电子科技大学计算机视觉课件

合集下载

计算机视觉课件课件1210v14

计算机视觉课件课件1210v14
W代表权值的总数,Pi代表第i层的感知器数量: 当网络层数不多的时候,随着感知器单元数量的增加,权值数目是平方增加的趋势

4.3 前向传播与反向传播算法
随着神经网络的崛起而名声大噪的方法
前向传播算法
假设上一层结点i, j, k,…与本层的结点w有连接,结点w的计算方法就是通过上一层的i, j, k等结点以及对应的连接权值进行加权和运算, 最终结果再加上一个偏置项(图中为了简单省略了),最后通过一个非线性函数(即激活函数),如ReLU,sigmoid等函数,得到的 结果就是本层结点w的输出。最终通过逐层运算的方式,得到输出层结果。
正向传播后: 反向传播:
链式推导:
最终结果:
更新权值:

4.4 卷积神经网络概述
计算机视觉核心网络。
卷积神经网络概述
卷积神经网络是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。 卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层。这一结构使得卷 积神经网络能够利用输入数据的二维结构,其中最早比较有名的卷积神经网络为LeNet-5。与其他深度学习结构相比,卷积神经网络在 图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网络,卷积神经 网络需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。
卷积神经网络架构回顾
输入层 -> [[卷积层 -> 线性整流层]*N -> 池化层?]*M -> [全连接层 -> 线性整流层]*K -> 全连接层 堆叠几个卷积和整流层,再加一个池化层,然后再用全连接层控制输出。 上述表达式中,问号符号代表0次或1次,符号N和M则代表具体的数值。通常情况下,取N >= 0 && N <= 3,M >= 0,K >= 0 && K < 3。

《计算机视觉》PPT课件

《计算机视觉》PPT课件
fucntion)
精选课件ppt
11
Overview (3)
计算机视觉的图像模型基础
✓ 摄像机模型及其校准
▪ 内参数、外参数
✓ 图像特征
▪ 边缘、角点、轮廓、纹理、形状…
✓ 图像序列特征 (运动)
▪ 对应点、光流
精选课件ppt
12
Overview (4)
计算机视觉的信号处理层次
低层视觉处理
✓ 单图像:滤波/边缘检测/纹理
计算机视觉的基本的分析工具和数学模型 Signal processing approach: FFT, filtering, wavelets, … Subspace approach: PCA, LDA, ICA, … Bayesian inference approach: EM, Condensation/SIS/…, MCMC, …. Machine learning approach: SVM/Kernel machine, Boosting/Adaboost, NN/Regression, … HMM, BN/DBN, … Gibbs, MRF, …
✓ 多图像:几何/立体/从运动恢复仿射或透视结构 affine/perspective structure from motion
中层视觉处理
✓ 聚类分割/拟合线条、曲线、轮廓 clustering for segmentation, fitting line…
✓ 基于概率方法的聚类分割/拟合
✓ 跟踪 tracking
精选课件ppt
6
Tools
Intel OpenCV, IPL
✓ Camera calibration (Zhang Zhengyou’s method) ✓ Face detection (a variation of Viola’s) ✓ Motion analysis and object tracking

《计算机视觉》教学课件 第11章1-人脸检测、识别与表情识别1

《计算机视觉》教学课件 第11章1-人脸检测、识别与表情识别1
• 没有相应的训练集和验证集
• 自行构造人脸数据库和测试集
2024/7/13
6
项目任务
➢基于ResNet进行表情识别
➢使用Kaggle ICML表情数据集
• 包含35,887张48*48大小的表情灰度图片,共计七种类别:愤怒、厌恶、恐惧、高兴、悲伤、
惊讶和中性,并被保存在csv文件中(保存的是像素值)
MTCNN)
• 将人脸区域检测与人脸关键点检测放在一

• 这三个级联的网络
• P-Net生成候选框
• R-Net高精度候选框过滤选择
• O-Net生成最终候选框与人脸关键点
• 图像金字塔、非极大抑制
2024/7/13
13
知识链接-MTCNN
• P-Net,R-Net和O-Net的体系结构
• “MP”表示最大池化,“Conv”表示卷积
2024/7/13
18
知识链接-FaceNet
• Batch normalization 批归一化
• 对每层输出进行归一化处理
• 假设一个batch中有m个样本,在某一层的输出分别是 {1 , 2 , … , }, 可能是一维向量,
也可能是二维特征图
2024/7/13
19
知识链接-FaceNet
• 有三张图片参与计算
• 使得提取出来的特征,在相似图片上距离相近,不同图片上距离远
min
anchor
2024/7/13
positive
anchor negative
16
知识链接-FaceNet
2024/7/13
17
知识链接-FaceNet
• Batch normalization 批归一化

《计算机视觉》课件 (2)

《计算机视觉》课件 (2)
《计算机视觉》PPT课件 (2)
计算机视觉是指计算机通过模拟人类视觉系统的方式,利用摄像机和计算机 算法来实现对图像和视频的理解与处理。
计算机视觉的概述
定义与发展
探索计算机和图像处理技术的交叉领域,起 源于20世纪60年代。
技术基础
图像处理、模式识别、机器学习等。
关键任务
图像识别、目标检测、运动跟踪、立体重建 等。
虚拟现实
计算机视觉技术为虚拟现实提 供更真实和沉浸式的体验。
总结和重点
计算机视觉的定义与发展历程。 计算机视觉面临的挑战和限制。
计算机视觉的核心技术和应用领域。 计算机视觉的未来发展趋势。
安防
人脸识别、行为检测等。
工业
质检、自动化生产等。
计算机视觉的挑战和限制
1 复杂场景
2 准确性
光照变化、遮挡等导致图像处理的困难。
目标识别和跟踪的精确度有待提高。
3 隐私问题
人脸识别等技术引发的隐私争议。
4 算力需求
大规模图像和视频分析对计算资源的需求 高。
计算机视觉在实际生活中的应用
1
人脸识别技术
应用广泛
医学影像分析、智能监控、自动驾驶等。
计算机视觉中的核心技术
1 图像预处理
去噪、增强、图像配准等。
3 目标检测与识别
基于机器学习的特征分类和模式匹配。
2 特征提取和描述
边缘检测、角点检测、特征描述子等。
4 立体视觉
利用多个图像重建场景的三维模型。
计算机视觉应用领域
医疗
病变检测、肿瘤分析等。
人脸解锁、相册自动分类等智能手机
增强现实
2
应用。
通过摄像头将虚拟物体叠加到真实世

计算机视觉技术 ppt课件

计算机视觉技术 ppt课件

2020/11/24
13
计算机视觉的发展趋势
目前,过去由于CPU处理能力强大,可以进行较为 复杂的图像处理,并且一个Pc可支持多个相机进行多 方位的检测,因此PC Based方案受到了广大厂商的青 睐。目前国内多数厂商对计算机视觉的认识,已不仅 仅停留在PC Based方案层面。嵌入式方案越来越引起 厂商们的重视,其具有更大的灵活性,成本又低于PC Based方案,就抗干扰能力来说,嵌入式方案也更能适 应工业环境的电子干扰、温度变化、供电电压波动等 多种干扰,因此,目前计算机视觉正在向嵌入式的方 向发展。
2020/11/24
12
5. 交通: 汽车车牌识别、高速公路收费、违章闯红灯检 测、交通管制系统等。采用智能交通管理系统,通过在 交通要道放置摄像头,当有违章车辆(如闯红灯) 时,摄像 头将车辆的牌照拍摄下来,传输给中央管理系统,系统利 用图像处理技术,对拍摄的图片进行分析,提取出车牌号, 存储在数据库中,可以供管理人员进行检索。 6. 商标管理:可以建立商标图像库,利用图像检索技术, 对新申请的商标与图像库里的注册商标进行分析,检查 是否设计相似或雷同。
计算机视觉技术概述
2020/11/24
1
学习内容:
★计算机视觉技术的定义 ★计算机视觉技术的发展 ★计算机视觉技术的应用 ★计算机视觉技术的图像处理方法 ★计算机视觉技术的发展趋势
2020/11/24
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”

《计算机视觉》PPT课件

《计算机视觉》PPT课件

实例:雷达测距系统
computer vision
3
7.1 立体视觉基础
被动测距方法
双目视觉系统:使用两个相隔一定距离的 摄像机同时获取场景图像来生成深度图。
单目运动视觉:一个摄像机在不同空间位 置上获取两幅或两幅以上图像,通过多幅 图像的灰度信息和成像几何来生成深度图
特征深度测量:使用灰度图象的明暗特征、 纹理特征、运动特征间接的估算深度信息。
14
7.2 立体成像
依据双目立体视觉几何关系的深度计算
结合以下公式:
x
x
l
zF
x B x r zF
可以得到: z B F x l x r
其中F是焦距,B是基线距离, xl 是xr 视差。
各种场景中的点的深度就可以通过计算视差来实 现。视差一般是整数。
对于一组给定的摄像机参数,提高场景点深度计
即使两个摄像机处于一般的位置和方向时, 对应场景点的两个图像点仍然位于图像平 面和外极平面的交线(外极线)上。
computer vision
20
7.3 立体成像
从原理上讲根据“立体图象对”抽取深度信息的 处理应包括以下四部分:
在图象中寻找在两幅图象中都便于区分的特征或 用于匹配的基元(primitive)。
立体匹配的匹配规则约束
立体匹配:立体成像的深度信息测量的一个重要 步骤就是寻找立体成像对中的共轭对,即求解对 应问题。
问题:实际中求解对应问题是非常困难的,一是 计算量大,二是匹配的准确度要求高。
解决:为了求解对应,建立了许多约束来减少对 应点误匹配,并最终得到正确的匹配特征点的对 应。
computer vision
computer vision
4

计算机视觉PPT课件:深度学习基础

计算机视觉PPT课件:深度学习基础
C表示 loss function,δl表示第l層的殘差, 我們就得到第l層的殘差:
c
j f net j wk kj
k 1
38/48
池化層的誤差反向傳播
39/48
池化層的的誤差反向傳播
先考慮mean-pooling:得到的卷積層應該是 4×4大小,其值分佈為(等值複製)左圖:
由於需要滿足反向傳播時各層間殘差總和不 變,所以卷積層對應每個值需要平攤:
這種方法很好的解決了Adagrad過早結束的問 題,適合處理非平穩目標,對於RNN效果很 好。
這裏未必是遞增,通過參 數來協調當前和過往。
Adam
Adam 這個名字來源於 adaptive moment estimation,自適應矩估計。
Adam本質上是帶 有動量項的 RMSprop,它利用 梯度的一階矩估計 和二階矩估計動態 調整每個參數的學 習率。
CNN池化層
• 作用:特徵融合,降維 • 無參數需要學習 • 超參數
• 尺寸(size) • 步長(step) • 計算類別
• 最大化池化(Max pooling) • 平均池化(Average pooling)
36/48
卷積神經網路(CNN)
CNN-Softmax層
• 指數歸一化函數
• 將一個實數值向量壓縮到(0, 1) • 所有元素和為1
進 行調參。 3.充分瞭解數據——如果模型是非常稀疏的,那麼優先
考慮自適應學習率的演算法。 4. 根據需求來選擇——在模型設計實驗過程中,要快速
驗證新模型的效果,可以先用Adam;在模型上線或者 結果發佈前,可以用精調的SGD進行模型的極致優化。 5. 先用小數據集進行實驗。有論文研究指出,隨機梯度 下降演算法的收斂速度和數據集的大小的關係不大。因 此 可以先用一個具有代表性的小數據集進行實驗。

《计算机视觉》教学课件 第10章1-目标检测和物体追踪1

《计算机视觉》教学课件 第10章1-目标检测和物体追踪1
• 端到端的单个神经网络 • 将图片均分为S*S的锚框,每个锚框预测B个目标框 • 一个类别存在于一个给定目标框中的概率需要根据网络输出进行简单运算得到 • 优化版本可达155帧率 • YOLOv1(2015)->YOLOv2(2016)->YOLOv3(2018)->YOLOv5(2020)…
2024/7/13
知识链接-SSD
➢SSD(Single Shot Detection)
• 取消RPN网络 • 一个基础网络抽取特征,多个卷积层,每段都生成锚框,浅层拟合小物体,深层拟合大
物体,对每个锚框进行类别和变换预测 • 锚框大量重叠,浪费计算量
2024/7/13
22
知识链接-YOLO
➢ YOLO(You Only Look Once)
2024/7/13
7
01
项目导入
02
项目任务
C ONTENTS
03
项目目标
04
知识链接
05
项目准备
06
任务实施
07
任务拓展
08
项目小结
项目目标
➢知识目标
• 了解目标检测相关算法的基本概念 • 了解物体追踪的流程
➢技能目标
• 掌握基于YOLO的目标检测方法 • 掌握基于卡尔曼滤波和目标检测结果的物体追踪方法 • 掌握物体追踪的可视化方法
YOLOv1网络结构
乘法运算
23
知识链接-物体追踪
➢多物体追踪
• 将相同ID分配给包含相同目标的边界框
➢卡尔曼滤波法
• 动态系统的状态估计算法 • 可用来确定当前帧中物体和上一帧中的对应关系,并且在物体遇
到遮挡的时候补全轨迹。
2024/7/13

计算机视觉课件

计算机视觉课件
许多深度学习算法的可解释性较差,难以理解其决策过程和原理,这限制了其在 一些需要解释的场景中的应用。
鲁棒性差
计算机视觉算法在面对复杂环境和噪声干扰时,容易出现误判和失效,鲁棒性有 待提高。
多模态信息融合与跨域问题
多模态信息融合
计算机视觉任务通常涉及多种模态的信息, 如图像、文本、音频等,如何有效地融合这 些信息以提高任务性能是一个挑战。
安全与隐私
随着智能监控的普及,安全与隐私保护也成为了计算机视觉领域的一个重要研究方向,涉及到视频数 据的加密、水印、隐私保护等方面的技术。
医学影像分析
医学影像分析
计算机视觉技术在医学影像分析中发挥着重 要作用,通过对医学影像进行自动分析和识 别,可以辅助医生进行疾病诊断和治疗。
图像分割和识别
在医学影像分析中,图像分割和识别是两个 重要的任务,通过对医学影像进行分割和分 类,可以提取出病变区域和器官等重要信息 ,为医生提供更加准确的诊断依据。
04
计算机视觉技术前沿
深度学习在计算机视觉中的应用
深度学习技术
深度学习在计算机视觉领域的应用已经取得了显著的进展,通过构建深度神经网络,可以 自动提取图像中的特征,实现各种复杂的视觉任务,如目标检测、图像识别、图像生成等 。
卷积神经网络(CNN)
CNN是深度学习在计算机视觉领域中最常用的模型之一,它通过模拟人眼视觉细胞的层 级结构,能够从原始图像中逐层提取越来越抽象的语义信息,从而实现对图像的分类、检 测、分割等任务。
未来趋势
随着深度学习等技术的突破,计 算机视觉将在更多领域得到应用 ,并不断提升其准确性和智能化 水平。
应用领域
工业自动化
计算机视觉在工业自动化领域 应用广泛,如生产线上的质量

《计算机视觉》课件

《计算机视觉》课件

特征提取方法
学习常用的特征提取方法, 如边缘检测、角点检测和 纹理描述子等。
分类器的选择与训练
了解不同的分类器及其应 用,学会使用机器学习算 法对图像进行分类。
第三部分:视觉任务
图像分类
学习图像分类的基本概念、传 统方法和深度学习方法,以及 其在各个应用领域中的应用。
对象检测
掌握对象检测的基本概念、传 统方法和深度学习方法,了解 对象检测在不同领域的应用。
《计算机视觉》PPT课件
计算机视觉是研究如何使机器“看”的技术。本课程将帮助您全面了解计算机 视觉的定义、应用领域以及其历史和发展。
第一部分:简介
什么是计算机视觉?计算机视觉的应用领域及其历史和发展。
第二部分:基础知识
图像处理基础
掌握图像处理的基本概念 和常用技术,包括滤波、 增强、几何变换等。
3
计算机视觉技术的发展趋势
分析计算机视觉技术的发展趋势,包括硬件设备的进步、深度学习的发展和数据 集的丰富等。
结束语
总结课程内容并鼓励学生主动探索计算机视觉领域的未来发展方向,以提升技术水平和应用能力。
语义分割
了解语义分割的基本概念、传 统方法和深度学习方法,探索 语义分割在各个应用领域中的 意义。
第四部分:计算机视觉技术的未来
1
计算机视觉技术的未来发展方向
展望计算机视觉技术的未来发展趋势,如智能交通、医疗诊断和智能安防等领域。
2
可能的应用பைடு நூலகம்域与场景
探讨计算机视觉技术在各个行业中的可能应用,如无人驾驶、人脸识别和机器人 导航等。

计算机视觉第一章 绪论 PPT

计算机视觉第一章 绪论 PPT

特征提取I
(3.20,3.23) 点特征
(5 lectures) 特征提取II 边缘及线特征
Week 5
图像分割I
(3.27,3.30) 主动轮廓线
(5 lectures) 图像分割II Mean shift
Week 6
图像对准
(4.3,4.8)
(5 lectures) 摄像机标定
Week 7
单幅图像深度估
知识导引: 同样的图像在不同的知识导引下,将会产生 不同的识别结果.
大量数据: 灰度图像,彩色图像,深度图像的信息量十 分巨大,巨大的数据量需要很大的存贮空间,同时不易实 现快速处理.
上世纪50年代,从统计模式识别开始,主要集中 在二维图像分析与识别,主要应用包括字符识别、 工件表面检测等等。
(5(3.1l5e,ctu5r.1es8) ) 点特征
(5 le54c.1tu02res) 稠布特密置征运作提动业取估II 计 ((22 lleeccttuurreess)) 光边流缘及线特征
考 阅读报告:两人一组,从30篇计算机视 核 觉的经典文献中挑选一篇阅读,并提交 方 一份阅读报告及PPT。 式 项目报告:2-4人一组,从五个候选项目
(5 le43c.12tu92res) 图测视像距觉分成基割像本系I特I 统性I ((22 lleeccttuurreess)) M生e物an特s性hift
We43e.2k4710 图劳视像动觉对节基准放本假特性II (((353.l1leecc,ttuu5rr.ee4ss))) 物理特性
(5 le43c.2tu69res) 摄三视像维觉机重基标建本定I特性III ((22 lleeccttuurreess)) 几何特性
硬件实现,就是具体的计算装置和一些细节配置

计算机视觉ppt课件

计算机视觉ppt课件
19
(2) 路径
和 路48路路[径i径径0 :,从::像 像互j像0 素素为]素与与邻[,i其其点1,近近j1 邻邻][到i像像 0像,,素 素素j,是是0[]i48n 连连,通通jn 关关]的系系一[[个iikn像,, jj素kn]序] 列:[ik1, jk1]

(3)前景
图像中值为1的全部像素的集合,用S表示.
5,5,1,5,4
18
3.5 二值图像算法 3.5.1 定义 (1)近邻:
4邻点(4-neighbors):有公共边关系的两个像素. 8邻点(8-neighbors):两个像素至少共享一个顶角 4连通(4-connected):一个像素与其4邻点的关系 8连通(4-connected):一个像素与其8邻点的关系
第 3章
二值图象分析 Binary Image Analysis
1
3.1 二值图象
二值图像例
2
(2) 二值图象的特点 a. 二值图像只有两个灰度级,其中物体像素值为1,背景像素值为0; b. 图象中许多的特征如边缘、轮廓可以用二值图像表示; c.二值图像处理的算法简单,所需的内存小,计算速度快; d.二值视觉系统技术可用于灰度图像视觉系统 。
3
(3)二值图象的获取 a. 硬件实现
敏感元二值输出或逻辑输出。敏感元模拟值 输出,通过硬件电路二值 化。 b. 软件实现
灰度图象可以通过阈值(threshold)分割进行二值化处理。
4
(4)灰度图象的二值化
图象二值化 设一幅灰度图像中物体的灰度分布在某一区间内,经过阈值运算后的图
像为二值图像。
7
(1) 尺寸和位置 一幅二值图像区域的面积(或零阶矩)由下式给出:
8
物体的中心位置:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H. Cheng, Z. Liu.
Reference Material/2
• Others
Introduction Techniques for 3D Computer Vision, E. Trucco & A. Verri Vision Science, R. Palmer Multiple View Geometry, Hartley & Zisserman The Geometry of Multiple Images, Faugeras
image representation
codewords dictionary
category models (and/or) classifiers
category decision
Vehicle Plate Recognition
Detecting Texts from Videos/Images
Vision based HCI

Hand Trajectory Dataset: UESTC-HTD
Hand Trajectory Recognition
Course Schedule/1
• Introduction (1) • Image Formulation and Image Models(4)
Camera Geometric Model Camera Calibration
• Basic Image Processing and Representation (6)
Object Recognition/1 Object Bag of ‘words’
Object Recognition/2
Object Recognition/3
learning
recognition
Object Recognition/4
feature detection & representation
Linear Filtering Edge extraction Texture Interesting Points
Course Schedule/2
• Image sequence processing(15)
Multi-view Geometry; Stereo vision Structure from motion; Optical flow Object tracking
David Forsyth & Jean Ponce /~daf/book/book.html
- Computer Vision: Algorithms and Applications
Richard Szeliski /Book/ - Sparse Representation, Modeling and Learning in Visua Recognition, , Springer, 2014
CVPR/ICCV/ECCV/TPAMI/IJCV/PR/PRL/CVIU/MVA
• Homeworks
- 2 week period - Matlab implementation + problem
• Final Project
- Literature search + implementation
y z
x
http://www.vision.ee.ethz.ch/~bleibe/cvpr07/index.html
Tracking
Optical Flow
Image Segmentation/Fitting
LV: Local variation SMC: Spectral min-cut H: Human ED: Edge augmented mean shift NC: Normalized cut
• High level computer vision(8)
Template based object recognition Bag-of-Feature based object recognition Part based object recognition
Pinhole cameras
• Computer Vision Home Page
/~cil/vision.html
• Compendium of vision:
/rbf/CVonline/
• IEEE/Elsevier/Springer
• Middle Level Computer Vision(6)
Clustering based image segmentation/fitting Model based segmentation/fitting Randomized algorithm based segmentation/fitting
• Matlab
- Matlab primer
• Math
-Basic math tools: Linear Algebra, Matrix, Basic optimization/calculus, probability(basic probability, density/estimation, Gaussian distributions).
Multi-Camera Geometry/4
Multi-Camera Geometry/5
• Real-time human pose reocnition in parts from single depth images, CVPR 2011 best paper.
Structure from Motion
• Abstract camera model - box with a small hole in it
• Pinhole cameras work in practice
Camera Calibration
Matlab Camera Calibration Toolbox: /bouguetj/calib_doc /#system
07047003 Computer Vision
Hong Cheng(程洪) Email: hcheng@ Center for Robotics, UESTC 电子科技大学机器人研究中心
Reference Material/1
• Text Book - Computer Vision-A Modern Approach
Harris Interest Points
STIP, I. Laptev, IJCV 2005
Multi-Camera Geometry/1
Multi-Camera Geometry/2
Multi-Camera Geometry/3
Background replacement using z-keying with a bi-layer segmentation algorithm(Kolmogorov et al. 2006)
Image Filtering
Edge Detection
Texture
Spherical Texture /s0346435/projects/mrf/mrf_texture_project.htm
Interesting Points
相关文档
最新文档