the non-interactive setting the data collector,a trusted entity, publishes a“sanitized”version of the collected data;the literature uses terms such as“anonymization”and“de-identification”.Traditionally,sanitization employs techniques such as data perturbation and sub-sampling,as well as re-moving well-known identifiers such as names,birthdates,and social security numbers.It may also include releasing various types of synopses and statistics. In the interactive setting the data collector,again trusted,provides an interface through which users may pose queries about the data,and get(possibly noisy) answers.Very powerful results for the interactive approach have been obtained([13, 3,12]and the present paper),while the non-interactive case has proven to be more difficult,(see[14,4,5]),possibly due to the difficulty of supplying utility that has not yet been specified at the time the sanitization is carried out.This intuition is given some teeth in[12],which shows concrete separation results.4 C.Dwork3Impossibility of Absolute Disclosure PreventionThe impossibility result requires some notion of utility–after all,a mechanism that always outputs the empty string,or a purely random string,clearly preserves privacy3.Thinkingfirst about deterministic mechanisms,such as histograms or k-anonymizations[19],it is clear that for the mechanism to be useful its output should not be predictable by the user;in the case of randomized mechanisms the same is true,but the unpredictability must not stem only from random choices made by the mechanism.Intuitively,there should be a vector of questions(most of)whose answers should be learnable by a user,but whose answers are not in general known in advance.We will therefore posit a utility vector,denoted w. This is a binary vector of somefixed lengthκ(there is nothing special about the use of binary values).We can think of the utility vector as answers to questions about the data.A privacy breach for a database is described by a Turing machine C that takes as input a description of a distribution D on databases,a database DB drawn according to this distribution,and a string–the purported privacy breach–and outputs a single bit4.We will require thatC always halt.We say the adversary wins,with respect to C and for a given(D,DB)pair,if it produces a string s such that C(D,DB,s)accepts.Henceforth“with respect to C”will be implicit.An auxiliary information generator is a Turing machine that takes as input a description of the distribution D from which the database is drawn as well as the database DB itself,and outputs a string,z,of auxiliary information.This string is given both to the adversary and to a simulator.The simulator has no access of any kind to the database;the adversary has access to the database via the privacy mechanism.We model the adversary by a communicating Turing machine.The theorem below says that for any privacy mechanism San()and any distribution D sat-isfying certain technical conditions with respect to San(),there is always some particular piece of auxiliary information,z,so that z alone is useless to someone trying to win,while z in combination with access to the data through the pri-vacy mechanism permits the adversary to win with probability arbitrarily close to1.In addition to formalizing the entropy requirements on the utility vectors as discussed above,the technical conditions on the distribution say that learning the length of a privacy breach does not help one to guess a privacy breach. Theorem1.Fix any privacy mechanism San()and privacy breach decider C. There is an auxiliary information generator X and an adversary A such that for all distributions D satisfying Assumption3and for all adversary simulators A∗, Pr[A(D,San(D,DB),X(D,DB))wins]−Pr[A∗(D,X(D,DB))wins]≥ΔwhereΔis a suitably chosen(large)constant.The probability spaces are over choice of DB∈R D and the coinflips of San,X,A,and A∗.3Indeed the height example fails in these trivial cases,since it is only through the sanitization that the adversary learns the average height.4We are agnostic as to how a distribution D is given as input to a machine.Differential Privacy5 The distribution D completely captures any information that the adversary(and the simulator)has about the database,prior to seeing the output of the auxiliary information generator.For example,it may capture the fact that the rows in the database correspond to people owning at least two pets.Note that in the statement of the theorem all parties have access to D and may have a description of C hard-wired in;however,the adversary’s strategy does not use either of these.Strategy for X and A when all of w is learned from San(DB):To develop intuition wefirst describe,slightly informally,the strategy for the special case in which the adversary always learns all of the utility vector,w,from the privacy mechanism5.This is realistic,for example,when the sanitization produces a histogram,such as a table of the number of people in the database with given illnesses in each age decile,or a when the sanitizer chooses a random subsample of the rows in the database and reveals the average ages of patients in the subsample exhibiting various types of symptoms.This simpler case allows us to use a weaker version of Assumption3:Assumption2. 1.∀0<γ<1∃nγPr DB∈R D [|DB|>nγ]<γ;moreover nγis computable by a machine given D as input.2.There exists an such that both the following conditions hold:(a)Conditioned on any privacy breach of length ,the min-entropy of theutility vector is at least .(b)Every DB∈D has a privacy breach of length .3.Pr[B(D,San(DB))wins]≤μfor all interactive Turing machines B,whereμis a suitably small constant.The probability is taken over the coinflips ofB and the privacy mechanism San(),as well as the choice of DB∈R D. Intuitively,Part(2a)implies that we can extract bits of randomness from theutility vector,which can be used as a one-time pad to hide any privacy breach of the same length.(For the full proof,ie,when not necessarily all of w is learned by the adversary/user,we will need to strengthen Part(2a).)Let 0denote the leastsatisfying(both clauses of)Part2.We cannot assume that 0can be found in finite time;however,for any toleranceγlet nγbe as in Part1,so all but aγfraction of the support of D is strings of length at most nγ.For anyfixedγit ispossible tofind an γ≤ 0such that γsatisfies both clauses of Assumption2(2) on all databases of length at most nγ.We can assume thatγis hard-wired intoall our machines,and that they all follow the same procedure for computing nγand γ.Thus,Part1allows the more powerful order of quantifiersd in the statement of the theorem;without it we would have to let A and A∗depend on D(by having hard-wired in).Finally,Part3is a nontriviality condition. The strategy for X and A is as follows.On input DB∈R D,X randomly chooses a privacy breach y for DB of length = γ,if one exists,which occurs with probability at least1−γ.It also computes the utility vector,w.Finally, it chooses a seed s and uses a strong randomness extractor to obtain from w 5Although this case is covered by the more general case,in which not all of w need be learned,it permits a simpler proof that exactly captures the height example.6 C.Dworkan -bit almost-uniformly distributed string r[16,17];that is,r=Ext(s,w), and the distribution on r is within statistical distance from U ,the uniform distribution on strings of length ,even given s and y.The auxiliary information will be z=(s,y⊕r).Since the adversary learns all of w,from s it can obtain r=Ext(s,w)and hence y.We next argue that A∗wins with probability(almost)bounded byμ, yielding a gap of at least1−(γ+μ+ ).Assumption2(3)implies that Pr[A∗(D)wins]≤μ.Let d denote the maxi-mum,over all y∈{0,1} ,of the probability,over choice of DB∈R D,that y is a privacy breach for DB.Since = γdoes not depend on DB,Assumption2(3) also implies that d ≤μ.By Assumption2(2a),even conditioned on y,the extracted r is(almost) uniformly chosen,independent of y,and hence so is y⊕r.Consequently,the probability that X produces z is essentially independent of y.Thus,the simula-tor’s probability of producing a privacy breach of length for the given database is bounded by d + ≤μ+ ,as it can generate simulated“auxiliary information”with a distribution within distance of the correct one.The more interesting case is when the sanitization does not necessarily reveal all of w;rather,the guarantee is only that it always reveal a vector w within Hamming distanceκ/c of w for constant c to be determined6.The difficulty with the previous approach is that if the privacy mechanism is randomized then the auxiliary information generator may not know which w is seen by the adversary. Thus,even given the seed s,the adversary may not be able to extract the same random pad from w that the auxiliary information generator extracted from w. This problem is solved using fuzzy extractors[10].Definition1.An(M,m, ,t, )fuzzy extractor is given by procedures (Gen,Rec).1.Gen is a randomized generation procedure.On input w∈M outputs an“extracted”string r∈{0,1} and a public string p.For any distribution W on M of min-entropy m,if(R,P)←Gen(W)then the distributions(R,P) and(U ,P)are within statistical distance .2.Rec is a deterministic reconstruction procedure allowing recovery of r=R(w)from the corresponding public string p=P(w)together with any vector w of distance at most t from w.That is,if(r,p)←Gen(w)and||w−w ||1≤t then Rec(w ,p)=r.In other words,r=R(w)looks uniform,even given p=P(w),and r=R(w) can be reconstructed from p=P(w)and any w sufficiently close to w.We now strenthen Assumption2(2a)to say that the entropy of the source San(W)(vectors obtained by interacting with the sanitization mechanism,all of 6One could also consider privacy mechanisms that produce good approximations to the utility vector with a certain probability for the distribution D,where the proba-bility is taken over the choice of DB∈R D and the coins of the privacy mechanism.The theorem and proof hold mutatis mutandis.Differential Privacy7 distance at mostκ/c from the true utility vector)is high even conditioned onany privacy breach y of length and P=Gen(W).Assumption3.For some satisfying Assumption2(2b),for any privacy breachy∈{0,1} ,the min-entropy of(San(W)|y)is at least k+ ,where k is the lengthof the public strings p produced by the fuzzy extractor7.Strategy when w need not be fully learned:For a given database DB,let w bethe utility vector.This can be computed by X,who has access to the database. X simulates interaction with the privacy mechanism to determine a“valid”w close to w(within Hamming distanceκ/c).The auxiliary information generatorruns Gen(w ),obtaining(r=R(w ),p=P(w )).It computes nγand = γ(as above,only now satisfying Assumptions3and2(2b)for all DB∈D of length at most nγ),and uniformly chooses a privacy breach y of length γ,assuming one exists.It then sets z=(p,r⊕y).Let w be the version of w seen by the adversary.Clearly,assuming2κ/c≤tin Definition1,the adversary can reconstruct r.This is because since w and w are both withinκ/c of w they are within distance2κ/c of each other,and so w is within the“reconstruction radius”for any r←Gen(w ).Once the adversary has reconstructed r,obtaining y is immediate.Thus the adversary is able to produce a privacy breach with probability at least1−γ.It remains to analyze the probability with which the simulator,having access only to z but not to the privacy mechanism(and hence,not to any w close to w),produces a privacy breach.In the sequel,we let B denote the best machine,among all those with access to the given information,at producing producing a privacy breach(“winning”).By Assumption2(3),Pr[B(D,San(DB))wins]≤μ,where the probability istaken over the coin tosses of the privacy mechanism and the machine B,and the choice of DB∈R D.Since p=P(w )is computed from w ,which in turn is computable from San(DB),we havep1=Pr[B(D,p)wins]≤μwhere the probability space is now also over the choices made by Gen(),that is,the choice of p=P(w ).Now,let U denote the uniform distribution on -bit strings.Concatenating a random string u∈R U to p cannot help B to win,sop2=Pr[B(D,p,u)wins]=p1≤μwhere the probability space is now also over choice of u.For anyfixed string y∈{0,1} we have U =U ⊕y,so for all y∈{0,1} ,and in particular,for all privacy breaches y of DB,p3=Pr[B(D,p,u⊕y)wins]=p2≤μ.7A good fuzzy extractor“wastes”little of the entropy on the public string.Better fuzzy extractors are better for the adversary,since the attack requires bits of residual min-entropy after the public string has been generated.8 C.DworkLet W denote the distribution on utility vectors and let San(W)denote the distribution on the versions of the utility vectors learned by accessing the data-base through the privacy mechanism.Since the distributions(P,R)=Gen(W ), and(P,U )have distance at most ,it follows that for any y∈{0,1}p4=Pr[B(D,p,r⊕y)wins]≤p3+ ≤μ+ .Now,p4is an upper bound on the probability that the simulator wins,given D and the auxiliary information z=(p,r⊕y),soPr[A∗(D,z)wins]≤p4≤μ+ .An(M,m, ,t, )fuzzy extractor,where M is the distribution San(W)on utility vectors obtained from the privacy mechanism,m satisfies:for all -bit strings y which are privacy breaches for some database D∈DB,H∞(W |y)≥m; and t<κ/3,yields a gap of at least(1−γ)−(μ+ )=1−(γ+μ+ )between the winning probabilities of the adversary and the simulator.Setting Δ=1−(γ+μ+ )proves Theorem1.We remark that,unlike in the case of most applications of fuzzy extractors (see,in particular,[10,11]),in this proof we are not interested in hiding partial information about the source,in our case the approximate utility vectors W ,so we don’t care how much min-entropy is used up in generating p.We only require sufficient residual min-entropy for the generation of the random pad r.This is because an approximation to the utility vector revealed by the privacy mecha-nism is not itself disclosive;indeed it is by definition safe to release.Similarly,we don’t necessarily need to maximize the tolerance t,although if we have a richer class of fuzzy extractors the impossibility result applies to more relaxed privacy mechanisms(those that reveal worse approximations to the true utility vector).4Differential PrivacyAs noted in the example of Terry Gross’height,an auxiliary information gen-erator with information about someone not even in the database can cause a privacy breach to this person.In order to sidestep this issue we change from ab-solute guarantees about disclosures to relative ones:any given disclosure will be, within a small multiplicative factor,just as likely whether or not the individual participates in the database.As a consequence,there is a nominally increased risk to the individual in participating,and only nominal gain to be had by con-cealing or misrepresenting one’s data.Note that a bad disclosure can still occur, but our guarantee assures the individual that it will not be the presence of her data that causes it,nor could the disclosure be avoided through any action or inaction on the part of the user.Differential Privacy9 Definition2.A randomized function K gives -differential privacy if for all data sets D1and D2differing on at most one element,and all S⊆Range(K),Pr[K(D1)∈S]≤exp( )×Pr[K(D2)∈S](1) A mechanism K satisfying this definition addresses concerns that any participant might have about the leakage of her personal information x:even if the partic-ipant removed her data from the data set,no outputs(and thus consequences of outputs)would become significantly more or less likely.For example,if the database were to be consulted by an insurance provider before deciding whether or not to insure Terry Gross,then the presence or absence of Terry Gross in the database will not significantly affect her chance of receiving coverage.This definition extends to group privacy as well.A collection of c participants might be concerned that their collective data might leak information,even when a single participant’s does ing this definition,we can bound the dilation of any probability by at most exp( c),which may be tolerable for small c.Note that we specifically aim to disclose aggregate information about large groups,so we should expect privacy bounds to disintegrate with increasing group size.5Achieving Differential PrivacyWe now describe a concrete interactive privacy mechanism achieving -differential privacy8.The mechanism works by adding appropriately chosen random noise to the answer a=f(X),where f is the query function and X is the database;thus the query functions may operate on the entire database at once.It can be simple–eg,“Count the number of rows in the database satisfy-ing a given predicate”–or complex–eg,“Compute the median value for each column;if the Column1median exceeds the Column2median,then output a histogram of the numbers of points in the set S of orthants,else provide a histogram of the numbers of points in a different set T of orthants.”Note that the complex query above(1)outputs a vector of values and(2)is an adaptively chosen sequence of two vector-valued queries,where the choice of second query depends on the true answer to thefirst query.Although complex, it is soley a function of the database.We handle such queries in Theorem4.The case of an adaptively chosen series of questions,in which subsequent queries depend on the reported answers to previous queries,is handled in Theorem5. For example,suppose the adversaryfirst poses the query“Compute the median of each column,”and receives in response noisy versions of the medians.Let M be the reported median for Column1(so M is the true median plus noise).The adversary may then pose the query:“If M exceeds the true median for Column1 (ie,if the added noise was positive),then...else...”This second query is a function not only of the database but also of the noise added by the privacy mechanism in responding to thefirst query;hence,it is adaptive to the behavior of the mechanism.8This mechanism was introduced in[12],where analagous results were obtained for the related notion of -indistinguishability.The proofs are essentially the same.10 C.Dwork5.1Exponential Noise and the L1-SensitivityWe will achieve -differential privacy by the addition of random noise whose magnitude is chosen as a function of the largest change a single participant could have on the output to the query function;we refer to this quantity as the sensitivity of the function9.Definition3.For f:D→R d,the L1-sensitivity of f isf(D1)−f(D2) 1(2)Δf=maxD1,D2for all D1,D2differing in at most one element.For many types of queriesΔf will be quite small.In particular,the simple count-ing queries(“How many rows have property P?”)haveΔf≤1.Our techniques work best–ie,introduce the least noise–whenΔf is small.Note that sensitivity is a property of the function alone,and is independent of the database.The privacy mechanism,denoted K f for a query function f,computes f(X) and adds noise with a scaled symmetric exponential distribution with variance σ2(to be determined in Theorem4)in each component,described by the density functionPr[K f(X)=a]∝exp(− f(X)−a 1/σ)(3) This distribution has independent coordinates,each of which is an exponentially distributed random variable.The implementation of this mechanism thus simply adds symmetric exponential noise to each coordinate of f(X).Theorem4.For f:D→R d,the mechanism K f gives(Δf/σ)-differential privacy.Proof.Starting from(3),we apply the triangle inequality within the exponent, yielding for all possible responses rPr[K f(D1)=r]≤Pr[K f(D2)=r]×exp( f(D1)−f(D2) 1/σ).(4) The second term in this product is bounded by exp(Δf/σ),by the definition of Δf.Thus(1)holds for singleton sets S={a},and the theorem follows by a union bound.Theorem4describes a relationship betweenΔf,σ,and the privacy differential. To achieve -differential privacy,one must chooseσ≥ /Δf.The importance of choosing the noise as a function of the sensitivity of the entire complex query is made clear by the important case of histogram queries,in which the domain of data elements is partitioned into some number k of classes, such as the cells of a contingency table of gross shoe sales versus geographic 9It is unfortunate that the term sensitivity is overloaded in the context of privacy.We chose it in concurrence with sensitivity analysis.。
dp 安全评估
dp 安全评估
DP 安全评估(Differential Privacy Security Assessment)是对Differential Privacy (差分隐私)系统进行安全性评估的过程。
Differential Privacy 是一种隐私保护机制,通过向数据集中添
加噪音来保护个体隐私信息。
DP 安全评估的目的是评估 Differential Privacy 系统是否能够有效地保护数据隐私,并对系统的安全性进行分析和验证。
评估过程包括以下几个方面:
1. 数据隐私:评估 Differential Privacy 系统是否能够确保数据
个体的隐私信息不会被泄露。
评估者会对系统的隐私保护机制进行审查,并进行隐私泄露风险评估。
2. 差分隐私保护:评估 Differential Privacy 系统是否符合差分
隐私的基本原则。
评估者会检查系统是否满足差分隐私的定义和要求,例如个体隐私应保护的程度、敌手模型等。
3. 安全协议:评估 Differential Privacy 系统所采用的安全协议
是否具有足够的安全性。
评估者会分析协议的安全性假设、通信过程中的安全保证以及可能存在的攻击风险。
4. 系统实现:评估 Differential Privacy 系统的实现是否安全可靠。
评估者会检查系统的代码实现、加密算法、访问控制机制等,以评估系统的抗攻击能力。
DP 安全评估需要借助各种安全测试工具和技术,例如漏洞扫
描、代码审计、安全探针等,来发现潜在的安全问题和风险。
评估结果将有助于改进 Differential Privacy 系统的安全性,提升系统对个体隐私的保护能力。
A Survey of Differential Privacy in Data Publication and Analysis
张啸剑, 孟小峰
(中国人民大学信息学院 北京 100872)
摘
要
随着数据分析和发布等应用需求的出现和发展, 如何保护隐私数据和防止敏感信息泄露成为当前面临的重大挑战。
基于 k-匿名或者划分的隐私保护方法, 只适应特定背景知识下的攻击而存在严重的局限性。 差分隐私作为一种新出现的隐私 保护框架, 能够防止攻击者拥有任意背景知识下的攻击并提供有力的保护。 文中对差分隐私保护领域已有的研究成果进行了 总结,对该技术的基本原理和特征进行了阐述,重点介绍了当前该领域的研究热点:差分隐私下基于直方图的发布技术、基 于划分的发布技术以及回归分析技术。在对已有技术深入对比分析的基础上,指出了差分隐私保护技术的未来发展方向。 关键词 差分隐私;数据发布;隐私保护;数据分析 DOI 号:*投稿时不提供 DOI 号* 中图法分类号 ****
其中,D 和 D 至多相差一条记录, R 表示所映 射的实数空间,d 表示函数 f 的查询维度。 2.2.1 拉普拉斯机制 文献 [9] 提出了拉普拉斯机制可以取得差分隐 私保护效果,该机制所添加噪音是来自于拉普拉斯 分布,该分布的概率密度函数描述如下。 定义 3. 如果随机变量 X 的密度函数为下列表 达式,则称 X 服从拉普拉斯分布。 1 Pr[ x | , ] exp( | x | ) (3) 2 其中, 和 分别为变量 x 的期望和尺度参数 (Scale parameter),2λ2 表示其方差。参数 由全局 敏感性 f 和隐私参数 决定, f / 。为了方
Abstract As the emergence and development of application requirements such as data analysis and data publication, a challenge
DPPA协议介绍
DPPA协议介绍DP(Differential Privacy)和PA(Privacy Amplification)是两种用于保护个人隐私的协议。
这两种协议在信息保护方面有着不同的应用和设计原理。
下面将详细介绍DP和PA协议。
首先,DP(Differential Privacy)是一种保护数据隐私的技术和原则。
它的基本思想是通过添加噪声对数据进行处理,以保护个体的隐私信息。
DP主要应用于数据收集和分析领域,旨在提供对分析结果的保密性和个人身份的保护。
在DP协议中,噪声的添加是一个重要的步骤,它通过使得统计结果的变化足够大,以使个体的隐私信息不可明确识别。
在具体应用中,DP协议需满足以下两个条件:差分隐私定义和计算密集度。
其次,PA(Privacy Amplification)是一种用于加强信息传输过程中的隐私保护的协议。
在信息传输中,由于通信过程中的不确定性和噪音,容易导致信息泄露。
PA协议通过提供随机化和加密的手段,以减小信息泄露的风险。
PA协议主要应用在密码学和通信领域,帮助确保信息传输的机密性和完整性。
在PA协议中,随机化和加密是两个关键步骤,它们通过扰乱和隐匿部分信息以保证通信中的隐私和安全。
DP和PA协议在设计原理和实际应用中存在一些不同点。
首先,DP协议主要关注的是隐私保护,通过噪音添加来保护个体隐私。
而PA协议则更加关注信息传输过程中的安全性,通过随机化和加密来保护信息的机密性和完整性。
其次,DP协议更注重保持数据的可用性和可分析性,旨在提供对数据的统计结果使用,并可以对用户进行统计分析。
而PA协议更侧重于保持信息的机密性,主要用于确保信息在传输过程中的安全性。
此外,DP和PA协议在应用领域和目标对象上也有不同。
DP协议主要应用于数据分析和隐私保护,在社交媒体、医疗数据、金融数据等隐私敏感领域具有广泛的应用。
PA协议主要应用于网络通信和信息传输领域,在互联网、电子商务、金融交易等信息交换中起到重要的作用。
差分隐私保护
差分隐私保护
差分隐私保护
差分隐私保护(Differential Privacy)是最近受到极大关注的一种隐私保护技术,也是最先进的隐私保护手段之一,它主要通过向数据添加噪声,把任何用户的信息完全隔离开来来实现。
差分隐私保护技术是基于无损的方法,可以在不影响数据质量的情况下,把个体隐私从数据集中完全分离出来。
它最初出现在2004年,由著名的信息安全专家Cynthia Dwork开创性的提出。
传统的隐私保护技术通常通过数据的模糊化,像加密等手段实现,有了这些方法,即使把原始数据泄漏出去,也不会暴露其中的用户个人信息。
但这种方法有一个
弊病,就是失去了原始数据的Precision。
而差分隐私生技术则利用信息论中的隐
私漏洞,通过加入噪声的方法,保护用户的隐私,同时又不损失数据的极致的精确度。
差分隐私保护技术能够提供强大的隐私保护,它在保护用户个人信息时,既不影响数据集中数据的准确性和可用性,也不会损害对应的分析结果。
差分隐私保护技术可应用于建模,机器学习和推荐等领域。
例如它可以应用于谷歌搜索,脸书、淘宝等商业互联网系统,让外部不能知道网站中用户的身份,并把他们的行为完全隐藏起来。
其实,差分隐私技术的应用场景没有那么死板,它不仅应用在保护用户隐私上,也可应用于二元对称网络,如社交网络时,它也可以发挥重要作用。
这一技术重要吗?!当然重要。
现代生活,信息与科技紧密结合,大数据的泛滥,隐私日益重要,没有完善的隐私保护,将会给人们的安全带来严重的威胁,而差分隐私技术既能保护用户的个人隐私,又能保护网站的安全,会得到未来的广泛应用和推广。
史上最严安卓隐私管理系统: 50款最热APP大战MIUI 12!
史上最严安卓隐私管理系统: 50款最热APP大战MIUI 12!作者:来源:《电脑报》2020年第27期首先要需要说明一下的就是,这50款APP是从小米应用商店的下载榜中按照順序安装的,未做人工挑选。
测试机型为小米10 Pro,已经升级到最新的MIUI 12稳定版。
为了避免干扰,在测试前已经将手机恢复到出厂状态,所有APP都手动打开一遍。
初次开启会要求获取各种权限,根据APP不同提示获取的权限也不同,最多的就是读写设备上的照片及文件、位置信息、获取手机信息这三个。
在MIUI 12中,新增了一个“照明弹”的功能,它会记录下所有APP使用的权限,我仔细翻阅了一下,还真有不少是以前完全没注意过的。
比如QQ浏览器就多次在后台获取位置信息、穿越火线自动唤醒其他应用、支付宝/小红书/西瓜视频等APP反复自启动……此前,央视就报道了通信工具TIM一小时尝试自启动7000余次的新闻,就我观察,虽然没达到这么高的频率,但支付宝、微信、西瓜视频、花椒直播、小红书等APP平均两分钟就会发起一次自启动,仍然不可忽视。
如果不是因为照明弹,APP在后台频繁自启动,用户几乎没有感知,而这也是因为APP 开发者为了“日活”等数据,动的小心机。
但是这样一来,如果不做限制,反复地自启动肯定会带来无谓的电量、流量消耗,还会占用宝贵的内存空间、增加性能的负荷,这些都是显而易见的。
前面提到,穿越火线等APP还会在后台唤醒其他应用(叫做链式启动),同样是为了刷日活流量,而且还有APP之间利益关系。
如果没有“照明弹”,可能你也完全无法感知。
正常使用了三天这些APP,并且保证所有APP每天都至少手动打开一次,测试了三天之后,得到的结果是我完全没有想到的。
涉及到链式启动的应用包括:WiFi万能钥匙、腾讯视频、花椒直播、喜马拉雅、小红书、QQ浏览器、拼多多、斗鱼直播、穿越火线、微信、开心消消乐、全民K歌、和平精英、迷你世界、探探、爱奇艺——整整16个!而且启动频率仍然很高,比如腾讯视频,就在15:24到15:25这短短一分钟内,发起了5款APP,每款都是近20次的链式启动请求。
数据的安全聚合算法
数据的安全聚合算法
数据的安全聚合算法是一种保护个体隐私的方法,在聚合数据时,通过对数据进行加密或
脱敏处理,防止个体信息泄露。
以下是几种常见的数据安全聚合算法:
1. 差分隐私(Differential Privacy):差分隐私是一种保护数据隐私的方法,通过在聚合数据前对
每个数据点添加一定的噪声,使得个体数据不可逆转,从而保护数据的隐私。
2. 安全多方计算(Secure Multi-party Computation, SMC):安全多方计算是一种在不泄露个体数
据的情况下对数据进行聚合的方法,它允许多个参与方在不直接共享数据的情况下进行计算,并得到聚合结果。
3. 泛化和抑制(Generalization and Suppression):泛化和抑制是一种通过对数据进行隐藏或模糊
处理来保护隐私的方法。
例如,可以将年龄信息泛化为年龄段,对明细数据进行抑制,只公开部分信息。
4. 同态加密(Homomorphic Encryption):同态加密是一种特殊的加密技术,允许在加密状态下
进行计算,并在计算结果解密后得到正确结果。
通过在数据聚合过程中使用同态加密,可以保
护数据的隐私。
5. 专用加密技术(Private Set Intersection):专用加密技术允许两个或多个参与方对数据进行加密,并通过安全的交互协议计算聚合结果。
这种方法可以保证个体数据不被泄露,同时得到聚合结果。
这些算法都可以用于保护数据在聚合过程中的安全性,避免个体隐私信息的泄露。
具体使用哪种算法需根据场景和需求进行选择。
privacy-preserving set intersection方向的综述
privacy-preserving set intersection方向的综述1. 引言1.1 概述随着互联网的不断发展和数据的快速增长,个人隐私保护变得越来越重要。
在许多应用场景中,需要对不同数据集之间的交集进行计算,例如在社交网络分析、医疗研究和市场调查等领域。
然而,传统的集合交集计算方法可能会泄露敏感信息,因此隐私保护集合交集成为一个关注的焦点。
1.2 文章结构本文将对隐私保护集合交集方向进行综述,并主要包括以下几个部分:2. 隐私保护集合交集方向的定义与意义3. 基础技术与方法综述4. 隐私保护集合交集的算法与协议研究进展5 结论与展望在第二部分,我们将介绍隐私保护集合交集问题的定义,并探讨它在实际应用中的意义和重要性。
同时,我们还将概述当前已有的解决方案以及相关研究进展。
第三部分将介绍涉及到隐私保护集合交集问题所需要用到的基础技术和方法。
包括加密基础技术、安全多方计算与同态加密技术以及差分隐私与数据扰动技术等。
在第四部分,我们将详细综述目前针对隐私保护集合交集问题的算法和协议研究进展。
具体包括基于同态加密的方案、基于安全多方计算的方案以及基于差分隐私的方案等。
最后,在第五部分,我们将对整个研究内容进行总结,并展望未来在隐私保护集合交集方向上的发展趋势和可能的研究重点。
1.3 目的本文旨在概述并系统地总结隐私保护集合交集相关领域的研究现状和进展。
通过对不同方法和技术的介绍,希望读者能够了解隐私保护集合交集问题背后涉及到的核心概念和关键技术。
同时,也为相关领域的研究人员提供一个参考,促进该方向更深入地探索和发展。
2. 隐私保护集合交集方向的定义与意义2.1 集合交集问题介绍与应用场景隐私保护集合交集问题是指在涉及敏感数据的情况下,如何实现两个或多个数据集之间的交集计算,同时保护参与者的隐私。
该问题在许多实际场景中具有重要应用,例如社交网络分析、医疗健康数据共享和金融风险评估等。
社交网络分析是一个典型的应用场景,当用户希望找到共同的朋友或兴趣相似的人时,他们可以将他们各自拥有的关系图进行交集计算。
数据隐私保护与权衡中的差分隐私与匿名化技术研究
数据隐私保护与权衡中的差分隐私与匿名化技术研究随着数字化时代的到来,个人数据的收集、存储和处理变得日益普遍。
然而,对个人数据的隐私保护已经成为一个重要和敏感的问题。
隐私泄露不仅会导致个人信息被滥用,还可能引发信任危机和社会不稳定。
因此,隐私保护的需求越来越迫切,研究深入差分隐私与匿名化技术成为保护数据隐私的关键。
差分隐私(Differential Privacy)是一种用于保护个人数据的隐私的方法。
它通过对查询结果的微小噪声添加,使攻击者无法确定任何特定个体的数据。
差分隐私的关键思想是在充足的噪声中发布查询结果,以保护个体的隐私。
在获取敏感数据后,数据持有者需要对查询结果进行微小的扰动,以达到差分隐私的目标。
差分隐私的一个重要特性是具备先验隐私保护,这意味着即使攻击者掌握了除了查询结果外的所有其他信息,也无法获得关于个别个体的敏感信息。
因此,差分隐私技术在隐私保护中具有高度的技术可行性和强大的保护能力。
同时,差分隐私还提供了一个形式化的框架,以衡量数据隐私的损失,并允许制定隐私保护与数据利用之间的权衡。
差分隐私技术的关键挑战之一是如何确定噪声的添加量,以平衡数据隐私和数据可用性。
较小的噪声可以提供更强的隐私保护,但可能导致查询结果的不准确性。
相反,较大的噪声可以提供更准确的结果,但隐私保护可能会受到影响。
因此,需要细致的权衡,以确定适当的噪声水平。
与差分隐私相比,匿名化技术是另一种常用的数据隐私保护方法。
匿名化是指通过对数据进行修改或删除某些信息,使得无法识别出某个个体的方法。
例如,我们可以删除姓名、地址和身份证号码等直接识别个体的信息,以保护其隐私。
匿名化技术通常被用于广泛共享数据,以使数据在被使用时不被其他人识别出。
然而,匿名化技术并不能提供强大的隐私保护。
一方面,匿名化技术可能受到重识别攻击,攻击者通过匹配已知的外部信息和匿名化数据,来识别出特定个体的身份。
另一方面,匿名化后的数据的实用性可能会受到影响。
数据隐私保护中的差分隐私技术研究
数据隐私保护中的差分隐私技术研究随着互联网和大数据时代的到来,数据隐私保护成为了一个日益重要的议题。
为了保护个人的隐私权益,研究者们提出了各种各样的隐私保护技术。
其中,差分隐私技术备受关注,因其在保护数据隐私的同时,又能有效地利用数据进行分析。
本文将从差分隐私技术的概念、应用场景以及研究进展三个方面进行探讨。
一、差分隐私技术的概念差分隐私(Differential Privacy)是由密歇根大学的Cynthia Dwork等人于2006年提出的一种隐私保护概念。
简单来说,差分隐私的目标是通过向原始数据添加一定的随机噪声,使得针对个别数据的攻击变得困难,从而保护用户的隐私。
换言之,差分隐私不是针对具体的个人数据,而是针对整个数据集的保护。
二、差分隐私技术的应用场景差分隐私技术具有广泛的应用场景。
首先,差分隐私可应用于个人隐私保护。
比如,在社交网络中,通过使用差分隐私技术,可以保护用户的个人信息不被恶意获取。
其次,差分隐私还可以应用于数据共享与合作。
在数据共享场景中,通过差分隐私技术,可以使得数据拥有者将其数据分享给他人,而不用担心隐私泄露。
此外,差分隐私还可应用于机器学习和数据挖掘等领域,通过保护个体数据的隐私,实现数据的有效分析和模型的训练。
三、差分隐私技术的研究进展在差分隐私技术的研究中,涌现出了许多有价值的成果。
首先,针对差分隐私噪声的选择和添加,研究者们提出了各种不同的方法。
例如,使用拉普拉斯噪声、指数机制、哈密顿机制等方式添加噪声。
其次,为了提高数据利用率和查询效果,研究者们提出了差分隐私发布算法。
这些算法能够在保护隐私的同时,尽可能最大限度地保留数据特征,实现有效的数据发布和查询。
此外,对于差分隐私技术的评估和量化,也是研究的重要方向之一。
研究者们提出了差分隐私泄露风险和隐私损失的度量方法,以便评估差分隐私技术的有效性和可行性。
在差分隐私技术的研究中,也存在一些挑战和亟待解决的问题。
首先,如何在满足隐私保护要求的前提下,提高数据的可用性和数据利用率仍然是一个重要的问题。
计算机科学伦理与社会责任
计算机科学伦理与社会责任计算机科学伦理与社会责任是计算机科学领域中一个重要的知识点,它涉及到了计算机科学家在研究、开发和应用计算机技术过程中应遵循的伦理原则和承担的社会责任。
以下是关于这一知识点的详细介绍:1.伦理原则:a.尊重个人隐私:计算机科学家应确保个人数据的安全和隐私,不泄露或滥用个人信息。
b.诚实守信:在研究和应用计算机技术时,计算机科学家应保持诚实和透明,不进行虚假陈述和欺骗行为。
c.公平无偏见:计算机科学家应避免歧视和偏见,确保计算机技术的平等和安全使用。
d.保护知识产权:计算机科学家应尊重知识产权,不侵犯他人的专利、版权和商标等权益。
2.社会责任:a.安全与可靠性:计算机科学家应致力于开发安全可靠的计算机系统,防止黑客攻击、病毒传播等安全问题。
b.环保与可持续发展:计算机科学家应关注计算机技术对环境的影响,提倡绿色计算,减少能源消耗和废物产生。
c.社会责任与公义:计算机科学家应关注计算机技术对社会的影响,积极参与社会公益事业,推动科技向善。
d.教育与普及:计算机科学家应致力于普及计算机科学知识,提高公众的科技素养,促进社会数字经济发展。
3.法律法规:a.遵守相关法律法规:计算机科学家应了解并遵守国家关于计算机科学的法律法规,如《中华人民共和国网络安全法》等。
b.合规审查与风险管理:计算机科学家在进行研究、开发和应用计算机技术时,应进行合规审查和风险评估,确保合规性和安全性。
4.职业道德:a.专业精神:计算机科学家应具备专业的职业精神,不断提升自身技能和知识水平,为社会的计算机科学领域做出贡献。
b.团队协作:计算机科学家应具备良好的团队协作能力,与他人共同推进计算机科学领域的发展。
c.继续教育与培训:计算机科学家应积极参与继续教育和培训,了解最新的计算机科学技术和发展趋势。
综上所述,计算机科学伦理与社会责任是计算机科学家在研究、开发和应用计算机技术过程中必须关注的重要知识点。
遵循伦理原则和承担社会责任,不仅有助于保护个人隐私、促进公平无偏见的环境,还能推动计算机科学技术的可持续发展,为社会创造更大的价值。
本地化差分隐私研究综述
软件 学 报 ISSN 1000.9825,CODEN RUXUEW
Journal ofSoftware,2018,29(7):1981—2005【doi:10.13328 ̄.cnki.jos.005364】 @中 国科 学 院 软件 研 究 所 版权 所 有 .
E—mail:jos@ iscas.ac.cn http://www.jos.org.ca
Survey on L ocal D ifferential Privacy
YE Qing.Qing , MENG Xiao.Feng , ZHU Min.Jie , HUO Zheng (School of Information,Renmin University of China,Beijing 100872,China) (School ofInformation Technology,Hebei University ofEconomics and Business,Sh ̄iazhuang 050061,China)
数据隐私保护中的差分隐私方法使用教程
数据隐私保护中的差分隐私方法使用教程随着大数据时代的到来,个人隐私保护成为了社会关注的焦点。
在大规模数据收集和分析的背景下,如何确保个人数据的隐私性成为了一个亟待解决的问题。
差分隐私(Differential Privacy)作为一种有效的隐私保护方法,得到了广泛的关注和应用。
本篇文章将介绍差分隐私的基本概念和主要应用场景,并详细介绍差分隐私的使用教程。
一、差分隐私的基本概念差分隐私是一种在数据收集和分析过程中保护个人隐私的方法。
其基本思想是通过添加噪声来隐藏个体的具体信息,从而在保证数据的可用性的同时保护个人隐私。
差分隐私提供了一个数学框架,可以衡量隐私与数据可用性之间的平衡。
差分隐私的定义是通过对两个相邻数据集的查询结果进行比较来判断个人隐私是否被泄露。
一个数据集相对于另一个数据集是“相邻”的,当两者之间仅存在一个个体的差异时。
差分隐私的机制能够保证在不考虑具体数据的情况下,对于相邻的数据集查询结果的差异是有限的。
差分隐私机制有两个主要操作:扰动和过滤。
扰动使用随机噪声来模糊原始数据,使得攻击者无法准确推断特定的个人信息。
过滤是指对查询或分析结果进行限制,以达到控制隐私泄露的目的。
二、差分隐私的主要应用场景1. 个人数据发布:差分隐私可以保护个人数据在发布时的隐私,使得数据可以被广泛使用而不泄露个人隐私。
2. 数据分析:通过差分隐私保护用户的隐私,同时仍然可以进行数据分析,例如智能城市数据的分析和医疗数据的研究等。
3. 机器学习模型训练:差分隐私可以在机器学习过程中保护用户的个体数据,不仅可以保护隐私,还可以对模型的泛化性能进行改善。
三、差分隐私的使用教程1. 数据扰动数据扰动是差分隐私的核心机制之一。
通过对原始数据添加随机噪声来扰动数据,从而达到保护隐私的目的。
数据扰动有很多方式,其中最常用的是拉普拉斯机制和指数机制。
拉普拉斯机制通过向原始数据添加拉普拉斯分布的随机噪声来实现数据的扰动。
拉普拉斯机制的噪声大小由隐私参数ε和敏感度Δ决定,随着ε的增加,噪声增加,隐私保护程度提高。
多数据源隐私保护数据清洗与联合学习研究
摘要摘要如今,机器学习技术已经在多个领域得到了广泛的应用,为人们的生活带来了相当的便利。
机器学习模型训练的关键之一在于数据集的规模与质量,通过扩大数据集规模,覆盖更完整的训练样本,可以直观的提升机器学习模型的性能。
由于在如今的大数据环境中,许多数据已经掌握在了不同拥有者的手中,因此跨数据集的机器学习模型训练成为了目前的发展趋势。
跨数据集训练涉及多个数据源,需要融合多方数据才能准确进行的数据清洗和模型训练算法成为多方联合共建机器学习模型中的关键问题,但是融合数据集带来的数据隐私安全问题也不可忽视。
安全多方计算技术作为密码学中一种以多方参与为背景的安全密码算法,十分适合用于上述场景中,安全多方计算技术能够在保证参与方隐私的前提下,对参与方协议的函数进行计算,包括秘密共享和混淆电路等技术,能够完成加减乘除与比较等基本运算。
本文使用安全多方计算技术,结合机器学习模型构建不同阶段的技术,设计了一种隐私保护的联合多数据源数据清洗与模型训练算法。
首先,本文针对多数据源联合进行数据集清洗的问题,设计了一种隐私保护的清洗算法,对A VF数据清洗算法做出改进,将秘密共享技术及Yao加密电路结合以实现同时完成密文算术与比较计算,并创新使用排序电路降低密文排序的算法复杂度,主要解决了多个数据源的数据联合清洗时可能出现的数据隐私泄露问题,经过最终在公共数据集和人工调整的数据集上的仿真结果证明本文算法的可行性和有效性。
针对数据清洗完成后的多方联合模型训练问题,本文设计了一种隐私保护的模型训练算法,各参与方在本地使用统一模型训练,使用秘密共享技术对关键参数进行加密,并实现了第三方对多个参与方的加密参数添加噪声,中心式的参数处理使提高了最终各方模型的准确率,及添加噪声的统一和可控性,且使最终训练模型对模型反演攻击有充分的鲁棒性。
通过在MNIST数据集上进行的仿真实验说明了本方案在选取不同规模差分隐私噪声时的表现,并证明了本文算法的有效性。
大数据分析在医疗保健领域中的应用与隐私保护技术研究
大数据分析在医疗保健领域中的应用与隐私保护技术研究摘要随着信息技术的迅速发展,大数据分析在医疗保健领域中的应用越来越受到关注。
大数据的收集、存储和分析能力为医疗领域带来了许多独特的机会,包括疾病监测和预测、药物研发、患者护理和行业决策支持等方面。
然而,与之相伴的是对个人隐私和数据安全的担忧。
本论文旨在研究大数据分析在医疗保健中的应用,探讨隐私保护技术的研究现状和挑战,并提出相应的解决方案。
关键词:大数据分析、医疗保健、隐私保护一、引言随着信息技术的快速发展,大数据分析在各个领域中的应用变得日益重要。
在医疗保健领域,大数据的应用也呈现出了巨大的潜力。
医疗保健系统产生大量的数据,包括患者的诊断记录、试验结果、基因数据等等。
这些数据包含了丰富的医学信息,可以为疾病治疗、公共卫生政策制定以及医疗研究等方面提供重要的支持。
然而,随着大数据的广泛应用,个人隐私和数据安全问题也逐渐浮出水面。
医疗数据中蕴含着个人敏感信息,如患者的病史、身体状况等,若不妥善保护,可能会导致数据泄露、滥用和偷窥等风险。
因此,在大数据分析在医疗保健领域中的应用过程中,隐私保护技术的研究变得至关重要。
二、大数据分析在医疗保健中的应用大数据分析在医疗保健中的应用已经变得越来越广泛,大数据分析可以赋予医疗决策者更全面的信息和分析工具,以快速有效地诊断和治疗疾病。
例如,通过分析大规模的医疗数据集和生物标记物,可以建立先进的疾病早期预警系统和精准医疗模型,从而改善治疗效果和病人生命质量。
大数据分析可以帮助医疗机构优化资源的配置和管理,从而提高医疗服务的效率和质量。
例如,通过分析医疗机构的流量和医生工作效率,可以做出更好的排班和资源配置决策,提升就诊体验。
大数据分析能够从医疗历史、生理数据、遗传信息、环境数据等多个角度对患者进行长期监测和管理,以实现健康管理和预见性医疗。
例如,通过记录患者的健康信息和交叉分析大量的医疗数据,可以为患者推荐个性化的治疗方案和预防措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Or in very coarse-grained summaries
Public health
Or after a very long wait
US Census data details
Or with definite privacy issues
The published table
A voter registration list
Quasi-identifier (QI) attributes “Background knowledge”
87% of Americans can be uniquely identified by {zip code, gender, date of birth}.
Just because data looks hard to re-identify, doesn‟t mean it is.
[Narayanan and Shmatikov, Oakland 08]
In 2009, the Netflix movie rental service offered a $1,000,000 prize for improving their movie recommendation service.
Differential Privacy
Part of the SIGMOD 2012 Tutorial, available at /publications.html
Part 1: Motivation
Yin Yang (slides from Prof. Marianne Winslett) Advanced Digital Sciences Center, Singapore University of Illinois at Urbana-Champaign Including slides from: Anupam Datta / Yufei Tao / Tiancheng Li / Vitaly Smatikov / Avrim Blum / Johannes Gehrke / Gerome Miklau / & more!
We can re-identify a Netflix rater if we know just a little bit about her (from life, IMDB ratings, blogs, …).
8 movie ratings (≤ 2 wrong, dates ±2 weeks) re-identify 99% of raters 2 ratings, ±3 days re-identify 68% of raters Relatively few candidates for the other 32% (especially with movies outside the top 100) Even a handful of IMDB comments allows Netflix reidentification, in many cases 50 IMDB users re-identify 2 with very high probability, one from ratings, one from dates
What the New York Times did: Find all log entries for AOL user 4417749 Multiple queries for businesses and services in Lilburn, GA (population 11K) Several queries for Jarrett Arnold Lilburn has 14 people with the last name Arnold NYT contacts them, finds out AOL User 4417749 is Thelma Arnold
Many important applications involve publishing sensitive data about individuals.
Social and computer networking What is the pattern of phone/data/multimedia network usage? How can we better use existing (or plan new) infrastructure to handle this traffic? How do people relate to one another, e.g., as mediated by Facebook? How is society evolving (Census data)? Industrial data (individual = company; need SMC if no TTP) What were the total sales, over all companies, in a sector last year/quarter/month? What were the characteristics of those sales: who were the buyers, how large were the purchases, etc.?
Part 1A
WHY SHOULD WE CARE?
Many important applications involve publishing sensitive data about individuals.
Medical research What treatments have the best outcomes? How can we recognize the onset of disease earlier? Are certain drugs better for certain phenotypes? Web search What are people really looking for when they search? How can we give them the most authoritative answers? Public health Where are our outbreaks of unpleasant diseases? What behavior patterns or patient characteristics are correlated with these diseases?
US Census reports, the AOL click stream, old NIH dbGaP summary tables, Enron email
Society would benefit if we could publish some useful form of the data, without having to worry about privacy.
Official outline: Overview of privacy concerns Case study: Netflix data Case study: genomic data (GWAS) Case study: social network data Limits of k-anonymity, l-diversity, t-closeness
Real query logs can be very useful to CS researchers. But click history can uniquely identify a person.
<AnonID, Query, QueryTime, ItemRank, domain name clicked>
Or with IRB (Institutional Review Board) approval
dbGaP summary tables
Why is access so strictly controlled?
No one should learn who had which disease.
High School Musical 1 Customer #1 4 High School Musical 2 5 High School Musical 3 5 Twilight ?
Training data: ~100M ratings of 18K movies from ~500K randomly selected customers, plus dates Only 10% of their data; slightly perturbed
Today, access to these data sets is usually strictly controlled.
Only available: Inside the company/agency that collected the data Or after signing a legal contract
actually 63%
[Golle 06]
Latanya Sweeney [International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002] used this approach to reidentify the medical record of an ex-governor of Massachusetts.
Many important applications involve publishing sensitive data about individuals.