上海大学随机过程第六章习题及答案

合集下载

《随机过程》第6章习题及参考答案

《随机过程》第6章习题及参考答案

湖南大学本科课程《随机过程》第6章习题及参考答案主讲教师:何松华 教授1. 给定实数x 和一个平稳随机过程()X t ,定义理想门限系统的特性为1()()0()X t xY t X t x≤⎧=⎨>⎩ 试证:(1) [()]()X E Y t F x =;(2) ()](,,)Y X R F x x ττ=证:(1) ()Y t 在任意时刻为只有两种取值1,0的随机变量,则[()]1{()1}0{()0}{()1}{()}(,)() ()X X E Y t P Y t P Y t P Y t P X t x F x t F x =⨯=+⨯====≤==根据平稳性(2)根据相关函数定义,有()][()()]11{()1,()1}01{()0,()1} 10{()1,()0}00{()0,()0}{()1,()1}{(),()}(,;,)(,;) ()Y X X R E Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P X t x X t x F x x t t F x x ττττττττττ=+=⨯⨯+==+⨯⨯+==+⨯⨯+==+⨯⨯+===+===+≤≤=+=根据平稳性2.设平方律检波器的传输特性为2y x =,在检波器输入端加入一窄带高斯随机过程()X t ,其概率密度函数为22()()}2X Xx a f x σ-=- 在检波器后联接一个理想低通滤波器,求低通滤波器输出过程的一维概率密度和均值;当0a =时结果有何变化。

解:根据题意,()X t 为非零均值的中频窄带随机过程,可以表示为:00()()cos()()sin()C S X t a A t t A t t ωω=+-其中()C A t 、()S A t 为零均值窄带随机过程的同向分量以及正交分量,都服从均值为0、方差为2X σ的正态分布,且在同一时刻互不相关,则检波器输出信号22002222200000()[()cos()()sin()]1111()()2()cos()()cos(2)()cos(2)2222 2()sin()()()sin(2)C S C S C C S S C S X t a A t t A t t a A t A t aA t t A t t A t t aA t t A t A t t ωωωωωωω=+-=++++--- 通过理想低通滤波后,滤波器输出信号为2221()[()()]2C S Z t a A t A t =++由于随机变量()C A t 、()S A t 为互不相关(正态分布情况与独立等价)的正态随机变量,则22122()()()C S XXA t A t Z t σσ=+服从自由度为2的卡方分布,即11121/22/211221()22(2/2)z z Z z ef z e ---==Γ 221()()2X Z t Z t a σ=+,2122[()]()[()]XZ t a Z t h Z t σ-==,根据随机变量函数的概率密度关系,()Z t 的一维概率密度分布函数为22122()1()[()] ()X z a Z Z Xdh z f z f h z e z a dz σσ--==≥2222222211[()]{[()()]}[]22C S X X X E Z t E a A t A t a a σσσ=++=++=+当0a =时,221() (0)X zZ Xf z e z σσ-=≥,2[()]X E Z t σ=。

随机过程课后习题答案

随机过程课后习题答案

随机过程课后习题答案随机过程课后习题答案随机过程是概率论和数理统计中的一个重要分支,研究的是随机事件在时间上的演变规律。

在学习随机过程的过程中,习题是不可或缺的一部分。

通过解习题,我们可以更好地理解和掌握随机过程的基本概念和性质。

下面是一些随机过程课后习题的答案,希望对大家的学习有所帮助。

1. 假设随机过程X(t)是一个平稳过程,其自协方差函数为Cov[X(t), X(t+h)] =e^(-2|h|),求该过程的自相关函数。

解:首先,自协方差函数Cov[X(t), X(t+h)]可以通过自相关函数R(t, h)来表示,即Cov[X(t), X(t+h)] = R(t, h) - E[X(t)]E[X(t+h)]。

由于该过程是平稳过程,所以E[X(t)]和E[X(t+h)]是常数,可以将其记为μ。

因此,Cov[X(t), X(t+h)] = R(t, h) - μ^2。

根据题目中给出的自协方差函数,我们有e^(-2|h|) = R(t, h) - μ^2。

将μ^2移到等式左边,得到R(t, h) = e^(-2|h|) + μ^2。

所以,该过程的自相关函数为R(t, h) = e^(-2|h|) + μ^2。

2. 假设随机过程X(t)是一个平稳过程,其自相关函数为R(t, h) = e^(-3|h|),求该过程的均值和方差。

解:由于该过程是平稳过程,所以均值和方差是常数,可以将均值记为μ,方差记为σ^2。

根据平稳过程的性质,自相关函数R(t, h)可以表示为R(h) = E[X(t)X(t+h)] =E[X(0)X(h)]。

根据题目中给出的自相关函数,我们有R(h) = e^(-3|h|)。

将t取为0,得到R(h) = E[X(0)X(h)] = μ^2。

所以,该过程的均值为μ。

根据平稳过程的性质,方差可以表示为Var[X(t)] = R(0) - μ^2。

将t取为0,得到Var[X(t)] = R(0) - μ^2 = e^(-3*0) - μ^2 = 1 - μ^2。

(完整版)上海大学随机过程第六章习题及答案

(完整版)上海大学随机过程第六章习题及答案

第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则 (1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。

上海大学随机过程第六章习题及答案

上海大学随机过程第六章习题及答案

第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =为相互独立的随机变量序列,则 (1){,1,2,}i Y i =是否为Markov 链?(2)令1nn ii X Y ==∑,问{,1,2,}iX i =是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================因此,{,1,2,}n Y n =是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++为1n U -的函数,记为1112(),n n n nf U X U U U --=+++为n U 的函数,记为().n n f U 由于12,,,,n U U U 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑因此{,1,2,}n X n =是马尔可夫链.3 设,1,2,i X i =是相互独立的随机变量,且使得(),0,1,i j P X j a j ===,如果max{,1,2,,1}n i X X i n >=-,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。

上海大学随机过程第六章习题与答案

上海大学随机过程第六章习题与答案

第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间; (2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则(1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n 产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值.(1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P t n i i ===++=⎩⎨⎧≤>i j ij a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j ij iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。

《随机过程及其在金融领域中的应用》习题六答案

《随机过程及其在金融领域中的应用》习题六答案
z



k 1
k
t Pik
t zk


kk
k 1
t Pik
t zk

z
z
k 1
k
t Pik
t zk

z t
z
Pik
t
zk

z
t
G t, z
z




k1 t Pik1 t zk k 1 t Pik1 t zk m t Pim t zm1
概率分布。 答:
P01 t
1
P00
t

+

+
e +t

1 2
1 e2t
,
P00
t


1 2
1+e2t
,P11
t


1 2
1+e2t
,P10
t


1 2
1 e2t
记 Pk t P N t k x0 0
解得 0





M


j

CMj




j




Mj

,
j
1, 2,
,M
(2)
0


30 90
10

1 310
,
j

C1j0

60 j 90
30 10 j 90

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。

2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。

习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。

3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。

4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。

习题三1. 试证3.1节均方收敛的性质。

2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。

最新上海交大版物理第六章答案

最新上海交大版物理第六章答案

习题66-1.设固有长度m 50.20=l 的汽车,以m/s 0.30=v 的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:l l =2112x =-+22112u c ≈-,2140021 1.25102ul l l l m c-∆=-=⨯=⨯。

6-2.在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18⨯=x 处,经历时间为s 00.1=t ∆,试计算该过程对应的固有时。

解:以粒子为S '系,c t x u 5.0/=∆∆=利用t '∆=∆0.866t s '∆==。

6-3.从加速器中以速度c v 8.0=飞出的离子在它的运动方向上又发射出光子。

求这光子相对于加速器的速度。

解:设加速器为S 系,离子为S '系,利用:21x x xv u v uv c'+='+, 则:220.80.811x x x v u c cv c uv c c c c'++==='⨯++ 。

6-4 1000m 的高空大气层中产生了一个π介子,以速度0.8v c =飞向地球,假定该π介子在其自身的静止参照系中的寿命等于其平均寿命62.410s -×,试分别从下面两个角度,即地面上观测者相对π介子静止系中的观测者来判断该π介子能否到达地球表面。

解:(1)地面上的观察者认为时间膨胀:有t ∆=,∴66410t sa -∆==⨯由860.83104109601000l v t m m -=∆=⋅⨯⋅⨯=<,∴到达不了地球;(2)π介子静止系中的观测者认为长度收缩:有l l =600l m == 而682.4100.8310576600s v t m m -=∆=⨯⋅⋅⨯=<,∴到达不了地球。

6-5 长度01m l =的米尺静止于'S 系中,与x ′轴的夹角'θ=30°,'S 系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45°。

《随机过程》课后习题解答

《随机过程》课后习题解答
6、证函数 f (t ) 解 (1)
( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2

i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)

x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )

f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt

3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n

(完整版)随机过程习题答案

(完整版)随机过程习题答案
3
解 转移概率如图
一步概率转移矩阵为
10000 111
00 333 P 01110
333
00111 333
00001
二步转移概率矩阵为
10 0 00 1 00 0 0
11 1 00 11 1 0 0
3 33
333
P (2)
111
111
0
00
0
33 3
333
00 1 11 0 01 11
333
333
00 0 01 0 00 01
(3) mX (t ) 1 cos( t) 1 2t 1 cos( t ) t
2
2
2
1 mX (1)
2
2 X
(t )
E[ X 2 (t)] [ EX (t )] 2
1 cos2 ( t )
1 ( 2t) 2
1 [ cos( t )
t]2
2
2
2
1 cos2 ( t) 2t 2 1 cos2 ( t) t 2 t cos( t)

解 (1) t
1
时,
X ( 1) 的分布列为
2
2
1
0
1
X( )
2
P
1
1
2
2
一维分布函数
0, x 0
1
1
F ( , x) ,
2
2
1,
0 x1 x1
t 1 时, X (1) 的分布列为
-1
2
X (1)
P
1
1
2
2
一维分布函数
0, x 1
1
F (1, x)
,
2

上海交大版物理第六章答案

上海交大版物理第六章答案

上海交大版物理第六章答案习题66-1. 设置自然长度l0?2.50米汽车,v?当以30.0m/s的速度直线行驶时,询问站在路边的观察者,根据相对论,汽车的长度缩短了多少?222解:l?l01?(uc),由泰勒展开,知1?x?1?12x??2221u1u?1.25?10?14m。

∴1?(u2)?1?,?l?l0?l?l0?22c2c2c26-2. 在参考系s中,粒子沿直线从坐标原点移动到x?1.5?108m处,经历时间为?t?1.00s,试计算该过程对应的固有时。

解:以粒子为s?系,u??x/?t?0.5c使用22?Tt1?(加州大学)有:1.5?1082?t??1?()?0.866s。

83?106-3. 以v的速度从加速器上?从0.8摄氏度飞出的离子沿其运动方向发射光子。

求光子相对于加速器的速度。

解:设加速器为s系,离子为s?系,利用:vx?v??uc?0.8c则:vx?x??c。

紫外线?0.8摄氏度?c1?2x1?c2cv?十、Uuv?1?2xc在6-4100m的高层大气中产生了一个π介子,其速度为v?假设π介子在其自身静态参考系中的寿命等于其平均寿命2.4×10s,尝试从以下两个角度来判断π介子是否能到达地球表面,即地面上的观察者相对于π介子静态系统中的观察者。

解决方案:(1)实地观察者认为时间会延长:是吗?T6.t'u21?2c∴? T2.4? 106(0.8摄氏度)21?c2?6.4.10? 6sa由l?v?t?0.8?3?10?4?108?960m?1000m,∴到达不了地球;(2)? 介子静止系统中的观察者认为,长度收缩:(0.8c)2u2有l?l01?2,∴l?10001??600m2cc而s?v?t?2.4?10?0.8?3?10?576m?600m,∴到达不了地球。

6-5长度l0?1m的米尺仍在s'系统中,与X'轴的夹角?=30°s’是相对的68s系沿x轴运动,在s系中观测者测得米尺与x轴夹角为??45°。

(完整版)随机过程习题和答案

(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

《概率论与随机过程》第6章习题解答

《概率论与随机过程》第6章习题解答

第6章习题答案6.1 设)(t x 为实函数,试证(1))(t x 为t 的奇函数时,它的希尔伯特变换为t 的偶函数; (2))(t x 为t 的偶函数时,它的希尔伯特变换为t 的奇函数。

证明(1):)(t x =)(t x --tt x t xπ1)()(ˆ*= )(ˆ1)(1)()(1)()(1)()(ˆt xt t x t t x t t x t t x t x=*=*=-*-=-*-=-∴ππππ (2))(t x =)(t x -)(ˆ1)()(1)()(1)()(ˆt xtt x t t x t t x t x-=*-=-*=-*-=-∴πππ6.3 设)(t a ∞<<∞-t 是具有频谱)(ωA 的已知实函数,假定ωω∆>||时,)(ωA =0,且满足ωω∆≥0,求(1)t t a 0cos )(ω和 )ex p()(210t j t a ω的傅立叶变换以及两个傅氏变换的关系; (2)t t a 0sin )(ω 和 )ex p()(20t j t a jω-的傅立叶变换以及两个傅氏变换的关系;(3)t t a 0cos )(ω 和 t t a 0sin )(ω的傅立叶变换关系。

解:(1)t t a t x 0cos )()(ω= 且 )exp()(21)(0t j t a t y ω=)]()([21)(00ωωωωω-++=∴A A X)(21)(0ωωω-=A Y(2)t t a t x 0sin )()(ω= 且)ex p()(2)(0t j t a jt y ω-=)]()([2)(00ωωωωω--+=∴A A jX)(2)(0ωωω--=A jY6.4 对于窄带平稳随机过程t t Y t t X t Z 00sin )(cos )()(ωω-=。

若已知τωττ0cos )()(a R Z =,求证:)()(ττa R X =。

解法一、证: ⎩⎨⎧+=-=t t Y t t X t Z tt Y t t X t Z 0000cos )(sin )()(ˆsin )(cos )()(ωωωω,故有⎩⎨⎧-=+=tt Z t t Z t Y t t Z t t Z t X 0000sin )(cos )(ˆ)(sin )(ˆcos )()(ωωωω[])()()(ττ+=t X t X E R X[][]{})(sin )(ˆ)(cos )(sin )(ˆcos )(0000τωττωτωω++++++=t t Z t t Z t t Z t t Z E )(cos sin )()(sin cos )()(sin sin )()(cos cos )(00ˆ00ˆ00ˆ00τωωττωωττωωττωωτ+++++++=t t R t t R t t R t t R Z Z Z Z Z Z又因为任一实平稳随机过程)(t Z 与其希尔伯特变换)(ˆt Z满足: )()(ˆττZ Z R R =,)(ˆ)(ˆττZ ZZ R R =,)(ˆ)(ˆττZ Z Z R R -=。

(完整版)随机过程习题答案

(完整版)随机过程习题答案

随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。

解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。

解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。

随机过程课后习题

随机过程课后习题

习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。

求X 的特征函数、EX 及DX 。

其中01,1p q p <<=-是已知参数。

2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。

3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。

(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。

4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。

5.试证函数 为一特征函数,并求它所对应的随机变量的分布。

6.试证函数 为一特征函数,并求它所对应的随机变量的分布。

7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。

8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。

求X+Y 的分布。

9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。

10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。

11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。

12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nk k X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11n i i XX n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。

随机过程课后试题答案

随机过程课后试题答案

随机过程课后试题答案1. 题目:简述离散时间马尔可夫链和连续时间马尔可夫链的基本概念和性质。

答案:离散时间马尔可夫链(Discrete-time Markov Chain)是指在时间上的变化是离散的、状态空间是有限或可列无限的马尔可夫链。

其基本概念和性质如下:1.1 基本概念:- 状态空间:马尔可夫链的状态空间是指系统可能处于的状态集合,记作S。

离散时间马尔可夫链的状态空间可以是有限集合或可列无限集合。

- 转移概率:转移概率是指在给定前一个状态的条件下,系统转移到下一个状态的概率。

用P(i, j)表示系统从状态i转移到状态j的概率,其中i和j属于状态空间S。

- 转移概率矩阵:转移概率矩阵P是指表示从任一状态i到任一状态j的转移概率的矩阵。

对于离散时间马尔可夫链,转移概率矩阵是一个方形矩阵,维数与状态空间大小相同。

- 平稳概率分布:对于离散时间马尔可夫链,如果存在一个概率分布π,满足π = πP,其中π是一个行向量,P是转移概率矩阵,则称π为马尔可夫链的平稳概率分布。

1.2 性质:- 马尔可夫性:离散时间马尔可夫链具有马尔可夫性,即将来状态的发展只与当前状态有关,与过去的状态无关。

- 遍历性:若马尔可夫链中任意两个状态之间都存在路径使得概率大于零,则称该马尔可夫链是遍历的。

遍历性保证了马尔可夫链具有长期稳定的性质。

- 正常概率性:对于离散时间马尔可夫链,转移概率矩阵P的元素都是非负的,并且每一行的元素之和等于1。

- 可约性和不可约性:如果一个马尔可夫链中的所有状态彼此之间都是可达的,则称该马尔可夫链是不可约的。

反之,则称它是可约的。

不可约性保证了任意状态之间都可以相互转移。

- 周期性:对于不可约的离散时间马尔可夫链,如果存在某个状态,从该状态出发回到该状态所需的步数的最大公约数大于1,则称该状态是周期的。

若所有状态都是非周期的则称该马尔可夫链是非周期的。

2. 题目:连续时间马尔可夫链的定义和性质有哪些?答案:连续时间马尔可夫链(Continuous-time Markov Chain)是指在时间上的变化是连续的、状态空间是有限或可列无限的马尔可夫链。

Ch6_ans

Ch6_ans

所以,Xn 是Markov链。
1
2. 设状态空间S = {0, 1, 2, 3} 1 2 Π= 0 0 1 0 0
1 2
0
1 2
0

0 0
0
0 1 2 1
3. 该Markov链是齐次的, 有状态转移图看出, 当n = 2k时, π11 (n) = [π12 (1) · π21 (1)] · [π12 (1) · π21 (1)]...[π12 (1) · π21 (1)] = [π12 (1) · π21 (1)] 2 = 1 1 × 2 2
1
P (n) = P (0)Π(n) = [
0 0
1 ] 3
1 2 即A最终赢的概率为 3 , B最终赢的概率是 3 。
6-14 设车间有两个独立工作的机器,且每个机器有两个状态:正常工作和故
障修理。已知正常工作的机器某天出故障的概率为a,机器处于故障修理状态 在某天恢复正常工作的概率为b。设Xn 是第n天该车间正常工作的机器数。 1. 证明Xn 是一个三状态的Markov链,并给出一步状态转移概率Π 。 2. 证明该Markov链的稳态状态概率是参数为p = b/(a + b)的二项式分布。 3. 若车间里有n台机器,则稳态概率是什么? 解:
πii (n) = π10 (n) = 4. 求n = 2k 步状态转移矩阵。 5. 计算Πn ,当n → ∞的极限 6. 分别求A和B最终赢的概率 2 1− 3 1 2 1 4
n
,
k
i = 1, 2 = π23 (n)
解:
1. 由于抛均匀硬币,出现正面和反面的概率都为1/2, 因此有: P {Xn+1 = xn+1 |Xn = xn , Xn−1 = xn−1 , ..., X1 = x1 } =P {Xn+1 − Xn = xn+1 − xn |Xn = xn } =P {Xn+1 = xn+1 |Xn = xn }

随机过程课后习题答案

随机过程课后习题答案

标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。

求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。

解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p0 1 ,请找出为了使该 Markov 链正常返, 所有的 pi 所应该满足的充要条件, 并计算其在
这种情况下的转移概率 .
解:根据题意知,要满足马尔可夫链为正常返约,当且仅当
j
i Py j =0,1,2...
i
有一组解 j >0,
j1
j
根据 Pi ,i 1 Pi 1 Pi ,i 1 ,方程可重写为
(b) 此出租汽车朝位置 2 开的极限概率是 1 p12 3 p32 ,为 3/14
32
(c)
2 p23t23
30 14 3
12
j p ji t ji 3 1 (30 20) 3 (1 20 2 30) 5 30 76
ij
72
14 3
3
14
8 转移矩阵称为双随机的, 若对于一切 j , pij 1 ,设一个具有双随机转移矩阵的
j0
2
j 0
2
p j (1
p) 2 j
j0
j
故有 0
(1 p)2
2 p(1 p) 0
p2
2 0
解得 0
1 2 p(1 p) 1 4 p(1 p) 2p2
|1 2 p | 1 2 p 2 p2 2 p2
1 ( p 1)2
p2
因为 E[ X ] 2p ,根据定理 4.5.1 可知,
若 P 0.5 时 , 0 =1
第三章 习 题 1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为
p ,乙胜的概率为 q ,平局的概率
为 r ,其中 p, q, r 0, p q r 1 ,设每局比赛后,胜者得 1 分,负者得 1分,平局不记
分,当两个人中有一个人得到 2 分时比赛结束,以 X n 表示比赛至第 n 局时甲获得的分数,
为 U n 的 函 数 , 记 为 fn (U n ). 由 于 U 1,U 2,L ,U n ,L 相 互 独 立 , 则 其 相 应 的 函 数
f1 (U 1), f 2(U 2), L , fn (U n), L 也相互独立,从而
P( X n
n
j X1 i1 , X 2 i2 ,L , X n 1 i ) P( Yi
100 0 0 qr p0 0 P 0qr p0 00q r p 000 01
( 3)因为两步转移概率矩阵为
P(2) P 2
1 q rq
q2 0
0 r 2 pq
2rq q2
0 2 pr r 2 2 pq 2qr
0 p2
2 pr pq r 2
0
0
0
0
所以在甲获得 1 分的情况下,再赛 2 局甲胜的概率为
0
1q1
i
i 1Pi 1
i 1qi 1, i 1

i 1qi 1
i Pi , i 0
因此 i 1
0
P0 ....Pi q1....qi 1
,i
0
从而,随机游动为正常返约的充要条件是
P0.... Pi i 0 q1....qi 1
5 捕捉苍蝇的一只蜘蛛依循一个 Markov 链在位置 1,2 之间移动, 其初始位置是 1,转移矩
置 i 和位置 j 之间的平均时间是 t12 20,t13 30,t23 30 ,且 tij t ji .求
(1)此出租车最近停的位置是 i 的(极限)概率是多少? i 1,2,3 ;
(2)此出租车朝位置 2 开的(极限)概率是多少?
(3)有多少比例的时间此出租车从位置 2 开到位置 3?
注意,以上均假定出租车到达一个位置后立即开出
是多少?
解:( 1)根据题意可知,在捕捉过程中共有三个状态,我们分别令为 1,2,3
则 1={ 蜘蛛为 1,苍蝇在 2}
2={ 蜘蛛为 2,苍蝇在 1}
3={ 蜘蛛,苍蝇在同一位置 }
其中状态 3 也代表着捕捉结束,则转移概率矩阵为
0.28 0.18 0.54 0.18 0.28 0.54
001
(2)分别设 X n , Yn 代表时刻 n 蜘蛛和苍蝇的位置。
故 P{ Rk 1 z | Rk ik , Rk 1 i k 1,...R1 i1} P{ Rk 1 z | j ik ik 1 ... i1}
P{ Rk 1 z | j ik} P{ Rk 1 z | Rk ik }
故 { Ri , i 1} 是一个马尔可夫链且
P{ Rk 1 z | Rk i k } P{ Xnk 1 z | X nk i k }
则 { X n , n 1} 是一齐冯马尔可夫链 .
( 1)写出状态空间; ( 2)求一步转移概率矩阵; ( 3)求在甲获得 1 分的情况下,再赛
2 局甲胜的概率 .
解 ( 1) { X n , n 0} 的状态空间为
S { 2, 1,0,1,2}
( 2) { X n , n 0} 的一步转移概率矩阵为
P ( X1 t1 …+ti 1 z, ti 1 ) ( X 1 t1 ? +ti i , t i )
j,j i 0, j i
故 ( Ri ,Ti ), i 1 是一个马尔可夫链。
4 考虑一个具有状态 0,1,2,L 的 Markov 链,其转移概率满足 pi ,i 1 pi 1 pi,i 1 ,其中
P >0.5
时,
0=
( p 1)2 p2
即0
1, p 0.5 ( p 1) 2, p 0.5
p
2
(b)Ⅱ ={ 第三代群体首次灭绝 }= p { 第三代群体首次灭绝 | x2 j } { x2 j }
j1
2
=

j
j
C2
p
j
(1
p)2 j
j1
故Ⅱ =Ⅱ 2 p2 +2Ⅱ p(1 p)
*
(c)Ⅱ = p { 群体灭绝 }=
Pn
1
同理
'
Pn
=0.28
'
Pn
1 +0.18
Pn
1
且 P1 =0.28,
'
P1
=0.18
(3) 苍蝇被吃掉的概率为 P = P { 蜘蛛不动,苍蝇动 } + P { 苍蝇不动,蜘蛛动 } 故 P = 0.7*0.6+0.4*0.3=0.54 故捕捉过程的平均时间为 1.85
6 在一个分枝过程中,每个个体的后代个数服从参数为( 开始,计算: (1)灭绝概率; (2)到第三代群体灭绝的概率;
p { 群体灭绝 | Z0 k } p{ Z 0 k}
k0
k
=
p { 群体灭绝 | Z0 k } e
k0
k!
k
=
k 0
e =e exp{
0 } =exp{ (1 2 p) p2 }
k 0 k!
7 一辆出租车流动在三个位置之间, 当它到达位置 1 时,然后等可能的去位置 2 或 3.当它到 达位置 2 时,将以概率 1/3 到位置 1,以概率 2/3 到位置 3.但由位置 3 总是开往位置 1.在位
0.7 0.3
阵为
,未觉察到蜘蛛的苍蝇的初始位置是
0.3 0.7
2,并依照转移矩阵为
0.4 0.6

0.6 0.4
Markov 链移动,只要它们在同一个位置相遇,蜘蛛就会捉住苍蝇而结束捕捉
.
( 1)证明:在捕捉的过程中,除非知道它结束的位置,否则都必须用三个状态的
Markov
链来描述,其中一个是吸收状态,表示结束捕捉,另外两个代表蜘蛛与苍蝇处在不同位置,
P(Yn P (Y1
j Y1 i1,Y2 i 2,L ,Yn 1 i)
P(Y1 i1, Y2 i2 ,L ,Yn 1 i ,Yn j ) P (Y1 i1 ,Y2 i2 ,L , Yn 1 i)
i1)P(Y2 i2 )L P(Yn 1 i )P (Yn P(Y1 i1,Y2 i 2,L ,Yn 1 i )
z} = a j , j
i (由于 X i 的独立性)
0, j i
故{ Ti , i 1 } 是一个马尔可夫链
令 Zi ( Ri ,Ti ), i 1
则 P Zi 1 Zi , Zi 1,…, Z1
P ( Ri 1, ti 1) ( Ri ,ti ),( Ri 1, ti 1), …,( R1, t1)
i1
j X1 i1, X 2 i2 ,L , X n 1 i )
P( X n 1 Yn j X1 i1, X 2 i2 ,L , X n 1 i) P(Yn j i )
P(Xn j Xn 1 i)
因此 { X n, n 1,2,L } 是马尔可夫链 .
3 设 X i , i 1,2,L 是相互独立的随机变量,且使得
令 Pn P{ X n 1,Yn 2}
Pn' P{ X n 2,Yn 1}
则有 Pn P{ X n 1,Yn 2} =
P{ X n 1,Yn 2 | X n 1 1,Yn 1 2} Pn 1 + P{ X n 1,Yn 2 | X n 1 1,Yn 1 2} Pn' 1
=0.28
Pn
1 +0.18
'
.
解:根据题意有 P12 =1/2 , P13 =1/2 , P21 =1/3 , P23 =2/3 , P32 =0
t12 = t21 =20, t13 t31 =30, t23 =30
j
i pij
(a) 根据
i
i1

1
2
31
1
1 32
3
1 2 21
12 3 21 3 2
解得
3 17
3
2
相关文档
最新文档