高斯投影及其计算资料
大地测量学第六章高斯投影及其计算
第六章 高斯投影 及其计算
中国矿业大学环境与测绘学院
第六章 高斯投影及其计算概述
1、椭球面上计算复杂; 2、椭球面上表示点位的经度、纬度大地线长、大地
方位角等对大比例尺测图不适应; 3、为了测绘地形图和计算的方便,需通过地图投影
的方法将椭球面上的元素化算到平面上; 4、本章主要介绍正形投影的特性以及高斯投影建立
应用大地测量学
§6.2.2 高斯投影的长度比和长度变形
1、用大地坐标表示的高斯投影长度比m
式中:
2、用平面坐标表示的高斯投影长度比m
m
1
y2 2R 2
y4 24R4
式中y为投影点的横坐标,R为该点处椭球平均曲率半径。
应用大地测量学
§6.2.2 高斯投影的长度比和长度变形
3、长度变形m-1与横坐标y的关系
5 5′
应用大地测量学
§6.3 高斯投影坐标计算
高斯投影坐标正算——由(B,L)求(x,y) 高斯投影坐标反算——由(x,y)求(B,L)
应用大地测量学
§6.3.1 高斯投影坐标正算公式
(6-26)
式中,X为由赤道至纬度B的子午线弧长, 为计算点P点与中央子午线
的经差。N为卯酉圈曲率半径,t=tanB, η=e′cosB。 L-L0若以度为单位,则ρ=57.295779513; L-L0若以分为单位,则ρ=3437.7467708; L-L0若以秒为单位,则ρ=206264.80625。
平面直角坐标系的方法、观测元素的化算、高斯 投影坐标计算。
第六章 高斯投影及其计算
第一节 地图投影概念和正形投影性质 第二节 高斯投影与国家平面直角坐标系(基础) 第三节 高斯投影坐标计算(重点) 第四节 椭球面上的方向和长度归算至高斯投影平面
高斯投影
一、高斯投影正反算 (1)采用c 语言(2)编程思想和设计框图(3)采用的基本数学模型 基本椭球参数: 椭球长半轴a 椭球扁率f椭球短半轴:(1)b a f =-椭球第一偏心率:e =椭球第二偏心率:e b'=高斯投影正算公式:此公式换算的精度为0.001m6425644223422)5861(cos sin 720)495(cos 24cos sin 2lt t B B N lt B simB N l B B N X x ''+-''+''++-''+''⋅''+=ρηηρρ5222425532233)5814185(cos 120)1(cos 6cos lt t t B N lt B N l B N y ''-++-''+''+-''+''⋅''=ηηρηρρ其中:角度都为弧度B 为点的纬度,0l L L ''=-,L 为点的经度,0L 为中央子午线经度; N 为子午圈曲率半径,1222(1sin )N a e B -=-; tan t B =;222cos e B η'=1803600ρπ''=*其中X 为子午线弧长:2402464661616sin cos ()(2)sin sin 33X a B B B a a a a a B a B ⎡⎤=--++-+⎢⎥⎣⎦02468,,,,a a a a a 为基本常量,按如下公式计算:200468242684468686883535281612815722321637816323216128m a m m m m m m a m mm a m m m m a m a ⎧=++++⎪⎪⎪=+++⎪⎪⎪=++⎨⎪⎪=+⎪⎪⎪=⎪⎩02468,,,,m m m m m 为基本常量,按如下公式计算:22222020426486379(1);;5;;268m a e m e m m e m m e m m e m =-====;高斯投影反算公式:此公式换算的精度为0.0001’’.()()()()222224324653223524222553922461904572012cos 6cos 5282468120cos f f f ff f f f ff fff f f ff f f f f f f f f f f f f t t B B y tt yM N M Nt y t t yM Ny y l t N B N B y t t t N B L l L ηηηηη=-+++--++=-+++++++=+其中:0L 为中央子午线经度。
高斯投影正反算
高斯投影正反算学院:资源与环境工程工程学院专业:测绘工程 学号:X51414012:超一、高斯投影概述想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线相切,椭圆柱的中心轴通过椭球体的中心,然后用一定投影方法,将中央子午线两侧各一定经差围的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。
高斯投影由于是正形投影,故保证了投影的角度不变性,图形的相似性以及在某点各方向上长度比的同一性。
由于采用了同样法则的分带投影,这即限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行变形引起的各项改正的计算,并且带与带间的互相换算也能用相同的公式和方法进行。
高斯投影的这些优点必将使它得到广泛的推广和具有国际意义。
二、高斯投影坐标正算公式1.高斯投影必须满足以下三个条件 1)中央子午线投影后为直线 2)中央子午线投影后长度不变 3)投影具有正形性质,即正形投影条件2.高斯正算公式推导1)由第一个条件可知,由于地球椭球体是一个旋转椭球体,所以高斯投影必然有这样一个性质,即中央子午线东西两侧的投影必然对称于中央子午线。
2)由于高斯投影是换带投影,在每带经差l是不大的,lρ是一个微小量,所以可以将X=X (l,q ),Y=Y (l ,q )展开为经差为l 的幂级数,它可写成如下的形式X=m 0+m 2l 2+m 4l 4+…Y=m 1l+m 3l 2+m 5l 5+…式中m 0,m1,m2,…是待定系数,他们都是纬度B 的函数。
3)由第三个条件:∂y ∂l =∂x ∂q 和∂x ∂l =-∂y∂q ,将上式分别对l 和q 求偏导2340123423401234...........x m m l m l m l m l y n n l n l n l n l =+++++=+++++可得到下式0312123403121234111,,,, 234111,,,,234dm dm dm dm n n n n dq dq dq dq dn dn dn dn m m m m dq dq dq dq ⎧====⎪⎪⎨⎪=-=-=-=-⎪⎩经过计算可以得出232244524632235242225sin cos sin cos (594)224 sin cos (6158)720cos cos (1)6cos (5181458)120N N x X B B l B B t l NB B t t l Ny N B l B t l NB t t t l ηηηηη=+⋅+-+++-+=⋅+-++-++-三、高斯投影坐标反算公式推导1.思路:级数展开,应用高斯投影三个条件,待定系数法求解。
高斯投影计算
确定投影关系 -----数学规则 数学规则
x = F1 ( B, L) y = F2 ( B, L)
x = f1 ( q , l ) y = f 2 (q, l )
确定F 确定 1,F2或f1,f2
二、高斯投影条件 (Condition of Gauss projection)
Gauss — Kruger projection
四、高斯投影的计算内容 (Calculation contents of Gauss projection)
2. 具体计算内容
高斯投影
高斯—克吕格投影 高斯 克吕格投影
Gauss — Kruger projection
四、高斯投影的计算内容 (Calculation contents of Gauss projection)
m1 = −
dn0 dq 1 dn1 2 dq
1 dn2 3 dq
n0 →m →n2 →m3 →n4 →m5...... 1
m2 = −
m3 = −
1 dm3 n4 = 4 dq
n5 = 1 dm4 5 dq
m4 = −
1 dn3 4 dq
m0 →n1 →m2 →n3 →m4 →n5......
m5 = −
4. 分带投影的缺点 (Shortcoming of belt dispartion) (1) 不便于跨带三角锁网平差 (2) 不利于图幅拼接 解决办法 西带向东带重迭30 西带向东带重迭 ‘ 东带向西带重迭15 东带向西带重迭 ‘
高斯—克吕格投影 高斯 克吕格投影
Gauss — Kruger projection
1 dn4 5 dq
高斯投影正算公式
Direct solution of Gauss projection 一、公式推导 (Formula derivation)
高斯投影正反算原理
高斯投影正反算原理高斯投影是一种常用于地图制图的投影方式,也被广泛应用于其他领域的空间数据处理。
高斯投影正反算是对于已知的地球坐标系上的位置(经纬度),通过计算得到该点的平面坐标(东、北坐标),或者对于已知的平面坐标(东、北坐标),通过计算得到该点的地球坐标系上的位置(经纬度)的过程。
本文将详细介绍高斯投影正反算的原理。
一、高斯投影简介高斯投影是一种圆锥投影,其投影面在地球表面的某个经线上,也就是说,投影面是以该经线为轴的圆锥面。
经过对圆锥体的调整后,使其切于地球椭球面,在该经线上进行投影,同时保持沿该经线方向的比例尺一致,从而达到地图上各点在包括该经线的垂直面上映射的目的。
这种投影方式在某一特定区域内得到高精度的结果,因此广泛应用于地图制图。
二、高斯投影数学模型对于高斯投影正反算,需要先建立高斯投影坐标系与地球坐标系的转换模型。
1.高斯投影坐标系的建立高斯投影坐标系的建立需要确定圆锥面的基本参数,首先需要确定其所处的中央子午线,再确定该子午线上的经度为零点,并利用该经线上某一点的经度和该点的高度来确定该点所在的圆锥体。
圆锥体的底面包括所有与地球椭球面相切的圆面,通过对这些圆面进行调整,使得圆锥体转动后能够在中央子午线上进行投影。
在此基础上,可建立高斯投影坐标系,其中投影面为圆锥面,且中央子午线与投影面的交点称为该投影坐标系的中心,投影面的上端点和下端点分别对应正北方向和正南方向。
2.地球坐标系的建立地球坐标系是以地球椭球体为基础建立的,其坐标系原点确定为地球椭球体上的一个特定点。
在已知该点经纬度和高度的前提下,可确定以该点为中心的地球椭球体,并可根据它与地球坐标系之间的转换关系得到平面坐标系。
3.高斯投影坐标系与地球坐标系之间的转换关系由于高斯投影坐标系与地球坐标系存在不同的坐标体系和基准面,因此需要通过数学关系式来建立它们之间的转换关系。
(1)高斯投影坐标系转地球坐标系:已知高斯投影坐标系中任意一点的东北坐标(N,E),以及所属的中央子午线经度λ0、椭球参数a和e,则可通过以下公式求出该点的地球坐标系经纬度(φ,λ)和高度H:A0为以地球椭球体中心为原点,高斯投影坐标系中心投影坐标为(0,0)的点到椭球面的距离。
高斯投影及计算
上式的计算精度为0.1″。
椭球面上的方向和长度归算至高斯投影平面
• 三、距离改正计算
• 距离改正——椭球面上大地线长S改换为平面上投 影曲线两端点间的弦长D,要加距离改正△S。
高斯投影坐标计算
大地经度L是从起始子午面开始起算的
起始子午线作为投影的中央子午线 高斯投影各投影带以L0为中央子午线
L L0 ρ
l
x=F1(B , l) y=F2(B , l)
高斯投影坐标计算
一、由(B,L)计算(x,y) --正算
高斯投影坐标计算
• • • • 一、由(B,L)计算(x,y)--正算 推证过程: 1、高斯投影坐标正算函数式 2、根据正形投影的一般公式 x+iy=f(q+il) 以及高斯投影的条件推导正算公式,可以 将一般公式在q处展为il 的台劳级数。
12、13为大地线
高斯投影计算内容
• 高斯投影为等角投影,所以椭球面上大地 线之间的夹角与高斯平面上投影曲线之间 的夹角相等。但是,各大地线的长度与投 影平面上的投影曲线长度并不相等,因为 投影存在长度变形。 • 为了在平面进行三角网的平差和计算,必 须把椭球面上以大地线构成的三角网,换 算成高斯投影平面上以直线边构成的三角 网。
24 R
上式即为大地线长度S归算到高斯平面上直线距离D的计算公式,对于 4 一等边长的归算完全可满足要求,对于二等边长的归算可略去 项, ym 2 y 项。 对于三四等边长的归算又可再略去
• 一、平面子午线收敛角的计算 • 2、由平面直角坐标计算平面子午线收敛角γ
高斯投影及其计算资料
由图可知
tan 90 A P2P3 MdB N cos Bdq dq P1P3 rdl N cos Bdl dl
即
dl tan Adq
于是
等量纬度
m2
dx2 dy2
r2[(dq)2 dl
2 ]
应用大地测量学
第一节 地图投影概念和正形投影性质
于是有
x F1B, L 相当于 x xq,l
y
F2
B,
L
y yq,l
dx
x q
dq
x l
dl
dy
y
dq
y
dl
q l
代入
ds2 dx2 dy2
ds2
x q
2
dq 2
2
应用大地测量学
第一节 地图投影概念和正形投影性质
应用大地测量学
第一节 地图投影概念和正形投影性质
应用大地测量学
第一节 地图投影概念和正形投影性质
应用大地测量学
第一节 地图投影概念和正形投影性质
应用大地测量学
第一节 地图投影概念和正形投影性质
应用大地测量学
第一节 地图投影概念和正形投影性质
x q
x l
dq
dl
x l
2
dl
2
y q
2
dq
2
2
y q
y l
dq
dl
y l
2
dl
2
应用大地测量学
第一节 地图投影概念和正形投影性质
ds2
x q
2
y q
2
dq
2
2
x q
x l
y q
y l
高斯投影坐标计算
x m0 m 2 l 2 m 4 l 4 y m1l m3 l 3 m5 l 5
式中m0 , m1 , 是待定系数,它们都是纬度B的函数
2) 由第三个条件即正形投影条件可知
y x x y 和 l q l q
分别对l 和q求偏导数并代入上式得
2、高斯投影坐标反算公式
已知高斯平面坐标(x,y),求椭球面上的大地坐标(B,L)的 问题称高斯投影坐标反算。 B 1 ( x, y) 函数式:
l 2 ( x, y)
同正算一样,对投影函数提出三个条件 (1) x (2) x (3) 正形投影条件。
1) 由第一个条件(x 坐标轴投影成中央子午线,是投 影的对称轴)可知
Bf为x值对应的底点纬度, tf ηf Mf Nf 均为底点纬度 的函数。
当l<3.5°时,
上式换算精度达0.0001″
高斯投影反算公式的几何解释
B B f ( n2 y 2 n4 y 4 = Bf高斯投影坐标正算的数值公式 将75国际椭球参数代入前面推导的高斯计算公式, 经过一些简单变化,可得高斯投影正算公式。 高斯投影正算公式:
B 2 2 2 x 6367452 .1328 (a0 (0.5 (a4 a6l )l )l N ) cos B sin B y (1 (a3 a5l 2 )l 2 )lN cos B
实用公式的系数
N 6399596 .652 [21565 .045 (108.996 0.603cos2 B) cos2 B] cos2 B 2 2 2 a 32144 . 5189 [ 135 . 3646 ( 0 . 7034 0 . 0041 cos B ) cos B ] cos B 0 cos2 B) cos2 B 0.04167 a4 (0.25 0.00253 2 2 a ( 0 . 167 cos B 0 . 083 ) cos B 6 0.001123 cos2 B) cos2 B 0.1666667 a3 (0.3333333 a 0.00878 (0.1702 0.20382cos2 B) cos2 B 5
高斯投影及换带计算
测绘学院《大地测量学基础》课件
10
6.2 高斯投影概述(重点)
1、控制测量对地图投影的要求
1)等角投影(又称正形投影)
2)长度和面积变形不大,并能用简单公式计算由变形而引起 的改正数。
3)能很方便地按分带进行,并能按高精度的、简单的、同样 的计算公式和用表把各带联成整体 。
测绘学院《大地测量学基础》课件
8
• 3、中国各种地图投影:
1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方 位投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割 圆锥投影。
• 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正 轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投 影(宽带)。
• 3)中国大比例尺地图的投影:多面体投影(北洋军阀时 期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯克吕格投影(解放以后)。
x F1(L, B) y F2 (L, B)
椭球面是一个凸起的、不可展平的曲面,若将这个曲面上 的元素(比如一段距离、一个角度、一个图形)投影到平 面上,就会和原来的距离、角度、图形呈现差异,这一差 异称作投影的变形
测绘学院《大地测量学基础》课件
4
长度比:
投影面上的边长与原面上的相应长度之比,称为长度比。
(1)该点位于6˚ 带的第几带?
(第19带)
(2)该带中央子午线经度是多少?
(L。=6º×19-3º=111˚)
(3)该点在中央子午线的哪一侧?
(先去掉带号,原来横坐标y=367622.380—500000=-132377.620m,在西侧)
(4)该点距中央子午线和赤道的距离为多少?
(距中央子午线132377.620m,距赤道3102467.280m)
高斯投影及换带计算
测绘学院《大地测量学基础》课件
24
高斯平面直角坐标系与数学上的笛卡尔平面直角 坐标系的异同点 :
不同点: 1、 x,y轴互异。 2、 坐标象限不同。 3、表示直线方向的方位角
定义不同。 相同点:
数学计算公式相同。
测绘学院《大地测量学基础》课件
Ⅳx
o
Ⅲ
α Ⅰp
D
y
Ⅱ
x=Dcosα
y=Dsinα
高斯平面直角坐标系
y3
6N
3 f
cos
Bf
1
2t
2 f
2 f
y5
120N
5 f
cos
Bf
5
28t
2 f
24t
4 f
6
2 f
8
2 f
t
2 f
测绘学院《大地测量学基础》课件
30
3、高斯投影坐 标正反算公式的
几何解释 :
①当B=0时x=X=0,y则随l的变化而变化,这就是说,赤道投影为一直线且 为y轴。当l=0时,则y=0,x=X,这就是说,中央子午线投影亦为直线,且为x轴, 其长度与中央子午线长度相等。两轴的交点为坐标原点。
B B f
tf 2M f N f
y2
tf
24M
f
N
3 f
5
3t
2 f
2 f
9
2 f
t
2 f
y4
过所求点P作中央子午线的垂线,
tf
720M
f
N
5 f
y
61
90t
2 f
45t
4 f
y6
该垂线与中央子午线的交点的纬 度,称垂足纬度。其值由子午线 弧长计算公式反算求得。
高斯投影及其计算
x y
FF12((BB,,ll))
f (z) f (z0)
f
(z0 )( z
x iy f (q il)
z0 )
f
(z0 ) (z 2!
z0 )2
设 z q il,z0 q ,在高斯投影分带中,经差 l 一般仅为 1.5
或
3 ,
f (q)
l2 2
d 2 f (q) dq 2
l4 24
d 4 f (q) dq 4
l 6 d 6 f (q)
720
dq6
il
df (q) l3
dq 6
d 3 f (q) l5 d 5 f (q)
dq3
120
dq5
l2 d2X l4 d4X l6 d6X
i
y q
f l
(x iy) l
x i y l l
又:
f f (q il) f q (q il) q (q il) f f (q il) i f
l (q il) l
(三)投影长度比与变形指标
投影长度比——投影面上无限小线段 ds与椭球面上该线段实际 长度 dS之比,以m表示,m=ds/dS。长度变形—— v= m-1
变形指标:主方向上投影长度比a和b叫变形指标。 若a=b,则为等角投影,既投影后长度比不随方向而变化。 若ab=1,则为等面积投影。 椭球面上微分圆: 投影平面上对应为微分椭圆:
大地测量学基础
第一节 地图投影概念和正形投影性质
(四)地图投影的分类
适用于电算的高斯投影计算公式
适用于电算的高斯投影计算公式1.高斯投影正算公式:⎥⎦⎤⎢⎣⎡+-+++-++=64244222)5861(7201)495(24121m t t m t m Nt X x ηη ⎥⎦⎤⎢⎣⎡-++-++-+=522242322)5814185(1201)1(61m t t t m t m N y ηηη []52342)2(12)231(60180m t m m t -++++=ηηπγ 式中,x ,y 分别为高斯平面纵坐标与横坐标, γ为子午线收敛角,单位为度。
X 为子午线弧长,对于克氏椭球:B B B B B B X cos )sin 0039.0sin 6976.0sin 9238.133sin 7799.32005(8611.111134753+++-= 对于“IAG 75”椭球:B B B B B B X cos )sin 0039.0sin 6976.0sin 9602.133sin 8575.32009(0047.111134753+++-= 其余符号为:02222,180cos ,1,cos ',L L l l B m cN B e tgB t -==+=== πηη222'bb a e -=,称作第二偏心率;b ac 2=,称作极曲率半径。
0L 为中央子午线经度。
对于克氏椭球:90178271.6399698,1470067385254.0'2==c e 对于“IAG 75”椭球:65198801.6399596,1950067395018.0'2==c e 算出的横坐标y 应加上500公里,再在前冠以带号,才是常见的横坐标形式。
2.高斯投影反算公式:[]6424222222)459061(25.0)935(5.7901n t t n t t n t B B f f f f f f f f f +++-++-+-=ηηπη[]542322)24285(5.1)21(30180cos 1n t t n t n B l f f f f f +++++-=ηπ[]542322)352(12)1(60180n t t n t n t f f f f f +++-+-=ηπγ 式中,f B 为底点纬度,以度为单位。
高斯投影坐标计算
本节要点提要
1、高斯投影坐标正算公式 2、高斯投影坐标反算公式 3、高斯投影坐标正算的数值公式 4、高斯投影坐标反算的迭代计算公式
地图投影的分类
• 按投影变形性质分类: 等角投影 等距投影 等积投影
a=b
• 按投影面分类 : 圆锥面 正轴投影 切投影
a=1 or b=1
圆柱(椭圆柱) 面 横轴投影 割投影
(1)中央子午线投影后为直线; (2)中央子午线投影后长度不变; (3)投影具有正形性质,即正形投影 条件。
高斯投影坐标正算
l =3/ρ=0.052
1) 由第一个条件(中央子午线投影后为直线) 可知,由于地球椭球体是一个旋转椭球体,即 中央子午线东西两侧的投影必然对称于中央子 午线。 x 为 l 的偶函数,而y 则为 l 的奇函数。
由恒等式两边对应系数相等,建立求解待定系数的递推公式
d m d m d m 1 1 0 1 m m m = 2 1 2 3 d q 2 d q 3 d q
m0=?
3) 由第二条件(中央子午线投影后长度不变)可 知,位于中央子午线上的点,投影后的纵坐标 x 应 该等于投影前从赤道量至该点的子午弧长。
Байду номын сангаас
a· b=1
平面投影 斜轴投影
• 按投影的中心轴线: • 按椭球面与投影面的切割情况分:
高斯投影特性(三个): – 中央子午线投影后为一直线,且长度不变; 其它经线为凹向中央子午线的曲线,且长 度改变。 – 投影后,赤道为一直线,但长度改变,其 它纬线呈凸向赤道的曲线。 – 投影后,中央子午线与赤道线正交,经线 与纬度也互相垂直,即高斯投影为等角投 影。
将各系数代入,略去高次项,得高斯投影 坐标正算公式精度为0.001m
6 高斯投影及其计算
其推证步骤为:
1、从长度比表达式出发 系式; ,求出m2与dx2,dy2和dB2,dl2关
2、引入等量纬度q,将x、y表为q、l的函数; 3、对 x=f1(q,l),y=f2(q,l)取全微分,引入符号E、F、G; 4、根据长度比m与方向A无关,得F=0,E=G; 5、由E=G、F=0得主要条件。
应用大地测量学
应用大地测量学
第一节 地图投影概念和正形投影性质
二、正形投影特性
两个基本要求: 1、任一点上,投影长度比m 为一常数,不随方向而变, 仅与点位臵有关。 2、投影后角度不变形。又叫保角映射。条件是在微小范 围内成立。 所以,正形投影的特性是:投影长度比m仅与点的位臵有 关,而与方向无关。
应用大地测量学
第一节 地图投影概念和正形投影性质
四、正形投影一般公式
根据复变函数理论,下列复变函数满足柯西(Cauchy)—黎曼 (Riemann)条件,式中,f代表任意解析函数。
x iy f (q il )
证明:
f x iy x y i q q q q f x iy x y i l l l l
x y x y q q l l
2 2 2 2
x y q l
x y l q
从椭球面到平面投影的柯西-黎曼条件
应用大地测量学
第一节 地图投影概念和正形投影性质
2 2
(完整版)高斯投影正反算
高斯投影正反算学院:资源与环境工程工程学院专业:测绘工程学号:X51414012姓名:孙超一、高斯投影概述想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线相切,椭圆柱的中心轴通过椭球体的中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。
高斯投影由于是正形投影,故保证了投影的角度不变性,图形的相似性以及在某点各方向上长度比的同一性。
由于采用了同样法则的分带投影,这即限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行变形引起的各项改正的计算,并且带与带间的互相换算也能用相同的公式和方法进行。
高斯投影的这些优点必将使它得到广泛的推广和具有国际意义。
二、高斯投影坐标正算公式1.高斯投影必须满足以下三个条件1)中央子午线投影后为直线2)中央子午线投影后长度不变3)投影具有正形性质,即正形投影条件2.高斯正算公式推导1)由第一个条件可知,由于地球椭球体是一个旋转椭球体,所以高斯投影必然有这样一个性质,即中央子午线东西两侧的投影必然对称于中央子午线。
2)由于高斯投影是换带投影,在每带内经差l是不大的,lρ是一个微小量,所以可以将 X=X (l,q ),Y=Y (l ,q )展开为经差为l 的幂级数,它可写成如下的形式X=m 0+m 2l 2+m 4l 4+…Y=m 1l+m 3l 2+m 5l 5+…式中m 0,m1,m2,…是待定系数,他们都是纬度B 的函数。
3)由第三个条件:∂y ∂l =∂x ∂q 和∂x ∂l =-∂y ∂q ,将上式分别对l 和q 求偏导2340123423401234...........x m m l m l m l m l y n n l n l n l n l =+++++=+++++可得到下式0312123403121234111,,,, 234111,,,,234dm dm dm dm n n n n dq dq dq dq dn dn dn dn m m m m dq dq dq dq ⎧====⎪⎪⎨⎪=-=-=-=-⎪⎩L L 经过计算可以得出232244524632235242225sin cos sin cos (594)224sin cos (6158)720cos cos (1) 6cos (5181458)120N N x X B B l B B t l N B B t t l N y N B l B t l N B t t t l ηηηηη=+⋅+-+++-+=⋅+-++-++-三、高斯投影坐标反算公式推导1.思路:级数展开,应用高斯投影三个条件,待定系数法求解。
高斯投影及换带计算分解课件
软件需求分析
01
02
03
04
用户需求
提供高斯投影和换带计算的功 能,满足用户对地理信息数据
的处理需求。
功能需求
软件应具备数据导入、高斯投 影转换、换带计算、结果导出
等功能。
性能需求
界面需求
软件应具备高效的数据处理能 力,能够处理大规模的地理信
息数据。
软件界面应简洁明了,操作简 便,提供友好的用户交互体验。
高斯投影及换带计 算分解课件
目 录
• 高斯投影基本概念 • 高斯投影计算方法 • 换带计算分解 • 高斯投影精度分析 • 高斯投影及换带计算软件实现 • 高斯投影及换带计算案例分析
01
高斯投影基本概念
高斯投影的定 义
01
高斯投影是一种将椭球面上的经 纬度坐标转换为平面直角坐标的 数学方法。
02
大地坐标系
以地球椭球体表面某一点的大地 经纬度为基准,建立的坐标系, 通常用于地理空间定位。
高斯投影坐标系
以高斯投影算法为基础,将大地 坐标系中的点投影到平面上的直 角坐标系,用于地图制作和地理 信息系统的数据表示。
坐标转换公式
大地坐标转高斯投影坐标
通过高斯投影的正反解公式,将大地经纬度转换为高斯投影平面直角坐标。
精度检验
对投影变换后的数据进行精度 检验,确保满足地图制作的要求。
03
换带计算分解
换带原因及原则
原因
高斯投影在某些区域可能会产生较大 的变形,为了满足地图制作的精度要 求,需要将投影带进行转换。
原则
选择适当的投影带,使得地图投影变 形最小,同时保持地图的完整性和连 续性。
换带计算公式