高三数学学业水平考试试题 文
2022年1月福建高中学业水平合格性考试数学试卷真题(答案详解)
机密★启用前2022年1月福建省普通高中学业水平合格性考试数学试题(考试时间:90分钟;满分:100分)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至3页,第II 卷4至6页.注意事项:1.答题前,考生务必将自己的考生号、姓名填写在试题卷、答题卡上.考生要认真核对答题卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.第II 卷用黑色字迹签字笔在答题卡上作答.在试题卷上作答,答案无效.3.考试结束,监考员将试题卷和答题卡一并收回.参考公式:第I 卷(选择题45分)一、选择题:本题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2,0,1,0,1,2A B =-=,则A B = ()A .{}0,1B .{}2,0,1-C .{}0,1,2D .{}2,0,1,2-2.某简单几何体的三视图如图所示,则该几何体是()A .球B .圆锥C .圆台D .圆柱3.直线1y =+的倾斜角是()A .6πB .3πC .23πD .56π4.函数()2log 32y x =-的定义域是()A .2,3⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞ ⎪⎝⎭C .()0,∞+D .R5.随机投掷一枚质地均匀的骰子,出现向上的点数为奇数的概率是()A .16B .13C .12D .236.等差数列{}n a 中,若14a =,公差2d =,则5a =()A .10B .12C .14D .227.已知函数()22,0,2,0,x x x f x x ⎧-=⎨<⎩则()()1f f =()A .4B .2C .12D .1-8.已知3sin 5α=,且α为第一象限角,则cos α=()A .45B .45-C .34D .34-9.函数()234xf x x =+-的零点所在的区间是()A .()1,0-B .()0,1C .()1,2D .()2,310.函数sin 2y x =的最小正周期是()A .2πB .πC .2πD .4π11.如图,在长方体体1111ABCD A B C D -中,,E F 分别是棱111,BB B C 的中点,以下说法正确的是()A .1A E 平面11CC D DB .1A E ⊥平面11BCC B C .11A ED F ∥D .11AE DF ⊥12.函数1y x x=+的图象大致为()A .B .C .D .13.为了得到函数sin 13y x π⎛⎫=++ ⎪⎝⎭的图象,只需把函数sin y x =的图象()A .向右平移3π个单位长度,再向上平移1个单位长度B .向右平移3π个单位长度,再向下平移1个单位长度C .向左平移3π个单位长度,再向上平移1个单位长度D .向左平移3π个单位长度,再向下平移1个单位长度14.已知3321log 4,log 2,log 3a b c ===测,,a b c 的大小关系是()A .a b c <<B .c<a<bC .a c b<<D .c b a<<15.下列各组向量中,可以用来表示向量()3,5a =的是()A .()()120,0,1,2e e ==-B .()()121,2,1,2e e ==--C .()12,3e =,()24,6e = D .()()121,3,2,1e e ==-第II 卷(请考生在答题卡上作答)二、填空题:本题共5小题,每小题3分,共15分.16.数列{}n a 的前几项和为n S ,且111,2n n a a a +==,则,4S =__________.17.ABC 的内角,,A B C所对的边分别为,,a b c ,且60,45a A B == ,则b =__________.18.已知向量a 与b 满足5,4a b == ,且10a b ⋅=r r,则a 与b 的夹角等于__________.19.一车间为了规定工时定额,需要确定加工某零件所需的时间,为此进行了多次试验,收集了加工零件个数x 与所用时间y (分钟)的相关数据,并利用最小二乘法求得回归方程0.6755y x =+.据此可预测加工200个零件所用的时间约为__________分钟.20.某工厂要建造一个容积为39m 的长方体形无盖水池.如果该水池池底的一边长为1m ,池底的造价为每平方米200元,池壁的造价为每平方米100元,那么要使水池的总造价最低,水池的高应为__________m .三、解答题:本题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤21.在平面直角坐标系中,角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边交单位圆于P 点34,.55⎛⎫⎪⎝⎭(1)求()sin πα-的值;(2)求tan 4πα⎛⎫+ ⎪⎝⎭的值.22.某校高三年级共有学生1000名.该校为调查高三学生的某项体育技能水平,从中随机抽取了100名学生进行测试,记录他们的成绩,并将数据分成6组:[)[)[]40,50,50,60,,90,100 ,整理得到频率分布直方图,如图.(1)若0.002,0.006a b ==,估计该校高三学生这项体育技能的平均成绩;(2)如果所抽取的100名学生中成绩分布在区间[)60,70内的有8人,估计该校高三学生这项体育技能成绩低于60分的人数.23.如图,在三棱锥-P ABC 中,平面PAC ⊥平面,ABC AC BC⊥(1)求证:PA ⊥BC ;(2)若2,30PA PC BC BAC ∠==== ,求三棱锥-P ABC 的体积.24.已知函数()()e e e e ,22x x x xf xg x ---+==.(1)从()(),g f x x 中选择一个函数,判断其奇偶性,并证明你的结论;(2)若函数()()()x x h f g x a =-有零点,求实数a 的取值范围.25.已知圆C 过点()()1,2,2,1A B ,且圆心C 在直线y x =-上.P 是圆C 外的点,过点P 的直线l 交圆C 于,M N 两点.(1)求圆C 的方程;(2)若点P 的坐标为()0,3-,求证:无论l 的位置如何变化PM PN ⋅恒为定值;(3)对于(2)中的定值,使PM PN ⋅恒为该定值的点P 是否唯一?若唯一,请给予证明;若不唯一,写出满足条件的点P 的集合(不必证明).1.A 【分析】根据集合交集的定义即可求解.【详解】解:因为集合{}{}2,0,1,0,1,2A B =-=,所以{}0,1A B = ,故选:A.2.D 【分析】由几何体的三视图可得该几何体为圆柱,从而即可得答案.【详解】解:由正视图和侧视图可知,该几何体不可能是球、圆锥、圆台,故选项A 、B 、C 错误,因此该几何体为圆柱,即选项D 正确,故选:D.3.B 【分析】根据直线斜率等于倾斜角的正切值,从而求出倾斜角θ【详解】因为:1y +,所以:k由于:k tan θ=,则tan θ,即:θ=3π故选:B.【点睛】本题考查直线斜率与倾斜角的关系4.B 【分析】根据真数大于零,即可解出.【详解】由320x ->解得:23x >.5.C 【分析】分别求出点数向上的结果数和向上的点数为奇数的结果数,由古典概率可得答案.【详解】随机投掷一枚质地均匀的骰子,点数向上的结果有6种,其中向上的点数为奇数的有3种所以出现向上的点数为奇数的概率是3162=故选:C 6.B 【分析】根据等差数列的性质直接计算即可.【详解】由等差数列的性质可知:51444212a a d =+=+⨯=;故选:B.7.C 【分析】根据分段函数的定义即可求解.【详解】解:因为()22,02,0x x x f x x ⎧-=⎨<⎩,所以2(1)121f =-=-,所以()()()111122f f f -=-==,故选:C.8.A 【分析】根据三角函数值在各象限的符号以及平方关系即可解出.【详解】因为α为第一象限角,3sin 5α=,所以4cos 5α==.故选:A .9.B根据函数零点存在定理即可判断.【详解】解:因为()234x f x x =+-为R 上的增函数,又()00230430f =+⨯-=-<,()11231410f =+⨯-=>,所以函数()234xf x x =+-的零点所在的区间是()0,1,故选:B.10.B 【分析】根据正弦型函数的最小正周期公式即可得出答案.【详解】解:由函数sin 2y x =,则最小正周期22T ππ==.故选:B.11.A 【分析】对A :由平面11ABB A 平面11CC D D ,然后根据面面平行的性质定理即可判断;对B :若1A E ⊥平面11BCC B ,则1A E ⊥1BB ,这与1A E 和1BB 不垂直相矛盾,从而即可判断;对C 、D :以D 为坐标原点,建立空间直角坐标系,由1 A E 与1D F不是共线向量,且2110A E D F b ⋅=>,从而即可判断.【详解】解:对A :由长方体的性质有平面11ABB A 平面11CC D D ,又1A E ⊂平面11ABB A ,所以1A E 平面11CC D D ,故选项A 正确;对B :因为E 为棱1BB 的中点,且111A B BB ⊥,所以1A E 与1BB 不垂直,所以若1A E ⊥平面11BCC B ,则1A E ⊥1BB ,这与1A E 和1BB 不垂直相矛盾,故选项B 错误;对C 、D :以D 为坐标原点,建立如图所示的空间直角坐标系,设1,,DA a DC b DD c ===,则()1,0,A a c =,,,2c E a b ⎛⎫ ⎪⎝⎭,()10,0,D c ,,,2a F b c ⎛⎫⎪⎝⎭,所以10,,2c A E b ⎛⎫=- ⎝⎭ ,1,,02a D F b ⎛⎫= ⎪⎝⎭,因为1 A E 与1D F 不是共线向量,且2110A E D F b ⋅=>,所以1A E 与1D F 不平行,且1A E 与1D F 不垂直,故选项C 、D 错误.故选:A.12.A 【分析】根据函数1y x x=+的奇偶性以及值域即可解出.【详解】因为()1y f x x x==+的定义域为{}|0x x ≠,且()()f x f x -=-,所以函数1y x x =+为奇函数,其图象关于原点对称,所以排除C ;又当0x >时,12y x x=+≥,当且仅当1x =时取等号,所以排除B ,D .故选:A .13.C 【分析】由三角函数图象变换求解【详解】要得到函数sin 13y x π⎛⎫=++ ⎪⎝⎭,需把函数sin y x =的向左平移3π个单位长度,再向上平移1个单位长度,故选:C 14.D【分析】运用对数的性质直接判断即可.【详解】3log 41a =>,30log 21b <=<,221log log 303c ==-<,a b c ∴>>;故选:D.15.D 【分析】在平面向量中能作为基底的充分必要条件是一组不平行的非零向量,按照这个条件逐项分析即可.【详解】对于A ,()10,0e =是零向量,不可以;对于B ,12e e =-,是平行向量,不可以;对于C ,1212e e = ,是平行向量,不可以;对于D ,不存在实数λ使得12e e λ=成立,是一组不平行的非零向量,可以;故选:D.16.15【分析】按照等比数列写出通项公式和求和公式计算即可.【详解】12n n a a += ,∴{}n a 是首项为1,公比为2的等比数列,4441112115112q S a q --=⨯=⨯=--故答案为15.17【分析】直接运用正弦定理计算即可.【详解】由正弦定理得:sin sin45,sin sin sin sin60a b Bb aA B A︒︒=∴=⨯==;.18.3π##60︒【分析】直接用数量积的定义求夹角即可.【详解】依题意,101cos,542a ba ba b===⨯,∴a与b的夹角为3π;故答案为:3π.19.189【分析】根据回归方程0.6755y x=+即可求解.【详解】解:因为回归方程0.6755y x=+,所以当200x=时,0.6720055189y=⨯+=,所以可预测加工200个零件所用的时间约为189分钟,故答案为:189.20.3【分析】写出底边长和高的关系式,运用基本不等式运算即可.【详解】由题意,设底面另一边长为x,高为y,则有9xy=,总造价为200210021002002001800S x y xy x y=+⨯+⨯=++218003000≥⨯=,当且仅当x=y=3时等号成立,故答案为:3.21.(1)45(2)-7【分析】先求出sin α和tan α,在根据诱导公式和两角和正切公式计算即可.(1)由题意,4445sin ,tan 3535αα===,()4sin sin 5παα∴-==;(2)41tantan 34tan 7441tan tan 143παπαπα++⎛⎫+===- ⎪⎝⎭--;综上,()4sin π,tan 754παα⎛⎫-=+=- ⎪⎝⎭.22.(1)80.4(2)20【分析】(1)根据直方图所给出的数据求平均数即可;(2)根据直方图面积等于1,求出a ,再将频率作为概率计算即可.(1)由直方图可知:平均成绩450.02550.02650.06750.4850.3950.280.4x =⨯+⨯+⨯+⨯+⨯+⨯=,即平均成绩为80.4;(2)由于在[)60,70内有8人,0.008b ∴=,∴a =0.001,低于60分的人数约为20.00110100020⨯⨯⨯=人;综上,平均成绩约为80.4分,低于60分的人数约为20人.23.(1)证明见解析【分析】(1)根据面面垂直的性质定理可得BC ⊥平面PAC ,从而即可得证PA ⊥BC ;(2)由三棱锥-P ABC 的体积13A C P C P AB S BC V -=⨯ 即可求解.(1)证明:因为平面PAC ⊥平面,ABC AC BC ⊥,平面PAC 平面ABC AC =,BC ⊂平面ABC ,所以BC ⊥平面PAC ,又PA ⊂平面PAC ,所以PA ⊥BC ;(2)解:由(1)知BC ⊥平面PAC ,所以BC AC ⊥,又2,30BC BAC ∠== ,所以AC =因为2PA PC ==,所以(222221cos 2222APC +-∠==-⨯⨯,所以sin APC ∠=所以12222APC S =⨯⨯⨯=所以三棱锥-P ABC 的体积113233A AP B C P C V S BC -⨯===.24.(1)若选()f x ,则()f x 为奇函数;若选()g x ,则()g x 为偶函数.(2)()1,1-【分析】(1)根据函数奇偶性的定义即可求解;(2)将原问题等价转化为方程21e 12x a =-+有解,求出21e 12x y =-+的值域即可得答案.(1)解:若选()f x ,则()f x 为奇函数,证明如下:因为()()e e 2x xf x f x ---==-且定义域为R ,所以()f x 为奇函数;若选()g x ,则()g x 为偶函数,证明如下:因为()()e e2x xg x g x -+-==且定义域为R ,所以()g x 为偶函数;(2)解:因为函数()()()x x h f g x a =-有零点,所以方程e e e e 022x x x x a ---+-⨯=,即222e e e 11e e 112e e x x x x x x x a ----===-+++有解,因为2e 0x >,所以2e 11x +>,2101e 1x<<+,所以2111e 21x -<-<+,所以11a -<<,即实数a 的取值范围()1,1-.25.(1)225x y +=(2)4(3)不唯一,()(),,P a b a b R ∈.【分析】(1)联立AB 垂直平分线方程与y =-x ,求得圆心和半径即可;(2)设过P 点的直线方程,与圆C 方程联立,按照两点距离公式计算即可;(3)设点P 的坐标和过点P 的直线方程,与圆C 的方程联立,再用两点距离公式计算即可.(1)B 两点的中点为33,22⎛⎫⎪⎝⎭,斜率为12121AB k -==--,∴AB 垂直平分线的斜率为1,垂直平分线的方程为:y =x ,联立方程y xy x=⎧⎨=-⎩,解得x =0,y =0,∴圆心为(0,0),半径为r ==,圆C 的方程为:225x y +=;(2)如图:若MN 斜率不存在,则3PN =-,3PM =,4PM PN = ;若MN 斜率存在,设为k ,则MN 直线方程为y =kx -3,联立方程:2253x y y kx ⎧+=⎨=-⎩,解得:()221640k x kx +-+=,设()()1122,,,M x y N x y ,则12122264,11k x x x x k k +==++ ,PM PN ==,()21214PM PN k x x =+= ,即不论MN 斜率是否存在4PM PN = ,为定值4;(3)不妨设P (a ,b ),当MN 斜率不存在时,联立方程:225x y x a ⎧+=⎨=⎩,解得:y =,225PM PN b b a b =-=+- ;若MN 斜率存在,设为k ,则直线MN 的方程为()y kx b ak =+-,联立方程:()225x y y kx b ak ⎧+=⎪⎨=+-⎪⎩,解得:()()()2221250k x k b ak x b ak ++-+--=,()()212122225,11k b ak b ak x x x x k k ---+=-=++ ,()()2212121PM PN k x x a xx a =+-++ 225a b =+-,即不论P 点在何处,MN 的斜率是否存在,225PM PN a b =+- ,为定值;综上,圆C 的方程为225x y +=,4PM PN = ,P 点不唯一,其集合为()(),,P a b a b R ∈.。
江苏省南京市2025届高三学业水平调研考试数学试卷(含答案)
江苏省南京市2025届高三学业水平调研考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={(x,y )|x 2+y 2=4},B ={(x,y )|y =2cos x },则A ∩B 的真子集个数为( )A. 5个B. 6个C. 7个D. 8个2.在复平面内,复数z 对应的点Z 在第二象限,则复数z4i 对应的点Z 1所在象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.某考生参加某高校的综合评价招生并成功通过了初试,在面试阶段中,8位老师根据考生表现给出得分,分数由低到高依次为:76,a ,b ,80,80,81,84,85,若这组数据的下四分位数为77,则该名考生的面试平均得分为( )A. 79B. 80C. 81D. 824.“tan 2α=14”是“tan 3αtan α=11”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.若单位向量a ,b 满足⟨a ,b⟩=120∘,向量c 满足(c−a )⊥(c−b ),则a ⋅c +b ⋅c 的最小值为( )A.3−14B. 1−34C.3−12 D. 1−326.设数列{a n }的前n 项和为S n ,已知a 1=12,a n +1=2a na n +1,若S 2024∈(k−1,k),则正整数k 的值为( )A. 2024B. 2023C. 2022D. 20217.已知双曲线C:x 2−y 2b 2=1,在双曲线C 上任意一点P 处作双曲线C 的切线(x p >0,y p >0),交C 在第一、四象限的渐近线分别于A 、B 两点.当S △OPA =2时,该双曲线的离心率为( )A.17B. 32C.19D. 258.在▵ABC 中,A <B <C 且tan A,tan B,tan C 均为整数,D 为AC 中点,则BCBD 的值为( )A. 12B.22C.32D. 1二、多选题:本题共3小题,共15分。
2024学年甘肃省庆阳市庆城县陇东中学数学高三第一学期期末学业水平测试试题含解析
2024学年甘肃省庆阳市庆城县陇东中学数学高三第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2|320M x x x =-+≤,{}|N x y x a ==-若M N M ⋂=,则实数a 的取值范围为( )A .(,1]-∞B .(,1)-∞C .(1,)+∞D .[1,)+∞2.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月100=)变化图表,则以下说法错误的是( )(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A .3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B .4月份仅有三个城市居民消费价格指数超过102C .四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D .仅有天津市从年初开始居民消费价格指数的增长呈上升趋势3.若向量(0,2)m =-,(3,1)n =,则与2m n +共线的向量可以是( ) A .(3,1)-B .(3)-C .(3,1)-D .(1,3)-4.关于函数()sin 6f x x π⎛⎫=-- ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭的单调性,下列叙述正确的是( ) A .单调递增B .单调递减C .先递减后递增D .先递增后递减5.如图是2017年第一季度五省GDP 情况图,则下列陈述中不正确的是( )A .2017年第一季度GDP 增速由高到低排位第5的是浙江省.B .与去年同期相比,2017年第一季度的GDP 总量实现了增长.C .2017年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个D .去年同期河南省的GDP 总量不超过4000亿元.6.若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20B .15C .10D .257.已知命题p :“a b >”是“22a b >”的充要条件;:q x ∃∈R ,|1|x x +≤,则( ) A .()p q ⌝∨为真命题 B .p q ∨为真命题 C .p q ∧为真命题 D .()p q ∧⌝为假命题8.复数1i i+=( ) A .2i - B .12i C .0 D .2i9.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数: 141 432 341 342 234 142 243 331 112 322 342 241 244 431 233 214 344 142 134 412由此可以估计,恰好第三次就停止摸球的概率为( ) A .14B .15C .25D .3510.已知复数21aibi i-=-,其中a ,b R ∈,i 是虚数单位,则a bi +=( ) A .12i -+B .1C .5D .511.已知0.212a ⎛⎫= ⎪⎝⎭,120.2b -=,13log 2c =,则( )A .a b c >>B .b a c >>C .b c a >>D .a c b >>12.已知圆224210x y x y +-++=关于双曲线()2222:10,0x y C a b a b-=>>的一条渐近线对称,则双曲线C 的离心率为( )A .5B .5C .52D .54二、填空题:本题共4小题,每小题5分,共20分。
四川省普通高中2024届高三上学期学业水平考试数学试题(3)
一、单选题二、多选题1.已知向量,若,则实数m 的值是( )A.B.C .0D .12. 已知函数(其中)的部分图象如图所示,有以下结论:① ②函数为偶函数③④在上单调递增所有正确结论的序号是()A .①②B .①③④C .③④D .①④3. 在中,点在边上且平分.若,,,,则( )A.B.C.D.4. 直线的斜率的取值范围为( )A.B.C.D.5.设,函数,若在区间内恰有6个零点,则a 的取值范围是( )A.B.C.D.6.若则下列等式不正确的是A.B.C.D.7.双曲线:(,)的左,右焦点分别为,,过的直线与双曲线的右支在第一象限的交点为,与轴的交点为,且为等边三角形,则以下说法正确的是( )A .双曲线的渐近线方程为B.若双曲线的实轴长为2,则C .若双曲线的焦距为,则点的纵坐标为D .点在以为直径的圆上8. 若,则( )A.B.C.D.9. 世界卫生组织在2021年11月26日将新冠病毒变异毒株B.1.1.529列为“需要关注”的变异毒株,并以“奥密克戎”命名.与德尔塔毒株相比,奥密克戎毒株传播速度明显更快.目前我国已有广州、天津、河南等多地有本地病例报告.天津某公司对100位员工是否患有新冠肺炎疾病进行筛查,已知随机一人的咽拭子核酸检测结果呈阳性的概率为,且每一个员工的咽拭子核酸检测结果是否呈阳性相互独立.假设员工患新冠肺炎的概率是b ,员工在患病的情况下,咽拭子核酸检测结果呈阳性的概率为c .现将100位员工进行平均分组,每一组员工咽拭子四川省普通高中2024届高三上学期学业水平考试数学试题(3)四川省普通高中2024届高三上学期学业水平考试数学试题(3)三、填空题核酸混合在一起进行检验,若混合核酸检测结果为阴性,则无需再检;若混合核酸检测结果为阳性,则需要将该组每一位员工的咽拭子核酸逐一检验.根据以上信息,可以断定以下说法正确的是( )(参考数据:,)A .某员工患有新冠肺炎且咽拭子核酸检测结果呈阳性的概率是abB.已知某员工的咽拭子核酸检测结果呈阳性,则其被确诊为新冠肺炎的概率是C .若将100位员工平均分成10组,将每一组员工的咽拭子核酸混在一起进行检测,每一组检测次数的均值是D .若,将100位员工平均分成10组改成平均分成5组,则检测的工作量变大10. 如图,已知正方体棱长为4,Q 是上一动点,点H 在棱上,且,在侧面内作边长为1的正方形,P 是侧面内一动点,且点P 到平面距离等于线段的长,下列说法正确的是()A.平面B .与平面所成角的正切值得最大值为C.的最小值为D .当点P 运动时,的范围是11. 在长方体中,,,则( )A .直线与所成的角为60°B.直线与所成的角为90°C .直线与平面所成的角为30°D .直线与平面所成的角的余弦值为12. 已知,则下列不等式一定成立的有( )A.B.C.D.13. 魔方又叫鲁比克方块(Rubk’sCube ),是由匈牙利建筑学教授鲁比克•艾尔内于1974年发明的机械益智玩具,与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议.而魔方受欢迎的程度更是智力游戏界的奇迹.通常意义下的魔方,即指三阶魔方,三阶魔方可以看作是将一个各面上均涂有颜色的正方体的棱三等分,然后沿等分线把正方体切开所得,共由26个色块组成.现有一个复原好的三阶魔方,白面朝上,只可以扭动最外侧的六个表面,某人按规定将魔方随机扭动两次,每次均顺时针转动,记事件为“顶面白色色块的个数为3”,则事件发生的概率___________.14.设函数的定义域为,若存在常数,使对一切实数均成立,则称为“条件约束函数”. 现给出下列函数:四、解答题①;②;③;④是定义在实数集上的奇函数,且对一切均有.其中是“条件约束函数”的序号是__________(写出符合条件的全部序号).15. 写出一个图象关于直线对称且在上单调递增的偶函数______.16. 设函数,已知是函的极值点.(1)求m ;(2)设函数.证明:.17.在中,.(1)求的值;(2)若,求的长.18.已知圆的圆心坐标为,且与轴相切,直线与圆交于,两点,求.某同学的解答过程如下:解答:因为圆的圆心坐标为,且与轴相切,所以圆的半径是2.所以圆的方程是.因为直线与圆交于,两点,联立方程组解得或不妨设,,所以(1)指出上述解答过程中的错误之处;(2)写出正确的解答过程.19. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知,且.(1)求;(2)若△ABC的面积为,求边长a .20.如图,直三棱柱中,、分别是、的中点.(1)证明:平面;(2)设,,求四棱锥的体积.21. 如图所示,已知三棱台中,,,,,.(1)求二面角的余弦值;(2)设分别是棱的中点,若平面,求棱台的体积.参考公式:台体的体积公式为.。
广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)
一、单选题二、多选题1. 数列成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数的前项和为,则下列结论正确的是( )A.B.C.D.2. 在数列中,设,,设,则数列的前2020项的和为( )A .2016B .4020C .2020D .40403.已知奇函数,则的值为( )A.B.C.D.4. 设,,,则( )A.B.C.D.5.已知正四面体,,点为线段的中点,则直线与平面所成角的正切值是( )A.B.C.D.6. 已知直线与圆相交于,两点,若,则实数的值为A .或B .或C .9或D .8或7.已知直线的倾斜角为,则A.B.C.D.8. 已知纯虚数满足,则( )A.B.C.D.9. 已知数列满足,,,则下列有关叙述正确的是( )A.,数列为递减数列B .,数列为递增数列C .,数列一定不为常数数列D .且,当时,10.已知正方体的棱长为1,为棱(包含端点)上的动点,下列命题正确的是( )A.B.二面角的大小为C .点到平面距离的取值范围是D .若平面,则直线与平面所成角的正弦值的取值范围为11.已知点是圆锥的顶点,四边形内接于的底面圆,,,,,均在球的表面上,若,,,,球的表面积是,则( )广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)三、填空题四、解答题A.B .平面C .与的夹角的余弦值是D .四棱锥的体积是12. 下列说法正确的是( )A .设随机变量X 等可能取,…,n,如果,则B .设随机变量X 服从二项分布,则C.设离散型随机变量服从两点分布,若,则D .已知随机变量X 服从正态分布且,则13.已知等差数列的公差为,集合,若,则________.14. =______________.(化简到用tan 表示)15.已知点在幂函数的图象上,则的表达式是__.16. 某理科考生参加自主招生面试,从道题中(道甲组题和道乙组题)不放回地依次任取道作答.(1)求该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;(2)规定理科考生需作答道甲组题和道乙组题,该考生答对甲组题的概率均为,答对乙组题的概率均为,若每题答对得分,否则得零分.现该生已抽到道题(道甲组题和道乙组题),求其所得总分的分布列与数学期望.17. 已知函数,,.(1)讨论的单调性;(2)设函数,当时,求在区间上的最小值.18. 已知数列{a n }的前n 项和为S n ,且点(n ,S n )在函数y =2x +1﹣2的图象上.(1)求数列{a n }的通项公式;(2)设数列{b n }满足:b 1=0,b n +1+b n =a n ,求数列{b n }的前n 项和公式;(3)在第(2)问的条件下,若对于任意的n ∈N *不等式b n <λb n +1恒成立,求实数λ的取值范围.19.已知等差数列中,.正项数列前项和满足:对任意 成等比数列.(1)求数列的通项公式:(2)记.证明:对任意,都有.20. 直角坐标系中,锐角的终边与单位圆的交点为,将绕逆时针能转到,使,其中是与单位圆的交点,设的坐标为.(1)若的横坐标为,求:(2)求的取值范围.21. 如图,四棱锥的底面为正方形,平面,是的中点,.(1)求证:平面;(2)求二面角的余弦值.。
四川省普通高中2024届高三上学期学业水平考试数学试题(1)
一、单选题二、多选题1. 对于集合A ,定义了一种运算“”,使得集合A 中的元素间满足条件:如果存在元素,使得对任意,都有,则称元素e 是集合A 对运算“”的单位元素.例如:,运算“”为普通乘法;存在,使得对任意,都有,所以元素1是集合R 对普通乘法的单位元素.下面给出三个集合及相应的运算“”:①,运算“”为普通减法;②,运算“”为矩阵加法;③(其中M 是任意非空集合),运算“”为求两个集合的交集.其中对运算“”有单位元素的集合序号为( )A .①②B .①③C .①②③D .②③2.已知向量,,若,则( )A .1B .-1C.D.3.设函数的最小正周期为,则在上的零点之和为( )A.B.C.D.4.在的二项展开式中,常数项是( )A .132B .160C .180D .1965. 已知复数z满足,则的共轭复数是( )A.B.C.D.6. 已知在R 上单调递增,且为奇函数.若正实数a ,b 满足,则的最小值为( )A.B.C.D.7. 已知定义在R上的函数是偶函数,且图像关于点对称.若当时,,则函数在区间上的零点个数为( )A .1009B .2019C .2020D .40398. 函数在的零点个数为A .2B .3C .4D .59. 如图,四边形ABCD 中,AB =BC =AC =2,DA =DC=,将四边形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,以下结论正确的是()A .两条异面直线AB 与CD所成角的范围是B .P 为线段CD 上一点(包括端点),当CD ⊥AB时,C .三棱锥D −ABC的体积最大值为D .当二面角D −AC −B 的大小为时,三棱锥D −ABC的外接球表面积为四川省普通高中2024届高三上学期学业水平考试数学试题(1)四川省普通高中2024届高三上学期学业水平考试数学试题(1)三、填空题10. 研究表明,过量的碳排放会导致全球气候变化等环境问题.减少硶排放具有深远的意义.我国明确提出节能减排的目标与各项措施、其中新能源汽车逐步取代燃油车就是其中措施之一.在这样的大环境下,我国新能源汽车逐渐火爆起来.下表是2022年我国某市1∼5月份新能源汽车销量(单位:千辆)与月份的统计数据.月份12345销量55m 68现已求得与的经验回归方程为,则( )A.B.与正相关C.与的样本相关系数一定小于1D .由已知数据可以确定,7月份该市新能源汽车销量为0.84万辆11. 已知表示两条不同的直线,表示两个不同的平面,那么下列判断正确的是( )A .若,则B .若,则C .若,则D .若,则12. 如图,在四棱锥中,底面为等腰梯形,,垂足为点O ,,E 为的中点,则下列结论错误的是()A.B .平面C .平面平面D .平面平面13. 某大学有男生名.为了解该校男生的身体体重情况,随机抽查了该校名男生的体重,并将这名男生的体重(单位:)分成以下六组:、、、、、,绘制成如下的频率分布直方图:该校体重(单位:)在区间上的男生大约有_________人.14.函数的定义域是___________.15.已知函数的图象经过点,且在上单调递增,则的最大整数值为________.四、解答题16. 某大学在一次公益活动中聘用了10名志愿者,他们分别来自A、B、C三个不同的专业,其中A专业2人,B专业3人,C专业5人,现从这10人中任意选取3人参加一个访谈节目.(1)求3个人来自两个不同专业的概率;(2)设X表示取到B专业的人数,求X的分布列.17. 如图,为圆柱的母线,是底面圆的直径,分别是的中点,面.(1)证明:面;(2)求四棱锥与圆柱的体积比.18. 已知函数,其中.(1)讨论的单调性;(2)设,若在上有2个极值点,求整数所有可能的取值.19. 已知函数在区间上单调,其中为正整数,,且.(1)求图象的一个对称中心;(2)若,求.20. 我市某校为了解高一新生对物理科与历史科方向的选择意向,对1000名高一新生发放意向选择调查表,统计知,有600名学生选择物理科,400名学生选择历史科.分别从选择物理科和历史科的学生中随机各抽取20名学生的数学成绩得如下累计表(下表):分数段物理人数历史人数021434656342(1)利用表中数据,试分析数学成绩对学生选择物理科或历史科的影响,并绘制选择物理科的学生的数学成绩的频率分布直方图,并求出选择物理科的学生的数学成绩的平均数(如图);(2)从数学成绩低于80分的选择物理科和历史科的学生中按照分层抽样的方法抽取5个成绩,再从这5个成绩中抽2个成绩,求至少有一个选择物理科学生的概率.21. 已知函数(1)当时,求的值域;(2)若,求.。
四川省普通高中2024届高三上学期学业水平考试数学试题(3)
一、单选题二、多选题三、填空题1. 已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )A.B.C.D.2.已知函数,设,且的零点均在区间内,其中,,,则的最小整数解为A.B.C.D.3. 函数在上是减函数,则t 的取值范围是( )A.B.C.D.4.两点在半径为的球面上,且以线段为直径的小圆周长为,则两点间的球面距离为( )A .B.C.D.5. 下面是追踪调查200个某种电子元件寿命(单位:)频率分布直方图,如图:其中300-400、400-500两组数据丢失,下面三个说法中,只有一个是正确的,正确的是( )①寿命超过的频率为0.3;②用频率分布直方图估计电子元件的平均寿命为:③寿命在400-500的矩形的面积可能是0.2A .①B .②C .③D .以上均不正确6. 某正三棱柱各棱长均为,则该棱柱的外接球表面积为A.B.C.D.7. 已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11,若这组数据的平均数与众数的和是中位数的2倍,则丢失的数据可能是( )A .-10B .4C .12D .208.若,若恒成立,则的值不可以是( )A .B .1C.D.9. 有6道不同的数学题,其中有4道函数题,2道概率题,每次从中随机抽出1道题,抽出的题不再放回.在第一次抽到函数题的条件下,第二次还是抽到函数题的概率是________.10. 已知函数在(0,1)上是增函数,则实数a 的最大值是______.四川省普通高中2024届高三上学期学业水平考试数学试题(3)四川省普通高中2024届高三上学期学业水平考试数学试题(3)四、解答题11. 如图所示,要在两山顶间建一索道,需测量两山顶间的距离.已知两山的海拔高度分别是米和米,现选择海平面上一点为观测点,从点测得点的仰角,点的仰角以及,则等于_________米.12. 已知,,,则实数的大小关系是___________.(用“<”号连接)13.已知数列的前n项和为,且,对任意的数列满足(1)求数列和的通项公式;(2)若,求的取值范围.14. 在①,,②,③,这三个条件中任选一个,补充在下面问题中,并解答.已知为正项数列的前项和,___________.(1)求数列的通项公式;(2)求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.15.已知函数,(1)若曲线在点处的切线为,求的值;(2)讨论函数的单调性;(3)设函数,若至少存在一个,使得成立,求实数的取值范围.16. 利用函数,与,的图象,在内求且时的取值范围.。
辽宁省大连市第四十八中学2025届数学高三上期末学业水平测试试题含解析
辽宁省大连市第四十八中学2025届数学高三上期末学业水平测试试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A .1225B .1225-C .2425D .2425-2.已知复数2(1)(1)i z a a =-+-(i 为虚数单位,1a >),则z 在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限3.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件.A .必要而不充分B .充要C .充分而不必要D .即不充分也不必要4.执行如图所示的程序框图,则输出S 的值为( )A .16B .48C .96D .1285.设过抛物线()220y px p =>上任意一点P (异于原点O )的直线与抛物线()280y px p =>交于,A B 两点,直线OP 与抛物线()280y px p =>的另一个交点为Q ,则ABQ ABOS S=( )A .1B .2C .3D .46.已知点()11,A x y ,()22,B x y 是函数()2f x x bx =的函数图像上的任意两点,且()y f x =在点1212,22x x x x f ⎛++⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线AB 平行,则( ) A .0a =,b 为任意非零实数 B .0b =,a 为任意非零实数 C .a 、b 均为任意实数D .不存在满足条件的实数a ,b7.在ABC ∆中,,2,BD DC AP PD BP AB AC λμ===+,则λμ+= ( ) A .13- B .13C .12-D .128.复数21iz i+=-,i 是虚数单位,则下列结论正确的是 A .5z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限9.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .iB .i -C .1-D .110.已知(1,3),(2,2),(,1)a b c n ===-,若()a c b -⊥,则n 等于( ) A .3B .4C .5D .611.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( )A .甲7件,乙3件B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件12.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A .203π B .6πC .103π D .163π 二、填空题:本题共4小题,每小题5分,共20分。
四川省普通高中2024届高三上学期学业水平考试数学试题
一、单选题二、多选题1. 设复(其中为虚数单位),则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知函数,若,则( )A.B .2C .5D .73. 已知奇函数的导函数为,若在上是减函数,则不等式的解集是( )A .或B.C .或D.4. 若集合,,则中的元素个数为( )A .2B .4C .7D .85. 已知是等差数列,,其前5项和,则其公差( )A.B .1C.D .26. 已知函数的定义域是,值域为,则的最大值是( )A.B.C.D.7.如图,在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,满足的动点的轨迹是椭圆,求这个椭圆离心率的取值范围( ).A.B.C.D.8. 已知函数的图象如图所示,且在时取得最小值,则的最小值为()A.B.C.D.9. 现有甲、乙两个箱子,甲中有2个红球,2个黑球,6个白球,乙中有5个红球和4个白球,现从甲箱中取出一球放入乙箱中,分别以表示由甲箱中取出的是红球,黑球和白球的事件,再从乙箱中随机取出一球,则下列说法正确的是( )A.两两互斥.B.根据上述抽法,从乙中取出的球是红球的概率为.C .以表示由乙箱中取出的是红球的事件,则.D.在上述抽法中,若取出乙箱中一球的同时再从甲箱取出一球,则取出的两球都是红球的概率为.四川省普通高中2024届高三上学期学业水平考试数学试题三、填空题四、解答题10. 已知函数.若曲线上存在点,使得,则实数的值可以是( )A .0B .1C .2D .311. 关于函数有下述四个结论,其中结论正确的是( )A.的最小正周期为B.的图象关于直线对称C.的图象关于点对称D .在上单调递增12. 已知,则下列说法正确的是( )A.B.C.D.13.在中,,,,则______.14. 一个口袋里有形状一样仅颜色不同的4个小球,其中白色球2个,黑色球2个.若从中随机取球,每次只取1个球,每次取球后都放回袋中,则事件“连续取球四次,恰好取到两次白球”的概率为__________;若从中一次取2个球,只取一次,记所取球中白球可能被取到的个数为ξ,则随机变量ξ的期望为_______.15. 已知四面体ABCD 满足,,,且该四面体的体积为,则异面直线AD 与BC 所成的角的大小为______.16. 如图,四棱锥,底面为直角梯形,,面,,,为中点.(1)证明:面面;(2)点是点关于面对称的点,求二面角的余弦值.17.正项数列的前和为,且.(1)求数列的通项公式;(2)设,若数列为等比数列,求实数的值.18. 如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =AB.(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)当AB=2时,求三棱锥C-A1DE的体积.19. 已知数列的前n项和满足,且,数列满足,,其前9项和为36.(1)当n为奇数时,将放在的前面一项的位置上;当n为偶数时,将放在前面一项的位置上,可以得到一个新的数列:,,,,,,,,,,…,求该数列的前n项和;(2)设,对于任意给定的正整数,是否存在正整数l、,使得、、成等差数列?若存在,求出l、m(用k表示),若不存在,请说明理由.20. 阿基米德(公元前287年公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系中,椭圆:()的面积为,两焦点与短轴的一个顶点构成等边三角形.过点且斜率不为0的直线与椭圆交于不同的两点,.(1)求椭圆的标准方程;(2)设椭圆的左、右顶点分别为,,直线与直线交于点,试证明,,三点共线;(3)求面积的最大值.21.在平面直角坐标系中,已知点,动点到的距离是到直线的距离的倍,记点的轨迹为曲线.(1)求曲线的方程;(2)过:上的动点()向曲线作两条切线,,交轴于,交轴于,交轴于,交轴于,记的面积为,的面积为,求的最小值.。
2023-2024学年四川省普通高中高三上学期学业水平考试数学试题+答案解析
2023-2024学年四川省普通高中高三上学期学业水平考试数学试题一、单选题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则( )A.B.C.D.2.已知i 是虚数单位,则( )A. B. C.D.3.已知向量,,则( )A.B. 14C.D.4.已知直线l 的方程为,则直线l 的斜率为( )A.B. C.D. 25.某高中一、二、三年级学生参加社团活动的人数分别为500,300,200,现用分层抽样的方法从中抽取100人参加艺术节表演,则抽出的高一年级学生人数为( )A. 20 B. 30 C. 40D. 506.已知,则的值为( )A.B.C.D.7.某同学计划在四大名著《三国演义》《水浒传》《西游记》《红楼梦》中随机选一本作为课外读本,则《红楼梦》恰好被选中的概率为( )A. B. C.D.8.函数的图象是( )A. B.C. D.9.若球的表面积为,则顶点均在该球球面上的正方体体积为( )A. 256B. 64C. 27D. 810.若函数在R上是增函数,则实数a的取值范围为( )A. B. C. D.二、填空题:本题共4小题,每小题4分,共16分。
11.若,求圆心坐标为__________.12.已知,则的最小值为__________.13.函数的最小正周期是__________.14.如图,在正方体中,直线与平面ABCD所成角的正切值为__________.三、解答题:本题共5小题,共64分。
解答应写出文字说明,证明过程或演算步骤。
15.本小题分已知数列为等差数列,且,求数列的通项公式;求数列的前n项和16.本小题分已知的内角A,B,C的对边分别为a,b,c,且求角A的大小;若,,求17.本小题分如图,在三棱锥中,底面ABC是边长为4的正三角形,且,求证:平面ABC;求点A到平面PBC的距离.18.本小题分已知点,在椭圆上.求椭圆C的离心率;过点P的直线l与椭圆的另一个交点为R,当为坐标原点的面积最大时,求直线l的方程.19.本小题分已知函数,当时,求函数的单调区间;若不等式恒成立,求实数a的取值范围.答案和解析1.【答案】C【解析】【分析】本题考查集合的交集运算,属于基础题.直接求交集即可.【解答】解:集合,,则 .故选:2.【答案】B【解析】【分析】本题考查复数的乘法运算,属于基础题.根据复数乘法运算求解即可.【解答】解:,故选:3.【答案】A【解析】【分析】本题考查向量数量积的坐标运算,属于基础题.根据数量积的坐标表示求解.【解答】解:因为向量,,所以 .故选:A4.【答案】A【解析】【分析】本题主要考查斜截式方程,属于基础题.根据直线方程直接求解.【解答】解:由直线l的方程为可知,斜率 .故选:5.【答案】D【解析】【分析】本题主要考查分层随机抽样,属于基础题.直接根据比例关系计算得到答案.【解答】解:抽出的高一年级学生人数为: .故选:6.【答案】C【解析】【分析】本题考查由一个三角函数值求其他三角函数值,属于基础题.根据同角三角函数的基本关系求解.【解答】解:因为,所以,故选:7.【答案】D【解析】【分析】本题考查古典概型及其计算,属于基础题.直接计算概率即可.【解答】解:《红楼梦》恰好被选中的概率为 .故选:8.【答案】A【解析】【分析】本题主要考查对数函数的图像,考查对数型函数的定义域和值域,属于中档题.根据函数定义域及函数值的正负判断即可.【解答】解:因为的定义域为,故BD错误;又,故C错误;故A正确.故选:9.【答案】B【解析】【分析】本题主要考查外接球问题,属于中档题.根据正方体体对角线为外接球直径计算即可.【解答】解:因为球的表面积为,所以,解得,设正方体的棱长为a,因为正方体外接球的直径为正方体的体对角线,所以,即,所以 .故选:10.【答案】D【解析】【分析】本题主要考查利用导数由函数的单调性求参,属于中档题.求出函数的导数,问题转化为在R恒成立,利用判别式即可求出a的范围.【解答】解:函数,,若在R上是增函数,则在R上恒成立,可得,解得,故选:D11.【答案】【解析】【分析】本题考查了圆的一般方程和标准方程,考查了转化思想,属于基础题.将一般方程化为标准方程,然后确定其圆心坐标即可.【解答】解:由,可得圆的标准方程为,所以圆心坐标为故答案为:12.【答案】6【解析】【分析】本题考查利用基本不等式求最值,属于基础题.【解答】解:,,当且仅当时,取“=”,所以的最小值为故答案为:13.【答案】【解析】【分析】本题考查正弦函数的周期性,属于基础题.首先根据题意得到,再求最小正周期即可.【解答】解:函数,最小正周期是 .故答案为:14.【答案】【解析】【分析】本题考查直线与平面所成角,属于中档题.根据正方体性质及线面角定义求解.【解答】解:设正方体的棱长为1,在正方体中,平面ABCD,故在平面ABCD上的射影为BD,所以为直线与平面ABCD所成角,故 .故答案为:15.【答案】解:设等差数列的公差为d,则,即,所以,所以 .由知,【解析】本题主要考查等差数列的通项公式,以及前n项和公式,属于基础题.根据等差数列的通项公式列方程求出公差即可得解;根据等差数列求和公式得解.16.【答案】解:由正弦定理可得:,由知,可得,即,由知, .由余弦定理可得:,解得 .【解析】本题考查正弦定理与余弦定理解三角形,属于中档题.由正弦定理及同角三角函数的基本关系得解;由余弦定理直接求解.17.【答案】解:,,,,,,,又平面 ABC ,平面 ABC .设点A 到平面 PBC 的距离为 h , 中 BC 边上的高为 .在中, BC 边上的高,所以 ,又 ,所以 ,即 ,所以,解得.即点A 到平面 PBC 的距离为.【解析】本题考查线面垂直的判定,点面距离的求解,属于中档题.根据边长的关系可得线线垂直,再由线面垂直的判定定理证明;利用等体积法求点到面的距离.18.【答案】解:因为点 ,在椭圆上,所以 ,,所以,即,所以椭圆离心率.设,如图,则 ,由R在椭圆上可知,所以,所以当时,有最大值,此时或,所以直线l的方程为或,即直线l为或 .【解析】本题主要考查椭圆的离心率,考查椭圆中三角形面积问题,属于中档题.根据椭圆所过顶点求出即可得解;设,表示出三角形的面积,再由的范围求最值,确定出R点坐标,得出直线方程即可.19.【答案】解:当时,,定义域为,,当时,,当时,,所以的单调递增区间为,单调递减区间为 .因为恒成立,所以恒成立,即 .令,则,令可得,由为减函数知,当时,,当时,,所以函数在上单调递增,在上单调递减,故当时,,所以 .【解析】本题考查利用导数求函数的单调区间,利用导数研究函数恒成立问题,属于较难题.求出函数的导数,利用导数求函数的单调区间;第11页,共11页不等式恒成立可转化为 ,利用导数求出函数 的最大值即可.。
天津市西青区2024学年高三数学第一学期期末学业水平测试试题含解析
天津市西青区2024学年高三数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>2.已知2π()12cos ()(0)3f x x ωω=-+>.给出下列判断: ①若12()1,()1f x f x ==-,且12minπx x -=,则2ω=;②存在(0,2)ω∈使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ③若()f x 在[]0,2π上恰有7个零点,则ω的取值范围为4147,2424⎡⎫⎪⎢⎭⎣; ④若()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤ ⎥⎝⎦.其中,判断正确的个数为( ) A .1B .2C .3D .43.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( )A B 1 C .3- D 14.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若2||2PF =,则12F PF ∠的大小为( )A .150︒B .135︒C .120︒D .90︒5.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭6.设双曲线22221y x a b-=(0a >,0b >)的一条渐近线与抛物线213y x =+有且只有一个公共点,且椭圆22221x y a b +=的焦距为2,则双曲线的标准方程为( )A .22143x y -= B .22143y x -=C .22123x y -=D .22132y x -=7.在正项等比数列{a n }中,a 5-a 1=15,a 4-a 2 =6,则a 3=( ) A .2 B .4C .12D .88.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离9.已知命题:0p x ∀>,ln(1)0x +>;命题:q 若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝10. “11x y -≤+≤且11x y -≤-≤”是“221x y +≤”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件11.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元12.若,x y 满足320020x y x y x y --≤⎧⎪-≥⎨⎪+≥⎩,且目标函数2(0,0)z ax by a b =+>>的最大值为2,则416a b +的最小值为( )A .8B .4C .2D .6二、填空题:本题共4小题,每小题5分,共20分。
2024届高三第一次学业质量评价(T8联考)数学试题参考答案
2024届高三第一次学业质量评价(T8联考)数学试题参考答案2024届高三T8第一次联考数学试题2024届高三T8第一次联考数学试题参考答案什么是t8联考秉承发展教育、服务教学宗旨,本着推动进步、共同提高的原则,华中师范大学测量与评价研究中心联合华中师范大学第一附属中学、东北育才学校、福建省福州第一中学、广东实验中学、湖南师范大学附属中学、南京师范大学附属中学、石家庄二中、西南大学附属中学等学校于组成T8联盟。
作为以共同进入第已批高考试点省(市)学校为主的高中名校教育教学联合体,T8联盟以专业的教育评价研究机构作为学术引领和支撑,基于联盟内高中名校多年教育教学实践,以高中学校高考命题研究为切入点,着力服务于高中学校的学业质量检测、学业水平提升、教学管理与教学研究水平的提高,并助推高中教师的专业发展。
八省(市)学业质量评价联考(T8联考)先后于12月、2021年12月、2022年3月及2022年12月成功举办,其具有高度原创性的试题,精准地把握了新高考的方向与特质,引起高中学校和教育研究领域专家的高度关注,赢得师生广泛好评。
T8联考虽然是八省参与,但并不是八省内所有高三生都参加,而是由新高考八省各派出省内重点高中学校进行PK,也是8所名校之间的PK。
高三联考会影响高考吗不影响。
虽然联考只是几所相当的学校,一起出试题,进行考试,并不是真正意义上的高考,所以相对来说,成绩并不会影响什么,只能说,对于高三的学子,多了一种考试的方式,所以并不是很重要。
其实很简单,一旦参与了联考的学生,就能够感受到浓烈的危机意识,毕竟高考在即,要提前适应高三整个学年的高度紧张的学习氛围,从而让学生感受到压力潜意识的去拼搏,为自己博得一个好的人生。
微信搜索关注公众号:得道AI填报温馨提示:看完整版及各省份高考试卷真题,可下载全文查看或微信搜索公众号【得道AI填报】,关注后在对话框回复【高考真题】免费即可获取。
四川省成都市高2024学年高三数学第一学期期末学业水平测试试题含解析
四川省成都市高2024学年高三数学第一学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线2222:10,0()x y C a b a b-=>>的左、右顶点分别为12A A 、,点P 是双曲线C 上与12A A 、不重合的动点,若123PA PA k k =, 则双曲线的离心率为( ) A .2B .3C .4D .22.如图,圆锥底面半径为2,体积为223π,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于( )A .12B .1C .104D 5 3.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A .1,0a b <-< B .1,0a b <-> C .1,0a b >-<D .1,0a b >->4.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p ﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P ﹣1(其中p 是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是( )A .3B .4C .5D .65.函数的图象可能是下列哪一个?( )A .B .C .D .6.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( ) A .–10B .14-C .–18D .–207.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为2c ,过左焦点1F 作斜率为1的直线交双曲线C 的右支于点P ,若线段1PF 的中点在圆222:O x y c +=上,则该双曲线的离心率为( ) A 2B .22C 21D .2218.已知函数()y f x =是定义在R 上的奇函数,函数()f x 满足()()4f x f x =+,且(]0,1x ∈时,()2()log 1f x x =+,则()()20182019f f +=( ) A .2B .2-C .1D .1-9.已知数列{}n a 中,121,2a a ==,且当n 为奇数时,22n n a a +-=;当n 为偶数时,()2131n n a a ++=+.则此数列的前20项的和为( )A .1133902-+B .11331002-+C .1233902-+D .12331002-+10.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//m α,//m β,则//αβ B .若m α⊥,m n ⊥,则n α⊥ C .若m α⊥,//m n ,则n α⊥D .若αβ⊥,m α⊥,则//m β11.下列几何体的三视图中,恰好有两个视图相同的几何体是( ) A .正方体 B .球体C .圆锥D .长宽高互不相等的长方体12.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为( )A .23B .34C .53D .74二、填空题:本题共4小题,每小题5分,共20分。
新疆维吾尔自治区阿克苏市2025届数学高三第一学期期末学业水平测试试题含解析
新疆维吾尔自治区阿克苏市2025届数学高三第一学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线22(0)y px p =>上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,则抛物线的标准方程为( )A .2y x =B .22y x =C .24y x =D .28y x =2.已知角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭,则cos2α等于( )A .19B .79-C .23-D .133.设{|210}S x x =+>,{|350}T x x =-<,则S T ( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<< 4.设m ,n 均为非零的平面向量,则“存在负数λ,使得m n λ=”是“0m n ⋅<”的 A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件5.设1k >,则关于,x y 的方程()22211k x y k -+=-所表示的曲线是( ) A .长轴在y 轴上的椭圆 B .长轴在x 轴上的椭圆 C .实轴在y 轴上的双曲线D .实轴在x 轴上的双曲线6.已知倾斜角为θ的直线l 与直线230x y +-=垂直,则sin θ=( ) A.BC. D7.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的-一个公共点,且1223F PF π∠=,设椭圆和双曲线的离心率分别为12,e e ,则12,e e 的关系为( )A .2212314e e += B .221241433e e += C .134+= D .2234e e +=8.5()(2)x y x y +-的展开式中33x y 的系数为( ) A .-30B .-40C .40D .509.为研究某咖啡店每日的热咖啡销售量y 和气温x 之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(x 轴表示气温,y 轴表示销售量),由散点图可知y 与x 的相关关系为( )A .正相关,相关系数r 的值为0.85B .负相关,相关系数r 的值为0.85C .负相关,相关系数r 的值为0.85-D .正相关,相关负数r 的值为0.85- 10. “1cos 22α=-”是“3k παπ=+,k Z ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件11.已知等差数列{}n a 的前n 项和为n S ,且43a =-,1224S =,若0+=i j a a (*,i j ∈N ,且1i j ≤<),则i 的取值集合是( ) A .{}1,2,3B .{}6,7,8C .{}1,2,3,4,5D .{}6,7,8,9,1012.若函数()ln f x x x h =-++,在区间1,e e ⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,f b ,()f c 为边长的三角形,则实数h 的取值范围是( ) A .11,1e ⎛⎫-- ⎪⎝⎭B .11,3e e ⎛⎫--⎪⎝⎭C .11,e ⎛⎫-+∞⎪⎝⎭D .()3,e -+∞二、填空题:本题共4小题,每小题5分,共20分。
2023年湖北省普通高中学业水平合格性考试数学试题+答案解析
2023-2024学年2023年湖北省普通高中学业水平合格性考试数学试题✽一、单选题:本题共15小题,每小题4分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设集合,,且,则( )A. 1B. 2C. 3D. 42.设,则( ) A. 1 B. iC.D.3.已知,,则向量在向量上的投影向量是( )A.B.C.D.4.设a ,b ,c ,d 都是不等于1的正数,函数在同一直角坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A. B.C. D.5.已知,且,则( )A. B.C.D.6.设向量,若,则( ) A. 4B. 3C. 2D. 17.下列函数中,定义域和值域都是R 的是( )A. B.C.D.8.若,则下列不等式正确的是( )A. B. C. D.9.设,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件10.为建设美丽中国,增强民众幸福感,市政府大力推进老旧小区改造工程.和谐小区计划建设一块长为10m、宽为6m的矩形花园,其四周种植花卉,中间种植草坪如图所示如果花卉带的宽度相同,且草坪的面积不超过总面积的三分之一,那么花卉带的宽度可能为( )A. 1mB. 2mC. 3mD. 4m11.有20种不同的绿色食品,每100克包含的能量单位:如下:110 120 120 120 123 123 140 146 150 162164 174 190 210 235 249 280 318 428 432根据以上数据,估计这些食品每100克包含能量的第50百分位数是( )A. 165B. 164C. 163D. 16212.“升”是我国古代发明的量粮食的一种器具,升装满后沿升口刮平,称为“平升”.已知某种升的形状是正四棱台,上、下底面边长分别为15cm和12cm,高为厚度不计,则该升的1平升约为精确到( )A. B. C. D.13.如图,在任意四边形ABCD中,E,F分别是AD,BC的中点,且,则实数( )A. B. 2 C. D. 314.某对夫妇打算生育三个孩子,假设生男孩、女孩是等可能的,且不考虑多胞胎情形,则这三个孩子中男、女孩均有的概率是( )A. B. C. D.15.为了测量一座底部不可到达的建筑物的高度,复兴中学跨学科主题学习小组设计了如下测量方案:如图,设A,B分别为建筑物的最高点和底部.选择一条水平基线HG,使得H,G,B三点在同一直线上,在G,H两点用测角仪测得A的仰角分别是和,,测角仪器的高度是由此可计算出建筑物的高度AB,若,则此建筑物的高度是( )A. B. C. D.二、多选题:本题共3小题,共12分。
广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)(3)
一、单选题二、多选题1. 化简( )A.B.C.D.2. 已知函数,下列说法错误的是( )A .是偶函数B .是周期为π的函数C .在区间上单调递减D.的最大值为3. 设复数,则的虚部是( )A .B.C.D.4. 已知矩形ABCD ,AB =1,AD =2,点E 为BC 边的中点将△ABE 沿AE 翻折,得到四棱锥B -AECD ,且平面BAE ⊥平面AECD ,则四面体B -ECD 的外接球的表面积为( )A.B .4πC.D .5π5. 已知角的终边经过点,则的值为( )A .±2B .2C .﹣2D .﹣46. 设,,若对于任意,总存在,使得成立,则的取值范围是( )A.B.C.D.7. 已知等边的边长为,为的中点,为线段上一点,,垂足为,当时,( )A.B.C.D.8. 若,则( )A.B.C.D.9. 已知双曲线的左、右焦点分别为,,左、右顶点分别为M ,N ,O 为坐标原点.直线交双曲线C 的右支于P ,Q 两点(不同于右顶点),且与双曲线C 的两条渐近线分别交于A ,B 两点,则( )A .为定值B.C .点P到两条渐近线的距离之和的最小值为D .存在直线使10. 正三棱柱的各条棱的长度均相等,为的中点,,分别是线段和线段上的动点含端点,且满足,当,运动时,下列结论正确的是( )广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)(3)广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)(3)三、填空题四、解答题A.在内总存在与平面平行的线段B.平面平面C .三棱锥的体积为定值D .可能为直角三角形11.将函数的图象向左平移个单位,得到函数的图象,则( )A .函数是奇函数B .函数的图象关于直线对称C .函数的最小正周期为D .函数在上的单调递减区间是12. 已知,,则下列关系中正确的是( )A.B.C .若,则的最小值为D .若,则13.设椭圆的左、右焦点为,过点的直线与椭圆相交于两点,若,,则椭圆的离心率是_________.14.已知有两个极值点,则实数的取值范围为______.15.已知函数满足,当时,,当函数在上的零点个数最多时,a 的取值范围为______.16.已知等差数列的公差为,且,,成等比数列.(1)设数列的通项公式;(2)设,求数列的前项和.17.已知数列满足,.(1)证明:是等比数列;(2)求数列的前n项和.18.在中,已知角,,所对的边分别是,,,,,.(1)求角的值;(2)求的面积.19. 在△ABC 中,角A ,B ,C ,所对的边分别为a ,b ,c .已知sinA+sinC=psinB (p ∈R ).且ac=b 2.(1)当p=,b=1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围.20. 在某班组织的一次篮球定点投篮比赛中,规定:每人最多投三次,在处每投中一球得分,在处每投中一球得分,如果前两次得分之和超过分即停止投篮,否则投第三次.某同学在处投中的概率为,在处投中的概率为,该同学选择先在处投一球,以后都在处投.用表示该同学投篮比赛结束后所得的总分,其分布列为(1)求的值;(2)求随机变量的数学期望.21. 每年的4月23日是世界读书日,设立的目的是推动更多的人去阅读和写作,享受阅读带来的乐趣某高校为了解在校学生的每周阅读时间(单位:小时),对全校学生进行了问卷调查从中随机抽取了名学生的数据,统计如下表:每周阅读时间频率(1)根据频率分布表,估计这名学生每周阅读时间的平均值(同一组数据用该组数据区间的中点值表示);(2)若认为目前该校学生每周的阅读时间服从正态分布,用(1)中的平均值近似代替,且,若某学生周阅读时间不低于小时,该同学可获得“阅读之星”称号.学校制定如下奖励方案:“阅读之星”可以获赠次随机购书卡,其他同学可以获赠次随机购书卡.每次获赠的随机购书卡的金额和对应的概率为:购书卡的金额(单位:元)概率记(单位:元)为甲同学参加问卷调查获赠的购书卡的金额,求的分布列与数学期望.。
河北省邯郸市2024届高三下学期学业水平选择性模拟考试 数学试题(含解析)
2024年普通高中学业水平选择性模拟考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}124340,A x x x B x y x ⎧⎫⎪⎪=--≤==⎨⎬⎪⎪⎩⎭,则A B = ()A .(]0,1B .[]0,4C .(]0,4D .[]0,12.已知复数z 满足21z =-,则22z z +=()A .1BC .3D3.已知,αβ是两个平面,,m n 是两条直线,且,,m n αβαβ⊥⊂⊂,则“m n ⊥”是“m β⊥”的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件4.设函数()12f x x x =++的图像与x 轴相交于点P ,则该曲线在点P 处的切线方程为()A .y x=-B .=1y x --C .0y =D .1y x =-5.由动点P 向圆22:(2)(3)1M x y +++=引两条切线,PA PB ,切点分别为,A B ,若四边形APBM 为正方形,则动点P 的轨迹方程为()A .22(2)(3)4x y +++=B .22(2)(3)2x y +++=C .22(2)(3)4-+-=x y D .22(2)(3)2x y -+-=6.某班联欢会原定5个节目,已排成节目单,开演前又增加了2个节目,现将这2个新节目插入节目单中,要求新节目既不排在第一位,也不排在最后一位,那么不同的插法种数为()A .12B .18C .20D .60.7.已知O 为坐标原点,12,F F 分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,P 是双曲线C 上一点,若直线1PF 和OP 的倾斜角分别为α和2α,且3tan 4α=,则双曲线C 的离心率为()AB .5C .2D .758.对任意两个非零的平面向量a 和b ,定义:22a b a b a b⋅⊕=+,2a b a b b ⋅= .若平面向量,a b满足0a b >> ,且a b ⊕ 和a b 都在集合|Z,044n n n ⎧⎫∈<≤⎨⎬⎩⎭中,则a b a b ⊕+= ()A .1B .32C .1或74D .1或54二、选择题:本题共3小题,钓小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()sin (0,0,0π)f x M x M ωϕωϕ=+>><<的部分图像如图所示,A ,B 为()f x 的图像与x 轴的交点,C 为()f x 图像上的最高点,ABC 是边长为1的等边三角形,2OB OA =,则()A .()02f =B .直线136x =是()f x 图像的一条对称轴C .()f x 的单调递减区间为()172,2Z 66k k k ⎛⎫++∈ ⎪⎝⎭D .()f x 的单调递增区间为()512π,2πZ 66k k k ⎛⎫-++∈ ⎪⎝⎭10.设拋物线2:2(0)E x py p =>的焦点为F ,过点()0,3P 的直线与抛物线E 相交于点,A B ,与x 轴相交于点,2,10C AF BF ==,则()A .E 的准线方程为=2y -B .p 的值为2C .AB =D .BFC △的面积与AFC △的面积之比为911.已知函数()f x 的定义域为R ,其导函数为()f x ',若函数()23f x -的图象关于点()2,1对称,()()224f x f x x +--=,且()00f =,则()A .()f x 的图像关于点()1,1对称B .()()4f x f x +=C .()10262f '=D .501()2499i f i ==∑三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.已知0b >,函数()42bxxa f x +=是奇函数,则=a ,b =.13.正五角星是一个非常优美的几何图形,其与黄金分割有着密切的联系,在如图所示的五角星中,以,,,,A B C D E 为顶点的多边形为正边边形,设CAD α∠=,则cos cos2cos3cos4αααα+++=,cos cos2cos3cos4αααα=.14.在长方体1111ABCD A B C D -中,15,3,4AB AD AA ===,平面//α平面11A ABB ,则α截四面体11ACD B 所得截面面积的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,四棱锥P ABCD -的底面是正方形,设平面PAD 与平面PBC 相交于直线l .(1)证明://l AD .(2)若平面PAB ⊥平面,5,2ABCD PA PB AB ===,求直线PC 与平面PAD 所成角的正弦值.16.已知正项数列{}n a 的前n 项和为n S ,23a =11n n S S S +=(1)求{}n a 的通项公式;(2)若14nn n n S b a a +=,求数列{}n b 的前n 项和n T .17.假设某同学每次投篮命中的概率均为12.(1)若该同学投篮4次,求恰好投中2次的概率.(2)该同学参加投篮训练,训练计划如下:先投(),33n n n +∈≤N 个球,若这n 个球都投进,则训练结束,否则额外再投1003n -个.试问n 为何值时,该同学投篮次数的期望值最大?18.已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()32,0,1,2M N ⎛⎫⎪⎝⎭两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.19.已知函数()()e ,ln xf x mxg x x m x =-=-.(1)是否存在实数m ,使得()f x 和()g x 在()0,∞+上的单调区间相同?若存在,求出m 的取值范围;若不存在,请说明理由.(2)已知12,x x 是()f x 的零点,23,x x 是()g x 的零点.①证明:e m >,②证明:31231e x x x <<.1.B【分析】先化简两个集合,再利用交集运算可得答案.【详解】由2340x x --≤得14x -≤≤,即{}14A x x =-≤≤,{}0B x x =≥,所以[]0,4A B = .故选:B 2.D【分析】设i(,R)z a b a b =+∈,根据条件得到0,1a b ==±,再利用模长的计算公式,即可求出结果.【详解】令i(,R)z a b a b =+∈,则2222i 1z a ab b =+-=-,所以22120a b ab ⎧-=-⎨=⎩,解得0,1a b ==±,所以i z =±,故2212i z z +=-±故选:D.3.A【分析】根据充分条件、必要条件的定义及线面垂直的性质可得结果.【详解】用平面ADFE 代表平面α,平面ABCD 代表平面β,当m n ⊥如图所示时显然m 与平面β不垂直,反之,当m β⊥时,又n β⊂,根据线面垂直的性质有m n ⊥,所以“m n ⊥”是“m β⊥”的必要不充分条件,故选:A.4.C【分析】令()0f x =可计算出切点坐标,结合导数的几何意义可得切线斜率,即可得解.【详解】令102x x +=+,即()210x x ++=,即()210x +=,解得=1x -,故()1,0P -,()()2112f x x '=-+,则()()2011112f '-=-=-+,则其切线方程为:()()()111f x y f ='--+,即0y =.故选:C.5.B【分析】根据正方形可得动点P 的轨迹是以M .【详解】因为四边形APBM 为正方形,且1MA MB ==,所以M P =,故动点P 的轨迹是以M 22(2)(3)2x y +++=.故选:B6.C【分析】根据题意,分为当新节目插在中间的四个空隙中的一个和新节目插在中间的四个空隙中的两个,结合排列数与组合数的计算,即可求解.【详解】根据题意,可分为两类:①当新节目插在中间的四个空隙中的一个时,有1242C A 428=⨯=种方法;②当新节目插在中间的四个空隙中的两个时,有24A 4312=⨯=种方法,由分类计数原理得,共有81220+=种不同的差法.故选:C.7.B【分析】由已知计算可得所以直线1PF 的斜率为3tan 4α=,直线OP 的斜率为247,设(,)P x y ,由324,47y y x c x ==+,解得724,2525c cx y ==,代入双曲线方程计算即可求得结果.【详解】由题意得22322tan 4tan 21tan 314a αα⨯==-⎛⎫- ⎪⎝⎭247=,所以直线1PF 的斜率为3tan 4α=,直线OP 的斜率为247,设(,)P x y ,则有324,47y y x c x ==+,解得724,2525c cx y ==,代入双曲线方程,得222272425251c c a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,又222b c a =-,所以()()222222227242525c c c a a a c a ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭,化简可得:2422472025c a c a ⎛⎫-+= ⎪⎝⎭,c e a =,所以242721025e e ⎛⎫-+= ⎪⎝⎭,解得5e =或57e =(1e >,舍).故选:B 8.D【分析】根据0a b >> ,得到222a b a b +>,再利用题设中的定义及向量夹角的范围,得到12a b ⊕< ,12a b > ,再结合条件,即可求出结果.【详解】因为113|Z,04,,,14424n n n ⎧⎫⎧⎫∈<≤=⎨⎬⎨⎬⎩⎭⎩⎭,设向量a 和b 的夹角为θ,因为0a b >> ,所以222a b a b +>,得到2222cos cos cos =22a b a b a b a b a b a b a bθθθ⋅⊕==<⋅++,又[]0,πθ∈,所以cos 122θ≤,又a b ⊕ 在集合|Z,044n n n ⎧⎫∈<≤⎨⎬⎩⎭中,所以cos 124θ>,即1cos 2θ>,得到14a b ⊕= ,又因为22cos 1cos cos 2a b a a b a b b b b θθθ⋅⋅===>>,所以34a b = 或1,所以1a b a b ⊕+= 或54,故选:D.9.BC【分析】由图可得()ππ3f x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的图象与性质分析各个选项即可.【详解】对于A ,由图可得:()f x 的最小正周期为2,所以2π2ω=,即πω=,易得2M =,所以()()π2f x x ϕ=+,因为2OB OA =,所以1,03A ⎛⎫- ⎪⎝⎭,2,03B ⎛⎫⎪⎝⎭,1,62C ⎛⎫ ⎪ ⎪⎝⎭,由五点作图法可得:ππ62ϕ+=,即π3ϕ=,所以()ππ3f x x ⎛⎫=+ ⎪⎝⎭,所以()304f =,故A 不正确;对于B ,由于1313π()π+)62632f ==,为最大值,所以直线136x =是()f x 图象的一条对称轴,故B 正确;对于C ,令ππ3π2π+π2π+232k x k ≤+≤()k ∈Z ,解得;()Z 172266k x k k +≤≤+∈,所以单调递减区间为()172,2Z 66k k k ⎛⎫++∈ ⎪⎝⎭,故C 正确;对于D ,令πππ2ππ2π+232k x k -≤+≤()k ∈Z ,解得;()5122Z 66k x k k -+≤≤+∈,所以()f x 的单调递增区间为()512,2Z 66k k k ⎛⎫-++∈ ⎪⎝⎭,故D 不正确,故选:BC ,10.BD【分析】设直线AB 的方程为3y kx =+,()()1122,,,A x y B x y ,利用根与系数的关系及抛物线的性质进行计算,从而判定各选项.【详解】设直线AB 的方程为3y kx =+,()()1122,,,A x y B x y ,联立232y kx x py=+⎧⎨=⎩,可得2260x pkx p -=-,所以122x x pk +=,126x x p =-,因为22x py =,所以22x y p =,故22212122236944x x p y y p p ===,因为2,10AF BF ==,由抛物线定义可得,122p y =-,2102py =-,则210922p p ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,解得2p =或22p =,因为1202py =->,所以2p =,则E 的准线方程为=1y -,故B 正确,A 错误;又E 的方程为24x y =,1212p y =-=,21092py =-=,把11y =代入24x y =可得21144x y ==,222436x y ==,不妨设()()2,1,6,9A B -,则AB =C 错误;设F 到直线AB 的距离为d ,BFC △的面积12BFC S BC d =,AFC △的面积12AFC S AC d = ,则BFC △的面积与AFC △的面积之比219BFC AFC BC S yS AC y === ,故D 正确.故选:BD.11.ACD【分析】根据函数的图象变换及其对称性,可得判定A 正确;结合()()22f x f x +-=和()()224f x f x x +--=,化简得到()()48f x f x =+-,可判定B 不正确;令()()2g x f x x =-,得到()()4g x g x =+,得到函数()g x 和()g x '是以4为周期的周期函数,结合()()()1026222g g f '=''=-,可判定C 正确;结合()()11,22f f ==,()35f =,()48f =,得到()()()()12344g g g g +++=-,结合()()2g x f x x =-是以4为周期的周期函数,进而求得501()i f i =∑的值,即可求解.【详解】对于A 中,设函数()y f x =的图象关于(,)a b 对称,则()3y f x =-关于(3,)a b +对称,可得()23y f x =-关于3(,)2a b +对称,因为函数()23f x -的图像关于点()2,1对称,可得32,12a b +==,解得1,1a b ==,所以函数()y f x =的图象关于(1,1)对称,所以A 正确;对于B 中,由函数()y f x =的图象关于(1,1)对称,可得()()22f x f x +-=,因为()()224f x f x x +--=,可得()()242f x f x x ++=+,则()()244(2)2410f x f x x x +++=++=+,两式相减得()()48f x f x -+=-,即()()48f x f x =+-,所以B 不正确;对于C 中,令()()2g x f x x =-,可得()()()442(4)428g x f x x f x x +=+-+=+--,因为()()48f x f x =+-,所以()()4g x g x =+,所以函数()g x 是以4为周期的周期函数,由()()2g x f x x =-,可得()()2g x f x ''=-,所以()()102610262g f ''=-,因为函数()g x 是以4为周期的周期函数,则()g x '是以4为周期的周期函数,所以()()()1026222g g f '=''=-,由()()224f x f x x +--=,可得()()212(1)4f x f x +⨯--⨯-'=',即()()224f x f x ''++-=,令0x =,可得()()224f f ''+=,所以()22f '=,所以()20g '=,所以()1026(1026)2(2)22f f f '''=+=+=,所以C 正确;对于D 中,因为()00f =,且函数()f x 关于(1,1)对称,可得()()11,22f f ==,又因为()()224f x f x x +--=,令1x =,可得()()314f f -=,所以()35f =,再令2x =,可得()()408f f -=,所以()48f =,由()()2g x f x x =-,可得()()()()11,22,31,40g g g g =-=-=-=,可得()()()()12344g g g g +++=-又由函数()()2g x f x x =-是以4为周期的周期函数,且()()2f x g x x =+,所以()()()()()()501()125012502(1250)i f i f f f g g g ==+++=+++++++∑ ()()()()()()121234122(1250)g g g g g g ⎡⎤=⋅+++++++++⎣⎦ 50(150)12(4)12242299+=⨯--+⨯=-,所以D 正确.故选:ACD.【点睛】知识结论拓展:有关函数图象的对称性的有关结论(1)对于函数()y f x =,若其图象关于直线x a =对称(0a =时,()f x 为偶函数),则①()()f a x f a x +=-;②()()2f a x f x +=-;③()()2f a x f x -=.(2)对于函数()y f x =,若其图象关于点(),0a 对称(0a =时,()f x 为奇函数),则①()()f a x f a x +=--;②()()2f a x f x +=--;③()()2f a x f x -=-.(3)对于函数()y f x =,若其图象关于点(),a b 对称,则①()()2f a x f a x b ++-=;②()()22f a x f x b ++-=;③()()22f a x f x b -+=.12.1-1【分析】根据题意,由奇函数的性质和定义,利用特殊值法求出a 、b 的值,验证可得答案.【详解】根据题意,函数()42bxxa f x +=是奇函数,其定义域为R ,则有(0)0f =,(1)(1)f f -=-,即0114024422b b a a a --⎧+=⎪⎪⎨++⎪=-⎪⎩,解得11a b =-⎧⎨=⎩,当1a =-,1b =时,()14222xx x x f x --+-==,其定义域为R ,且()22()x x f x f x --=-=-,即()f x 为奇函数,故1a =-,1b =;故答案为:1-;113.0116##0.0625【分析】由正五角星的性质,求得36CAD α∠== ,进而根据诱导公式及二倍角公式计算即可.【详解】正五角星可分割成5个3角形和1个正五边形,五个3角形各自角度之和180正五边形的内角和()180521803540⨯-=⨯= ;每个角为5401085= ,三角形是等腰三角形,底角是五边形的外角,即底角为18010872-=o o o ,三角形内角和为180 ,那么三角形顶角,即五角星尖角18072236-⨯= ,即36CAD α∠== .cos cos2cos3cos4cos36cos72cos108cos144αααα+++=+++()()cos36cos72cos 18072cos 18036=++-+-cos36cos72cos72cos360=+--= ;()2cos cos2cos3cos4cos36cos72cos108cos144cos36cos72αααα==因为cos 36cos 72︒︒⋅2sin 36cos36cos72sin 72cos72sin14412sin 362sin 364sin 364︒︒︒︒︒︒︒︒︒⋅⋅⋅====,所以1cos cos2cos3cos416αααα=.故答案为:0;116.14.10【分析】结合题意画出对应图形后,设111B T B C λ=,则有TR TM VN VS TW TU VU VWλ====,则有22NVS SWR NSRM UVWT S S S S =-- 平行四边形平行四边形,借助λ表示出面积,结合二次函数的性质即可得.【详解】平面α截四面体11ACD B 的截面如图所示,设111B T B C λ=,则TR TM VN VS TW TU VU VWλ====,所以四边形NSRM 为平行四边形,且//,//MR UW MN TV ,在矩形UVWT 中,()4,5,5,51UV VW TM MU λλ====-,()4,41TR RW λλ==-,则22NVS SWRNSRM UVWT S S S S =-- 平行四边形平行四边形()2221112020120202202010222λλλ⎡⎤⎛⎫⎡⎤=-+-=--+≤-⨯=⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦,当且仅当12λ=时,等号成立.故答案为:10.【点睛】关键点点睛:本题关键点是得到所得截面后,借助割补法表示出该截面面积,并结合二次函数的性质求解.15.(1)证明见解析;(2)4515【分析】(1)利用线面平行的判定定理和性质定理即可证明;(2)利用面面平行的性质确定PO ⊥平面ABCD ,建立直角坐标系,利用坐标法结合线面角公式即可求解.【详解】(1)因为四棱锥P ABCD -的底面是正方形,所以//BC AD ,又BC ⊂平面PBC ,AD ⊄平面PBC ,所以//AD 平面PBC ,因为AD ⊂平面PAD ,平面PBC ⋂平面PAD l =,所以//l AD ;(2)因为PA PB =,取AB 的中点O ,连接PO ,则PO AB ⊥,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,则PO ⊥平面ABCD ,所以以O 坐标原点建立如图坐标系,因为5,2PA PB AB ===,ABCD 是正方形,所以2PO =,则()0,0,2P ,()1,0,0A ,()1,2,0C -,()1,2,0D ,()1,0,2AP =- ,()0,2,0AD = ,()1,2,2PC =-- ,设平面PAD 的法向量为(),,n x y z = ,则20n AP x z ⋅=-+= ,20n AD y ⋅== ,取2x =,0y =,1z =,即()2,0,1n = ,设直线PC 与平面PAD 所成角为θ,则sin cos ,15PC n PC n PC nθ⋅=== ,所以直线PC 与平面PAD16.(1)21n a n =-(2)21n nT n n =++【分析】(1)首先求出11a =,可证明数列为首项为1,公差为1的等差数列,得到2n S n =,利用1n n n a S S -=-得到{}n a 的通项公式;(2)由(1)知,2144(21)(21)n n n n S n b a a n n +==-+,化简可得111122121n b n n ⎛⎫=+- ⎪-+⎝⎭,利用分组求和以及裂项相消即可求出数列{}n b 的前n 项和n T .【详解】(1)当1n ==11a =,1==,则数列为首项为1,公差为1的等差数列;n =,则2n S n =,当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,12111a =⨯-=满足条件,所以{}n a 的通项公式为21n a n =-(*)n ∈N (2)由(1)知,2144(21)(21)n n n n S n b a a n n +==-+,所以2224111111114141(21)(21)22121n n b n n n n n n ⎛⎫==+=+=+- ⎪---+-+⎝⎭,故11111111112335212122121n n T n n n n n n n ⎛⎫⎛⎫=+-+-++-=+-=+ ⎪ ⎪-+++⎝⎭⎝⎭ ,即21n n T n n =++17.(1)38;(2)5n =.【分析】(1)根据给定条件,利用独立重复试验的概率公式计算即得.(2)该同学投篮的次数为X ,求出X 的可能值及对应的概率,求出期望的函数关系,作差结合数列单调性推理即得.【详解】(1)依题意,该同学投篮4次,恰好投中2次的概率2224113C ()(1)228p =-=.(2)设该同学投篮的次数为X ,则X 的可能值为,10031002n n n n +-=-,,33n n +∈≤N ,于是11(),(1002)122n nP X n P X n ===-=-,数学期望113100()(1002)(12100222n n n n E X n n n -=⋅+-⋅-=-+,令3100()2100,2n n f n n n +-=-+∈N ,则1397(1)2982n n f n n +-+=-+,2110332(1)()2n n n f n f n ++--+-=,显然数列2{10332}n n +--是递减的,当4n ≤时,2103320n n +-->,(1)()f n f n +>,当5n ≥时,2103320n n +--<,(1)()f n f n +<,即有(1)(2)(3)(4)(5)(6)(7)f f f f f f f <<<<>>> ,因此(5)f 最大,所以当5n =时,该同学投篮次数的期望值最大.18.(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,2M N ⎛⎫ ⎪ ⎪⎝⎭两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k =-,直线DA 为1y kx =+,直线DB 为11y x k=-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k --++,同理可得22284(,)44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414AB k k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k k k k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.19.(1)存在,且(],0m ∈-∞(2)①证明见解析②证明见解析【分析】(1)结合导数与函数单调性的关系,分0m ≤与0m >进行讨论即可得;(2)①利用导数得到()f x 的单调性后,借助零点的存在性定理可得()ln ln 0f m m m m =-<,解出即可得;②构造函数()()e (0),(1)ln x x m x x n x x x x=>=>,结合导数得到函数的单调性,画出相应图象,可得从而得到12ln x x =,23e x x =,从而可得31232x x x x =,结合2x 的范围即可得解.【详解】(1)由题意得()()()0,,e ,1x m x m x f x m g x x x∞-∈+=-=-='',当0m ≤时,()()0,0f x g x ''≥≥,所以()f x 和()g x 在()0,∞+上都单调递增,符合题意;当0m >时,若()f x 和()g x 在()0,∞+上的单调区间相同,则()f x 和()g x 有相同的极值点,即ln m m =,令()ln h m m m =-,则()111m h m m m-=-=',当()0,1m ∈时,()0h m '>,当()1,m ∞∈+时,()0h m '<,所以()h m 在()0,1上单调递增,在()1,∞+上单调递减,则()()11h m h ≤=-,所以ln m m =无解,综上,当(],0m ∞∈-时,()f x 和()g x 在()0,∞+上的单调区间相同;(2)①由题意,()f x 有两个零点,()e x f x m '=-,若0m ≤,则()0f x '≥,所以()f x 在R 上单调递增,不符合题意,若0m >,则当(),ln x m ∞∈-时,()()0,f x f x '<单调递减,当()ln ,x m ∞∈+时,()()0,f x f x '>单调递增,且当x →-∞时,()f x ∞→-,当x →+∞时,()f x ∞→+,所以()ln ln 0f m m m m =-<,解得e m >,得证;②令()()0,0f x g x ==,得e ,ln xmx x m x ==,即e 0,0ln x x m m x x =>=>,令()()e (0),(1)ln x x m x x n x x x x=>=>,则()()()22e 1ln 1,(ln )x x x m x n x x x ''--==,当()0,1x ∈时,()()0,m x m x '<单调递减,当()1,x ∞∈+时,()()0,m x m x '>单调递增,当()1,e x ∈时,()()0,n x n x '<单调递减,当()e,x ∞∈+时,()()0,n x n x '>单调递增,在同一坐标平面内作出函数()e (0)x m x x x=>与函数()ln x n x x =(1)x >的图象,它们有公共点()22,A x y,如图,故12301e x x x <<<<<,且有12321223e e ln ln x x x x x x x x ===,由1212e ln x x x x =,得12ln 12e e ln x x x x =,即()()12ln m x m x =,又20ln 1x <<,所以12ln x x =,由2323e ln x x x x =,得2233e lne ln x x x x =,即()()23e x n n x =,又2e e x >,所以23e x x =,由2222e ln x x x x =,得222231e ln x x x x x =⋅=,即2132x x x =,故()3312321,e x x x x =∈.【点睛】关键点点睛:本题最后一问关键点在于构造函数()()e (0),(1)ln x x m x x n x x x x=>=>,结合导数得到函数的单调性,从而得到31232x x x x =.。
广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)(2)
一、单选题二、多选题1. 已知全集,集合,,则如图中阴影部分表示的集合为A.B.C.D.2. 已知函数,若将函数的图象平移后能与函数的图象完全重合,则下列说法不正确的是( )A.函数的最小正周期为B.将函数的图象向左平移个单位长度后,得到的函数图象关于轴对称C .当时,函数的值域为D.当函数取得最值时,3. 函数的图象大致为( )A.B.C.D.4. 已知等边△的边长为,点,分别为,的中点,若,且,则( )A.B.C.D.5. 已知复数满足(为虚数单位),则A.B.C.D.6. 已知函数是定义在上的奇函数,且,当时,,则( )A.B.C.D.7. 羽毛球运动是一项全民喜爱的体育运动,标准的羽毛球由16根羽毛固定在球托上,测得每根羽毛在球托之外的长为7cm ,球托之外由羽毛围成的部分可看成一个圆台的侧面,测得顶端所围成圆的直径是6cm ,底部所围成圆的直径是2cm ,据此可估算得球托之外羽毛所在的曲面的展开图的圆心角为()A.B.C.D.8. 现有12张不同的卡片,其中红色、黄色、绿色、蓝色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且蓝色卡片至多1张.则不同的取法共有( )A .135B .172C .189D .2169. 在平面直角坐标系中,抛物线:的焦点为,点在抛物线上,点在抛物线的准线上,则以下命题正确的是( )A.的最小值是2B.广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)(2)广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)(2)三、填空题四、解答题C .当点的纵坐标为4时,存在点,使得D.若是等边三角形,则点的横坐标是310. 十八世纪伟大的数学家欧拉引入了“倒函数”概念:若函数满足,则称为“倒函数”.下列函数为“倒函数”的是( )A.B.C.D.11.已知抛物线(p >0)的焦点为F ,斜率为的直线过点F 交C 于A ,B 两点,且点B 的横坐标为4,直线过点B 交C 于另一点M (异于点A ),交C 的准线于点D ,直线AM 交准线于点E ,准线交y 轴于点N ,则( )A .C的方程为B.C.D.12.已知函数,则( )A.是奇函数B .当时,C.的最大值是1D .的图象关于直线对称13. 复数z 满足z +3i =2,则的虚部是_______.14. 写出使“不等式(且)对一切实数都成立”的的一个取值______.15. 已知向量,.若向量与平行,则=________.16. 已知函数(为常数)且方程有两个实根为.(1)求函数的解析式;(2)解关于的不等式17. 甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次,在一轮活动中,如果两人都投中,则“虎队”得3分;如果只有一个人投中,则“虎队”得1分;如果两人都没投中,则“虎队”得0分.已知甲每轮投中的概率是,乙每轮投中的概率是;每轮活动中甲、乙投中与否互不影响.各轮结果亦互不影响.(1)假设“虎队”参加两轮活动,求:“虎队”至少投中3个的概率;(2)①设“虎队”两轮得分之和为,求的分布列;②设“虎队”轮得分之和为,求的期望值.(参考公式)18. 如图,在四棱锥中,底面为正方形,侧面是正三角形,平面平面,是的中点.(1)证明:平面;(2)求二面角的正弦值.19. 已知函数,函数.(1)若,求的最大值;(2)若恒成立,求的取值范围.20. 设函数,.(1)若,,求函数的单调区间;(2)若曲线在点处的切线与直线平行.①求,的值;②求实数的取值范围,使得对恒成立.21. 如图,线段是圆柱的母线,是圆柱下底面的内接正三角形,.(1)劣弧上是否存在点D,使得平面?若存在,求出劣弧的长度;若不存在,请说明理由.(2)求平面和平面夹角的余弦值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
揭阳市2010—2011学年度高中三年级学业水平考试数学试题(文科)本试卷共4页,21小题,满分150分.考试用时l20分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔在答题卷的选择题答题区上将对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁,考试结束后,将试卷和答题卷一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 表示底面积,h 表示高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0A x x =≥,{0,1,2}B =,则A. A B ⊂≠B. B A ⊂≠C. A B B =D. A B =∅2.已知复数z 满足(1)2i z -=,则z 为A. 1i +B. 1i -C. 1i -+D. 1i -- 3.已知幂函数()y f x =的图象过点11(,)28--,则2log (4)f 的值为A. 3B. 4C. 6D. -64.若(,3),(,2)a xb x ==-,则“x =a b ⊥”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 5.如果等差数列{}n a 中,35712a a a ++=,那么129a a a +++的值为A. 18B. 27C. 36D. 54 6.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 A.若l m ⊥,m α⊂,则l α⊥ B.若l α⊥,l m //,则m α⊥ C.若l α//,m α⊂,则l m // D.若l α//,m α//,则l m //7.已知11tan ,tan()43ααβ=-=则tan β=. A. 711 B. 117- C. 113- D. 1138.已知双曲线221412x y -=上一点M 的横坐标是3,则点M 到双曲线左焦点的距离是A.4B.1)C. 1)D.89.在ABC ∆中,若1c =,a =23A π∠=,则b 为.俯视图左视图主视图A.1B.210.已知(){},|8,0,0,x y x y x y Ω=+≤≥≥(){},|2,0,30A x y x y x y =≤≥-≥,若向区域Ω上随机投1个点P ,则点P 落入区域A 的概率为 A.14 B. 716 C. 34 D. 316二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11.命题P :“2,12x R x x ∃∈+<”的否定P ⌝为: 、P ⌝的真假为 .12.如果执行右面的框图,输入5N =,则输出的数S= .第13题图第12题图13. 四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,其三视图如上图所示,根据图中的信息,在四棱锥P ABCD -的任两个顶点的连线中,互相垂直的异面直线对数为 .(二)选做题(14、15题,考生只能从中选做一题) 14. (坐标系与参数方程选做题) 已知曲线C 的参数方程为1cos ,sin .x y θθ=+⎧⎨=⎩(θ为参数),则曲线C 上的点到直线220x y -+=的距离的最大值为 .15.(几何证明选讲选做题) 已知圆O 的半径为3,从圆O 外一点A引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =,则切线AD 的长为 .三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本题满分12分)已知函数()cos f x x x ππ=+, x R ∈. (1)求函数()f x 的最小正周期和值域;24131452[185,190)[180,185)[175,180)[170,175)[165,170)[160,165)频数身高(cm )身高(cm )频数[150,155)[165,170)[170,175)[175,180)[155,160)[160,165)1712631频率F E乙DBA(2)求函数()f x 的单调增区间. 17.(本题满分12分)如图甲,在平面四边形ABCD 中,已知45,90,A C ∠=∠=105ADC ∠=,AB BD =,现将四边形ABCD 沿BD 折起, 使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1)求证:DC ⊥平面ABC ;(2)设CD a =,求三棱锥A -BFE 的体积.18. (本题满分14分)为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.表1:男生身高频数分布表表2::女生身高频数分布表(1)求该校男生的人数并完成下面频图乙率分布直方图;(2)估计该校学生身高在165180cm 的概率;(3)从样本中身高在180190cm 之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。
19.(本题满分14分)已知椭圆C :22221(0)x y a b a b+=>>倍,1F ,2F 是它的左,右焦点.(1)若P C ∈,且210PF PF ⋅=,12||||4PF PF ⋅=,求1F 、2F 的坐标; (2)在(1)的条件下,过动点Q 作以2F 为圆心、以1为半径的圆的切线QM (M 是切点),且使1QF =,求动点Q 的轨迹方程.20.(本题满分14分)已知数列{}n a 中,11a =,前n 项和为n S 且131,()2n n S S n N *+=+∈ (1)求数列{}n a 的通项公式; (2)设数列1{}na 的前n 项和为n T ,求满足不等式3n n T S >的n 值. 21.(本题满分14分)已知函数()ln f x ax x =-.(a 为常数) (1)当1a =时,求函数()f x 的最值; (2)求函数()f x 在[1,)+∞上的最值;(3)试证明对任意的n N *∈都有1ln(1)1nn+<.揭阳市2010—2011学年度高中三年级学业水平考试数学试题(文科)参考答案及评分说明一. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.一.选择题:BACBC BCDAD解析:2.22(1)112i z i i +===+-,选A. 3.由幂函数()y f x =的图象过点11(,)28--得3111()()3282n n -=-=-⇒=,则目322log (4)log 46f ==,故选C.5.由35712a a a ++=得553124a a =⇒=,129a a a +++=1959()9362a a a +==,选C.7.tan tan[()]βααβ=--11tan tan()14311tan tan()13112ααβααβ---===-+-+,选C.8.依题意可求得点M的坐标为(3,,左焦点1(4,0)F -,根据对称性只需求点到1(4,0)F -的距离,由两点的距离公式易得所求的距离为8,选D.9.由余弦定理得:2222cos a b c bc A =+-220b b ⇒+-=1b ⇒=,选A.10.由右图易得,满足条件A 的区域面积()6S A =,满足条件Ω的区域面积()32S Ω=,故所求的概率633216P ==,故选D. 二.填空题:11. 2,12x R x x ∀∈+≥、真;12.45;13.4;14.15. 15.12.根据框图所体现的算法可知此算法为求和:1111012233445S =++++⨯⨯⨯⨯11111111411223344555=-+-+-+-=-= 13.有PA 与BC;PA 与DB;PA 与CD;PB 与AD;PD 与AB;PC 与DB 共6对互相垂直异面直线.F E乙DBA14.将曲线C 的参数方程为1cos ,sin .x y θθ=+⎧⎨=化为直角坐标方程得22(1)1x y -+=,易得所求最515+=. 15.解析:依题意,BC =,∴AC =5,2AD=.AB AC =15,∴AD =15三.解答题:16.解:(1)∵()cos f x x x ππ=+=1cos )2x x ππ+ =2sin()6x ππ+------------------------------------------------------------------------3分∴函数()f x 的最小正周期22T ππ==--------------------------------------------------------4分又∵x R ∈ ∴1sin()16x ππ-≤+≤,∴22sin()26x ππ-≤+≤---------------------------------------------------------------------------6分∴函数()f x 的值域为{|22}y y -≤≤.----------------------------------------------------------7分 (2)由22262k x k ππππππ-≤+≤+,k Z ∈----------------------------------------------------9分得212233k x k -≤≤+,k Z ∈----------------------------------------------------------------11分∴函数()f x 的单调增区间为21[2,2]()33k k k Z -+∈------------------------------------12分17.解:(1)证明:在图甲中∵AB BD =且45A ∠= ∴45ADB ∠= ,90ABC ∠=即AB BD ⊥----------------------------------------------------------------------------------------2分 在图乙中,∵平面ABD ⊥平面BDC , 且平面ABD平面BDC =BD∴AB ⊥底面BDC ,∴AB ⊥CD .------------------------------------------4分 又90DCB ∠=,∴DC ⊥BC ,且ABBC B =∴DC ⊥平面ABC . -----------------------------------------------------6分 (2)解法1:∵E 、F 分别为AC 、AD 的中点∴EF//CD ,又由(1)知,DC ⊥平面ABC ,∴EF ⊥平面ABC ,--------------------------------------------------------7分∴13A BFE F AEB AEB V V S FE --∆==⋅-------------------------8分在图甲中,∵105ADC ∠=, ∴60BDC ∠=,30DBC ∠= 由CD a =得2,BD a BC == ,1122EF CD a ==--------------------------10分男生样本频率分布直方图频率/cm65456345623456654321∴211222ABC S AB BC a ∆=⋅=⋅=∴22AEB S a ∆=∴231132212A BFE V a a a -=⋅⋅=-------------------------------------------12分18.解(1)样本中男生人数为40 ,由分层抽样比例为10%可得全校男生人数为400.----2分频率分布直方图如右图示:--------------------------------------------------6分(2)由表1、表2知,样本中身高在165180cm 的学生人数为:5+14+13+6+3+1=42,样本容量为70 ,所以样本中学生身高在165180cm的频率423705==f -------------------------------------------------------8分故由f 估计该校学生身高在165180cm的概率35=p .----------------------------9分(3)样本中身高在180185cm 之间的男生有4人, 设其编号为①②③④ 样本中身高在185190cm 之间的男生有2人,设其编号为⑤⑥ 从上述6人中任取2人的树状图为:--12分故从样本中身高在180190cm 之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185190cm 之间的可能结果数为9,因此,所求概率93155p ==.---------------14分[或从上述6人中任取2人的所有可能的情况为、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、 (2,3)、(2,4)、(2,5)、(2,6)、(3,4)、(3,5)、(3,6)、(4,5)、(4,6)、(5,6) 共15种,其中至少有1人身高在185~190cm 之间的可能结果有9种,故所求概率93155p ==]19.解:(1)依题意知a =-----------------①----------------------------------------------------------1分 ∵021=⋅PF PF ∴12PF PF ⊥, ∴()22222212248PF PF c (a b )b +==-=---------3分又P C ∈,由椭圆定义可知122PF PF a +=,()22212884PF PF b a +=+=------②-----5分由①②得2262a ,b ==⇒2c =. ∴()120F -,、()220F ,---------------------------------------7分 (2)由已知1QF =,即2212QF QM =------9分∵QM 是2F 的切线 ∴222||||1QM QF =-∴()221221QF QF =-------------------------------------------11分 设(,)Q x y ,则()()22222221x y x y ⎡⎤++=-+-⎣⎦即()22634x y -+=(或221220x y x +-+=)------------------------------------------------13分综上所述,所求动点Q 的轨迹方程为:()22634x y -+=-------------------------------------14分 20.解:(1)解法1:由1312n n S S +=+得 当2n ≥时1312n n S S -=+ ∴113()2n n n n S S S S +--=- 即132n n a a += ∴132n n a a +=------------------4分又11a =,得2112312S a a a =+=+ ∴232a = ∴2132a a =----------------------------6分∴数列{}n a 是首项为1,公比为32的等比数列∴13()2n n a -=--------------------------------------------------------------7分解法2:由1312n n S S +=+得132(2)2n n S S ++=+--------------------------------3分即12322n n S S ++=+ ∴数列{2}n S +是首项为123S +=,公比为32的等比数列----4分∴1323()2n n S -+=⋅ 即133()22n n S -=⋅----------------------------------5分当2n ≥时∴1n n n a S S -=-=12333()2[3()2]22n n --⋅--⋅-=13()2n ----------------------6分显然当1n =时上式也成立 ∴13()2n n a -=.----------------------------------------------------------7分(2)∵z 数列{}n a 是首项为1,公比为32的等比数列, ∴数列1{}n a 是首项为1,公比为23的等比数列,------------------------------8分∴21()233[1()]2313nn n T -==--,---------------------------------------------9分 又∵32()22nn S =⋅-∴不等式3n n T S > 即239[1()]2()232n n->⋅------------------------------10分令2()3n m =并整理得291120m m -+<,解得219m <<---------------------11分即22()193n <<,将1,2,3n =代入都符合,又42162()3819=< 且函数2()3x y =在R 上为减函数,故当4n ≥时都有22()39n <-----------------13分∴满足不等式3n n T S >的n 值为:1,2,3.----------------------------------14分21.解:(1)当1a =时,函数()f x =ln x x -,(0,)x ∈+∞∵1'()1f x x=-,令'()0f x =得1x =---------------------------------------2分 ∵当(0,1)x ∈时,'()0f x < ∴函数()f x 在(0,1)上为减函数∵当(1,)x ∈+∞时'()0f x > ∴函数()f x 在(1,)+∞上为增函数∴当1x =时,函数()f x 有最小值,()(1)1f x f ==最小值----------------------------------4分 (2)∵1'()f x a x=-若0a ≤,则对任意的[1,)x ∈+∞都有'()0f x <,∴函数()f x 在[1,)+∞上为减函数 ∴函数()f x 在[1,)+∞上有最大值,没有最小值,()(1)f x f a ==最大值;------------6分若0a >,令'()0f x =得1x a=当01a <<时,11a >,当1(1,)x a ∈时'()0f x <,函数()f x 在1(1,)a上为减函数当1(,)x a ∈+∞时'()0f x > ∴函数()f x 在1(,)a +∞上为增函数∴当1x a =时,函数()f x 有最小值,11()()1ln f x f a a==-最小值-----------------------8分当1a ≥时,11a≤在[1,)+∞恒有'()0f x ≥∴函数()f x 在[1,)+∞上为增函数,函数()f x 在[1,)+∞有最小值,()(1)f x f a ==最小值.----------------------------------------------------------------------------------------------------------9分 综上得:当0a ≤时,函数()f x 在[1,)+∞上有最大值,()f x a =最大值; 当01a <<时,函数()f x 有最小值,1()1ln f x a=-最小值; 当1a ≥时,函数()f x 在[1,)+∞有最小值,()f x a =最小值.-----------------------------------10分(3)证法1:由(1)知函数()f x =ln x x -在(0,)+∞上有最小值1即对任意的(0,)x ∈+∞都有ln 1x x -≥,即1ln x x -≥,---------------------------------------12分 当且仅当1x =时“=”成立∵n N *∈ ∴10n n +>且11n n+≠∴11111ln ln n n n n n n n +++->⇔>111ln(1)1ln(1)n n n n⇔>+⇔>+∴对任意的n N *∈都有1ln(1)1nn+<.---------------------------------------------------------------14分证法2:要证明对任意的n N *∈都有1ln(1)1n n +<,只须证明11ln(1)n n+<,-----------11分设函数()ln(1)g x x x =+-,(1,)x ∈-+∞∵1'()111xg x x x=-=-++,令'()0g x =得0x =-------------------------------12分 ∵当(1,0)x ∈-时'()0g x <,当(0,)x ∈+∞时'()0g x >∴函数()g x 在(1,0)-上单调递减,在(0,)+∞上单调递增 ∴当0x =时,函数()g x 取得最小值,()(0)0g x g ==最小值即对任意的(1,)x ∈-+∞,都有ln(1)x x +≥,当且仅当0x =时“=”成立∵n N *∈ ∴10n > ∴1111ln(1)ln(1)1ln(1)1nn n n n n +>⇔+>⇔+>即对任意的n N *∈都有1ln(1)1n n+<.--------------------------------------------------------------14分。