人教版高中数学必修一《对数函数》课时教学案
4.4对数函数-人教A版高中数学必修第一册(2019版)教案
![4.4对数函数-人教A版高中数学必修第一册(2019版)教案](https://img.taocdn.com/s3/m/cad4f839f342336c1eb91a37f111f18582d00c16.png)
4.4 对数函数-人教A版高中数学必修第一册(2019版)教案教学目标1.了解对数函数的定义与性质;2.掌握对数函数与指数函数的互逆关系;3.掌握对数函数的常用计算方法;4.能够运用对数函数解决实际问题。
教学重点1.对数函数与指数函数的互逆关系;2.对数函数的计算方法;3.运用对数函数解决实际问题。
教学难点1.运用对数函数解决实际问题。
教学过程导入环节1.老师介绍对数函数的概念,引入大家对对数函数的初步认识;2.引导学生思考指数函数与对数函数的关系。
讲解环节1.带领学生探究对数函数的定义与性质;2.利用白板和课件展示对数函数与指数函数的互逆关系;3.讲解对数函数的计算方法。
拓展训练1.练习题。
课堂上对对数函数的计算方法进行拓展训练;2.实际问题运用。
引导学生解决一些实际问题,如:瓶子里有几颗芝麻?数颗芝麻太麻烦,现在我把这些芝麻放在一个桶里,顺手拧了几下,芝麻就乱了,这时候你就不得不手动数了,如果用各种技巧将芝麻分成若干堆,让每堆的芝麻颗数尽量相等,这时就需要运用对数函数了。
教学方式1.讲授和讲解相结合;2.以教师讲解引导为主,学生自主思考为辅助;3.在讲解中引导学生进行课堂练习和实际问题讨论。
教学措施1.制定教案,并准备好教学资料及课件;2.定时提问,引导学生思考;3.给予课堂练习和讨论的机会。
教学效果评估1.课堂发言的积极性及准确性;2.课堂练习的完成情况;3.讨论的理解度和深度;4.在实际问题中应用对数函数解决问题的能力。
教学反思本节课的设计在引导学生对对数函数的认识上有一定效果,但是在实际问题应用中学生的思考深度不够,需要引导学生多思考。
在下一节课中需对实际问题运用进行更多的训练和引导。
高中数学对数函数备课教案
![高中数学对数函数备课教案](https://img.taocdn.com/s3/m/fcef1b1cf6ec4afe04a1b0717fd5360cba1a8d2d.png)
高中数学对数函数备课教案备课内容:对数函数
教学目标:
1. 了解对数函数的定义和性质;
2. 掌握对数函数的图像特点和变化规律;
3. 能够解决对数函数的相关题目。
教学重点:
1. 对数函数的定义和性质;
2. 对数函数的图像特点和变化规律。
教学难点:
1. 对数函数与指数函数之间的关系;
2. 解决对数函数相关题目的方法。
教学准备:
1. 教学课件;
2. 教辅书籍;
3. 黑板、粉笔;
4. 试题集。
教学步骤:
一、导入(5分钟)
1. 上课前,与学生讨论指数函数的相关知识;
2. 引入对数函数的概念,并与指数函数进行比较。
二、讲解(15分钟)
1. 讲解对数函数的定义和性质;
2. 展示对数函数的图像特点和变化规律;
3. 指导学生如何分析对数函数的性质和变化规律。
三、练习(15分钟)
1. 让学生通过计算和作图来练习对数函数相关题目;
2. 纠正学生的错误,并解释正确的解题方法。
四、总结(5分钟)
1. 总结对数函数的重要性及与指数函数的关系;
2. 强调对数函数在实际问题中的应用。
五、作业布置(5分钟)
1. 布置对数函数相关的作业;
2. 可根据学生的不同水平布置不同难度的题目。
教学反思:
在备课过程中,要充分理解对数函数的概念及其性质,并通过实际例题进行讲解,让学生
理解对数函数的图像特点和变化规律。
同时,要设计合理的练习题目,帮助学生巩固所学
知识,提高解题能力。
在教学过程中,要及时发现学生的问题并加以解决,确保教学效果。
人教版高中必修1(B版)3.2.2对数函数课程设计
![人教版高中必修1(B版)3.2.2对数函数课程设计](https://img.taocdn.com/s3/m/fe7b55123069a45177232f60ddccda38376be10f.png)
人教版高中必修1(B版)3.2.2对数函数课程设计一、前言本文是对人教版高中必修1(B版)3.2.2对数函数课程的设计,旨在通过本课程的学习,让学生了解对数函数的概念、性质和应用,帮助学生建立对对数函数的概念和认识,扩展学生的数学知识和应用能力。
二、课程目标1.了解对数函数的概念及其运算法则;2.掌握对数函数的图像、性质和应用;3.提高学生的数学分析和思维能力;4.能够独立解决对数函数问题。
三、教学重点1.理解对数函数的概念;2.掌握对数函数的性质和图像;3.掌握对数函数与指数函数的互换性质;4.掌握对数函数的应用。
四、教学难点1.理解指数函数和对数函数的相互关系;2.掌握对数函数的变形与不等式的应用。
五、教学内容和课时分配第一课时教学内容1.指数与对数的定义及性质;2.指数函数的图像和性质;3.对数函数的图像和性质。
课时分配本课时需1个课时完成。
第二课时教学内容1.对数函数与指数函数的互换性质;2.对数函数的应用;3.对数函数的小数部分的求法。
课时分配本课时需1个课时完成。
第三课时教学内容1.对数函数的展开式与换底公式;2.对数方程的解法;3.对数函数的不等式。
课时分配本课时需1个课时完成。
第四课时教学内容1.复合函数的概念;2.对数函数的复合;3.对数函数与三角函数的关系。
课时分配本课时需1个课时完成。
六、教学方法1.教师集中讲解:通过讲解对数函数的基本概念、性质、运算法则、解题方法等,让学生了解对数函数的相关知识点,帮助学生掌握数学知识、提高分析思维能力;2.小组合作:让学生通过小组讨论或合作完成一些练习题或小项目,能够增强学生的合作能力、解决问题的能力;3.课堂互动:通过课堂问答、情景案例演练等形式,增强师生互动、激发学生学习的积极性;4.数学建模:通过对数函数实际问题的建模及求解,让学生能够将学习到的知识运用到实际问题中。
七、教学评价本课程的评价主要从以下几个方面进行评估:1.课堂表现:学生在课堂上的表现情况;2.参与度:学生课堂参与的积极性和质量;3.作业完成情况:学生作业完成情况及质量;4.考试成绩:通过考试成绩来反映学生学习成绩。
对数函数及其性质(第1课时)教学设计
![对数函数及其性质(第1课时)教学设计](https://img.taocdn.com/s3/m/fab1057cae1ffc4ffe4733687e21af45b307fef1.png)
对数函数及其性质(第1课时)教学设计柏秀芳沁县实验中学一、教材分析本节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。
对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
对数函数是以指数函数作为基础知识。
本节课的主要任务是抓住对数函数与指数函数的互为反函数的关键,掌握对数函数的概念、图像性质并由对数函数的图像归纳出性质,能运用性质解决比较对数值大小。
为了能使学生理解和掌握教学内容,培养学生自主学习能力和数学建构思想,本节课使用多媒体教学,通过计算机辅助教学课件和网络系统良好的交互性能,适时得到学生的反馈信息,实现教学目标。
二、学情分析对数函数的学习以对数运算和指数函数作为基础,部分学生前面知识不熟练,加之函数概念的抽象性,学生对函数的理解比较困难,对于对数函数学习或多或少有些恐惧感。
学生又是从初中升入高一不久,在学习方法上还保留着初中的学习方法,考虑问题常常以形象思维为主,在教学中,注意培养学生由特殊到一般的归纳能力,让学生多观察,通过数形结合,来感受对数函数的图像和性质的关系。
三、设计思想:本节是在学生已经学过对数,与常用对数以及指数函数的基础上,借助生活中典型实例引出对数函数的概念,借助多媒体辅助手段,创设问题情境,让学生通过分析、推理、归纳、类比等活动过程,从中了解和体验对数函数图象和性质。
因而让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。
人教版高中数学必修一《对数函数》课时教学案
![人教版高中数学必修一《对数函数》课时教学案](https://img.taocdn.com/s3/m/49885088fab069dc5122015d.png)
对数函数一.教学目标:1.知识与技能①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.②运用对数运算性质解决有关问题. ③培养学生分析、综合解决问题的能力.培养学生数学应用的意识和科学分析问题的精神和态度. 2. 过程与方法①让学生经历并推理出对数的运算性质. ②让学生归纳整理本节所学的知识. 3. 情感、态度、和价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 二.教学重点、难点重点:对数运算的性质与对数知识的应用 难点:正确使用对数的运算性质 三.学法和教学用具学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标. 教学用具:投影仪 四.教学过程1.设置情境复习:对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0),指数的运算性质.;m n m n m n m n a a a a a a +-⋅=÷=();mnm n mnnma a a a ==2.讲授新课探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m na a a +⋅=,那m n+如何表示,能用对数式运算吗?如:,,mnm nm n a a aM a N a +⋅===设。
于是,m nMN a += 由对数的定义得到log ,log m n a a M a m M N a n N =⇔==⇔= log m n a MN a m n MN +=⇔+=log log log ()a a a M N MN ∴+=放出投影即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗? (让学生探究,讨论)如果a >0且a ≠1,M >0,N >0,那么: (1)log log log a a a MN M N =+ (2)log log log aa a MM N N=- (3)log log ()na a M n Mn R =∈证明:(1)令,mnM a N a ==则:m n m n Ma a a N-=÷= l o g aMm n N∴-= 又由,mn M a N a ==log ,log a a m M n N ∴==即:log log log a a aM M N m n N-=-= (3)0,log ,N nna n N M M a ≠==时令则l o g ,bna b n M M a ==则Nb n na a ∴=N b ∴=即log log log a a a M M N N=-当n =0时,显然成立.l o g l o gna a M n M ∴= 提问:1. 在上面的式子中,为什么要规定a >0,且a ≠1,M >0,N >0?1. 你能用自己的语言分别表述出以上三个等式吗?例题:1. 判断下列式子是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有(1)log log log ()a a a x y x y ⋅=+ (2)log log log ()a a a x y x y -=- (3)log log log aa a xx y y=÷ (4)log log log a a a xy x y =-(5)(log )log na a x n x = (6)1log log a ax x=- (7)1log log n a a x x n=例2:用log a x ,log a y ,log a z 表示出(1)(2)小题,并求出(3)、(4)小题的值.(1)log a xy z (2)23log 8a x y (3)75log (42)z ⨯ (4)5lg 100分析:利用对数运算性质直接计算: (1)log log log log log log a a a a a a xyxy z x y z z=-=+- (2)222333log log log log log log aa a a a a x yx y z x y z z=-=+-=112log log log 23a a a x y z +- (3)7575222log (42)log 4log 214519⨯=+=+=(4)2552lg 100lg105==点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式. 让学生完成P 68练习的第1,2,3题 提出问题:你能根据对数的定义推导出下面的换底公式吗? a >0,且a ≠1,c >0,且e ≠1,b >0log log log c a c bb a=先让学生自己探究讨论,教师巡视,最后投影出证明过程.设log ,log ,,M Nc c M a N b a c b c ====则且11,()N NMMMac a ab ====N所以c即:log log ,log c a c b N N b M M a ==又因为 所以:log log log c a c bb a=小结:以上这个式子换底公式,换的底C 只要满足C >0且C ≠1就行了,除此之外,对C 再也没有什么特定的要求.提问:你能用自己的话概括出换底公式吗?说明:我们使用的计算器中,“log ”通常是常用对数. 因此,要使用计算器对数,一定要先用换底公式转化为常用对数. 如:2lg 3log 3lg 2=即计算32log 的值的按键顺序为:“log ”→“3”→“÷”→“log ”→“2” →“=” 再如:在前面要求我国人口达到18亿的年份,就是要计算1.0118log 13x = 所以 1.0118lg18lg18lg13 1.2553 1.13913log 13lg1.01lg1.010.043x --===≈=32.883733()≈年练习:P 68 练习4让学生自己阅读思考P 66~P 67的例5,例6的题目,教师点拨. 3、归纳小结(1)学习归纳本节(2)你认为学习对数有什么意义?大家议论. 4、作业(1)书面作业:P74 习题2.2 第3、4题 P 75 第11、12题 2、思考:(1)证明和应用对数运算性质时,应注意哪些问题? (2)222log (3)(5)log (3)log (5)---+-等于吗?对数函数一.教学目标:1.知识与技能 (1)知识与技能(2)了解反函数的概念,加深对函数思想的理解. 2.过程与方法学生通过观察和类比函数图象,体会两种函数的单调性差异. 3. 情感、态度、价值观(1)体会指数函数与指数;(2)进一步领悟数形结合的思想. 二.重点、难点:重点:指数函数与对数函数内在联系 难点:反函数概念的理解 三.学法与教具:学法:通过图象,理解对数函数与指数函数的关系. 教具:多媒体 四.教学过程:1.复习(1)函数的概念(2)用列表描点法在同一个直角坐标点中画出22log xy y x ==与的函数图象.`2.讲授新知2x y = x… -3-2-10 1 2 3 … y…18 14 121248…2log y x = x… -3-2-10 1 2 3 … y…18 18 121248…图象如下:2log y x =2x y =xy 0探究:在指数函数2xy =中,x 为自变量,y 为因变量,如果把y 当成自变量,x 当成因变量,那么x 是y 的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.引导学生通过观察、类比、思考与交流,得出结论.在指数函数2x y =中,x 是自变量, y 是x 的函数(,x R y R +∈∈),而且其在R 上是单调递增函数. 过y 轴正半轴上任意一点作x 轴的平行线,与2xy =的图象有且只有一个交点.由指数式与对数式关系,22log xy x y ==得,即对于每一个y ,在关系式2log x y=的作用之下,都有唯一的确定的值x 和它对应,所以,可以把y 作为自变量,x 作为y 的函数,我们说2log 2()xx y y x R ==∈是的反函数.从我们的列表中知道,22log xy x y ==与是同一个函数图象.3.引出反函数的概念(只让学生理解,加宽学生视野) 当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数为反函数.由反函数的概念可知,同底的指数函数和对数函数互为反函数.如3log 3xx y y ==是的反函数,但习惯上,通常以x 表示自变量,y 表示函数,对调3log x y =中的3,l o g x y y x =写成,这样3l o g (0,)y x x =∈+∞是指数函数3()x y x R =∈的反函数.以后,我们所说的反函数是,x y 对调后的函数,如2()xy x R =∈的反函数是2lo g (0,)y xx =∈+∞. 同理,(1xy a a =≠且a >1)的反函数是log (a y x a =>0且1)a ≠. 课堂练习:求下列函数的反函数 (1)5xy = (2)0.5log y x = 归纳小结:1. 今天我们主要学习了什么? 2.你怎样理解反函数? 课后思考:(供学有余力的学生练习)我们知道(xy a a =>01)a ≠且与对数函数(a y x a =log >0且1)a ≠互为反函数,探索下列问题.1.在同一平面直角坐标系中,画出2log xy y x ==2与的图象,你能发现这两个函数有什么样的对称性吗?2.取2xy =图象上的几个点,写出它们关于直线y x =的对称点坐标,并判断它们 是否在2log y x =的图象上吗?为什么?3.由上述探究你能得出什么结论,此结论对于log (xa y a y xa ==与>01)a ≠且成立吗?§2.2.2 对数函数及其性质学习目标:⒈了解底数相同的指数函数与对数函数互为反函数;⒉通过对互为反函数的指数函数和对数函数图象间的关系的认识, 了解互为反函数的两个函数图象间的关系;⒊通过指数函数与对数函数的比较,了解互为反函数的两个函数定 义域和值域之间的关系.教学重点:底数相同的指数函数与对数函数互为反函数. 教学难点:互为反函数的两个函数图象间的关系. 教学方法:探究、讨论式.教具准备:⒈用《PowerPoint 》播放指数函数与对数函数对照表.⒉用《几何画板》演示同底数的指数函数与对数函数图象间的关系. 教学过程:(I )复习回顾:师:前面几节课,我们学习了指数函数、对数函数的概念、图象和性质,现在我们把这两类函数做个对比,以便于我们对它们形成整体的认识.请大家一起来填写下表.(用《PowerPoint 》播放)指数函数与对数函数对照表指数函数对数函数一般形式 x y a =(0a >,且1)a ≠ log a y x =(0a >,且1)a ≠定义域 (,)-∞+∞ (0,)+∞ 值域 (0,)+∞(,)-∞+∞函 数 值 变 化 情 况 当1a >时, 1,0,1,0,1,0.x xx a x a x a x ⎧>>⎪==⎨⎪<<⎩当01a <<时,1,0,1,0,1,0.x xx a x a x a x ⎧<>⎪==⎨⎪><⎩当1a >时,log 0,1,log 0,1,log 0, 1.a a ax x x x x x >>⎧⎪==⎨⎪<<⎩ 当01a <<时,log 0,1,log 0,1,log 0, 1.a a ax x x x x x <>⎧⎪==⎨⎪><⎩ 单调性 1a >时,x y a =是增函数; 01a <<时,x y a =是减函数 1a >时,log a y x =是增函数; 01a <<时,log a y x =是减函数 图象函数x y a =的图象与函数log a y x =的图象关于直线y x =对称.从上面的表格中,我们看到对数函数与指数函数之间有非常密切的关系,今天我们就对它们之间的关系来做一番研究.(II )讲授新课:师:在指数函数2x y =中,x 为自变量,y 是因变量.如果把y 当成自变量,x 当成因变量,那么x 是y 的函数吗?生:由指数式2x y =可得对数式2log x y =.这样,对于任意一个(0,)y ∈+∞,通过式子2log x y =,x 在R 中都有唯一的值和它对应.也就是说,可以把y 作为自变量,x 作为y 的函数.师:你可以用几何方法来得到上面的结论吗? 生:指数函数2x y =中,x 为自变量()x R ∈,y 是x 的函数((0,))y ∈+∞,并且它是(,)-∞+∞上的单调递增函数.我们过y 轴正半轴上任一点,作x 轴的平行线,与2x y =的图象有且只有一个交点.这也说明,对于任意一个(0,)y ∈+∞,x 在R 中都有唯一的值和它对应.也就是说,可以把y 作为自变量,x 作为y 的函数.师:这时我们称函数2log x y =()y R ∈是函数2x y =()x R ∈的反函数. 请同学们考虑,在函数2log x y =中,自变量、函数各是什么呢?这合乎我们的习惯吗?生:在函数2log x y =中,y 是自变量,x 是函数.而习惯上,我们通常用x 表示自变量,y 表示函数.师:为了和我们的习惯一致,我们常常对调函数在函数2log x y =中的字母x ,y ,把它写成2log y x =.于是,对数函数2log y x =((0,))x ∈+∞是指数函数2x y =()x R ∈的反函数.请同学们仿照上面的过程,说明对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠之间的关系.生:(探究、讨论得出结论)对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠互为反函数.师:对于具体的指数函数x y a =(0a >,且1)a ≠,我们可以怎样得到它的反函数呢?生:对于具体的指数函数x y a =(0a >,且1)a ≠,我们可以先把它化为对数形式2l o g x y =,然后再对调其中的字母x ,y ,就得到了它的反函数log a y x =(0a >,且1)a ≠.师:请同学们观察一下对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠的定义域和值域,你能得出什么结论?生:指数函数x y a =(0a >,且1)a ≠的定义域和值域分别是对数函数lo g a y x =(0a >,且1)a ≠的值域和定义域.师:请同学们观察对数函数2log y x =((0,))x ∈+∞是指数函数2x y =()x R ∈的图象,它们有什么关系呢?生:(观察得)对数函数2log y x =((0,))x ∈+∞是指数函数2x y =()x R ∈的图象关于直线y x =对称.师:这个结论可以推广到一般情况,即:对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠的图象关于直线y x =对称.(用《几何画板》演示同底数的指数函数与对数函数图象间的关系) (Ⅲ)课后练习:阅读课本84P 的《探究与发现》. (Ⅳ)课时小结⒈求指数(对数)函数的反函数可分两步进行:①将指数(对数)式化为对数(指数)式;②对调字母x ,y ; ⒉数学上可以证明,互为反函数的两个函数有如下性质: ①反函数的定义域是原函数的值域,值域是原函数的定义域; ②互为反函数的两个函数的图象关于直线y x =对称. (Ⅴ)课后作业⒈阅读课本79P ~80P ,思考下列问题:⑴怎样的函数称为幂函数?怎样确定幂函数的定义域?⑵幂函数的图象大致有几种形式?在第四象限内有幂函数的图象吗?为什么?⑶幂函数在区间(0,)+∞内有怎样的单调性? ⑷怎样确定幂函数的奇偶性? 板书设计:§2.2.2 对数函数及其性质(三)⒈指数函数与对数函数的关系: ⒊反函数的性质 ⒉求指数(对数)函数的反函数:小结:预习提纲:教学后记:。
人教A版高中数学必修一对数函数教案课时(1)
![人教A版高中数学必修一对数函数教案课时(1)](https://img.taocdn.com/s3/m/bee837a826fff705cd170a46.png)
2.2.1 对数函数(三课时)教学任务:(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;(2)能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;(3)通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生数形结合的思想方法,学会研究函数性质的方法.教学重点:掌握对数函数的图象和性质.教学难点:对数函数的定义,对数函数的图象和性质及应用. 教学过程: 一、引入课题1.(知识方法准备)○1 学习指数函数时,对其性质研究了哪些内容,采取怎样的方法? 设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.○2 对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备. 2.(引例) 教材P 81引例处理建议:在教学时,可以让学生利用计算器填写下表:系P t 215730log=,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数” .(进而引入对数函数的概念)二、新课教学(一)对数函数的概念1.定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数(logarithmic function )其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy = 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制:0(>a ,且)1≠a . 巩固练习:(教材P 68例2、3)(二)对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:○1 在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)(1) x y 2log = (2) x y 21log =(3) x y 3log = (4) x y 31log =2○3 思考底数a 是如何影响函数x y alog =的.(学生独立思考,师生共同总结) 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大. (三)典型例题例1.(教材P 83例7). 解:(略) 说明:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理解.巩固练习:(教材P 85练习2). 例2.(教材P 83例8) 解:(略)说明:本例主要考察学生利用对数函数的单调性“比较两个数的大小”的方法,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法. 注意:本例应着重强调利用对数函数的单调性比较两个对数值的大小的方法,规范解题格式. 巩固练习:(教材P 85练习3). 例2.(教材P 83例9) 解:(略)说明:本例主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题. 注意:本例在教学中,还应特别启发学生用所获得的结果去解释实际现象. 巩固练习:(教材P 86习题2.2 A 组第6题).三、归纳小结,强化思想本小节的目的要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点.四、作业布置1.必做题:教材P86习题2.2(A组)第7、8、9、12题.2.选做题:教材P 86习题2.2(B组)第5题.。
人教A版高中数学必修一对数函数教案第课时(1)(3)
![人教A版高中数学必修一对数函数教案第课时(1)(3)](https://img.taocdn.com/s3/m/bbc9897b0740be1e640e9a47.png)
对数函数教学目标:(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;(2)通过对数函数的图象探索并了解对数函数的单调性与特殊点; (3)通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生数形结合的思想方法,学会研究函数性质的方法.教学重点:掌握对数函数的图象和性质.教学难点:对数函数的定义,对数函数的图象和性质及应用. 教学过程: 一.知识链接1.学习指数函数时,对其性质研究了哪些内容?2.对数的定义及其对底数的限制.二.问题情境填写下表:(课本45页开篇的细胞分裂问题中得出的指数函数xy 2=)三.建构数学1.对数函数的概念:一般地,函数0(log >=a x y a ,且)1≠a叫做对数函数(logarithmic function ),其中x 是自变量,函数的定义域是(0,+∞). 注意:(1)对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy = 都不是对数函数,而只能称其为对数型函数. (2)对数函数对底数的限制:0(>a ,且)1≠a .2.对数函数的图象和性质【问题】类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容! 1.在同一坐标系中画出下列对数函数的图象:(1)x y 2log = (2)x y 21log = (3)x y 3log = (4)x y 31log =2.结合图像研究对数函数x y a log =的性质:四.数学应用例1.求下列函数的定义域:)4(log )1(2.0x y -= ()1,01log )2(≠>-=a a x y a x y x 3log )3(1-=例2.利用对数函数的性质,比较下列各组数中两个数的大小:4.3log )1(2 , 8.3log 2 8.1log )2(5.0 , 1.2log 5.0 5log )3(7 , 7log 6【练习:课本62页.练习2、3】例 3.说明函数x y x y 33log )2(log =+=与函数的图像的关系,并在一个平面坐标系内画出它们的图像.【思考】(1)函数)0,1,0(log )(log >≠>=+=b a a x y b x y a a 与函数的图像之间有什么关系? (2)函数()x f y =与函数()m x f y +=的图像之间有什么关系? (3)函数()x f y =与函数()n x f y +=的图像之间有什么关系?例3.在同一平面坐标系内画出函数xy 2=与函数x y 2log =的图像,并说明它们有何关系?【反函数】一般说来,设A,B 分别为函数)(x f y =的定义域和值域,如果由函数)(x f y =所解得的)(y x ϕ=也是一个函数(即对任意一个B y ∈,都有惟一的A x ∈与之对应),那么就称函数)(y x ϕ=是函数)(x f y =的反函数(inverse function),记做)(1y fx -=.在)(1y fx -=中,y 是自变量,x 是y 的函数.习惯上常改写成()A y B x x fy ∈∈=-,)(1的形式.【练习】1.下列函数是否存在反函数,若存在,求出其反函数:12)1(-=x y 12.0)()2(+=-x x f 12)3(2+-=x x y (]3,2,12)4(2∈+-=x x x y2.(1)函数xy 3=与函数x y 3log =的图像关于 对称; (2)函数)(x f y =的图像经过点(1,3),则其反函数的图像必经过点 .五.回顾小结1.掌握对数函数的概念,熟练运用对数函数图象和性质;2.理解反函数概念,理解不是所有的函数都存在反函数;3.反函数的性质:(1)互为反函数的两个函数的图像关于直线x y =对称; (2)互为反函数的两个函数之间定义域与值域的关系;(2)若函数)(x f y =的图像上有一点(a,b),则(b,a)必在其反函数的图像上.六.作业布置1.课本70页.习题2.3(2)的第2,3,7,8 2.求下列函数的反函数:23)1(+=x y 11)2(-=x y )2(log )3(5-=x y (]5,2,34)4(2∈+-=x x x y。
高一数学对数函数教案5篇
![高一数学对数函数教案5篇](https://img.taocdn.com/s3/m/ce46e4740a4c2e3f5727a5e9856a561252d321ca.png)
高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。
新人教版高中数学必修一教案:第4节 对数函数
![新人教版高中数学必修一教案:第4节 对数函数](https://img.taocdn.com/s3/m/f7d7679784254b35effd341a.png)
2.5对数函数及其性质【知识要点】2.反函数(回忆反函数的定义,如何求反函数)3. 对数函数的定义域(回忆求定义域的方法,对照对数函数的性质求对数函数定义域)4. 对数函数的值域(对照函数值域求法求解对数函数的值域)5. 对数函数的单调性及应用(回忆单调性的定义与证明,如何求解)6. 对数函数的综合应用【知识应用】1.方法:在解题时,要会结合函数图象解题,注意底数a 的取值范围。
当a 大于1时,函数是单调增,当a 小于1时,函数是单调减,并且恒过点(1,0),由此画出函数图象。
【J 】例1 集合A={y ∈R|y=lgx,x>1},B={-2,-1,1,2},则下列结论中正确的是( )A. A ⋂B={-2,-1}B. (R C A )⋃B=(-∞,0)C. A ⋃B=(0,+∞)D. (R C A )⋂B={-2,-1}【L 】例2 以下四个数中的最大者是( )A 2ln 2() B ln (ln2) C D ln2【C 】例3 已知1<x<10,试比较2(lg )x 、2lg x lg (lgx )的大小。
2. 方法:(1)由反函数定义可知,原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。
因此,求反函数时,首先都要对原函数的定义域和值域进行研究,对于分段函数的反函数,应先分别求出每一段函数的反函数,再将它综合成一个函数即可。
(2)反函数的求法:a..由y=f(x)解出x b.把x 与y 的位置互换 c.写出解析式的定义域(注意:并不是每个函数都有反函数,有些函数没有反函数,如y=2x ;一般来说,单调函数有反函数)(3)反函数的性质:a.互为反函数的两个函数的图像关于直线y=x 对称 b.若函数y=f(x)图像上有一点(a ,b ),则(b ,a )必在其反函数图像上,反之若(b,a )在反函数图像上,则(a ,b )必在原函数图像上。
c.互为反函数的函数具有相同的单调性、奇偶性。
人教版高中必修1《对数函数》教案
![人教版高中必修1《对数函数》教案](https://img.taocdn.com/s3/m/5d94f86fbf23482fb4daa58da0116c175f0e1ed0.png)
人教版高中必修1《对数函数》教案
《人教版高中必修1《对数函数》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
教材分析
<一>地位与作用
对数函数是高中数学继指数函数之后的重要初等函数之一,无论从知识角度还是从思想方法角度对数函数都与指数函数有类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际中的应用奠定良好的基础。
<二>教学目标
【知识目标】1、理解对数函数的定义,掌握对数函数的图象和性质;
2、会求和对数函数有关的函数的定义域;
3、会利用对数函数单调性比较两个对数的大小。
【能力目标】1、通过对底的讨论,使学生对分类讨论的思想有进一步的认识,体会由特殊到一般的数学思想;
2、通过例题、习题的解决,使学生领悟化归思想在解决问题中的作用。
【情感目标】学生在参与中感受数学,探索数学,提高学习数学的兴趣,增强学好数学的自信心。
<三>教学重难点
教学重点:理解对数函数的定义,掌握对数函数图像和性质。
教学难点:底数a对函数值变化的影响及对数函数性质的应用。
一、教学方法:探究与小组合作教学法。
二、教学用具:多媒体,三角板,坐标纸。
四、教学过程设计
在对教材及学生全面深入了解的基础上,我设计了以下五个教学
环节:
人教版高中必修1《对数函数》教案这篇文章共6731字。
人教A版(2019)高中数学必修第一册4.4.1对数函数的概念教案
![人教A版(2019)高中数学必修第一册4.4.1对数函数的概念教案](https://img.taocdn.com/s3/m/952d39327f1922791788e827.png)
4.4.1 对数函数的概念教学目标:通过具有现实背景的具体实例,经历数学抽象,理解对数函数的概念,了解对数函数的实际意义.教学重点:对数函数的概念,包括定义、底数a的取值范围、定义域.教学难点:由指数函数(a>0,且a≠1),能想到x也是y的函数,总结归纳出对数函数的概念.教学过程:引导语:在4.2节中,我们用指数函数模型研究了呈指数增长或衰减变化规律的问题.对这样的问题,在引入对数后,我们还可以从另外的角度,对蕴含的规律作进一步的研究.1.形成定义问题1:在4.2.1的问题2中,我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律是函数(x≥0).进一步地,死亡时间x是碳14的含量y的函数吗?追问1:解决这个问题,显然要依据函数的定义.那么依据定义应该怎样进行判断呢?师生活动:教师引导学生先回忆函数的定义,然后确定判断方法.函数的定义:设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.所以要判断死亡时间x是否是碳14的含量y的函数,就要确定,对于任意一个y∈(0,1],是否都有唯一确定的x与其对应.追问2:若已知死亡生物体内碳14的含量,如何得知它死亡了多长时间呢?如图1,观察(x≥0)的图象,过y轴正半轴上任意一点(0,y0)(0<y0≤1)作x轴的平行线,与(x≥0)的图象有几个交点?这说明对任意一个y∈(0,1],都有几个x与其对应?能否将x看成是y的函数?师生活动:按照追问1确定的办法,先由学生分析,之后教师用软件进行演示,直观呈现对任意一个y∈(0,1],都有唯一确定的x与其对应.根据函数的定义,可知能将x看成是y的函数.追问3:能否求出生物死亡年数随体内碳14含量变化的函数解析式?师生活动:学生应该有足够能力解决此问题.通过指数与对数的运算关系,可以将这种对应关系,改写为.习惯上用x表示自变量,用y表示函数值,于是就得到函数,x∈(0,1],刻画时间y随碳14含量x的衰减而变化的规律.设计意图:通过再次分析4.2.1的问题2,并与指数函数进行比较,形成对比,从另外的角度刻画其中蕴含的规律,引出用函数的方式描述问题,为抽象得到对数函数做准备.问题2:对于一般的指数函数(a>0,且a≠1),根据指数与对数的运算关系,转换成(a>0,且a≠1),能否将x看成是y的函数?师生活动:利用解决问题1的经验,先由学生解答这个问题,之后师生一起完善.教师讲授:通常,我们用x表示自变量,y表示函数.为此,可将(a>0,且a≠1)改写为:(a>0,且a≠1).这就是对数函数.追问1:通过与指数函数对比,函数的定义域是什么?师生活动:根据指数函数的定义可知,在对数函数中,自变量x的取值范围是(0,+∞).于是就得到了:定义:一般地,函数(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).设计意图:通过从特殊到一般的过程,抽象出对数函数的基本形式,得出对数函数的概念.并在与指数函数对比的基础上,建立关联,得出对数函数的定义域.2.应用定义例1求下列函数的定义域:追问:求解的依据是什么?据此求解的步骤是什么?师生活动:教师利用追问引导学生,一切从定义出发.对数函数(a>0,且a≠1)的定义域是(0,+∞),那么(1)中的和(2)中的(4-x)的取值范围就是(0,+∞),于是得到不等式,将定义域问题转化为解不等式问题,进而求出定义域.设计意图:通过求函数定义域,进一步理解对数函数定义域的特殊性.在中学阶段,对数函数是为数不多的定义域不是实数集R的函数,这属于一个特殊情况.此前遇到的特殊情况还包括分母不能为0,二次根式下不能为负数.可以前后形成对比,加深对函数定义域和一些特殊情况的理解.练习1.求下列函数的定义域:练习2.画出下列函数的图象:设计意图:通过对数函数与分式、绝对值等多种形式的结合,并利用函数的解析式法、图象法,从不同角度推动学生对对数函数定义域的理解,进一步明确概念,体会对数函数定义域的特殊性.例2 假设某地初始物价为1,每年以5%的增长率递增,经过y年后的物价为x.(1)该地的物价经过几年后会翻一番?(2)填写下表,并根据表中的数据,说明该地物价的变化规律.师生活动:教师引导学生,顺着题意,理清思路,进行解答.对于(1),先写出x关于y的函数,再根据对数与指数间的关系,转换为y关于x的函数.对于(2),利用计算工具,快速填好表格,探索发现,随着x的增长,y的增长在减缓.由表中的数据可以发现,该地区的物价随时间的增长而增长,但大约每增加1倍所需要解:观察集合A和集合B的数据,猜测其对应关系为以2为底的指数函数,将数据依次代入函数进行检验,发现都满足该函数的解析式,所以选①.(1)先通过4.2.1的问题2中所阐述的实际问题,利用图象上x与y的对应关系,理解x也是y的函数,再利用指数与对数的运算关系,依据函数的定义,从交换自变量与函数值“地位”的方向进行研究,得到对数函数的概念.(2)对数函数与指数函数是密不可分的.对于呈指数增长或衰减变化的问题,我们可以用指数函数进行描述,还可以从对数函数的角度进行描述,从而能够更全面地研究其中蕴含的规律.设计意图:(1)得到对数函数概念的基本过程,是函数研究套路“背景-概念-图象与性质-应用”中的“背景-概念”环节.通过不断重复这一过程,使学生逐步掌握研究一个数学对象的基本套路.(2)明确对数函数的现实背景,可以使学生明白这类函数区别于其他初等函数的主要特征,为对数函数的图象性质和应用奠定基础.4.布置作业根据课堂教学情况,从教科书习题4.4中选择合适的题目,可选题目为第1,3,5,9,10题.(五)目标检测设计1.设对数函数y=f(x)的底数为a,如果f(9)=2,f(27)=3,那么a=____ ,f(81)=_____ .设计意图:考查对数函数的概念.。
高中必修第一册《4.4 对数函数》优质课教案教学设计
![高中必修第一册《4.4 对数函数》优质课教案教学设计](https://img.taocdn.com/s3/m/978ad7e401f69e3142329427.png)
第四章指数函数与对数函数4.4.1对数函数的概念本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。
对数函数是高中数学在指数函数之后的重要初等函数之一。
对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。
相较于指数函数,对数函数的图象亦有其独特的美感。
学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。
为之后学习数学提供了更多角度的分析方法。
培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。
教学重点:对数函数的概念、求对数函数的定义域教学难点:对数函数与指数函数的关系。
多媒体所以⎩⎪⎨⎪⎧2a-1>0,2a-1≠1,a2-5a+4=0,解得a=4.(3)设对数函数为f(x)=log a x(a>0且a≠1),由f(16)=4可知log a16=4,∴a=2,∴f(x)=log2x,∴f⎝⎛⎭⎫12=log212=-1.][规律方法]判断一个函数是对数函数的方法跟踪训练1.若函数f(x)=(a2+a-5)log a x是对数函数,则a=________.答案:2[由a2+a-5=1得a=-3或a=2.又a>0且a≠1,所以a=2.]题型2 对数函数的定义域例2 求下列函数的定义域.(1)f(x)=1log12x+1;(2)f(x)=12-x+ln(x+1);(3)f(x)=log(2x-1)(-4x+8).[解](1)要使函数f(x)有意义,则log12x+1>0,即log12x>-1,解得0<x<2,即函数f(x)的定义域为(0,2).(2)函数式若有意义,需满足⎩⎪⎨⎪⎧x+1>0,2-x≥0,2-x≠0即⎩⎪⎨⎪⎧x>-1,x<2,解得-1<x<2,故函数的定义域为(-1,2).(3)由题意得⎩⎪⎨⎪⎧-4x+8>0,2x-1>0,2x-1≠1,解得⎩⎪⎨⎪⎧x<2,x>12,x≠1.故函数y=log(2x-1)(-4x+8)的定义域为⎩⎨⎧⎭⎬⎫x⎪⎪12<x<2,且x≠1.[规律方法]求对数型函数的定义域时应遵循的原则(1)分母不能为;(2)根指数为偶数时,被开方数非负;求解对数函数的定义域,发展学生数学运算、逻辑推理的核心素养;(3)对数的真数大于0,底数大于0且不为1提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1. 跟踪训练2.求下列函数的定义域: (1)f(x)=lg(x -2)+1x -3; (2)f (x )=log x +1(16-4x ).[解] (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解得x >2且x ≠3,所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解得-1<x <0或0<x <4,所以函数定义域为(-1,0)∪(0,4). 题型3 对数函数的应用例3 假设某地初始物价为1,每年以5%的增长率递增,经过y 年后的物价为x .(1)该地的物价经过几年后会翻一番?(2)填写下表,并根据表中的数据,说明该地物价的变化规律.解:(1)由题意可知,经过y 年后物价x 为x =(1+5%)y , 即x =1.05y ( y ∈[0,+∞)).由对数与指数间的关系,可得y=log 1.05x, x ∈[1,+∞). 由计算工具可得,当x =2时,y ≈14. 所以,该地区的物价大约经过14年后会翻一番.(2)根据函数y=log 1.05x, x ∈[1,+∞).利用计算工具,可得下表:由表中的数据可以发现,该地区的物价随时间的增长而增长, 但大约每增加1倍所需要的时间在逐渐缩小.()∞+,01.下列函数是对数函数的是( )A .y =2+log 3xB .y =log a (2a )(a >0,且a ≠1)C .y =log a x 2(a >0,且a ≠1)D .y =ln x 【答案】D[结合对数函数的形式y =log a x (a >0且a ≠1)可知D 正确.] 2.函数f (x )=lg x +lg(5-3x )的定义域是( ) A.⎣⎡⎭⎫0,53 B.⎣⎡⎦⎤0,53 C.⎣⎡⎭⎫1,53 D.⎣⎡⎦⎤1,53 【答案】C [由⎩⎪⎨⎪⎧lg x ≥0,5-3x >0,得⎩⎪⎨⎪⎧x ≥1,x <53,即1≤x <53.]3.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围. 【答案】(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由图象知:当0<a <2时,恒有f (a )<f (2). 所以所求a 的取值范围为0<a <2.通过练习巩固本节所学知识,巩固对数函数的概念,增强学生的数学抽象、数学运算、逻辑推理的核心素养。
人教版高中数学必修一《对数函数及其性质》教学设计
![人教版高中数学必修一《对数函数及其性质》教学设计](https://img.taocdn.com/s3/m/10b1bfc2bcd126fff6050b1b.png)
§2.2.2对数函数及其性质一.教学目标1.知识技能①理解对数函数的概念,熟悉对数函数的图象与性质规律.②掌握对数函数的性质.2.过程与方法①通过观察对数函数的图象,发现并归纳对数函数的性质.②进一步体会应用函数图象讨论函数性质的方法.3.情感、态度与价值观①通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,培养学生的观察,分析,归纳等逻辑思维能力.②激发学生学习数学的积极性.二.学法与教学用具1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质;2.教学手段:多媒体计算机辅助教学.三.教学重点、难点1、重点:理解对数函数的定义,掌握对数函数的图象和性质.2、难点:底数a对对数函数图象和性质的影响 .四.教学过程(一)创设情境,引入新课在 2. 2. 1 的例 6 中,考古学家利用t log 1 P估算出土文物或古遗址的年代。
根据57302问题的实际意义,我们知道对于每一个炭14 含量 P,通过关系式t log57301 P ,都有唯一2确定的年代与之对应。
t 和P的取值范围我们可以用两个数集来表示,根据函数的定义,我们知道 t 是P的函数。
我们注意到这个函数比较特殊,它的解析式是一个对数的形式,事实上,这是一个很重要的函数模型――对数函数。
对数函数在考古学、生物学以及金融学中有着广泛的应用,因此,我们有必要对这一类特殊的函数进行研究。
今天我们就来学习对数函数及其性质。
(板书课题)(二) 讲授新课:1. 对数函数的定义 一般地,我们把函数y log a x (a 0 ,且 a 1) 叫做对数函数,其中 x 是自变量,函数定义域是(0,) .(板书定义)提问:( 1)在函数的定义中,为什么要规定( 2)为什么对数函数 ylog a x ( a > 0 且a > 0 且 a ≠ 1?a ≠ 1)的定义域是(0, +∞)?组织学生充分讨论、交流,使学生更加理解对数函数的含义, 从而加深对对数函数的理解.答:①根据对数与指数式的关系,知y log a x 可化为 a y x ,由指数的概念,要使a yx 有意义,必须规定 a >0且 a ≠ .(板书注意①规定 a > 0 且 a ≠ )1 1②因为 ylog a x 可化为 x a y ,不管 y 取什么值,由指数函数的性质,a y > 0,所以.(板书注意② x (0,) )师:其实,这里关于a > 0 且 a ≠ 1 的规定与对数的定义中对底数a >0 且 a ≠ 1 的规定是一致的。
高一数学教案范文:对数函数教案6篇
![高一数学教案范文:对数函数教案6篇](https://img.taocdn.com/s3/m/8682ac7d0a4c2e3f5727a5e9856a561252d321b9.png)
高一数学教案范文:对数函数教案高一数学教案范文:对数函数教案精选6篇(一)教案主题:对数函数教学目标:1. 理解对数的定义和性质;2. 熟练掌握对数函数的图像和性质;3. 能够解决与对数函数相关的实际问题。
教学重点:1. 对数的定义和性质;2. 对数函数的图像和性质。
教学难点:对数函数的应用和解决实际问题。
教学过程:Step 1:导入通过一幅图片展示一张单调递增函数的图像,并引导学生思考这个函数的性质。
Step 2:激发兴趣提问:上述的函数图像中,这个函数的自变量是否能取任意实数?为什么?这个函数的值域是否有限制?存在哪些特殊的点,比如零点、极值点等?Step 3:引入概念引导学生思考自然对数的定义和性质,然后介绍对数的定义和常见的特殊情况。
Step 4:讲解对数函数的基本性质1. 对数函数的图像特点:单调递增、定义域、值域;2. 对数函数的零点和极值点;3. 对数函数的性质关系式:ln(xy) = ln(x) + ln(y),ln(x/y) = ln(x) - ln(y)。
Step 5:示例演练结合具体的实例,让学生通过计算和图像分析的方法,熟悉对数函数的表达式和性质。
Step 6:拓展应用通过一些实际问题的展示,引导学生运用对数函数解决实际问题,如指数增长问题、物质衰减问题等。
Step 7:总结提高总结对数函数的定义、性质和应用,并引导学生思考对数函数与指数函数的关系。
Step 8:作业布置要求学生完成与对数函数相关的习题,巩固所学内容。
评价与反馈:通过学生作业的批改和讲解,及时反馈学生对对数函数概念和应用的掌握程度。
教学资源:1. PPT;2. 教科书;3. 白板、彩色粉笔;4. 实际问题的案例材料。
教学延伸:对数函数在科学和工程领域中具有广泛的应用,可以通过提供更多实际问题的案例,培养学生运用对数函数分析和解决问题的能力。
高一数学教案范文:对数函数教案精选6篇(二)教学目标:1. 理解对数函数的概念及性质。
高一数学对数函数教案
![高一数学对数函数教案](https://img.taocdn.com/s3/m/0ea5c22eb6360b4c2e3f5727a5e9856a561226d0.png)
高一数学对数函数教案高一数学对数函数教案(7篇)在教学工作者开展教学活动前,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。
那么优秀的教案是什么样的呢?以下是小编整理的高一数学对数函数教案,仅供参考,欢迎大家阅读。
高一数学对数函数教案1学习目标1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.旧知提示复习:若,则,其中称为,其范围为,称为 .合作探究(预习教材P70- P72,找出疑惑之处)探究1:元旦晚会前,同学们剪彩带备用。
现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。
设所得的彩带的根数为,剪的次数为,试用表示 .新知:对数函数的概念试一试:以下函数是对数函数的是( )A. B. C. D. E.反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:,都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制,且 .探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 作图:在同一坐标系中画出下列对数函数的图象.新知:对数函数的图象和性质:象定义域值域过定点单调性思考:当时,时, ; 时, ;当时,时, ; 时, .典型例题例1求下列函数的定义域:(1) ; (2) .例2比较大小:(1) ; (2) ; (3) ;(4) 与 .课堂小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.知识拓展对数函数凹凸性:函数,是任意两个正实数.当时, ;当时, .学习评价1. 函数的定义域为( )A. B. C. D.2. 函数的定义域为( )A. B. C. D.3. 函数的定义域是 .4. 比较大小:(1)log 67 log 7 6 ; (2) ; (3) .课后作业1. 不等式的解集是( ).A. B. C. D.2. 若,则( )A. B. C. D.3. 当a1时,在同一坐标系中,函数与的图象是( ).4. 已知函数的定义域为,函数的定义域为,则有( )A. B. C. D.5. 函数的定义域为 .6. 若且,函数的图象恒过定点,则的坐标是 .7.已知,则 = .8. 求下列函数的定义域:2.2.2 对数函数及其性质(2)学习目标1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.旧知提示复习1:对数函数图象和性质.a1 0图性质(1)定义域:(2)值域:(3)过定点:(4)单调性:复习2:比较两个对数的大小:(1) ; (2) .复习3:(1) 的定义域为 ;(2) 的定义域为 .复习4:右图是函数,,,的图象,则底数之间的关系为 .合作探究 (预习教材P72- P73,找出疑惑之处)探究:如何由求出x?新知:反函数试一试:在同一平面直角坐标系中,画出指数函数及其反函数图象,发现什么性质?反思:(1)如果在函数的图象上,那么P0关于直线的对称点在函数的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于对称.典型例题例1求下列函数的反函数:(1) ; (2) .提高:①设函数过定点,则过定点 .②函数的反函数过定点 .③己知函数的图象过点(1,3)其反函数的图象过点(2,0),则的表达式为 .小结:求反函数的步骤(解x 习惯表示定义域)例2溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?(2)纯净水摩尔/升,计算其酸碱度.例3 求下列函数的值域:(1) ;(2) .课堂小结① 函数模型应用思想;② 反函数概念.知识拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应. 对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是交叉相等.学习评价1. 函数的反函数是( ).A. B. C. D.2. 函数的反函数的单调性是( ).A. 在R上单调递增B. 在R上单调递减C. 在上单调递增D. 在上单调递减3. 函数的反函数是( ).A. B. C. D.4. 函数的值域为( ).A. B. C. D.5. 指数函数的反函数的图象过点,则a的值为 .6. 点在函数的反函数图象上,则实数a的值为 .课后作业1. 函数的反函数为( )A. B. C. D.2. 设,,,,则的大小关系是( )A. B. C. D.3. 的反函数为 .4. 函数的值域为 .5. 已知函数的反函数图象经过点,则 .6. 设,则满足的值为 .7. 求下列函数的反函数.(1) y= ; (2)y= (a1,x (3) .高一数学对数函数教案21.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。
人教A版高中数学必修一对数函数教案第课时(1)(5)
![人教A版高中数学必修一对数函数教案第课时(1)(5)](https://img.taocdn.com/s3/m/1fec47c6f121dd36a22d8247.png)
课题:§2.2.2对数函数教学目标:(1)进一步理解对数函数的图象和性质;(2)熟练应用对数函数的图象和性质,解决一些综合问题;(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力.教学重点: 对数函数的图象和性质.教学难点: 对数函数的性质的综合运用. 教学过程: 一.知识回顾1.完成下表(对数函数x y a log =,0(>a 且)0≠a 的图象和性质)1.根据对数函数的图象和性质填空.(1)已知函数x y 2log =,则当0>x 时,∈y ;当1>x 时,∈y ; 当10<<x 时,∈y ;当4>x 时,∈y .(2)已知函数x y 31log =,则当10<<x 时,∈y ;当1>x 时,∈y ;当5>x 时,∈y ;当20<<x 时,∈y ;当2>y 时,∈x . 2.函数x y x y x y lg ,log ,log 52===的图象如图所示,回答下列问题. (1)说明哪个函数对应于哪个图象,并解释为什么?(2)函数x y a log =与x y a1log =,0(>a 且)0≠a 有什么关系?○1 ○2 ○3图象之间又有什么特殊的关系?(3)以x y x y x y lg ,log ,log 52===的图象为基础,在同一坐标系 中画出x y x y x y 1015121log ,log ,log ===的图象;(4)已知函数x y x y x y x y a a a a 4321log ,log ,log ,log ====的图 象,则底数之间的关系为 .二.数学应用 例1.比较大小:(1) πa log ,e a log ,0(>a 且)0≠a ; (2) 21log 2,)1(log 22++a a )(R a ∈.例2.已知)13(log -a a 恒为正数,求a 的取值范围.例3.求函数)78lg()(2-+-=x x x f 的定义域及值域.例4.(1)函数x y a log =在[2,4]上的最大值比最小值大1,求a 的值;(2)求函数)106(log 23++=x x y 的最小值.例5.已知函数xxx x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性.例6.求函数)54(log )(22.0++-=x x y x f 的单调区间.练习:求函数)23(log 221x x y --=的单调区间.三.作业布置log =y x a 1 log =yxa 2 log =y xa 3 log =y xa 4。
【教案】对数函数教学设计-2021-2022学年高一上学期数学人教A版(2019)必修第一册
![【教案】对数函数教学设计-2021-2022学年高一上学期数学人教A版(2019)必修第一册](https://img.taocdn.com/s3/m/ce7cb94a49d7c1c708a1284ac850ad02de800715.png)
课时教学设计(第 1 课时/总3课时)课题 4.4.1对数函数的概念课型新课1、教学内容分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》.对数函数是高中数学在指数函数之后的重要初等函数之一.对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处.相较于指数函数,对数函数的图象亦有其独特的美感.学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程.为之后学习数学提供了更多角度的分析方法.培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养.2、学习者分析对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这个重要数学思想的进一步理解与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决相关自然科学领域中实际问题的重要工具,是学生今后学习对数函数的性质的基础.3、学习目标确定 1.理解对数函数的定义,会求对数函数的定义域;2.了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法.3.在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣.4、学习重点和难点教学重点:对数函数的概念、求对数函数的定义域教学难点:对数函数与指数函数的关系.5、学习评价设计1.对数函数的概念及其应用2.会求与对数函数有关的定义域问题3.会应用对数函数模型6、学习活动设计教师活动学生活动设计意图一、情景导入我们已经研究了死亡生物体内碳14的含量思考、讨论并交流温故知新,通过对上节指数函数问题的回顾,提出新的问题,构建对数函数的概念.培养和发展逻y随死亡时间t的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?辑推理和数学抽象的核心素养.二、获得新知阅读课本130-131页,思考并完成以下问题1. 对数函数的概念是什么?2. 对数函数解析式的特征?总结并板书对数函数的概念,及解析式的特征. 学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题.体现学生的主体地位.三、例题精讲课本P130例1 例2创新设计P84例1 例2 例3 完成课本131页练习1、2、3及创新设计对应的训练1、训练2、训练3概念深化,例题讲解四、小结1.对数函数的概念2.对数函数有关的定义域的求法五、作业分层训练209页必做:1-10选做:11-14 归纳总结、独立完成作业知识运用,复习巩固.分层布置作业使不同程度的学生都能有所提高.7、板书设计 4.4.1 对数函数的概念对数函数的概念例题小结8、教学反思与改进说明:(1)教学设计要突出学生的主体地位,依据学科课程标准要求突出单元和课时学习对学生发展的价值,设计情境化、问题化、活动化、任务化的学习活动,增强学生学习过程的整体性.(2)教学设计、课堂实施和学习评价要保持一致性.目的是促进课堂“教学评”的改进.(3)教学反思与改进突出课堂学习目标的达成度,依据学生的变化和本课教学的特色,从教学观念和操作系统两个方面进行反思.五、课时教学设计(教师)课时教学设计(第2课时/总3课时)课题 4.4.2对数函数的图象和性质(一) 课型新课1、教学内容分析本节课是新版教材人教A 版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一.对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处.相较于指数函数,对数函数的图象亦有其独特的美感.在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程.为之后学习数学提供了更多角度的分析方法.培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养.2、学习者分析学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进-一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进- -步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受)1,0(log ≠>=a a x y a 中,a 取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质.最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备.3、学习目标确定1. 掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2. 经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系.培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法.3. 在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学.4、学习重点和难点教学重点:掌握对数函数的图像和性质,对数函数与指数函数之间的联系,不同底数的对数函数图象之间的联系.教学难点: 对数函数的图像与指数函数的关系;不同底数的对数函数之间的联系.5、学习评价设计1.对数函数图象的识别2.对数函数图象的应用3.比较对数值的大小6、学习活动设计教师活动学生活动设计意图(一)回顾旧知 思考:我们该如何去研究对数函数的性质呢?问题 1. 利用“描点法”作函数xy 2log =x y 21log =的图像.回顾思考并自由发言.独立作出两个函数图象.温故知新,通过对上节指数函数问题的回顾,提出新的问题,提出研究对数函数图像与性质的方法.培养和发展逻辑推理和数学抽象的核心素养.(二)获得新知 问题2:课本132页思考问题3:课本132页探究引导归纳总结对数函数的性质.小组合作,讨论交流 通过画出特殊的对数函数的图形,观察归纳出对数函数的性质,发展学生逻辑推理,数学抽象、数学运算等核心素养.(三)例题精讲,跟踪训练课本P193 例3课本例4引导得出反函数的概念完成P135练习1,2完成练习3通过典例问题的分析,让学生进一步熟悉对数函数的图像与性质.培养逻辑推理核心素养.(四)小结1.对数函数的图象及性质2.反函数(五)作业必做:习题4.4第1,2,5,7选做:12,13 归纳总结、独立完成作业知识运用,复习巩固.分层布置作业使不同程度的学生都能有所提高.7、板书设计 4.4.2 对数函数的图象和性质例题练习1. 对数函数图像2. 对数函数的性质3.反函数8、教学反思与改进说明:(1)教学设计要突出学生的主体地位,依据学科课程标准要求突出单元和课时学习对学生发展的价值,设计情境化、问题化、活动化、任务化的学习活动,增强学生学习过程的整体性.(2)教学设计、课堂实施和学习评价要保持一致性.目的是促进课堂“教学评”的改进.(3)教学反思与改进突出课堂学习目标的达成度,依据学生的变化和本课教学的特色,从教学观念和操作系统两个方面进行反思.课时教学设计(第3课时/总3课时)课题 4.4.2对数函数的图象和性质(一) 课型习题课1、教学内容分析本节课是新版教材人教A 版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一.对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处.相较于指数函数,对数函数的图象亦有其独特的美感.在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程.为之后学习数学提供了更多角度的分析方法.培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养.2、学习者分析学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进-一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进- -步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受)1,0(log ≠>=a a x y a 中,a 取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质.最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备.3、学习目标确定1. 掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2. 经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系.培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法.3. 在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学.4、学习重点和难点教学重点:掌握对数函数的图像和性质,对数函数与指数函数之间的联系,不同底数的对数函数图象之间的联系.教学难点:对数函数的图像与指数函数的关系;不同底数的对数函数之间的联系.5、学习评价设计 1.对数函数图象的识别2.对数函数图象的应用3.比较对数值的大小6、学习活动设计教师活动学生活动设计意图回顾对数函数的图象和性质.创新设计P86例1 回顾思考并回答.完成创新设计P86的自主检测训练1温故知新,回顾对数函数图像与性质的方法.检验上节课所学,会识别对数函数图象.创新设计例2 完成训练2会应用对数函数的图象.创新设计例3 完成训练3 利用对数函数的图象和性质解决比较大小的问题.小结1.对数函数的图象2.比较对数值大小的方法作业必做:分层训练P2111-10选做:11-14 归纳总结、独立完成作业知识运用,复习巩固.分层布置作业使不同程度的学生都能有所提高.7、板书设计 4.4.2 对数函数的图象和性质例题练习1. 对数函数图像2. 对数函数比较大小的方法8、教学反思与改进说明:(1)教学设计要突出学生的主体地位,依据学科课程标准要求突出单元和课时学习对学生发展的价值,设计情境化、问题化、活动化、任务化的学习活动,增强学生学习过程的整体性.(2)教学设计、课堂实施和学习评价要保持一致性.目的是促进课堂“教学评”的改进.(3)教学反思与改进突出课堂学习目标的达成度,依据学生的变化和本课教学的特色,从教学观念和操作系统两个方面进行反思.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在指数函数 y 2x 中, x 是自变量, y 是 x 的函数( x R, y R ),而且其在 R 上
是单调递增函数. 过 y 轴正半轴上任意一点作 x 轴的平行线,与 y 2x 的图象有且只有一个
交点.由指数式与对数式关系, y 2x 得x log2 y ,即对于每一个 y ,在关系式 x log2 y 的作用之下,都有唯一的确定的值 x 和它对应,所以,可以把 y 作为自变量,x 作为 y 的函 数,我们说 x log2 y是y 2x (x R)的反函数 .
我们知道 y ax (a >0 且a 1) 与对数函数 y=loga x (a >0 且 a 1) 互为反函数,探索
下列问题.
1.在同一平面直角坐标系中,画出 y=2x与y log2 x 的图象,你能发现这两个函数有
什么样的对称性吗?
2.取 y 2x 图象上的几个点,写出它们关于直线 y x 的对称点坐标,并判断它们 是否在 y log2 x 的图象上吗?为什么?
如 x log3 y是y 3x 的反函数,但习惯上,通常以 x 表示自变量, y 表示函数,对调
x log3 y 中 的 x , y写成y log3 x , 这 样 y log3 x x (0, ) 是 指 数 函 数
y 3x (x R) 的反函数.
以 后 , 我 们 所 说 的 反 函 数 是 x, y 对 调 后 的 函 数 , 如 y 2x (x R) 的 反 函 数 是
(1) loga
xy z
loga
xy loga
z
loga
x loga
y loga
z
(2) loga
ቤተ መጻሕፍቲ ባይዱx2
3
y z
loga
x2
y loga 3 z loga x2 loga
y loga 3 z
=
2 loga
x
1 2
loga
y
1 3
loga
z
(3) log2 (47 25 ) log2 47 log2 25 14 5 19
提问:你能用自己的话概括出换底公式吗?
说明:我们使用的计算器中,“ log ”通常是常用对数. 因此,要使用计算器对数,一
定要先用换底公式转化为常用对数. 如:
log2
3
lg lg
3 2
即计算 log23 的值的按键顺序为:“ log ”→“3”→“÷”→“ log ”→“2” →“=”
再如:在前面要求我国人口达到 18 亿的年份,就是要计算
天我们就对它们之间的关系来做一番研究. (II)讲授新课: 师:在指数函数 y 2x 中,x 为自变量,y 是因变量.如果把 y 当成自变量,
x 当成因变量,那么 x 是 y 的函数吗? 生:由指数式 y 2x 可得对数式 x log2 y .这样,对于任意一个 y (0, ) ,
通过式子 x log2 y ,x 在 R 中都有唯一的值和它对应.也就是说,可以把 y 作为 自变量,x 作为 y 的函数.
(2)你认为学习对数有什么意义?大家议论.
4、作业
(1)书面作业:P74 习题2.2 第 3、4 题 P75 第 11、12 题
2、思考:(1)证明和应用对数运算性质时,应注意哪些问题?
(2) log2 (3)(5)等于log2 (3) log2 (5)吗?
对数函数
一.教学目标: 1.知识与技能 (1)知识与技能 (2)了解反函数的概念,加深对函数思想的理解. 2.过程与方法 学生通过观察和类比函数图象,体会两种函数的单调性差异. 3. 情感、态度、价值观 (1)体会指数函数与指数; (2)进一步领悟数形结合的思想.
值 变
ax 1, x 0. 当 0 a 1时,
化
ax 1, x 0,
情
a
x
1,
x 0,
况
ax 1, x 0.
当 a 1时,
loga x 0, loga x 0, loga x 0,
当 0 a 1时,
x 1, x 1, x 1.
loga x 0, loga x 0, loga x 0,
从我们的列表中知道, y 2x 与x log2 y 是同一个函数图象.
3.引出反函数的概念(只让学生理解,加宽学生视野) 当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数自变量,而把这 个函数的自变量作为新的函数的因变量,我们称这两个函数为反函数. 由反函数的概念可知,同底的指数函数和对数函数互为反函数.
x
log1.01
18 13
所以
x
log1.01
18 13
lg 18 13
lg1.01
lg18 lg13 lg1.01
1.2553 1.139 0.043
= 32.8837 33(年)
练习:P68
练习 4
让学生自己阅读思考 P66~P67 的例 5,例 6 的题目,教师点拨.
3、归纳小结
(1)学习归纳本节
则有
(1) loga x loga y loga (x y) (2) loga x loga y loga (x y)
(3) loga
x y
loga x loga y
(4) loga xy loga x loga y
(5) (loga x)n n loga x
(7)
n
loga
M N
又由 M am , N an
m loga M , n loga N
即: loga
M
loga
N
mn
loga
M N
N
(3) n 0时, 令N loga M n ,则M a n
b
b n loga M , 则M a n
N
b
a n an
N b
即 loga
M N
loga M
loga
指数的运算性质.
am an amn;
am an amn
(am )n amn ;
n
m an am
2.讲授新课 探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的
关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道 am an amn ,那 m n
如何表示,能用对数式运算吗?
二.重点、难点: 重点:指数函数与对数函数内在联系 难点:反函数概念的理解
三.学法与教具: 学法:通过图象,理解对数函数与指数函数的关系. 教具:多媒体
四.教学过程: 1.复习 (1)函数的概念
(2)用列表描点法在同一个直角坐标点中画出 y 2x 与y log2 x 的函数图象.`
2.讲授新知
y 2x
y log2 x x (0, ) .
同理, y ax (a 1且a >1)的反函数是 y loga x(a >0 且 a 1) .
课堂练习:求下列函数的反函数
(1) y 5x
(2) y log0.5 x
归纳小结: 1. 今天我们主要学习了什么? 2.你怎样理解反函数?
课后思考:(供学有余力的学生练习)
x
…
-3 -2 -1
0
1
2
3
…
y
…
1
1
1
1
2
4
8
…
8
4
2
y log2 x
x
…
-3 -2 -1
0
1
2
3
…
y
…
1
1
1
1
2
4
8
…
8
8
2
图象如下:
y
y 2x
y log2 x
0
x
探究:在指数函数 y 2x 中, x 为自变量, y 为因变量,如果把 y 当成自变量, x 当 成因变量,那么 x 是 y 的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.
教学重点:底数相同的指数函数与对数函数互为反函数. 教学难点:互为反函数的两个函数图象间的关系. 教学方法:探究、讨论式. 教具准备:⒈用《PowerPoint》播放指数函数与对数函数对照表.
⒉用《几何画板》演示同底数的指数函数与对数函数图象间的关系.
教学过程: (I)复习回顾:
师:前面几节课,我们学习了指数函数、对数函数的概念、图象和性质, 现在我们把这两类函数做个对比,以便于我们对它们形成整体的认识.
如果 a >0 且 a ≠1,M>0,N>0,那么:
(1) loga MN loga M loga N
(2) loga
M N
loga
M
loga
N
(3) loga M n n loga M (n R)
证明:
(1)令 M am , N an
则: M am an amn N
m
n
loga
请大家一起来填写下表.(用《PowerPoint》播放)
指数函数与对数函数对照表
指数函数
对数函数
一般形式 y ax (a 0 ,且 a 1)
定义域
(, )
y loga x (a 0 ,且 a 1) (0, )
值域
(0, )
(, )
当 a 1时, 函
ax 1, x 0,
数
a
x
1,
x 0,
设 M logc a, N logc b, 则a cM , b cN
1
1
N
且 a M c, 所以cN (a M )N a M b
即: N M
log
a
b,
又因为
N M
logc b logc a
所以: