2020年广东省实验中学中考数学一模试卷(解析版)
2020年广东省中考数学一模试卷(解析版)
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA;
(3)若⊙O的半径为5,sinA= ,求BH的长.
25.如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.
(1)求抛物线的解析式;
(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.
C.(﹣2x2y)3=﹣6x6y3D.2xy2•(﹣x)=﹣2x2y2
【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.
【分析】根据同类项、同底数幂的除法、积的乘方以及整式的乘法计算即可.
【解答】解:A、﹣2x+3x=x,正确;
B、6xy2÷2xy=3y,正确;
C、(﹣2x2y)3=﹣8x6y3,错误;
23.如图,一次函数y=kx+b的图象与反比例函数y= 的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).
(1)求一次函数和反比例函数的解析式;
(2)现有一直线l与直线y=kx+b平行,且与反比例函数y= 的图象在第一象限有且只有一个交点,求直线l的函数解析式.
24.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;
(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?
(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.
2020年广东省中考数学全真模拟试卷一含答案
2020年广东省中考数学全真模拟试卷一数学(本卷满分120分,考试时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.﹣的绝对值是()A.2B.C.﹣D.﹣22.下列图形中是中心对称图形的是()A.B.C.D.3.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30B.25和29C.28和30D.28和294.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.4.4×10105.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)6.不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个7.下列运算正确的是()A.(2a2)2=2a4B.6a8÷3a2=2a4C.2a2•a=2a3D.3a2﹣2a2=18.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b<时,x的取值范围为()A.x<2B.2<x<6C.x>6D.0<x<2或x>69.如图,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2二、填空题(本大题共7小题,每小题4分,共28分)11.分解因式:3x2﹣6x+3=.12.一个正多边形的每个内角等于108°,则它的边数是.13.如图,已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.14.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.16.如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.17.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形共有个○.三、解答题(本大题共3小题,每小题6分,共18分)18.计算:+(﹣)﹣1+|1﹣|﹣4sin 45°.19.解分式方程:﹣1=.20.在△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.四、解答题(本大题共3小题,每小题8分,共24分)21.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.22.如图,某市郊外景区内一条笔直的公路l经过A,B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B 的北偏东30°的方向上,且AB=10 km.(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长(结果保留根号).23.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1 200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.五、解答题(本大题共2小题,每小题10分,共20分)24.如图,在以线段AB为直径的⊙O上取一点C,连接AC、BC.将△ABC沿AB 翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC•AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE,CB相交于点F,若BC=2,AC=4,求线段EF的长.25.(1)课本情境如图,已知矩形AOBC,AB=6 cm,BC=16 cm,动点P从点A出发,以3 cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q之间的距离是10 cm;(2)逆向发散当运动时间为2 s时,P,Q两点的距离为多少?当运动时间为4 s时,P,Q两点的距离为多少?(3)拓展应用若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B 停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12 cm2?参考答案1.B2.C3.D4.C5.C6.C7.C8.D9.B10.C11.3(x﹣1)212.五13.414.x(x+40)=1 200 15.116.9﹣517.6 05818.解:原式=2﹣3+﹣1﹣4×=2﹣3+﹣1﹣2=﹣4.19.解:两边都乘3(x﹣1),得3x﹣3(x﹣1)=2x,解得x=1.5,检验:x=1.5时,3(x﹣1)=1.5≠0,所以分式方程的解为x=1.5.20.(1)解:如图1,AD为所作.(2)证明:如图2,延长AD到E,使ED=AD,连接EB,EC,∵CD=BD,AD=ED,∴四边形ABEC为平行四边形,∵∠CAB=90°,∴四边形ABEC为矩形,∴AE=BC,∴BC=2AD.21.(1)证明:∵D,E分别是AB,AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)解:∵四边形CDEF是平行四边形,∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得AB=13 cm. 22.解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°﹣∠CAB﹣∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=10 km,即景点B,C相距的路程为10 km.(2)如图,过点C作CE⊥AB于点E,∵BC=10 km,C位于B的北偏东30°的方向上,∴∠CBE=60°,在Rt△CBE中,CE=km.23.解:(1)n=5÷10%=50.(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1 200×=240,所以估计该校喜爱看电视的学生人数为240人.(3)画树状图如图:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.24.解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上.(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,即=,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线.(3)∵AD=AC=4,BD=BC=2,∠ADB=90°,∴AB===2,∵=,∴=,解得DE=1,∴BE==,∵四边形ACBD内接于⊙O,∴∠FBD=∠FAC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△FAB,∴=,即==,∴FB=2FE,在Rt△ACF中,∵AF2=AC2+CF2,∴(5+EF)2=42+(2+2EF)2,整理,得3EF2﹣2EF﹣5=0,解得EF=﹣1(舍去)或EF=,∴EF=.25.解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10 cm,∴62+(16﹣5t)2=100,∴t=或s.故答案为s或s(2)由运动知AP=3×2=6 cm,CQ=2×2=4 cm,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得,当t=2 s时,P,Q两点的距离为6cm;同理:当t=4 s时,P,Q两点的距离为2cm.(3)当点P在AO上时,S△POQ===12,解得t=4.当点P在OC上时,S△POQ===12,解得t=6或﹣(舍弃).当点P在CB上时,S△POQ===12,解得t=18>8(不符合题意舍弃),综上所述,经过4 s或6 s时,△POQ的面积为12 cm2.。
(答案)广东省2020年中考数学一模试题
2020年广东省中考数学一模试卷一.选择题(共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.D.【分析】根据求一个数的相反数就是在这个数前面添上“﹣”号,即可得出答案.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数的意义.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义,结合选项进行判断即可.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称的特点.3.(3分)2019年末到2020年3月16日截止,世界各国感染新冠状肺炎病毒患者达到15万人,将数据15万用科学记数表示为()A.1.5×104B.1.5×103C.1.5×105D.1.5×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:15万=15×104=1.5×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)计算a4•a2的结果是()A.a8B.a6C.a4D.a2【分析】根据同底数幂的乘法法则计算即可.【解答】解:a4•a2=a4+2=a6.故选:B.【点评】本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.5.(3分)若在实数范围内有意义,则x的取值范围是()A.B.x<2C.D.x≥0【分析】根据二次根式的被开方数是非负数、分式的分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得,1﹣2x>0,解得,x<,故选:A.【点评】本题考查的是二次根式、分式有意义的条件,掌握二次根式的被开方数是非负数、分式的分母不为0是解题的关键.6.(3分)不透明袋子中有3个红球和2个白球,这些球除颜色外无其他差别,从袋中随机取出1个球,是红球的概率是()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子装有3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是故选:D.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(3分)如图,直线AC和直线BD相交于点O,若∠1+∠2=70°,则∠BOC的度数是()A.100°B.115°C.135°D.145°【分析】根据对顶角和邻补角的定义即可得到结论.【解答】解:∵∠1=∠2,∠1+∠2=70°,∴∠1=∠2=35°,∴∠BOC=180°﹣∠1=145°,故选:D.【点评】本题考查了邻补角、对顶角的应用,主要考查学生的计算能力.8.(3分)若关于x的方程kx2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣1【分析】根据根的判别式即可求出答案.【解答】解:当该方程是一元二次方程时,由题意可知:△=4+4k≥0,∴k≥﹣1,∵k≠0,∴k≥﹣1且k≠0,当该方程时一元一次方程时,k=0,满足题意,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.9.(3分)在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由y的值随着x值的增大而减小可得出2m﹣1<0,再利用一次函数图象与系数的关系可得出一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,进而可得出一次函数y=(2m﹣1)x+1的图象不经过第三象限.【解答】解:∵在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,∴2m﹣1<0.∵2m﹣1<0,1>0,∴一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,∴一次函数y=(2m﹣1)x+1的图象不经过第三象限.故选:C.【点评】本题考查了一次函数图象与系数的关系以及一次函数的性质,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.10.(3分)如图,已知点A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y 轴,垂足为B,若△OAB的面积为3,则k的值为()A.3B.﹣3C.6D.﹣6【分析】再根据反比例函数的比例系数k的几何意义得到|k|=2,然后去绝对值即可得到满足条件的k的值.【解答】解:∵AB⊥y轴,∴S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣6.故选:D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二.填空题(共7小题,每题4分,共28分)11.(4分)11的平方根是.【分析】根据正数有两个平方根可得11的平方根是±.【解答】解:11的平方根是±.故答案为:±.【点评】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.12.(4分)已知,|a﹣2|+|b+3|=0,则b a=9.【分析】根据非负数的性质可求出a、b的值,再将它们代b a中求解即可.【解答】解:∵|a﹣2|+|b+3|=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,则b a=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.13.(4分)分解因式:m4﹣81m2=m2(m﹣9)(m+9).【分析】首先提公因式m2,再利用平方差进行二次分解即可.【解答】解:原式=m2(m2﹣81),=m2(m﹣9)(m+9).故答案为:m2(m﹣9)(m+9).【点评】此题主要考查了提公因式法与公式法分解因式,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(4分)点M(3,﹣1)到x轴距离是1.【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:M(3,﹣1)到x轴距离是1.故答案为:1【点评】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值是解题关键.15.(4分)圆锥的母线长为3,底面圆的半径为2,则这个圆锥的全面积为10π.【分析】由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,所以根据扇形的面积公式可得圆锥的侧面积,然后求得底面积,二者相加即可求得全面积.【解答】解:圆锥的侧面积=×3×2π×2=6π,底面积为22π=4π,所以全面积为:6π+4π=10π.故答案为:10π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.16.(4分)如图,六边形ABCDEF的六个内角都等于120°,若AB=BC=CD=3cm,DE =2cm,则这个六边形的周长等于17cm.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P,如图所示:∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°,∴△APF、△BGC、△DHE、△GHP都是等边三角形,∴GC=BC=3cm,DH=DE=EH=2cm,∴GH=3+3+2=8(cm),F A=P A=PG﹣AB﹣BG=8﹣3﹣3=2(cm),EF=PH﹣PF﹣EH=8﹣2﹣2=4(cm).∴六边形的周长为2+3+3+3+2+4=17(cm);故答案为:17.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.17.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(,0)和(m,y),对称轴为直线x=﹣1,下列5个结论:其中正确的结论为②④.(注:只填写正确结论的序号)①abc>0;②a+2b+4c=0;③2a﹣b>0;④3b+2c>0;⑤a﹣b≥m(am﹣b),【分析】根据抛物线开口方向得到a>0,根据抛物线对称轴为直线x=﹣=﹣1,得到b=2a,则b>0,根据抛物线与y轴的交点在x轴下方得到c<0,所以abc<0;由x=,y=0,得到a+b+c=0,即a+2b+4c=0;由a=b,a+b+c>0,得到b+2b+c >0,即3b+2c>0;由x=﹣1时,函数值最小,则a﹣b+c≤m2a﹣mb+c(m≠1),即a ﹣b≤m(am﹣b).【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a,则2a﹣b=0,所以③错误;∴b>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①错误;∵x=时,y=0,∴a+b+c=0,即a+2b+4c=0,所以②正确;∵a=b,a+b+c>0,∴b+2b+c>0,即3b+2c>0,所以④正确;∵x=﹣1时,函数值最小,∴a﹣b+c≤am2﹣mb+c,∴a﹣b≤m(am﹣b),所以⑤错误.故答案为②④.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;IaI还可以决定开口大小,IaI越大开口就越小.一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三.解答题(一)(共3小题,每题6分,共18分)18.(6分)计算:+()0+•sin45°﹣(π﹣2019)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质分别化简得出答案.【解答】解:原式=3+1+×﹣1=4+1﹣1=4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(6分)先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.【点评】此题主要考查了分式的化简求值,关键是掌握计算顺序,正确把分式进行化简.20.(6分)已知:△ABC中,AB=AC.(1)求作:△ABC的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=12,求⊙O的面积.【分析】(1)作线段BC的垂直平分线AD,线段AB的垂直平分线EF,最小AD交EF 于点O,以O为圆心,OA为半径作⊙O即可.(2)设BC的垂直平分线交BC于点D,连接OB.利用勾股定理求出OB2即可.【解答】解:(1)如图,⊙O即为所求.(2)设BC的垂直平分线交BC于点D,连接OB.由题意得:OD=4,BD=CD=BC=6,在Rt△OBD中,OB2=OD2+BD2=42+62=52,∴⊙O的面积=π•OB2=52π.【点评】本题考查﹣复杂作图,等腰三角形的性质,三角形的外接圆等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四.解答题(二)(共3小题,每题8分,共24分)21.(8分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为120°,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;据此即可补全条形图;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好选到一男一女的概率结果数,利用概率公式计算可得.【解答】解:(1)被调查的总人数为15÷25%=60(人),C类的总人数=60﹣25﹣15=20(人)所以扇形统计图中C部分所对应的扇形圆心角的度数为360°×=120°,补全条形统计图如图所示:故答案为:120°;(2)画树状图如下:共有12种可能的结果,恰好选到一男一女的结果有8个,∴P(选到一男一女)==.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.22.(8分)如图,一名滑雪爱好者先从山脚下A处沿登山步道走到点B处,再沿索道乘坐缆车到达顶部C.已知在点A处观测点C,得仰角为35°,且A,B的水平距离AE=1000米,索道BC的坡度i=1:1,长度为2600米,求山的高度(即点C到AE的距离)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,结果保留整数)【分析】作CD⊥AE于点D,BF⊥CD于点F.证四边形BEDF是矩形,由BC=2600米知米、米.由AE=1000米知米.结合∠CAD=35°求解可得.【解答】解:如图,作CD⊥AE于点D,BF⊥CD于点F.又∵BE⊥AD,∴四边形BEDF是矩形.在Rt△BCF中,∵BC的坡度i=1:1,∴∠CBF=45°.∵BC=2600米,∴米.∴米.∵A,B的水平距离AE=1000米,∴米.∵∠CAD=35°,∴(米).答:山高CD约为1983米.【点评】本题考查解直角三角形﹣坡度坡角问题,解题的关键是明确题意,找出所求问题需要的条件.23.(8分)某超市购进一批水杯,其中A种水杯进价为每个15元,售价为每个25元;B 种水杯进价为每个12元,售价为每个20元(1)该超市平均每天可售出60个A种水杯,后来经过市场调查发现,A种水杯单价每降低1元,则平均每天的销量可增加10个.为了尽量让顾客得到更多的优惠,该超市将A种水杯售价调整为每个m元,结果当天销售A种水杯获利630元,求m的值.(2)该超市准备花费不超过1600元的资金购进A、B两种水杯共120个,其中B种水杯的数量不多于A种水杯数量的两倍.请设计获利最大的进货方案,并求出最大利润.【分析】(1)直接利用A种水杯单价每降低1元,平均每天的销量可增加10个,用m 表示出A种水杯的销量,再根据销量×每件利润=630,进而解方程得出答案;(2)设购进A种水杯x个,则B种水杯(120﹣x)个.求得利润y关于x的一次函数,再利用x的取值范围和一次函数的增减性求出y的最大值.【解答】解:(1)超市将A种水杯售价调整为每个m元,则单件利润为(m﹣15)元,销量为[60+10(25﹣m)]=(310﹣10m)个,依题意得:(m﹣15)(310﹣10m)=630,解得:m1=22,m2=24,答:为了尽量让顾客得到更多的优惠,m=22.(2)设购进A种水杯x个,则B种水杯(120﹣x)个.设获利y元,依题意得:,解不等式组得:40≤x≤53,利润y=(25﹣15)x+(120﹣x)(20﹣12)=2x+960.∵2>0,∴y随x增大而增大,当x=53时,最大利润为:2×53+960=1066(元).答:购进A种水杯53个,B种水杯67个时获利最大,最大利润为1066元.【点评】此题考查了一元二次方程的应用以及一次函数的应用,一元二次方程应用的关键是理解题意找到等式两边的平衡条件,列出方程.求一次函数应用最值关键是求出自变量的取值范围.五.解答题(三)(共2小题,每题10分,共20分)24.(10分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.(1)求证:FG是⊙O的切线;(2)若⊙O的半径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.【分析】(1)连接AF,分别证∠BGF+∠AFG=90°,∠BGF=∠AFB,即可得∠OFG =90°,进一步得出结论;(2)①连接CF,则∠ACF=∠ABF,证△ABO≌△ACO,推出∠CAO=∠ACF,证△ADO∽△CDF,可求出DF,BD的长,再证△ADB∽△FDC,可推出AD•CD=7,即AD2=7,可写出AD的长;②因为△ODC为直角三角形,∠DCO不可能等于90°,所以存在∠ODC=90°或∠COD=90°,分两种情况讨论:当∠ODC=90°时,求出AD,AC的长,可进一步求出△ABC 的面积;当∠COD=90°时,△OBC是等腰直角三角形,延长AO交BC于点M,可求出MO,AM的长,进一步可求出△ABC的面积.【解答】(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF=90°,∠F AG=90°,∴∠BGF+∠AFG=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠AFB,∠BGF=∠ABC,∴∠BGF=∠AFB,∴∠AFB+∠AFG=90°,即∠OFG=90°,又∵OF为半径,∴FG是⊙O的切线;(2)解:①连接CF,则∠ACF=∠ABF,∵AB=AC,AO=AO,BO=CO,∴△ABO≌△ACO(SSS),∴∠ABO=∠BAO=∠CAO=∠ACO,∴∠CAO=∠ACF,∴AO∥CF,∴=,∵半径是4,OD=3,∴DF=1,BD=7,∴==3,即CD=AD,∵∠ABD=∠FCD,∠ADB=∠FDC,∴△ADB∽△FDC,∴=,∴AD•CD=BD•DF,∴AD•CD=7,即AD2=7,∴AD=(取正值);②∵△ODC为直角三角形,∠DCO不可能等于90°,∴存在∠ODC=90°或∠COD=90°,当∠ODC=90°时,∵∠ACO=∠ACF,∴OD=DF=2,BD=6,∴AD=CD,∴AD•CD=AD2=12,∴AD=2,AC=4,∴S△ABC=×4×6=12;当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4,延长AO交BC于点M,则AM⊥BC,∴MO=2,∴AM=4+2,∴S△ABC=×4×(4+2)=8+8,∴△ABC的面积为12或8+8.【点评】本题考查了圆的有关概念及性质,切线的判定定理,相似三角形的判定及性质,直角三角形的存在性质等,解题关键是在求直角三角形的存在性及三角形ABC的面积时注意分类讨论思想的运用等.25.(10分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点坐标为C(3,6),并与y轴交于点B(0,3),点A是对称轴与x轴的交点.(1)求抛物线的解析式;(2)如图①所示,P是抛物线上的一个动点,且位于第一象限,连接BP,AP,求△ABP 的面积的最大值;(3)如图②所示,在对称轴AC的右侧作∠ACD=30°交抛物线于点D,求出D点的坐标;并探究:在y轴上是否存在点Q,使∠CQD=60°?若存在,求点Q的坐标;若不存在,请说明理由.【分析】(1)由题意可设抛物线解析式为y=a(x﹣3)2+6,将B(0,3)代入可得a=﹣,则可求解析式;(2)连接PO,设P(n,﹣n2+2n+3),分别求出S△BPO=n,S△APO=﹣n2+3n+,S△ABO=,所以S△ABP=S△BOP+S△AOP﹣S△ABO=﹣n2+n=﹣(n﹣)2+,当x=时,S△ABP的最大值为;(3)设点的坐标为(t,﹣t2+2t+3),过D作对称轴的垂线,垂足为G,则DG=t﹣3,CG=6﹣(﹣t2+2t+3)=t2﹣2t+3,在Rt△CGD中,CG==DG,所以(t﹣3)=t2﹣2t+3,求出D(3+,﹣3),所以AG=3,GD=3,连接AD,在Rt△ADG中,AD=AC=6,∠CAD=120°,在以A为圆心,AC为半径的圆与y轴的交点上,此时,∠CQD=∠CAD=60°,设Q(0,m),AQ为圆A的半径,AQ2=OA2+QO2=9+m2=36,求出m=3或m=﹣3,即可求Q.【解答】解:(1)抛物线顶点坐标为C(3,6),∴可设抛物线解析式为y=a(x﹣3)2+6,将B(0,3)代入可得a=﹣,∴y=﹣x2+2x+3;(2)连接PO,BO=3,AO=3,设P(n,﹣n2+2n+3),∴S△ABP=S△BOP+S△AOP﹣S△ABO,S△BPO=n,S△APO=﹣n2+3n+,S△ABO=,∴S△ABP=S△BOP+S△AOP﹣S△ABO=﹣n2+n=﹣(n﹣)2+,∴当x=时,S△ABP的最大值为;(3)存在,设点的坐标为(t,﹣t2+2t+3),过D作对称轴的垂线,垂足为G,则DG=t﹣3,CG=6﹣(﹣t2+2t+3)=t2﹣2t+3,∴∠ACD=30°,∴2DG=DC,在Rt△CGD中,CG==DG,∴(t﹣3)=t2﹣2t+3,∴t=3+3或t=3(舍)∴D(3+,﹣3),∴AG=3,GD=3,连接AD,在Rt△ADG中,∴AD==6,∴AD=AC=6,∠CAD=120°,∴在以A为圆心,AC为半径的圆与y轴的交点上,此时,∠CQD=∠CAD=60°,设Q(0,m),AQ为圆A的半径,AQ2=OA2+QO2=9+m2,∴AQ2=AC2,∴9+m2=36,∴m=3或m=﹣3,综上所述:Q点坐标为(0,3)或(0,﹣3).【点评】本题考查二次函数的综合题;熟练掌握二次函数的图象及性质,能够利用直角三角形和圆的知识综合解题是关键.。
广东省实验中学中考一模数学考试卷(解析版)(初三)中考模拟.doc
广东省实验中学中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】2的倒数是()A.2 B.﹣2 C. D.【答案】C【解析】试题分析:直接根据倒数的定义:乘积是1的两数互为倒数,解得2的倒数是.故选C.考点:倒数【题文】下列图形中,不是中心对称图形有()A. B. C. D.【答案】D【解析】试题分析:根据中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.可得:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选D.考点:中心对称图形【题文】数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【答案】C【解析】试题分析:根据众数是一组数据中出现次数最多的数,数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选C.考点:众数【题文】下列四个几何体中,主视图是三角形的是(    )A. B. C. D.【答案】B【解析】试题分析:主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.考点:简单几何体的三视图【题文】下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4 C.(3a)﹣(2a)=6a D.(a2)3=a6【答案】D【解析】试题分析:A:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由3a﹣a=2a,可得选项A不正确;B:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由a2+a2=2a2,可得选项B不正确;C:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由(3a)﹣(2a)=a,可得选项C不正确;D:幂的乘方,底数不变,指数相乘.由(a2)3=a6,可得选项D正确.故选:D.考点:1、幂的乘方与积的乘方;2、合并同类项【题文】函数中自变量x的取值范围是()A. x≥-3B. x≥-3且x≠1C. x≠1D. x≠-3且x≠1【答案】B【解析】试题分析:根据被开方数为非负数和分母不分0列不等式:,解得:x≥﹣3且x≠1.故选B.考点:函数自变量的取值范围【题文】如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.【答案】B【解析】试题分析:连接OB,OC,依据同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC的圆心角的度数∠BOC=2∠BAC=2×36°=72°,然后利用弧长计算公式求解,则劣弧BC的长是:=.故选B.考点:1、弧长的计算;2、圆周角定理【题文】如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.【答案】B【解析】试题分析:过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB=,tanB′=tanB=.故选B.考点:1、锐角三角函数的定义;2、旋转的性质【题文】二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.【答案】B【解析】试题分析:由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围a<0,对称轴在y轴的左边,可由,可以确定b的取值范围b<0,然后就可以确定反比例函数与正比例函数y=bx 在同一坐标系内的大致图象:反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.考点:1、二次函数的图象;2、正比例函数的图象;3、反比例函数的图象【题文】如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109【答案】D【解析】试题分析:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;…第n个图形中有1+2(2+3+4+…+n)个平行四边形;第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形;故选D.考点:规律型:图形的变化类【题文】分解因式:2a2+4a=.【答案】2a(a+2)【解析】试题分析:直接提取公因式2a,进而分解因式得出2a2+4a=2a(a+2).考点:因式分解-提公因式法【题文】正n边形的一个外角的度数为60°,则n的值为.【答案】6【解析】试题分析:先根据正n边形的一个外角的度数为60°求出其内角的度数120°,再根据多边形的内角和公式=120°,解得n=6.考点:多边形内角与外角【题文】已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是.【答案】m>﹣2【解析】试题分析:根据一次函数的图象与系数的关系列出关于m的不等式m+2>0,求出m的取值范围m>﹣2.考点:一次函数图象与系数的关系【题文】关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是.【答案】0或8【解析】试题分析:先根据关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,可得△=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.考点:根的判别式【题文】如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B’重合.若AB=2,BC=3,则△FCB’与△B’DG的面积比为.【答案l【答案】100°【解析】试题分析:作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″=180°﹣∠130°=50°,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.考点:轴对称-最短路线问题【题文】解方程:【答案】x=2【解析】试题分析:观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.考点:解分式方程【题文】先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.【答案】2a+2,【解析】试题分析:先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.试题解析:(a+1)2﹣(a+1)(a﹣1)=a2+2a+1﹣a2+1=2a+2,当a=﹣1时,原式=2×(﹣1)+2=2.考点:整式的混合运算—化简求值【题文】以AB、AC为边向△ABC外作等边△A BD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD .(尺规作图,不写作法,保留作图痕迹)【答案】作图与证明见解析【解析】试题分析:分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形CAD与三角形EAB全等,利用全等三角形的对应边相等即可得证.试题解析:如图所示:∵△ABD和△ACE都是等边三角形,∴A D=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD.考点:1、全等三角形的判定与性质;2、等边三角形的性质;3、作图—复杂作图【题文】我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【答案】(1)500,200(2)当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元【解析】试题分析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.试题解析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.考点:1、一元一次不等式的应用;2、二元一次方程组的应用【题文】王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【答案】(1)20,2,1;(2)图形见解析(3)【解析】试题分析:(1)由条形统计图与扇形统计图,即可求得调查的总人数,继而分别求得C类女生与D类男生数;(2)由(1)可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.试题解析:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:.考点:1、列表法与树状图法;2、扇形统计图;3、条形统计图【题文】如图,已知一次函数y=kx+b的图象交反比例函数(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且,求m的值和一次函数的解析式.【答案】(1)m>,(2)4,y=x﹣5【解析】试题分析:(1)根据双曲线位于第四象限,比例系数k<0,列式求解即可;(2)先把点A的坐标代入反比例函数表达式求出m的值,从而的反比例函数解析式,设点B的坐标为B(x ,y),利用相似三角形对应边成比例求出y的值,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可.试题解析:(1)根据题意,反比例函数图象位于第四象限,∴4﹣3m<0,解得:m>;(2)∵点A(2,﹣4)在反比例函数图象上,∴4﹣3m=2×(﹣4)=﹣8,∴解得:m=4,∴反比例函数解析式为y=﹣,∵,∴,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,∴,解得:y=﹣1,∴﹣=﹣1,解得:x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴,解得:,∴一次函数的解析式是y=x﹣5.考点:反比例函数与一次函数的交点问题【题文】已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.【答案】(1)证明见解析(2)4.8【解析】试题分析:(1)连接OM.根据OB=OM,得∠1=∠3,结合BMl∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cosC=,∴AB=BE÷cosB=12,则OA=12﹣r.∵OM∥BE,∴,即,解得r=2.4.则圆的直径是4.8.考点:1、切线的判定与性质;2、等腰三角形的性质;3、圆周角定理;4、解直角三角形【题文】如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A 、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB的位置关系?【答案】(1)2(2)①不存在,②t=时,PQ最小值为,△CPQ的外接圆与直线AB相交【解析】试题分析:(1)根据CQ=CP,列出方程即可解决.(2))①不存在.不妨设四边形PDBQ是菱形,推出矛盾即可.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA,由•AC•OF+•AC•OE+•AB•OM=•BC•AC求出OM以及圆的半径即可解决问题.试题解析:(1)∵△CBP是等腰三角形,∠C=90°,∴CQ=CP,∴6﹣t=2t,∴t=2,∴t=2秒时,△CBP是等腰三角形.(2)①不存在.理由:不妨设四边形PDBQ是菱形,则PD=BQ,∴t=8﹣2t,∴t=,∴CQ=,PC=6﹣=,BQ=PD=,∴OQ==6,∴PQ≠BQ,∴假设不成立,∴不存在.设点Q的速度为每秒a个单位长度.∵四边形PDBQ是菱形,∴PD=BD,∴t=10﹣t,∴t=,∴BQ=PD=,∴6﹣a=,∴a=.∴点Q的速度为每秒个长度单位时,使四边形PDBQ在某一时刻为菱形.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA.∵PQ===,∴t=时,PQ最小值为.此时PC=,CQ=,PQ=,∵•AC•OF+•AC•OE+•AB•OM=•BC•AC,∴×8×+×6×+×10×OM=24,∴OM=,∴OM<OP,∴△CPQ的外接圆与直线AB相交.考点:圆的综合题【题文】已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q .连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.【答案】(1)B(4,0),C(﹣1,0)(2)①P(,)或(7,24)②P(4,0)或(5,﹣6)③m<0,或m>【解析】试题分析:(1)先令x=0求出y的值即可得出A点坐标,再令y=0求出x的值即可得出BC两点的坐标;(2)①分△AQP∽△AOC与△AQP∽△COA两种情况进行讨论;②过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,再由△AEM∽△MFP求出PF的表达式,在Rt△AOM中根据勾股定理求出x的值,进而可得出P点坐标③根据在位于直线l下方的抛物线上任取一点P,则有a<0或a>3,由点P在抛物线上即可建立m与n的关系.试题解析:(1)∵令x=0,则y=4,∴A(0,4);∵令y=0,则﹣x2+3x+4=0,解得x1=4,x2=﹣1,∴B(4,0),C(﹣1,0);(2)①∵以A,P,Q三点构成的三角形与△AOC相似,∴△AQP∽△AOC与△AQP∽△COA,∴或,即或,解得x=或x=7,均在对称轴的右侧,∴P(,)或(7,24);②如图所示,过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,∵∠EAM+∠EMA=90°,∠EMA+∠FMP=90°,∴∠FMP=∠EAM.∵∠MFP=∠AEM=90°,∴△AEM∽△MFP,∴.∵MP=x2﹣3x,∴,∴PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,在Rt△AOM中,∵OM2+OA2=AM2,即(3x﹣12)2+42=x2,解得x1=4,x2=5均在抛物线对称轴的右侧,∴P(4,0)或(5,﹣6).③∵抛物线y=﹣x2+3x+4和A(0,4),∴抛物线和直线l的交点坐标为A(0,4),(3,4),设P(a,﹣a2+3a+4);(a<0或a>3)∵AP的中点是R,A(0,4),∴=m,=n,∴n=﹣2m2+3m+4,∵a<0或a>3,∴2m<0,或2m>3,∴m<0,或m>.考点:二次函数综合题。
2020广东省中考数学模拟试卷(一)(含答案和解析)
2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。
2020年广东省实验中学中考数学一模试卷(解析版)
2020年广东省实验中学中考数学一模试卷一.选择题(共10小题)1.0这个数()A.是正数B.是负数C.不是有理数D.是整数2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列计算,正确的是()A.x4﹣x3=x B.x5÷x3=x2C.x•x3=x3D.(xy2)2=xy4 5.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)26.已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()A.﹣1B.﹣2C.﹣3D.17.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣38.已知反比例函数图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1<y29.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm210.关于x的一元二次方程kx2﹣2x+1=0有两个实数根,那么实数k的取值范围是()A.k≤1B.k<1且k≠0C.k≤1且k≠0D.k≥1二.填空题(共6小题)11.使式子有意义的x的取值范围是.12.把多项式9m2﹣36n2分解因式的结果是.13.在平面直角坐标系中,若点M(﹣2,3)与点N(x,3)之间的距离是5,则x的值是.14.已知函数y=﹣x2﹣2x,当时,函数值y随x的增大而增大.15.实数a在数轴上的位置如图所示,化简|a﹣2|+=.16.二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为﹣3、1,与y轴交于点C,下面四个结论:①16a+4b+c>0:②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1<y2;③c=3a;④若△ABC是等腰三角形,则b=﹣或﹣.其中正确的有.(请将正确结论的序号全部填在横线上)三.解答题(共9小题)17.计算:.18.解方程:.19.先化简,再求值:,再从不等式组<x<中选取一个你认为合适的整数作为x的值代入求值.20.对于实数a,b,定义新运算“*”:a*b=,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.(1)求(﹣7)*(﹣2)的值;(2)若x1,x2是一元次方程x2﹣5x﹣6=0的两个根,求x1*x2的值.21.某单位计划从商店购买同一种品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用20元,若用1500元购买钢笔和用600元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买一支钢笔、一个笔记本各需要多少元?(2)经商谈,商店给予优惠,优惠方式是每购买一支钢笔赠送一个笔记本;如果此单位需要笔记本的数量是钢笔数量的3倍还少6个,且购买钢笔和笔记本的总费用不超过1020元,那么最多可购买多少支钢笔?22.一次函数y=kx+6与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<6)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W 的最小值.23.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.(1)k1=,k2=;(2)根据函数图象知,①当y1>y2时,x的取值范围是;②当x为时,y2>﹣2x.(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=4:1时,求点P的坐标.(4)点M是y轴上的一个动点,当△MBC为直角三角形时,直接写出点M的坐标.24.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.25.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D)在抛物线上,当AM=AD,m=3时,求b的值;(3)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.(说明:y D表示D点的纵坐标,y Q表示Q点的纵坐标)2020年广东省实验中学中考数学一模试卷参考答案与试题解析一.选择题(共10小题)1.0这个数()A.是正数B.是负数C.不是有理数D.是整数【分析】根据0的意义,可得答案.【解答】解:A、0不是正数也不是负数,故A错误;B、0不是正数也不是负数,故B错误;C、0是有理数,故C错误;D、0是整数,故D正确.故选:D.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm=100×10﹣9m=1×10﹣7m.故选:C.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.4.下列计算,正确的是()A.x4﹣x3=x B.x5÷x3=x2C.x•x3=x3D.(xy2)2=xy4【分析】根据同底数幂的除法,可判断还能A、B,根据同底数幂的乘法底数不变指数相加,可判断C,根据积的乘方,可判断D.【解答】解:A、不是同底数幂的除法指数不能相减,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.5.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)2【分析】各项分解得到结果,即可作出判断.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.6.已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()A.﹣1B.﹣2C.﹣3D.1【分析】根据方程的解为x=3,将x=3代入方程即可求出a的值.【解答】解:将x=3代入方程得:3a+2×3﹣3=0,解得:a=﹣1.故选:A.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.已知反比例函数图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1<y2【分析】由反比例函数的图象可得k<0,y随x的增大而增大;由矩形OABC面积为2,可得k=﹣2.【解答】解:如图,k<0,y随x的增大而增大;∵矩形OABC面积为2,k=﹣2,故选:D.9.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm2【分析】设小长方形的长为xcm,宽为ycm,观察图形,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.【解答】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴14×(6+2×2)﹣6×8×2=44(cm2).故选:A.10.关于x的一元二次方程kx2﹣2x+1=0有两个实数根,那么实数k的取值范围是()A.k≤1B.k<1且k≠0C.k≤1且k≠0D.k≥1【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac≥0,建立关于k 的不等式,求出k的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程kx2﹣2x+1=0有两个实数根,∴根的判别式△=b2﹣4ac=4﹣4k≥0,且k≠0.即k≤1且k≠0.故选:C.二.填空题(共6小题)11.使式子有意义的x的取值范围是x≥﹣.【分析】二次根式的被开方数是非负数.【解答】解:根据题意,得2x+1≥0,解得,x≥﹣.故答案是:x≥﹣.12.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).13.在平面直角坐标系中,若点M(﹣2,3)与点N(x,3)之间的距离是5,则x的值是﹣7或3.【分析】点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x+2|=5,从而解得x的值.【解答】解:∵点M(﹣2,3)与点N(x,3)之间的距离是5,∴|x+2|=5,解得x=﹣7或3.故答案为:﹣7或3.14.已知函数y=﹣x2﹣2x,当x<﹣1时,函数值y随x的增大而增大.【分析】先运用配方法将抛物线写成顶点式y=﹣(x+1)2+1,由于a=﹣1<0,抛物线开口向下,对称轴为直线x=1,根据抛物线的性质可知当x<﹣1时,y随x的增大而增大,即可求出.【解答】解:∵y=﹣x2﹣2x=﹣(x+1)2+1,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x<﹣1时,y随x的增大而增大,故答案为:x<﹣1.15.实数a在数轴上的位置如图所示,化简|a﹣2|+=2.【分析】先根据点a在数轴上的位置判断出其大小,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知,2<a<4,∴原式=a﹣2+=a﹣2+4﹣a=2.故答案为:2.16.二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为﹣3、1,与y轴交于点C,下面四个结论:①16a+4b+c>0:②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1<y2;③c=3a;④若△ABC是等腰三角形,则b=﹣或﹣.其中正确的有①④.(请将正确结论的序号全部填在横线上)【分析】①根据抛物线开口方向和与x轴的两交点可知:当x=﹣4时,y<0,即16a﹣4b+c<0;②根据图象与x轴的交点A、B的横坐标分别为﹣3,1确定对称轴是:x=﹣1,可得:(﹣4.5,y3)与Q(,y2)是对称点,所以y1<y2;③根据对称轴和x=1时,y=0可得结论;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,先计算c的值,再联立方程组可得结论.【解答】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确,符合题意;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(,y2)是对称点,∴则y1<y2;故②不正确,不符合题意;③∵﹣=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0,∴3a+c=0,∴c=﹣3a,故③错误,不符合题意;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵BO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AB=AC=4时,∵AO=3,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AC=BC时,在△AOC中,AC2=9+c2,在△BOC中,BC2=c2+1,∵AC=BC,∴1+c2=c2+9,此方程无实数解.经解方程组可知有两个b值满足条件.故④正确,符合题意.综上所述,正确的结论是①④.故答案是:①④.三.解答题(共9小题)17.计算:.【分析】根据负整数指数幂、零指数幂、绝对值的意义计算,然后分母有理化后合并即可.【解答】解:原式=2×1+﹣=2.18.解方程:.【分析】观察可得最简公分母是(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣1),得:x+1=﹣(x﹣3)+x﹣1,解得:x=1.检验:把x=1代入(x﹣1)=0,即x=1不是原分式方程的解.则原分式方程无解.19.先化简,再求值:,再从不等式组<x<中选取一个你认为合适的整数作为x的值代入求值.【分析】首先计算括号里面分式的加法,然后再计算括号外分式的除法,化简后,再确定x的值,然后代入x的值可得答案.【解答】解:原式=[+]•,=•,=•,=,∵x+1≠0,x﹣1≠0,x≠0,∴x≠±1和0,∴选x=2,当x=2时,原式==1.20.对于实数a,b,定义新运算“*”:a*b=,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.(1)求(﹣7)*(﹣2)的值;(2)若x1,x2是一元次方程x2﹣5x﹣6=0的两个根,求x1*x2的值.【分析】(1)根据题中的新定义化简,计算即可得到结果;(2)求出已知方程的解得到x1与x2的值,利用题中新定义计算即可得到结果.【解答】解:(1)∵﹣7<﹣2,∴(﹣7)*(﹣2)=14﹣4=10;(2)方程x2﹣5x﹣6=0变形得:(x+1)(x﹣6)=0,解得:x=﹣1或x=6,当x1=﹣1,x2=6时,x1*x2=﹣6﹣36=﹣42;当x1=6,x2=﹣1时,x1*x2=36+6=42.21.某单位计划从商店购买同一种品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用20元,若用1500元购买钢笔和用600元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买一支钢笔、一个笔记本各需要多少元?(2)经商谈,商店给予优惠,优惠方式是每购买一支钢笔赠送一个笔记本;如果此单位需要笔记本的数量是钢笔数量的3倍还少6个,且购买钢笔和笔记本的总费用不超过1020元,那么最多可购买多少支钢笔?【分析】(1)设购买一个笔记本需要x元,则购买一支钢笔需要(x+20)元,根据数量=总价÷单价结合用1500元购买钢笔的数量是用600元购买笔记本数量的一半,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m支钢笔,则购买(3m﹣6)个笔记本,根据总价=单价×数量结合总费用不超过1020元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买一个笔记本需要x元,则购买一支钢笔需要(x+20)元,依题意,得:2×=,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,∴x+20=25.答:购买一支钢笔需要25元,购买一个笔记本需要5元.(2)设购买m支钢笔,则购买(3m﹣6)个笔记本,依题意,得:25m+5(3m﹣6﹣m)≤1020,解得:m≤30.答:最多可购买30支钢笔.22.一次函数y=kx+6与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<6)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W 的最小值.【分析】(1)由交点为(1,2),代入y=kx+6,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣4x2+6,令y=m,得4x2+m﹣6=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+6=2,解得k=﹣4,又∵二次函数顶点为(0,6),∴c=6,把(1,2)代入二次函数表达式得a+c=2,解得a=﹣4;(2)由(1)得二次函数解析式为y=﹣4x2+6,令y=m,得4x2+m﹣6=0,∴x=±=±,设B,C两点的坐标分别为(x1,m)(x2,m),则BC=|x1﹣x2|=2×=,∴W=OA2+BC2=m2+6﹣m=+,∴当m=时,W取得最小值.23.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.(1)k1=1,k2=12;(2)根据函数图象知,①当y1>y2时,x的取值范围是﹣6<x<0或x>2;②当x为x>0时,y2>﹣2x.(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=4:1时,求点P的坐标.(4)点M是y轴上的一个动点,当△MBC为直角三角形时,直接写出点M的坐标.【分析】(1)根据点B的坐标,利用待定系数法即可求出k1、k2的值;(2)观察两函数图象的上下位置关系,由此即可得出不等式的解集;(3)根据一次函数图象上点的坐标特征求出点A、C的坐标,根据梯形的面积公式求出S四边形ODAC的值,进而即可得出S△ODE的值,结合三角形的面积公式即可得出点E的坐标,利用待定系数法即可求出直线OP的解析式,再联立直线OP与双曲线的解析式成方程组,通过解方程组求出点P的坐标;(4)分∠CMB=90°或∠CBM=90°两种情况考虑,当∠CMB=90°时,根据点B的坐标即可找出点M的坐标;当∠CBM=90°时,由直线AB的解析式可得出△BCM为等腰直角三角形,根据等腰直角三角形的性质结合点A、B的坐标即可得出点M的坐标.综上即可得出结论.【解答】解:(1)将点B(﹣6,﹣2)代入y1=k1x+4,﹣2=﹣6k1+4,解得:k1=1;将点B(﹣6,﹣2)代入y2=①,﹣2=,解得:k2=12.故答案为:1;12.(2)①观察函数图象可知:当﹣6<x<0或x>2时,一次函数图象在反比例函数图象上方,∴当y1>y2时,x的取值范围是﹣6<x<0或x>2.故答案为:﹣6<x<0或x>2.②过点O作直线l:y=﹣2x,如图1所示.观察图形可知:x>0时,反比例函数图象在直线l上方,故答案为:x>0.(3)依照题意,画出图形,如图2所示.当x=2时,m=x+4=6,∴点A的坐标为(2,6);当x=0时,y1=x+4=4,∴点C的坐标为(0,4).∵S四边形ODAC=(OC+AD)•OD=×(4+6)×2=10,S四边形ODAC:S△ODE=4:1,∴S△ODE=OD•DE=×2DE=10×,∴DE=2.5,即点E的坐标为(2,2.5).设直线OP的解析式为y=kx,将点E(2,2.5)代入y=kx,得2.5=2k,解得:k=,∴直线OP的解析式为y=x②.联立①②并解得:,,∵点P在第一象限,∴点P的坐标为(,).(4)依照题意画出图形,如图3所示.当∠CMB=90°时,BM∥x轴,∴点M的坐标为(0,﹣2);当∠CBM=90°时,∵直线AC的解析式为y=x+4,∴∠BCM=45°,∴△BCM为等腰直角三角形,∴CM=﹣2x B=12,∴点M的坐标为(0,﹣8).综上所述:当△MBC为直角三角形时,点M的坐标为(0,﹣2)或(0,﹣8).24.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E在x轴正半轴且点A在线段OE上得到点A在x轴正半轴上,所以A(2,0);由OA=2,且OA:AD=1:3得AD=6.由于四边形ABCD为矩形,故有AD⊥AB,所以点D在第四象限,横坐标与A的横坐标相同,进而得到点D坐标.由抛物线经过点D、E,用待定系数法即求出其解析式.(2)画出四边形MNGF,由于点F、G分别在x轴、y轴上运动,故可作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',得FM=FM'、GN=GN'.易得当M'、F、G、N'在同一直线上时N'G+GF+FM'=M'N'最小,故四边形MNGF周长最小值等于MN+M'N'.根据矩形性质、抛物线线性质等条件求出点M、M'、N、N'坐标,即求得答案.(3)因为OD可求,且已知△ODP中OD边上的高,故可求△ODP的面积.又因为△ODP的面积常规求法是过点P作PQ平行y轴交直线OD于点Q,把△ODP拆分为△OPQ 与△DPQ的和或差来计算,故存在等量关系.设点P坐标为t,用t表示PE的长即列得方程.求得t的值要讨论是否满足点P在x轴下方的条件.(4)由KL平分矩形ABCD的面积可得K在线段AB上、L在线段CD上,画出平移后的抛物线可知,点K由点O平移得到,点L由点D平移得到,故有K(m,0),L(2+m,﹣6).易证KL平分矩形面积时,KL一定经过矩形的中心H且被H平分,求出H坐标为(4,﹣3),由中点坐标公式即求得m的值.【解答】解:(1)∵点A在线段OE上,E(8,0),OA=2∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN,∴C四边形MNGF=MN+NG+GF+FM=MN+N'G+GF+FM'∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小∴C四边形MNGF=MN+M'N'==2+10=12∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PQ∥y轴交直线OD于点Q,∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x,设点P坐标为(t,t2﹣4t)(0<t<8),则点Q(t,﹣3t),①如图2,当0<t<2时,点P在点D左侧,∴PQ=y Q﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t,∴S△ODP=S△OPQ+S△DPQ=PQ•x P+PQ•(x D﹣x P)=PQ(x P+x D﹣x P)=PQ•x D=PQ=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h,∴﹣t2+t=×2×,方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP=S△OPQ﹣S△DPQ=PQ•x P﹣PQ•(x P﹣x D)=PQ(x P﹣x P+x D)=PQ•x D =t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,﹣6)连接AC,交KL于点H∵S△ACD=S四边形ADLK=S矩形ABCD∴S△AHK=S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.25.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D)在抛物线上,当AM=AD,m=3时,求b的值;(3)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.(说明:y D表示D点的纵坐标,y Q表示Q点的纵坐标)【分析】(1)将点A(﹣1,0)代入y=x2﹣bx+c,求出c关于b的代数式,再将b代入即可求出c的值,可进一步写出抛物线解析式及顶点坐标;(2)将点D(b,y D)代入抛物线y=x2﹣bx﹣b﹣1,求出点D纵坐标为﹣b﹣1,由b>0判断出点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE ⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(3)将点Q(b+,y Q)代入抛物线y=x2﹣bx﹣b﹣1,求出Q纵坐标为﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q 作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,可得方程[(﹣)﹣(﹣1)]+2•[(b+)﹣(﹣)]=,即可求解.【解答】解:(1)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(2)由(1)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=3,∴3﹣(﹣1)=(b+1),∴b=2﹣1;(3)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM=,∴[(﹣)﹣(﹣1)]+2•[(b+)﹣(﹣)]=,∴b=6.。
精品模拟2020年广东省中考数学模拟试卷一(解析版)
2020年广东省中考数学试卷一一.选择题(共10小题,满分30分,每小题3分)1.﹣3的绝对值是()A.﹣3 B.C.3 D.±32.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是()A.3.1536×106B.3.1536×107C.31.536×106D.0.31536×1083.下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y64.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.5.某校在“爱护地球,绿化祖国”的创建活动中,组织了100名学生开展植树造林活动,其植树情况整理如下表:则这100名学生所植树棵树的中位数为()A.4B.5C.5.5D.66.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°7.将多项式x﹣x3因式分解正确的是()A.x(1﹣x2)B.x(x2﹣1)C.x(1+x)(1﹣x)D.x(x+1)(x﹣1)8.下列命题的逆命题为真命题的是()A.如果a=b,那么a2=b2B.若a=b,则|a|=|b|C.对顶角相等D.两直线平行,同旁内角互补9.如图,在平面直角坐标系中,A(﹣3,1),以点O为直角顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B,设直线AB的解析式为y2=k2x﹣b,当y1>y2时,x的取值范围是()A.﹣5<x<1B.0<x<1或x<﹣5C.﹣6<x<1D.0<x<1或x<﹣610.如图,已知MN是⊙O的直径,点Q在⊙O上,将劣弧沿弦MQ翻折交MN于点P,连接PQ,若∠PMQ=16°,则∠PQM的度数为()A.32°B.48°C.58°D.74°二.填空题(共6小题,满分24分,每小题4分)11.一个多边形的内角和与外角和的比是4:1,则它的边数是.12.桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的性.13.在纸上画了一条数轴后,折叠纸面,使数轴上表示﹣1的点与表示3的点重合,这时表示﹣99的点与表示2x+1的点也重合,则x+1969的值是.14.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是.15.已知a、b、c为△ABC的三边长,且a、b满足|a﹣2|+b2﹣14b+49=0,c为奇数,则△ABC的周长为.16.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=5.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB 边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为P n(n为正整数),则点P2016与点P2017之间的距离为.三.解答题(共3小题,满分18分,每小题6分)17.(6分)计算:.18.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.19.(6分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕原点O按顺时针方向旋转90°后的△A2B2C2,并求出点C旋转到点C2所经过的路线长(结果保留π).四.解答题(共3小题,满分21分,每小题7分)20.(7分)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了名学生进行调查;(2)将图甲中的条形统计图补充完整;(3)求出图乙中B等级所占圆心角的度数;(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生获得A等级的评价.21.(7分)如图,在面积为4的平行四边形ABCD中,作一个面积为1的△ABP,使点P在平行四边形ABCD的边上(要求:尺规作图,保留作图痕迹,不写作法).22.(7分)某批服装进价为每件200元,商店标价每件300元,现商店准备将这批服装打折出售,但要保证毛利润不低于5%,问售价最低可按标价的几折?(要求通过列不等式进行解答)五.解答题(共3小题,满分27分,每小题9分)23.(9分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.24.(9分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O 的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.25.(9分)如图1,在四边形ABCD的边BC的延长线上取一点E,在直线BC的同侧作一个以CE 为底的等腰△CEF,且满足∠B+∠F=180°,则称三角形CEF为四边形ABCD的“伴随三角形”.(1)如图1,若△CEF是正方形ABCD的“伴随三角形”:①连接AC,则∠ACF=;②若CE=2BC,连接AE交CF于H,求证:H是CF的中点;(2)如图2,若△CEF是菱形ABCD的“伴随三角形”,∠B=60°,M是线段AE的中点,连接DM、FM,猜想并证明DM与FM的位置与数量关系.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用绝对值的定义求解即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将31536000用科学记数法表示为3.1536×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用合并同类项法则以及幂的乘方运算法则和积的乘方运算法则分别计算得出答案.【解答】解:A、b3•b3=b6,故此选项错误;B、(ab2)3=a3b6,故此选项错误;C、(a5)2=a10,正确;D、y3+y3=2y3,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及幂的乘方运算和积的乘方运算,正确掌握相关运算法则是解题关键.4.【分析】主视图有2列,每列小正方形数目分别为1,2.【解答】解:如图所示:它的主视图是:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.5.【分析】利用中位数的定义求得中位数即可.【解答】解:因为共有100个数,把这组数据从小到大排列,最中间两个数的平均数是第50个数和第51个数的平均数,所以中位数是(5+5)÷2=5.故选:B.【点评】本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.7.【分析】直接提取公因式x,再利用平方差公式分解因式即可.【解答】解:x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.8.【分析】把一个命题的题设和结论互换即可得到其逆命题,再逐个分析真假命题即可.【解答】解:A、逆命题为:如果a2=b2,那么a=b,错误,为假命题;B、逆命题为:若|a|=|b|,则a=b,错误,是假命题;C、逆命题为:相等的角是对顶角,错误,是假命题;D、逆命题为:同旁内角互补,两直线平行,正确,是真命题,故选:D.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.9.【分析】由△AOB是等腰三角形,先求的点B的坐标,然后利用待定系数法可求得双曲线和直线的解析式,然后将将y1=与y2=x+联立,求得双曲线和直线的交点的横坐标,然后根据图象即可确定出x的取值范围.【解答】解:如图所示:∵△AOB为等腰直角三角形,∴OA=OB,∠3+∠2=90°.又∵∠1+∠3=90°,∴∠1=∠2.∵点A的坐标为(﹣3,1),∴点B的坐标(1,3).将B(1,3)代入反比例函数的解析式得:3=,∴k=3.∴y1=将A(﹣3,1),B(1,3)代入直线AB的解析式得:,解得:,∴直线AB的解析式为y2=x+.将y1=与y2=x+,联立得;,解得:,当y1>y2时,双曲线位于直线线的上方,∴x的取值范围是:x<﹣6或0<x<1.故选:D.【点评】本题主要考查了反比例函数和一次函数的交点问题,求得双曲线和直线的交点的横坐标是解题的关键,同时本题还考查了函数与不等式的关系:从函数的角度看,y1>y2就是双曲线y1=位于直线y2=x+上方部分所有点的横坐标的集合;从不等式的角度来看y1>y2就是求不等式>x+的解集.10.【分析】首先连接NQ,由MN是直径,可求得∠MQN=90°,则可求得∠MNQ的度数,然后由翻折的性质可得,所对的圆周角为∠MNQ,所对的圆周角为∠MPQ,继而求得答案.【解答】解:连接NQ,∵MN是直径,∴∠MQN=90°,∵∠PMQ=16°,∴∠MNQ=90°﹣∠PMQ=90°﹣16°=74°,根据翻折的性质,所对的圆周角为∠MNQ,所对的圆周角为∠MPQ,∴∠MPQ+∠MNQ=180°,∴∠MNQ=∠QPN=74°,∴∠PQM=∠MNQ﹣∠PMQ=74°﹣16°=58°.故选:C.【点评】此题考查了圆周角定理以及折叠的性质.注意掌握辅助线的作法,能得到∠MNQ=∠QPN是解此题的关键.二.填空题(共6小题,满分24分,每小题4分)11.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.12.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性作答.【解答】解:桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的稳定性.故答案为:稳定.【点评】本题考查三角形的稳定性在实际生活中的应用问题,是基础题型.13.【分析】由折叠的性质可知,折叠重合的两点表示的数之和相等,进而可得出关于x的一元一次方程,解之即可求出x的值,再将其代入x+1969中即可求出结论.【解答】解:根据题意得:﹣99+2x+1=﹣1+3,解得:x=50,∴x+1969=2019.故答案为:2019.【点评】本题考查了数轴、折叠的性质以及一元一次方程的应用,通过解一元一次方程求出x的值是解题的关键.14.【分析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.【解答】解:设白球的个数为x个,∵共有黄色、白色的乒乓球50个,白球的频率稳定在60%,∴=60%,解得x=30,∴布袋中白色球的个数很可能是50﹣30=20(个).故答案为:20.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系,列出方程.15.【分析】利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可.【解答】解:∵|a﹣2|+b2﹣14b+49=0,∴|a﹣2|+(b2﹣14b+49)=0,∴|a﹣2|+(b﹣7)2=0,∴a=2,b=7,∴边长c的范围为2<c<9.∵边长c的值为奇数,∴c=3,5,7∵2+7>7,∴△ABC的周长为2+7+7=16.故答案为:16.【点评】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.16.【分析】根据等边三角形的性质求出P0P1=3,P1P2=2,P2P3=3,P3P4=2,找出规律进行解答即可.【解答】解:∵△ABC为等边三角形,边长为5,根据跳动规律可知,∴P0P1=3,P1P2=2,P2P3=3,P3P4=2,…观察规律:当落点脚标为奇数时,距离为3,当落点脚标为偶数时,距离为2,∵2017是奇数,∴点P2016与点P2017之间的距离是3.故答案为:3.【点评】本题考查的是等边三角形的性质,根据题意求出P0P1,P1P2,P2P3,P3P4的值,找出规律是解答此题的关键.三.解答题(共3小题,满分18分,每小题6分)17.【分析】直接利用零指数幂的性质以及二次根式的性质、特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×﹣(2﹣3)﹣2+1=2+3﹣2﹣2+1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.【分析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置,再利用弧长计算公式得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求,A1的坐标为:(2,﹣4);(2)如图所示:△A2B2C2,即为所求,可得CO==5,点C旋转到点C2所经过的路线长为:=π.【点评】此题主要考查了旋转变换以及轴对称变换,正确得出对应点位置是解题关键.四.解答题(共3小题,满分21分,每小题7分)20.【分析】(1)用C等级的人数除以总人数其所占百分比可得调查总人数;(2)根据各等级人数之和等于总人数求得B等级人数,据此可补全条形图;(3)用360°乘以B等级人数占总人数的比例;(4)用总人数乘以样本中A等级人数占总人数的比例可得.【解答】解:(1)抽取调查的学生总人数为10÷10%=100,故答案为:100;(2)B等级的人数为100﹣50﹣10﹣5=35(人),画条形统计图如图:(3)图乙中B等级所占圆心角的度数360°×=126°;(4)2000×=1000,答:估计有1000名学生获得A等级的评价.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【分析】作AD的垂直平分线交AD于P,连接BP,则利用平行四边形的性质可求出△ABP的面积为1.【解答】解:如图,△ABP为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.22.【分析】设售价可以按标价打x折,根据“保证毛利润不低于5%”列出不等式,解之可得.【解答】解:设售价可以按标价打x折,根据题意,得:200+200×5%≤300×,解得:x≥7,答:售价最低可按标价的7折.【点评】本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式.五.解答题(共3小题,满分27分,每小题9分)23.【分析】(1)将A、C两点坐标代入抛物线y=﹣x2+bx+c,即可求得抛物线的解析式;(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;②直接写出满足条件的F点的坐标即可,注意不要漏写.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.24.【分析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得的值.②先利用的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.【解答】(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF∴∠OEA=∠EAF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°∴OE⊥DE∴DE是⊙O的切线(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC∴∵DE=3,CE=2∴②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q ∴EP⊥PG,四边形OGPQ是平行四边形∴∠EPG=90°,PQ=OG∵∴设BC=2x,AE=3x∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C∴△BEC∽△ABC∴∴BC2=AC•CE即(2x)2=2(3x+2)解得:x1=2,x2=﹣(舍去)∴BC=4,AE=6,AC=8∴sin∠BAC=,∴∠BAC=30°∴∠EGP=∠BAC=30°∴PE=EG∴OG+EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=AE=3∴OG+EG的最小值为3【点评】本题考查了等腰三角形和平行线性质,切线的判定和性质,相似的判定和性质,最短路径问题.第(1)题为常规题型较简单;第(2)①题关键是发现DE、CE所在三角形的相似关系;②是求出所有线段长后发现30°角,利用30°构造,考查了转化思想.25.【分析】(1)①连接AC,由正方形的性质和“伴随三角形”的性质可求∠ACB=∠FCE=45°,即可求∠ACF的度数;②连接AE,交CF于点H,设BC=a,CE=2a,由等腰直角三角形的性质可求AC=a,EF=FC=a,由相似三角形的性质可得,可得结论;(2)延长DM交CE于点P,连接DF,FP,由菱形的性质和“伴随三角形”的性质可求∠ECF =30°=∠FEC,CF=EF,∠B=∠DCP=60°,∠DAM=∠PEM,通过证明△ADM≌△EPM,△CDF≌△EPF可得DF=PF,∠DFC=∠PFE,∠DFP=120°,即可求DM与FM的位置与数量关系.【解答】解:(1)①连接AC,∵四边形ABCD是正方形∴∠ACB=45°,∠B=90°,∵△CEF是正方形ABCD的“伴随三角形”:∴∠B+∠F=180°∴∠F=90°又∵△CFE是等腰三角形∴∠FCE=45°∴∠ACF=180°﹣∠FCE﹣∠ACB=90°故答案为:90°②连接AE,交CF于点H,∵CE=2BC,∴设BC=a,CE=2a,∵∠B=90°,AB=BC=a,∴AC=a,∵∠F=90°,CE=2a,∴EF=FC=a,∵∠ACF=∠F=90°∴AC∥EF∴△ACH∽△EFH∴∴CH=HF,∴点H是CF的中点,(2)DM=FM,FM⊥DM理由如下:如图,延长DM交CE于点P,连接DF,FP,∵四边形ABCD是菱形∴AB=BC=CD=AD,AB∥CD,AD∥BC,∴∠B=∠DCP=60°,∠DAM=∠PEM,∵若△CEF是菱形ABCD的“伴随三角形”,∠B=60°,∴∠CFE+∠B=180°,∴∠CFE=120°,且△CEF是等腰三角形,∴∠ECF=30°=∠FEC,CF=EF∴∠DCF=30°∵∠DAM=∠PEM,AM=ME,∠AMD=∠PME∴△ADM≌△EPM(ASA)∴AD=PE,DM=MP∴CD=PE,且CF=EF,∠DCF=∠FEC=30°∴△CDF≌△EPF(SAS)∴DF=PF,∠DFC=∠PFE,∵∠PFE+∠CFP=∠CFE=120°∴∠DFC+∠CFP=120°=∠DFP,且DF=FP,DM=PM,∴FM⊥DM,∠FDM=30°∴DM=FM【点评】本题是四边形综合题,考查了正方形的性质,菱形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.。
广东省广州市2020年中考数学一模试卷解析版
远地点高度约 368000 千米的地月转移轨道.数字 368000 用科学记数法表示为(
)
A. 36.8×104
B. 3.68×106
C. 3.68×105
D. 0.368×106
4. 已知 a,b 满足方程组
A. -4
B. 4
,则 a+b 的值为( )
C. -2
D. 2
5. 如图,四边形 ABCD 是⊙O 的内接正方形,点 P 是 上不同
于点 C 的任意一点,则∠BPC 的大小是( )
A. 22.5° B. 45° C. 30° D. 50°
6. 在平面直角坐标系中,将点 A(-1,2)向右平移 3 个单位长度得到点 B,则点 B 关 于 x 轴的对称点 C 的坐标是( )
A. (-4,-2)
B. (2,2)
C. (-2,F 翻折,得到四边形 EFC′D′,ED′交 BC 于点 G,则△GEF 的周长为( )
A. 6
B. 12
C. 6
二、填空题(本大题共 6 小题,共 18.0 分)
11. 计算:
=______.
12. 分解因式:b2-6b+9=______.
13. 如图,将一块三角板的直角顶点放在直尺的一边上,当
①∠CDF=60°;②△EDB∽△FDC;③BC= ;④S△ADB=
S△EDB. 其中所有正确结论的序号为______. 三、计算题(本大题共 1 小题,共 12.0 分) 17. 已知:关于 x 的一元二次方程 tx2-(3t+2)x+2t+2=0(t>0) (1)求证:方程有两个不相等的实数根; (2)设方程的两个实数根分别为 x1,x2(其中 x1<x2),若 y 是关于 t 的函数,且 y=x2-2x1,求这个函数的解析式,并画出函数图象; (3)观察(2)中的函数图象,当 y≥2t 时,写出自变量 t 的取值范围.
广东省实验中学2020年中考数学一模试题有答案精析
广东省实验中学2020年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中只有一项释符合题目要求的)1.2的倒数是()A.2 B.﹣2 C. D.﹣2.下列图形中,不是中心对称图形有()A. B. C. D.3.数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、4.下列四个几何体中,主视图是三角形的是()A. B. C. D.5.下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4C.(3a)﹣(2a)=6a D.(a2)3=a66.函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠17.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.8.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.9.二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.10.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:2a2+4a=.12.正n边形的一个外角的度数为60°,则n的值为.13.已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是.14.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是.15.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为.16.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为.三、解答题17.(9分)解方程:18.(9分)先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.19.(10分)以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)20.(10分)我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.21.(12分)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(12分)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.23.(12分)已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.24.(14分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB 的位置关系?25.(14分)已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P 作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.2020年广东省实验中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中只有一项释符合题目要求的)1.2的倒数是()A.2 B.﹣2 C. D.﹣【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵2×=1,∴2的倒数是.故选C.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.下列图形中,不是中心对称图形有()A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【考点】众数.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选C.【点评】本题考查了众数的定义,熟记定义是解题的关键,需要注意,众数有时候可以不止一个.4.下列四个几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【解答】解:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.【点评】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.5.下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4C.(3a)﹣(2a)=6a D.(a2)3=a6【考点】幂的乘方与积的乘方;合并同类项.【分析】A:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.B:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.C:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.D:幂的乘方,底数不变,指数相乘.【解答】解:∵3a﹣a=2a,∴选项A不正确;∵a2+a2=2a2,∴选项B不正确;∵(3a)﹣(2a)=a,∴选项C不正确;∵(a2)3=a6,∴选项D正确.故选:D.【点评】此题主要考查了幂的乘方与积的乘方、合并同类项的方法,熟练掌握运算性质和法则是解题的关键.6.函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠1【考点】函数自变量的取值范围.【分析】根据被开方数为非负数和分母不分0列不等式计算.【解答】解:根据题意得:,解得:x≥﹣3且x≠1.故选B.【点评】本题考查了函数自变量的取值范围,要注意几点:①被开方数为非负数;②分母不分0;③a0中a≠0.7.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.【考点】弧长的计算;圆周角定理.【分析】连接OB,OC,依据同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC的圆心角的度数,然后利用弧长计算公式求解即可.【解答】解:连接OB,OC.∠BOC=2∠BAC=2×36°=72°,则劣弧BC的长是:=π.故选B.【点评】本题考查了弧长的计算公式以及圆周角定理,正确理解圆周角定理是关键.8.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.【考点】锐角三角函数的定义;旋转的性质.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.9.二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.【考点】二次函数的图象;正比例函数的图象;反比例函数的图象.【分析】由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围,对称轴可以确定b的取值范围,然后就可以确定反比例函数与正比例函数y=bx在同一坐标系内的大致图象.【解答】解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的左边,∴x=﹣<0,∴b<0,∴反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.【点评】此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;对称轴的位置即可确定b的值.10.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109【考点】规律型:图形的变化类.【分析】得到第n个图形在1的基础上如何增加2的倍数个平行四边形即可.【解答】解:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;…第n个图形中有1+2(2+3+4+…+n)个平行四边形;第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形;故选D.【点评】考查图形的变化规律;得到第n个图形中平行四边形的个数在第①个图形中平行四边形的个数1的基础上增加多少个2是解决本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:2a2+4a=2a(a+2).【考点】因式分解-提公因式法.【分析】直接提取公因式2a,进而分解因式得出即可.【解答】解:2a2+4a=2a(a+2).故答案为:2a(a+2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.正n边形的一个外角的度数为60°,则n的值为6.【考点】多边形内角与外角.【分析】先根据正n边形的一个外角的度数为60°求出其内角的度数,再根据多边形的内角和公式解答即可.【解答】解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和公式是解答此题的关键.13.已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是m>﹣2.【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象与系数的关系列出关于m的不等式,求出m的取值范围即可.【解答】解:∵一次函数y=(m+2)x+3中,y随x值增大而增大,∴m+2>0,解得m>﹣2.故答案为:m>﹣2.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一三象限是解答此题的关键.14.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是0或8.【考点】根的判别式.【分析】先根据方程有两个相等的实数根列出关于m的方程,求出m的值即可.【解答】解:∵关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.故答案为:0或8.【点评】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△=0时,方程有两个相等的两个实数根.15.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为16:9.【考点】翻折变换(折叠问题);矩形的性质.【分析】设BF=x,则CF=3﹣x,B'F=x,在Rt△B′CF中,利用勾股定理求出x的值,继而判断△DB′G∽△CFB′,根据面积比等于相似比的平方即可得出答案.【解答】解:设BF=x,则CF=3﹣x,B'F=x,∵点B′为CD的中点,∴B′C=1,在Rt△B′CF中,B'F2=B′C2+CF2,即x2=1+(3﹣x)2,解得:x=,即可得CF=3﹣=.∵∠DB′G+∠DGB'=90°,∠DB′G+∠CB′F=90°,∴∠DGB′=∠CB′F,∴Rt△DB′G∽Rt△CFB′,根据面积比等于相似比的平方可得:=()2=()2=.故答案为:16:9.【点评】此题考查的是翻折变换,解答本题的关键是求出FC的长度,然后利用面积比等于相似比的平方进行求解.16.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为100°.【考点】轴对称-最短路线问题.【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°.【点评】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.三、解答题17.解方程:【考点】解分式方程.【分析】观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.【考点】整式的混合运算—化简求值.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解答】解:(a+1)2﹣(a+1)(a﹣1)=a2+2a+1﹣a2+1=2a+2,当a=﹣1时,原式=2×(﹣1)+2=2.【点评】本题考查了整式的混合运算和求值的应用,能正确运用运算法则进行化简是解此题的关键.19.(10分)(2020•广东校级一模)以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)【考点】全等三角形的判定与性质;等边三角形的性质;作图—复杂作图.【分析】分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形CAD与三角形EAB全等,利用全等三角形的对应边相等即可得证.【解答】解:如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD.【点评】此题考查了全等三角形的判定与性质,等边三角形的性质以及基本作图,熟练掌握全等三角形的判定与性质是解本题的关键.20.(10分)(2020•广东校级一模)我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.【解答】解:(1):(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.【点评】本题主要考查了二元一次方程组、一元一次不等式以及一次函数应用问题,审清题意,找到等量或不等关系是解决问题的关键.21.(12分)(2020•禅城区一模)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由条形统计图与扇形统计图,即可求得调查的总人数,继而分别求得C类女生与D类男生数;(2)由(1)可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.【解答】解:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);故答案为:20,2,1;(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2020•广东校级一模)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据双曲线位于第四象限,比例系数k<0,列式求解即可;(2)先把点A的坐标代入反比例函数表达式求出m的值,从而的反比例函数解析式,设点B的坐标为B(x,y),利用相似三角形对应边成比例求出y的值,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可.【解答】解:(1)根据题意,反比例函数图象位于第四象限,∴4﹣3m<0,解得:m>;(2)∵点A(2,﹣4)在反比例函数图象上,∴4﹣3m=2×(﹣4)=﹣8,∴解得:m=4,∴反比例函数解析式为y=﹣,∵=,∴=,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,∴==,解得:y=﹣1,∴﹣=﹣1,解得:x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴,解得:,∴一次函数的解析式是y=x﹣5.【点评】本题主要考查了反比例函数图象与一次函数图象的交点问题,待定系数法求函数解析式,求出点B的坐标是解题的关键,也是本题的难点.23.(12分)(2020•广东校级一模)已知如图,△ABC中AB=AC,AE是角平分线,BM 平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O 的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.【考点】切线的判定与性质;等腰三角形的性质;圆周角定理;解直角三角形.【分析】(1)连接OM.根据OB=OM,得∠1=∠3,结合BM平分∠ABC交AE于点M,得∠1=∠2,则OM∥BE;根据等腰三角形三线合一的性质,得AE⊥BC,则OM⊥AE,从而证明结论;(2)设圆的半径是r.根据等腰三角形三线合一的性质,得BE=CE=3,再根据解直角三角形的知识求得AB=12,则OA=12﹣r,从而根据平行线分线段成比例定理求解.【解答】(1)证明:连接OM.∵OB=OM,∴∠1=∠3,又BM平分∠ABC交AE于点M,∴∠1=∠2,∴∠2=∠3,∴OM∥BE.∵AB=AC,AE是角平分线,∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)解:设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cosC=,∴AB=BE÷cosB=12,则OA=12﹣r.∵OM∥BE,∴,即,解得r=2.4.则圆的直径是4.8.【点评】此题综合运用了等腰三角形的性质、平行线的判定及性质、切线的判定、平行线分线段成比例定理以及解直角三角形的知识.连接过切点的半径是圆中常见的辅助线之一.24.(14分)(2020•广东校级一模)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB 的位置关系?【考点】圆的综合题.【分析】(1)根据CQ=CP,列出方程即可解决.(2))①不存在.不妨设四边形PDBQ是菱形,推出矛盾即可.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA,由•AC•OF+•AC•OE+•AB•OM=•BC•AC求出OM以及圆的半径即可解决问题.【解答】解:(1)∵△CBP是等腰三角形,∠C=90°,∴CQ=CP,∴6﹣t=2t,∴t=2,∴t=2秒时,△CBP是等腰三角形.(2)①不存在.理由:不妨设四边形PDBQ是菱形,则PD=BQ,∴t=8﹣2t,∴t=,∴CQ=,PC=6﹣=,BQ=PD=,∴OQ==6,∴PQ≠BQ,∴假设不成立,∴不存在.设点Q的速度为每秒a个单位长度.∵四边形PDBQ是菱形,∴PD=BD,∴t=10﹣t,∴t=,∴BQ=PD=,∴6﹣a=,∴a=.∴点Q的速度为每秒个长度单位时,使四边形PDBQ在某一时刻为菱形.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA.∵PQ===,∴t=时,PQ最小值为.此时PC=,CQ=,PQ=,∵•AC•OF+•AC•OE+•AB•OM=•BC•AC,∴×8×+×6×+×10×OM=24,∴OM=,∴OM<OP,∴△CPQ的外接圆与直线AB相交.【点评】本题考查圆综合题、等腰直角三角形的性质、二次函数最小值问题、勾股定理、三角形面积等知识,解题的关键是灵活应用这些知识解决问题,学会解题常用辅助线,学会利用面积法解决问题,属于中考压轴题.25.(14分)(2020•广东校级一模)已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.【考点】二次函数综合题.【分析】(1)先令x=0求出y的值即可得出A点坐标,再令y=0求出x的值即可得出BC 两点的坐标;(2)①分△AQP∽△AOC与△AQP∽△COA两种情况进行讨论;②过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,再由△AEM∽△MFP求出PF的表达式,在Rt△AOM中根据勾股定理求出x的值,进而可得出P点坐标③根据在位于直线l下方的抛物线上任取一点P,则有a<0或a>3,由点P在抛物线上即可建立m与n的关系.【解答】解:(1)∵令x=0,则y=4,∴A(0,4);∵令y=0,则﹣x2+3x+4=0,解得x1=4,x2=﹣1,∴B(4,0),C(﹣1,0);(2)①∵以A,P,Q三点构成的三角形与△AOC相似,∴△AQP∽△AOC与△AQP∽△COA,∴或,即或,解得x=或x=7,均在对称轴的右侧,∴P(,)或(7,24);②如图所示,过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,∵∠EAM+∠EMA=90°,∠EMA+∠FMP=90°,∴∠FMP=∠EAM.∵∠MFP=∠AEM=90°,∴△AEM∽△MFP,∴.∵MP=x2﹣3x,∴,∴PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,在Rt△AOM中,∵OM2+OA2=AM2,即(3x﹣12)2+42=x2,解得x1=4,x2=5均在抛物线对称轴的右侧,∴P(4,0)或(5,﹣6).③∵抛物线y=﹣x2+3x+4和A(0,4),∴抛物线和直线l的交点坐标为A(0,4),(3,4),设P(a,﹣a2+3a+4);(a<0或a>3)∵AP的中点是R,A(0,4),∴=m,=n,∴n=﹣2m2+3m+4,∵a<0或a>3,∴2m<0,或2m>3,∴m<0,或m.【点评】此题是二次函数综合题,主要涉及到相似三角形的判定与性质、二次函数图象上点的坐标特点及用待定系数法求二次函数的解析式等知识,在解答(2)时要分△AQP∽△AOC 与△AQP∽△COA两种情况进行讨论.。
广东省2020年中考数学模拟试卷--解析版
广东省2020年中考数学模拟试卷--解析版-CAL-FENGHAI.-(YICAI)-Company One1广东省2020年中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105 3.(3分)如图所示的几何体左视图是()A.B.C.D.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.45.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣27.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5 10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=.12.(4分)分解因式:3y2﹣12=.13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为.17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.25.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣【分析】根据正数大于0,0大于负数,正数大于负数,比较即可【解答】解:∵﹣3<﹣<0<0.3∴最大为0.3故选:A.2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35000=3.5×104.故选:A.3.(3分)如图所示的几何体左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形中间为虚线,故选:C.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.4【分析】将这组数据从小到大重新排列后为﹣2,0,1,3,4;最中间的数1即中位数【解答】解:将这组数据从小到大重新排列后为﹣2,0,1,3,4;.所以中位数为1.故选:B.5.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣2【分析】因为表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点,所以x>﹣2.【解答】解:∵表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点∴x>﹣2故选:D.7.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a【分析】由D、E分别是AB、AC的中点,可得出DE∥BC、BC=2DE,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出S△ABC=4a,再根据S△BDEC =S△ABC﹣S△ADE即可求出四边形BDEC的面积.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∴△ADE∽△ABC,∴=()2=4,∴S△ABC=4a,∴S△BDEC=S△ABC﹣S△ADE=3a.故选:C.8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°【分析】先根据三角形外角的性质可求∠ABD,再根据平行线的性质可求∠AFE的度数.【解答】解:∵∠C=40°,∠A=70°,∴∠ABD=40°+70°=110°,∵DC∥EG,∴∠AFE=110°.故选:B.9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b =﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】根据点Q的位置分两种情况讨论,当点Q在AB上运动时,求得y 与x之间函数解析式,当点Q在BC上运动时,求得y与x之间函数解析式,最后根据分段函数的图象进行判断即可.【解答】解:由题得,点Q移动的路程为2x,点P移动的路程为x,∠A=∠C=60°,AB=BC=2,①如图,当点Q在AB上运动时,过点Q作QD⊥AC于D,则AQ=2x,DQ=x,AP=x,∴△APQ的面积y=×x×x=(0<x≤1),即当0<x≤1时,函数图象为开口向上的抛物线的一部分,故(A)、(B)排除;②如图,当点Q在BC上运动时,过点Q作QE⊥AC于E,则CQ=4﹣2x,EQ=2﹣x,AP=x,∴△APQ的面积y=×x×(2﹣x)=﹣+x(1<x≤2),即当1<x≤2时,函数图象为开口向下的抛物线的一部分,故(C)排除,而(D)正确;故选:D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=148°.【分析】直接利用圆周角定理求解.【解答】解:∠BOC=2∠BAC=2×74°=148°.故答案为148°.12.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【分析】先提公因式,在利用平方差公式因式分解.【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9 .【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为±3 .【分析】根据非负数的性质,求出x、y的值,代入原式可得答案.【解答】解:∵+|y+2|=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴x2﹣4y=1+8=9,∴x2﹣4y的平方根为±3,故答案为:±3.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为9﹣3π.【分析】连接OF、OE、OD,如图,在Rt△OBF中利用三角函数的定义求出∠OFB=60°,再利用切线的性质和切线长定理得到∠OFE=∠OFB=60°,OE⊥DF,所以∠BFE=120°,则∠ADE=60°,同样可得∠ADO=∠EDO=30°,利用含30度的直角三角形三边的关系求出AD=OA=3,所以S△=;接着计算出∠AOE=120°,于是得到S扇形AO=3π,然后利用阴影ADO部分的面积=四边形AOED的面积﹣扇形AOE的面积进行计算即可.【解答】解:连接OF、OE、OD,如图,在Rt△OBF中,∵tan∠OFB===,∴∠OFB=60°,∵BF⊥AB,∴BF为切线,∵DF为切线,∴∠OFE=∠OFB=60°,OE⊥DF,∴∠BFE=120°,∵BC∥AD,∴∠ADE=60°,∵AD⊥AB,∴AD为切线,而DE为切线,∴∠ADO=∠EDO=30°,在Rt△AOD中,AD=OA=3,∴S△ADO=×3×3=;∵∠AOE=180°﹣∠ADE=120°,∴S扇形AOE==3π,∴阴影部分的面积=四边形AOED的面积﹣扇形AOE的面积=2×﹣3π=9﹣3π.故答案为9﹣3π.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB+B1C=2+a,A2(2+a,a).1∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB+B2D=2+b,A3(2+b,b).2∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是①②③⑤.【分析】由角平分线的定义和矩形的性质可证明∠AEB=∠ABE,可求得AE =AB=2,在Rt△ADE中可求得DE=1,则EC=1,又可证明△PEC∽△PBF,可求得BF=2,可判定①;在Rt△PBF中可求得PF,可判定②;在Rt△BCE中可求得BE=2,可得∠BEF=∠F,可判定③;容易计算出S矩形ABCD和S△BPF;可判定④;由AE=AB=BE可判定⑤;可得出答案.【解答】解:∵四边形ABCD为矩形,∴AB∥CD,∴∠CEB=∠ABE,又∵BE平分∠AEC,∴∠AEB=∠CEB,∴∠AEB=∠ABE,∴AE=AB=2,在Rt△ADE中,AD=,AE=2,由勾股定理可求得DE=1,∴CE=CD﹣DE=2﹣1=1,∵DC∥AB,∴△PCE∽△PBF,∴=,即==,∴BF=2,∴AB=BF,∴点B平分线段AF,故①正确;∵BC=AD=,∴BP=,在Rt△BPF中,BF=2,由勾股定理可求得PF===,∵DE=1,∴PF=DE,故②正确;在Rt△BCE中,EC=1,BC=,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC,故③正确;∵AB=2,AD=,∴S矩形ABCD=AB•AD=2×=2,∵BF=2,BP=,∴S△BPF=BF•BP=×2×=,∴4S△BPF=,∴S矩形ABCD=≠4S△BPF,故④不正确;由上可知AB=AE=BE=2,∴△AEB为正三角形,故⑤正确;综上可知正确的结论为:①②③⑤.故答案为:①②③⑤.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.【分析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.【解答】解:原式=2﹣1+6+4=11.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后计算得到最简结果,把a=2代入计算即可求出值.【解答】解:原式=•﹣=﹣=﹣,则当a=2时,原式有意义,原式=﹣1.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)利用菱形的性质得AD∥BC,∠ABD=∠CBD=75°,则∠ABC=150°,再利用平行线的性质得∠A=180°﹣∠ABC=180°﹣150°=30°,接着根据线段垂直平分线的性质得AF=BF,则∠A=∠FBA=30°,然后计算∠ABD ﹣∠FBA即可.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC,DA∥CB,∴∠ABC+∠A=180°.又∵∠A=30°,∴∠ABC=150°.∴∠ABD=∠DBC=75°,∵EF垂直平分线段AB,∴AF=FB.∴∠A=∠FBA=30°.∴∠DBF=∠ABD﹣∠FBA=75°﹣30°=45°.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【分析】(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【解答】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【分析】(1)由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE;(2)先依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.【解答】(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.【分析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得的值.②先利用的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.【解答】(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF∴∠OEA=∠EAF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°∴OE⊥DE∴DE是⊙O的切线(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC∴∵DE=3,CE=2∴②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q∴EP⊥PG,四边形OGPQ是平行四边形∴∠EPG=90°,PQ=OG∵∴设BC=2x,AE=3x∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C∴△BEC∽△ABC∴∴BC2=AC•CE即(2x)2=2(3x+2)解得:x1=2,x2=﹣(舍去)∴BC=4,AE=6,AC=8∴sin∠BAC=,∴∠BAC=30°∴∠EGP=∠BAC=30°∴PE=EG∴OG+EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=AE=3∴OG+EG的最小值为325.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.【分析】(1)①由题意,令y=0,解得C(﹣2,0),D(6,0)得CD=8,令x=0,解得y=﹣12a,且a>0,A(0,﹣12a),即OA=12a,由S△==48a=16,解得:,所求抛物线的解析式为ACD=;②由于∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1得,设S(t,0)(0≤t≤6),则SP=,SC=t+2,可得t=0时,最大值为2;(2)分两种情况讨论,①由直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°,当点N在y轴的左侧时,此时∠MAO=30°得直线AM的解析式为:得点M的横坐标为得;②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°,得直线AF的解析式为:,点G横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a>,因此满足∠MAB=75°的点M有且只有两个,则a的取值范围为:.【解答】解:(1)①由题意,令y=0,解得x1=﹣2,x2=6∴C(﹣2,0),D(6,0)∴CD=8.令x=0,解得y=﹣12a,且a>0∴A(0,﹣12a),即OA=12a∴S△ACD==48a=16,解得:所求抛物线的解析式为=②由题意知,∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1∴设S(t,0)(0≤t≤6),则SP=,SC=t+2∴∵0≤t≤6∴t=0时,最大值为2;(2)由题意,直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°如图2当点M在y轴的左侧时,此时∠MAO=30°设直线AM与x轴交于点E,则OE=∴又∵A(0,﹣12a),∴直线AM的解析式为:由得:解得:∴点M的横坐标为∵②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°∴∴直线AF的解析式为:由,解得:∴点G 横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a >,故要使满足∠MAB=75°的点M有且只有两个,则a 的取值范围为:.31。
2020年广东省广外附中实验学校中考数学一模考试测试卷解析版
2020年广东省广外附中实验学校中考数学一模试卷解析版一、选择题(每小题3分,共30分)1.在实数|-5|,-(-3),0,π中,最小的数是()A.|−5|B.−(−3)C.0D.π2.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3.预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×1094.下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3⋅a2=a65.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3B.﹣3<a<1C.a>﹣3D.a>16.数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是( )A.6,6,9B.6,5,9C.5,6,6D.5,5,97.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE =5,则sin∠EDC的值为()A.35B.725C.45D.24258.若一次函数y=2x+6与y=kx的图象的交点纵坐标为4,则k的值是()A.﹣4B.﹣2C.2D.49.已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0,②2a+b=O,③b2﹣4ac<0,④4a+2b+c>0其中正确的是()A.①③B.只有②C.②④D.③④10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:()A. B. C. D.二、填空题(每小题4分,共28分)11.计算:√12 -(1)-1-3tan 30°+|-2|=________。
2020年广东省实验中学中考数学一模试卷
2020年广东省实验中学中考数学一模试卷
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)0这个数()
A.是正数B.是负数C.不是有理数D.是整数
2.(3分)新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.
A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011
3.(3分)下列各组数中互为相反数的是()
A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|
4.(3分)下列计算,正确的是()
A.x4﹣x3=x B.x5÷x3=x2C.x•x3=x3D.(xy2)2=xy4
5.(3分)在下列因式分解的过程中,分解因式正确的是()
A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)
C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)2
6.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()
A.﹣1B.﹣2C.﹣3D.1
7.(3分)将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3
C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3
8.(3分)已知反比例函数图象如图所示,下列说法正确的是()
A.k>0
B.y随x的增大而减小
C.若矩形OABC面积为2,则k=2。
2020年广东省中考数学模拟试卷(含两套,附解析)
2020中考模拟卷一(含两套)数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:广东中考全部内容。
第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.6的相反数是 A .16B .16-C .6-D .6【答案】C .【解析】6的相反数是6-,故选C .2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为 A .62.1810⨯ B .52.1810⨯C .621.810⨯D .521.810⨯【答案】A .【解析】将数据2180000用科学记数法表示为62.1810⨯.故选A . 3.观察下列图形,是中心对称图形的是A .B .C .D .【答案】D.【解析】A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误; C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选D .4.下列数据:75,80,85,85,85,则这组数据的众数和中位数是( ) A .75,80 B .85,85 C .80,85 D .80,75【答案】B .【解析】此组数据中85出现了3次,出现次数最多,所以此组数据的众数是85;将此组数据按从小到大依次排列为:75,80,85,85,85,此组数据个数是奇数个,所以此组数据的中位数是85;故选B .5.在平面直角坐标系中,点(3,2)-所在的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B .【解析】点(3,2)-所在的象限在第二象限.故选B . 6.下列运算正确的是A .236a a a =gB .32a a a -=C .842a a a ÷=D =【答案】B .【解析】A 、235a a a =g ,故此选项错误;B 、32a a a -=,正确;C 、844a a a ÷=,故此选项错误;D B .7.如图,//a b ,180∠=︒,则2∠的大小是A .80︒B .90︒C .100︒D .110︒【答案】C .【解析】//a b Q ,12180∴∠+∠=︒,又180∠=︒Q ,2100∴∠=︒,故选C . 8.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=⎩B .02x y =⎧⎨=-⎩C .20x y =⎧⎨=⎩D .20x y =⎧⎨=⎩【答案】A .【解析】22x y x y +=⎧⎨-=-⎩①②,①+②得;20x =,解得:0x =,把0x =代入①得:2y =,则方程组的解为02x y =⎧⎨=⎩,故选A .9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是A .3B .C .6D .【答案】D .【解析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知3AB AC ==,OA 平分BAC ∠,60OAB ∴∠=︒,在Rt ABO ∆中,tan OB AB OAB =∠=∴光盘的直径为,故选D .10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②20a b +>;③240b ac ->;④0a b c -+>,其中正确的个数是A .1B .2C .3D .4【答案】D .【解析】①Q 抛物线对称轴是y 轴的右侧,0ab ∴<,Q 与y 轴交于负半轴,0c ∴<,0abc ∴>,故①正确;②0a >Q ,12bx a=-<,2b a ∴-<,20a b ∴+>,故②正确; ③Q 抛物线与x 轴有两个交点,240b ac ∴->,故③正确; ④当1x =-时,0y >,0a b c ∴-+>,故④正确.故选D .第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.分解因式:29a -=__________. 【答案】(3)(3)a a +-.【解析】29(3)(3)a a a -=+-.故答案为:(3)(3)a a +-. 12.不等式20190x ->的解集是__________. 【答案】2019x >. 【解析】20190x ->, 移项得,2019x >, 故答案为2019x >.13.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为__________. 【答案】4610⨯.【解析】460000610=⨯,故答案为:4610⨯.14=__________. 【答案】4.【解析】2416=Q ,∴4=,故答案为4.15.一个多边形的内角和等于900︒,则这个多边形是__________边形. 【答案】七.【解析】设多边形为n 边形,由题意,得 (2)180900n -︒=g ,解得7n =, 故答案为:七. 16.观察以下一列数:3,54,79,916,1125,⋯则第20个数是__________.【答案】41400. 【解析】观察数列得:第n 个数为221n n +,则第20个数是41400,故答案为:41400. 17.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角且点E ,A ,B 三点共线,4AB =,则阴影部分的面积是__________.【答案】8.【解析】Q 四边形ACDF 是正方形,AC AF ∴=,90CAF ∠=︒,90EAC FAB ∴∠+∠=︒, 90ABF ∠=︒Q ,90AFB FAB ∴∠+∠=︒,EAC AFB ∴∠=∠,在CAE ∆和AFB ∆中,CAE AFBAEC FBA AC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,CAE AFB ∴∆≅∆,4EC AB ∴==,∴阴影部分的面积182AB CE =⨯⨯=,故答案为:8. 三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:20190(1)|)π-++.【解析】原式11=-.19.先化简,再求值:22212()11a a a a a a+-÷-+-,其中a . 【答案】2aa +,原式5=- 【解析】原式212[](1)(1)(1)(1)(1)a a a a a a a a a -+=-÷+-+--1(1)(1)(1)2a a a a a a +-=+-+g2aa =+,当a原式5===-20.已知平行四边形ABCD .(1)尺规作图:作BAD ∠的平分线交直线BC 于点E ,交DC 延长线于点F (要求:尺规作图,保留作图痕迹,不写作法); (2)在(1)的条件下,求证:CE CF =.【答案】(1)作图见解析;(2)证明见解析. 【解析】(1)如图所示,AF 即为所求;(2)Q 四边形ABCD 是平行四边形,//AB DC ∴,//AD BC ,12∴∠=∠,34∠=∠.AF Q 平分BAD ∠,13∴∠=∠,24∴∠=∠,CE CF ∴=.四、解答题(二)(本大题共3小题,每小题7分,共21分)21.坐火车从上海到娄底,高铁1329G 次列车比快车575K 次列车要少9小时,已知上海到娄底的铁路长约1260千米,1329G 的平均速度是575K 的2.5倍. (1)求575K 的平均速度;(2)高铁1329G 从上海到娄底只需几小时? 【答案】(1)84千米/小时;(2)6小时.【解析】(1)设575K 的平均速度为x 千米/小时,则1329G 的平均速度是2.5x 千米/小时, 由题意得,1260126092.5x x=+, 解得,84x =,检验:当84x =时,2.50x ≠,84x =是原方程的根,答:575K 的平均速度为84千米/小时; (2)高铁1329G 从上海到娄底需要:1260684 2.5=⨯(小时),答:高铁1329G 从上海到娄底只需6小时.22.如图,矩形ABCD 中,过对角线BD 中点O 的直线分别交AB ,CD 边于点E 、F . (1)求证:四边形BEDF 是平行四边形;(2)只需添加一个条件,即__________,可使四边形BEDF 为菱形.【答案】(1)证明见解析;(2)EF BD ⊥或DE BE =或EDO FDO ∠=∠(答案不唯一). 【解析】(1)Q 四边形ABCD 是平行四边形,O 是BD 的中点, //AB DC ∴,OB OD =,OBE ODF ∴∠=∠,又BOE DOF ∠=∠Q ,()BOE DOF ASA ∴∆≅∆,EO FO ∴=,∴四边形BEDF 是平行四边形;(2)EF BD ⊥或DE BE =或EDO FDO ∠=∠. Q 四边形BEDF 是平行四边形,EF BD ⊥Q ,∴平行四边形BEDF 是菱形.故答案为:EF BD ⊥或DE BE =或EDO FDO ∠=∠(答案不唯一).23.有四张正面分别标有数字1,2,3-,4-的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机地抽取一张不放回,将该卡片上的数字记为m ,再随机地抽取一张,将卡片上的数字记为n .(1)请用画树状图或列表法写出(,)m n 所有的可能情况;(2)求所选的m ,n 能使一次函数y mx n =+的图象经过第一、三、四象限的概率. 【答案】(1)答案见解析;(2)13.【解析】(1)画树状图如下:则(,)m n 所有的可能情况是(1,2)(1,3)(1-,4)(2-,1)(2,3)(2-,4)(3--,1)(3-,2)(3-,4)(4--,1)(4-,2);(4,3)--.(2)所选的m ,n 能使一次函数y mx n =+的图象经过第一、三、四象限的情况有: (1,3)(1-,4)(2-,3)(2-,4)-共4种情况,则能使一次函数y mx n =+的图象经过第一、三、四象限的概率是41123=. 五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,AB 是O e 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC OB ⊥,交O e 于点C ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF PC ⊥于点F ,连接CB .(1)求证:AC 平分FAB ∠; (2)求证:2BC CE CP =g ; (3)若34CE CP =,O e 的面积为12π,求PF 的长.【答案】(1)证明见解析;(2)证明见解析;(3)7PF =. 【解析】(1)CP Q 是O e 的切线,OC CP ∴⊥, AF PC ⊥Q ,//OC AF ∴,FAC ACO ∴∠=∠, OA OC =Q ,OAC ACO ∴∠=∠, FAC OAC ∴∠=∠,即AC 平分FAB ∠;(2)证明:AB Q 是O e 的直径, 90ACB ∴∠=︒,即90CAB ABC ∠+∠=︒,EC OB ⊥Q ,90ECB ABC ∴∠+∠=︒,CAB ECB ∴∠=∠, CP Q 是O e 的切线,CAB BCP ∴∠=∠,ECB BCP ∴∠=∠, CD Q 是O e 的直径,90CBD ∴∠=︒, CEB CBP ∴∠=∠,又ECB BCP ∠=∠,CEB CBP ∴∆∆∽,∴CE CBCB CP=,即2BC CE CP =g ; (3)解:设3CE x =, Q34CE CP =,4CP x ∴=,2BC CE CP =Q g ,BC ∴=,由勾股定理得,BE ,O Q e 的面积为12π,O ∴e 的半径为AB = 90ACB ∠=︒Q ,CE AB ⊥,2BC BE AB ∴=g ,即2)=g 1x =,则3CE =,4CP =,AC Q 平分FAB ∠,AF PC ⊥,EC OB ⊥,3CF CE ∴==, 7PF CF CP ∴=+=.25.已知抛物线21()22y a x =--,顶点为A ,且经过点3(,2)2B -,点5(,2)2C .(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若OPM MAF ∠=∠,求POE ∆的面积;(3)如图2,点Q 是折线A B C --上一点,过点Q 作//QN y 轴,过点E 作//EN x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将QEN ∆沿QE 翻折得到1QEN ∆,若点1N 落在x 轴上,请直接写出Q 点的坐标.【答案】(1)21()22y x =--;(2)POE ∆的面积为115或13;(3)点Q 的坐标为5(4-,3)2或(,2)或,2).【解析】(1)把点3(,2)2B -代入21()22y a x =--,解得:1a =,∴抛物线的解析式为:21()22y x =--;(2)由21()22y x =--知1(2A ,2)-,设直线AB 解析式为:y kx b =+,代入点A ,B 的坐标, 得:122322k b k b⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:21k b =-⎧⎨=-⎩,∴直线AB 的解析式为:21y x =--,易求(0,1)E -,7(0,)4F -,1(,0)2M -,若OPM MAF ∠=∠,//OP AF ∴,OPE FAE ∴∆∆∽,∴14334OP OE FA FE ===,∴43OP FA ===设点(,21)P t t --解得1215t =-,223t =-, POE ∆Q 的面积1||2OE t =g g ,POE ∴∆的面积为115或13. (3)若点Q 在AB 上运动,如图1,设(,21)Q a a --,则NE a =-、2QN a =-, 由翻折知2QN QN a '==-、N E NE a '==-, 由90QN E N ∠'=∠=︒易知QRN ∆'∽△N SE ',∴QR RN QN N S ES EN ''=='',即21221QR a a ES a ---===-,2QR ∴=、212a ES --=, 由NE ES NS QR +==可得2122a a ---+=,解得:54a =-,5(4Q ∴-,3)2;若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE a =,则N E a '=,易知2RN '=、1SN '=、3QN QN '==,QR ∴=SE a ,在Rt SEN ∆'中,222)1a a -+=,解得:a =,(Q ∴,2); 若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,设NE a =,则N E a '=,易知2RN '=、1SN '=、3QN QN '==,QR ∴=SE a ,在Rt SEN ∆'中,222)1a a -+=,解得:a =,Q ∴2).综上,点Q 的坐标为5(4-,3)2或(,2)或2).2020中考模拟卷二数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2020年广东省广州市中考数学一模试卷
2020年广东省广州市中考数学一模试卷一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1. 在实数13,0,−1,−√2中,最小的实数是()A.−√2B.−1C.0D.132. 如图所示的几何体的俯视图是()A. B. C. D.3. 下列运算正确的是()A.1 x +1y=1x+yB.(−p2q)3=−p5q3C.√a⋅√b=√abD.(a+b)2=a2+b24. 如图所示,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为()A.10B.15C.20D.255. 学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是()A.2 B.2.8 C.3 D.3.36. 菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.两组对角分别相等C.对角线互相平分D.两组对边分别平行7. 不等式组{x+3>0x−2≤0的解集是()A.x<2B.x≥−3C.−3<x≤2D.x≤28. 如图,△ABC的顶点都是正方形网格中的格点,则tan∠ABC=()A.12B.2C.√55D.2√559. 已知α,β是一元二次方程x2−5x−2=0的两个实数根,则α2+αβ+β2的值为()A.−1B.9C.23D.2710. 如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时,点P的坐标为()A.(−3,0)B.(−6,0)C.(−32,0) D.(−52,0)二、填空题(本题有6个小题,每小题3分,共18分.)太阳半径约为696 000千米,数字696 000用科学记数法表示为________.若a<1,化简√(a−1)2−1=________.分式方程2x+1=1的解是________.如图,是用一把直尺、含60∘角的直角三角板和光盘摆放而成,点A为60∘角与直尺交点,点B为光盘与直尺唯一交点,若AB=3,则光盘的直径是________.如图,圆锥的底面半径为6cm,高为8cm,那么这个圆锥的侧面积是60πcm2.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①BE+DF=EF;②CE=CF;③∠AEB=75∘;④S正方形ABCD =2+√3,其中正确的序号是________.三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.)计算4cos45∘−√8+(π−√3)0+(−1)3.如图,在▱ABCD中,对角线AC、BD交于点O,M为AD中点,连接OM、CM,且CM交BD于点N,ND=1.(1)证明:△MNO∼△CND;(2)求BD的长.先化简,再求值:x2x+y−y2x+y,其中x=2+√3,y=2−√3.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.如图,一次函数y=ax+b与反比例函数y=kx的图象交于A,B两点,点A坐标为(6, 2),点B坐标为(−4, n),直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD,BD.(1)分别求出一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?如图,在△ABC中,∠ACB=90∘,点O是BC上一点.(1)尺规作图:作⊙O,使⊙O与AC、AB都相切.(不写作法与证明,保留作图痕迹)(2)若⊙O与AB相切于点D,与BC的另一个交点为点E,连接CD、DE,求证:DB2=BC∗BE.如图,已知顶点为C(0, −3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15∘?若存在,求出点M的坐标;若不存在,请说明理由.如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB =MN(1)求证:BN平分∠ABE;(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)若点F为AB的中点,连接FN、FM(如图②),求证:∠MFN=∠BDC.参考答案与试题解析2020年广东省广州市中考数学一模试卷一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.【答案】A【考点】算术平方根实数大小比较【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵−√2<−1<0<13,∴最小的实数是−√2.故选A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】C【考点】简单组合体的三视图【解析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】如图所示的几何体的俯视图是.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.【答案】C【考点】完全平方公式分式的加减运算二次根式的乘除法幂的乘方与积的乘方【解析】直接利用积的乘方运算以及二次根式的乘法运算法则、完全平方公式分别计算得出答案.【解答】A、1x+1y=y+xxy,故此选项错误;B、(−p2q)3=−p6q3,故此选项错误;C、√a⋅√b=√ab,正确;D、(a+b)2=a2+2ab+b2,故此选项错误;【点评】此题主要考查了积的乘方运算以及二次根式的乘法运算、完全平方公式,正确掌握相关运算法则是解题关键.4.【答案】B【考点】平移的性质【解析】设点A到BC的距离为ℎ,根据平移的性质用BC表示出AD、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解.【解答】设点A到BC的距离为ℎ,则S△ABC=12BC⋅ℎ=5,∵平移的距离是BC的长的2倍,∴AD=2BC,CE=BC,∴四边形ACED的面积=12(AD+CE)⋅ℎ=12(2BC+BC)⋅ℎ=3×12BC⋅ℎ=3×5=15.【点评】本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.5.【答案】C【考点】条形统计图算术平均数【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.注意本题不是求3,5,11,11这四个数的平均数.【解答】解:(3×1+5×2+11×3+11×4)÷30=(3+10+33+44)÷30=90÷30=3.故30名学生参加活动的平均次数是3.故选C.【点评】本题考查加权平均数,条形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.6.【答案】A【考点】平行四边形的性质菱形的性质【解析】根据菱形、平行四边形的性质一一判断即可.【解答】A、正确.对角线互相垂直是菱形具有而平行四边形不具有的性质;B、错误.两组对角分别相等,是菱形和平行四边形都具有的性质;C、错误.对角线互相平分,是菱形和平行四边形都具有的性质;D、错误.两组对边分别平行,是菱形和平行四边形都具有的性质;【点评】本题考查菱形的性质、平行四边形的性质等知识,解题的关键是熟练掌握特殊四边形的性质,属于中考基础题.7.【答案】C【考点】解一元一次不等式组【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】{x+3>0x−2≤0∵解不等式①得:x>−3,解不等式②得:x≤2,∴不等式组的解集是−3<x≤2,【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.8.【答案】A【考点】勾股定理解直角三角形【解析】把∠ABC放在直角三角形ABD中,利用锐角三角函数定义求出tan∠ABC的值即可.【解答】在Rt△ABD中,AD=2,BD=4,则tan∠ABC=ADBD=24=12,【点评】此题考查了解直角三角形,以及勾股定理,熟练掌握锐角三角函数定义是解本题的关键.9.【答案】D【考点】根与系数的关系【解析】根据根与系数的关系α+β=−ba,αβ=ca,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】∵α,β是方程x2−5x−2=0的两个实数根,∴α+β=5,αβ=−2,又∵α2+αβ+β2=(α+β)2−βα,∴α2+αβ+β2=52+2=27;【点评】此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,若方程两个为x1,x2,则x1+x2=−ba,x1x2=ca.10.【答案】C【考点】线段的中点一次函数图象上点的坐标特点轴对称——最短路线问题【解析】此题暂无解析【解答】解:因为直线y=23x+4与x轴、y轴分别交于点A和点B,所以可以求出A、B两点的坐标分别为A(−6,0),B(0,4),C点为AB的中点,故C点坐标为(−3,2),D点为OB的中点,故D点坐标为(0,2),则点D关于x轴对称点为D1(0,−2).所以过C、D1点的直线方程为y=−43x−2 ,该直线方程与x轴的交点即为P点,当y=0时,解得x=−32,所以P点坐标为(−32,0).故选C.【点评】此题暂无点评二、填空题(本题有6个小题,每小题3分,共18分.)【答案】6.96×105【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中696 000有6位整数,n=6−1=5.【解答】696 000=6.96×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】−a【考点】二次根式的性质与化简【解析】√(a−1)2−1=|a−1|−1,根据a的范围,a−1<0,所以|a−1|=−(a−1),进而得到原式的值.【解答】∵a<1,∴a−1<0,∴√(a−1)2−1=|a−1|−1=−(a−1)−1=−a+1−1=−a.【点评】本题考查了二次根式的性质与化简,对于√a2化简,应先将其转化为绝对值形式,再去绝对值符号,即√a2=|a|.【答案】x=1【考点】解分式方程【解析】观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】方程的两边同乘(x+1),得2=x+1,解得x=1.检验:把x=1代入(x+1)=2≠0.∴原方程的解为:x=1.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.【答案】6√3【考点】含30度角的直角三角形切线的性质【解析】如图,点C为光盘与直角三角板唯一的交点,连接OB,利用切线的性质得到OB⊥AB,OA平分∠BAC,则可计算出∠OAB=60∘,然后在Rt△OAB中利用含30度的直角三角形三边的关系求出OB,从而得到光盘的直径.【解答】如图,点C为光盘与直角三角板唯一的交点,连接OB,∴OB⊥AB,OA平分∠BAC,∵∠BAC=180∘−60∘=120∘,∴∠OAB=60∘,在Rt△OAB中,OB=√3AB=3√3,∴光盘的直径为6√3.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;若没有已知切点,则作垂线段得到圆的半径.【答案】底面半径为6cm,高为8cm,则底面周长=12π,由勾股定理得,母线长=10,那么侧面面积=12×12π×10=60πcm2.【考点】圆锥的计算【解析】利用勾股定理易得圆锥的母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】底面半径为6cm,高为8cm,则底面周长=12π,由勾股定理得,母线长=10,那么侧面面积=12×12π×10=60πcm2.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.【答案】②③④【考点】等边三角形的性质全等三角形的性质与判定正方形的性质【解析】由正方形的性质得AB=AD,∠B=∠D=90∘,由等边三角形的性质得AE=AF,则可判断Rt△ABE≅△ADF,得到BE =DF ,∠BAE =∠DAF ,加上∠EAF =60∘,易得∠BAE =∠DAF =15∘,利用互余得∠AEB =75∘,则可对③进行判断;由于CB =CD ,BE =DF ,则CE =CF ,于是可对②进行判断;先判断△CEF 为等腰直角三角形得到CE =CF =√22EF =√2,设正方形的边长为x ,则AB =x ,BE =x −√2,在Rt △ABE 中利用勾股定理得x 2+(x −√2)2=22,解得x 1=√2+√62,x 2=√2−√62(舍去),则可计算出BE +DF =√6−√2,于是可判断①错误;然后利用正方形面积公式可对④进行判断. 【解答】∵ 四边形ABCD 为正方形, ∴ AB =AD ,∠B =∠D =90∘, ∵ △AEF 为等边三角形, ∴ AE =AF ,在Rt △ABE 和△ADF 中, {AE =AF AB =AD, ∴ Rt △ABE ≅△ADF ,∴ BE =DF ,∠BAE =∠DAF , 而∠EAF =60∘,∴ ∠BAE =∠DAF =15∘,∴ ∠AEB =75∘,所以③正确, ∵ CB =CD ,∴ CB −BE =CD −DF , 即CE =CF ,所以②正确; ∴ △CEF 为等腰直角三角形, ∴ CE =CF =√22EF =√2,设正方形的边长为x ,则AB =x ,BE =x −√2, 在Rt △ABE 中,∵ AB 2+BE 2=AE 2, ∴ x 2+(x −√2)2=22, 整理得x 2−√2x −1=0,解得x 1=√2+√62,x 2=√2−√62(舍去), ∴ BE +DF =2(x −√2)=2(√2+√62−√2)=√6−√2≠2,所以①错误;∴ S 正方形ABCD =x 2=(√2+√62)2=2+√3,所以④正确.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了全等三角形的判定与性质和等边三角形的性质.三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.) 【答案】 原式=4×√22−2√2+1−1=2√2−2√2+1−1=0.【考点】 实数的运算特殊角的三角函数值零指数幂【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、乘方4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】 原式=4×√22−2√2+1−1=2√2−2√2+1−1=0.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 【答案】证明:∵ 四边形ABCD 是平行四边形,对角线AC 、BD 交于点O , ∴ 点O 是AC 的中点. ∵ M 为AD 中点,∴ OM 是△ACD 的中位线, ∴ OM // CD ,∴ ∠OMN =∠NCD . 又∠MNO =∠CND , ∴ △MNO ∼△CND ;∵ OM 是△ACD 的中位线, ∴ OM =12CD.∵ 由(1)知,△MNO ∼△CND ,ND =1, ∴OM CD=ON DN =12,∴ ON =12,∴ OD =ON +ND =32,∴ BD =2OD =3.【考点】相似三角形的性质与判定 三角形中位线定理 平行四边形的性质【解析】(1)由两角法证得结论;(2)由△MNO ∼△CND ,可得到OM:CD =1:2,表示出ON 与DN ,即可确定出OD 的长度,则BD =2OD . 【解答】证明:∵ 四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,∴点O是AC的中点.∵M为AD中点,∴OM是△ACD的中位线,∴OM // CD,∴∠OMN=∠NCD.又∠MNO=∠CND,∴△MNO∼△CND;∵OM是△ACD的中位线,∴OM=12CD.∵由(1)知,△MNO∼△CND,ND=1,∴OMCD =ONDN=12,∴ON=12,∴OD=ON+ND=32,∴BD=2OD=3.【点评】此题考查了相似三角形的判定与性质以及平行四边形的性质.熟练掌握相似三角形的判定与性质是解本题的关键.【答案】原式=x 2−y2x+y =(x+y)(x−y)x+y=x−y,当x=2+√3,y=2−√3时,原式=2+√3−2+√3=2√3.【考点】分式的化简求值【解析】原式利用同分母分式的减法法则变形,约分得到最简结果,将x与y的值代入计算即可求出值.【解答】原式=x 2−y2x+y =(x+y)(x−y)x+y=x−y,当x=2+√3,y=2−√3时,原式=2+√3−2+√3=2√3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.【答案】总数人数为:6÷40%=15人A2的人数为15−2−6−4=3(人)补全图形,如图所示A1所在圆心角度数为:215×360∘=48∘画出树状图如下:故所求概率为:P=36=12【考点】扇形统计图条形统计图列表法与树状图法【解析】(1)根据A3的人数除以A3所占的百分比即可求出总人数.(2)根据A1的人数的所占的百分比即可取出圆心角的度数.(3)列出树状图即可求出答案.【解答】总数人数为:6÷40%=15人A2的人数为15−2−6−4=3(人)补全图形,如图所示A1所在圆心角度数为:215×360∘=48∘画出树状图如下:故所求概率为:P=36=12【点评】本题考查统计与概率,解题的关键是熟练运用统计与概率的公式,本题属于基础题型.【答案】解:(1)∵反比例函数y = kx的图象过A(6, 2),∴2 = k6,解得k=12,故反比例函数的解析式为y = 12x.∵B(−4, n)在y = 12x的图象上,∴n = 12 − 4,解得n=−3,∴B(−4, −3).∵一次函数y=ax+b过A,B点,则 { 6a + b = 2, − 4a + b = − 3,解得 { a = 12, b = − 1,故一次函数解析式为y = 12x−1.(2)由y = 12x−1,当x=0时,y=−1,∴C(0, −1),由y = 12x ,当y=−1时,−1 = 12x,x=−12,∴D(−12, −1),S OCBD=S△ODC+S△BDC = 12 ×|−12|×|−1|+12×|−12|×|−2|=6+12=18.【考点】待定系数法求反比例函数解析式待定系数法求一次函数解析式反比例函数与一次函数的综合三角形的面积【解析】(1)已知A点坐标,根据待定系数法,可得反比例函数解析式,根据点的坐标满足函数解析式,可得B点坐标,根据待定系数法,可得一次函数解析式;(2)根据面积的和,可得答案.【解答】解:(1)∵反比例函数y = kx的图象过A(6, 2),∴2 = k6,解得k=12,故反比例函数的解析式为y = 12x.∵B(−4, n)在y = 12x的图象上,∴n = 12 − 4,解得n=−3,∴B(−4, −3).∵一次函数y=ax+b过A,B点,则 { 6a + b = 2, − 4a + b = − 3,解得 { a = 12, b = − 1,故一次函数解析式为y = 12x−1.(2)由y = 12x−1,当x=0时,y=−1,∴C(0, −1),由y = 12x,当y=−1时,−1 = 12x,x=−12,∴D(−12, −1),S OCBD=S△ODC+S△BDC = 12 ×|−12|×|−1|+12×|−12|×|−2|=6+12=18.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式的关键,利用面积的和差求解四边形的面积.【答案】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3⋅1600x =6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m−8)+600(m−10)≥1200,解得:m≥11.答:销售单价至少为11元.【考点】一元一次不等式的实际应用分式方程的应用【解析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3⋅1600x =6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m−8)+600(m−10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.【答案】如图,⊙O即为所求.连结OD.∵AB是⊙O的切线,∴OD⊥AB,∴∠ODB=90∘,即∠1+∠2=90∘,∵CE是直径,∴∠3+∠2=90∘,∴∠1=∠3,∵OC=OD,∴∠4=∠3,∴∠1=∠4,又∵∠B=∠B,∴△CDB∽△DEB,∴DBBE=BCDB,∴DB2=BC∗BE.【考点】作图—复杂作图直线与圆的位置关系切线的判定与性质【解析】(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.(2)根据切线的性质,圆周角的性质,由AA可证△CDB∽△DEB,再根据相似三角形的性质即可求解.【解答】如图,⊙O即为所求.连结OD.∵AB是⊙O的切线,∴OD⊥AB,∴∠ODB=90∘,即∠1+∠2=90∘,∵CE是直径,∴∠3+∠2=90∘,∴∠1=∠3,∵OC=OD,∴∠4=∠3,∴∠1=∠4,又∵∠B=∠B,∴△CDB∽△DEB,∴DBBE=BCDB,∴DB2=BC∗BE.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 【答案】将(0, −3)代入y =x +m , 可得:m =−3;将y =0代入y =x −3得:x =3, 所以点B 的坐标为(3, 0),将(0, −3)、(3, 0)代入y =ax 2+b 中, 可得:{b =−39a +b =0 ,解得:{a =13b =−3,所以二次函数的解析式为:y =13x 2−3; 存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45∘+15∘=60∘, ∴ OD =OC ⋅tan 30∘=√3,设DC 为y =kx −3,代入(√3, 0),可得:k =√3, 联立两个方程可得:{y =√3x −3y =13x 2−3 , 解得:{x 1=0y 1=−3 ,{x 2=3√3y 2=6,所以M 1(3√3, 6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45∘−15∘=30∘, ∴ ∠OCE =60∘,∴ OE =OC ⋅tan 60∘=3√3,设EC 为y =kx −3,代入(3√3, 0)可得:k =√33, 联立两个方程可得:{y =√33x −3y =13x 2−3 , 解得:{x 1=0y 1=−3 ,{x 2=√3y 2=−2,所以M 2(√3, −2),综上所述M 的坐标为(3√3, 6)或(√3, −2).【考点】二次函数综合题 【解析】(1)把C(0, −3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【解答】将(0, −3)代入y =x +m , 可得:m =−3;将y =0代入y =x −3得:x =3, 所以点B 的坐标为(3, 0),将(0, −3)、(3, 0)代入y =ax 2+b 中, 可得:{b =−39a +b =0 ,解得:{a =13b =−3,所以二次函数的解析式为:y =13x 2−3; 存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45∘+15∘=60∘, ∴ OD =OC ⋅tan 30∘=√3,设DC 为y =kx −3,代入(√3, 0),可得:k =√3, 联立两个方程可得:{y =√3x −3y =13x 2−3 , 解得:{x 1=0y 1=−3 ,{x 2=3√3y 2=6,所以M 1(3√3, 6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45∘−15∘=30∘, ∴ ∠OCE =60∘,∴ OE =OC ⋅tan 60∘=3√3,设EC 为y =kx −3,代入(3√3, 0)可得:k =√33,联立两个方程可得:{y =√33x −3y =13x 2−3 , 解得:{x 1=0y 1=−3 ,{x 2=√3y 2=−2,所以M 2(√3, −2),综上所述M 的坐标为(3√3, 6)或(√3, −2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键. 【答案】证明:如图①,∵ AB =AC , ∴ ∠ABC =∠ACB , ∵ M 是BC 的中点, ∴ AM ⊥BC ,在Rt △ABM 中,∠MAB +∠ABC =90∘, 在Rt △CBE 中,∠EBC +∠ACB =90∘, ∴ ∠MAB =∠EBC , ∵ MB =MN ,∴ △MBN 是等腰直角三角形, ∴ ∠MNB =∠MBN =45∘,∵ ∠EBC +∠NBE =∠MAB +∠ABN =∠MNB =45∘, ∴ ∠NBE =∠ABN ,即BN 平分∠ABE ; 设BM =CM =MN =a ,∵ 四边形DNBC 是平行四边形, ∴ DN =BC =2a , 在△ABN 和△DBN 中, ∵ {AB =DB∠NBE =∠ABN BN =BN,∴ △ABN ≅△DBN(SAS), ∴ AN =DN =2a ,在Rt △ABM 中,由AM 2+MB 2=AB 2,可得:(2a +a)2+a 2=1, 解得:a =±√1010(负值舍去), ∴ BC =2a =√105; ∵ F 是AB 的中点,∴ 在Rt △MAB 中,MF =AF =BF , ∴ ∠MAB =∠FMN , ∵ ∠MAB =∠CBD , ∴ ∠FMN =∠CBD , ∵MF AB=MN BC=12,即MF BD=MN BC,∴ △MFN ∽△BDC ,∴ ∠MFN =∠BDC .【考点】 四边形综合题 【解析】(1)由AB =AC 知∠ABC =∠ACB ,由等腰三角形三线合一知AM ⊥BC ,从而根据∠MAB +∠ABC =∠EBC +∠ACB 知∠MAB =∠EBC ,再由△MBN 为等腰直角三角形知∠EBC +∠NBE =∠MAB +∠ABN =∠MNB =45∘可得证;(2)设BM =CM =MN =a ,知DN =BC =2a ,证△ABN ≅△DBN 得AN =DN =2a ,Rt △ABM 中利用勾股定理可得a 的值,从而得出答案;(3)F 是AB 的中点知MF =AF =BF 及∠FMN =∠MAB =∠CBD ,再由MFAB =MN BC=12,即MF BD =MN BC,得△MFN ∽△BDC ,即可得证. 【解答】证明:如图①,∵ AB =AC , ∴ ∠ABC =∠ACB , ∵ M 是BC 的中点, ∴ AM ⊥BC ,在Rt △ABM 中,∠MAB +∠ABC =90∘, 在Rt △CBE 中,∠EBC +∠ACB =90∘, ∴ ∠MAB =∠EBC , ∵ MB =MN ,∴ △MBN 是等腰直角三角形, ∴ ∠MNB =∠MBN =45∘,∵ ∠EBC +∠NBE =∠MAB +∠ABN =∠MNB =45∘, ∴ ∠NBE =∠ABN ,即BN 平分∠ABE ; 设BM =CM =MN =a ,∵ 四边形DNBC 是平行四边形, ∴ DN =BC =2a , 在△ABN 和△DBN 中, ∵ {AB =DB∠NBE =∠ABN BN =BN,∴ △ABN ≅△DBN(SAS), ∴ AN =DN =2a ,在Rt △ABM 中,由AM 2+MB 2=AB 2,可得:(2a +a)2+a 2=1, 解得:a =±√1010(负值舍去), ∴ BC =2a =√105; ∵ F 是AB 的中点,∴ 在Rt △MAB 中,MF =AF =BF , ∴ ∠MAB =∠FMN , ∵ ∠MAB =∠CBD , ∴ ∠FMN =∠CBD ,∵MFAB =MNBC=12,即MFBD=MNBC,∴△MFN∽△BDC,∴∠MFN=∠BDC.【点评】本题是四边形的综合题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.。
2020年广东省中考数学一模试卷 (含答案解析)
2020年广东省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.在平面直角坐标系中,点(3,−1)关于x轴对称的点的坐标为()A. (3,1)B. (−3,1)C. (1,−3)D. (−3,−1)4.一个多边形的内角和是1440°,求这个多边形的边数是()A. 7B. 8C. 9D. 105.若式子√4−3x在实数范围内有意义,则x的取值范围是()A. x>43B. x<43C. x≥43D. x≤436.如图,在△ABC中,点E、F分别为AB、AC的中点.若△ABC的周长为6,则△AEF的周长为()A. 12B. 3C. 4D. 不能确定7.将二次函数y=x2−4x−5向右平移1个单位,得到的二次函数为解析式为()A. y=x2−4x−6B. y=x2−4x−4C. y=x2−6xD. y=x2−6x−58.不等式组{x−2<03x<4x+3的解集为()A. −3<x<2B. −3<x<−2C. x<2D. x>−39.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.已知抛物线y=ax2+bx+c(a>0)的对称轴为x=−1,交x轴的一个交点为(x1,0),且0<x1<1,则下列结论正确的有几个()①b>0,c<0;②a−b+c>0;③b<a;④3a+c>0;⑤9a−3b+c>0A. 1个B. 3个C. 2个D. 4个二、填空题(本大题共7小题,共28.0分)11.分解因式:xy―x=_____________.12.若单项式2a x+1b与−3a3b y+4是同类项,则x y=______.13.若(a−√2)2+|b−1|=0,则1的值为______ .a+b14.若x−2y=−3,则5−x+2y=______.BC的长为半径作15.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB 的度数为______.16.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是______cm.17.如图,在平面直角坐标系中,已知点A(1,0)、B(1−t,0)、C(1+t,0)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是____.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:[(x+2y)2−(x+4y)(3x+y)]÷(2x),其中x=−2,y=1.2四、解答题(本大题共7小题,共56.0分)19.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?20. 如图,∠A =∠D =90°,AB =CD ,AC ,BD 相交于点E .求证:(1)△ABC ≌△DCB ;(2)△EBC 是等腰三角形.21. 若方程组{3x +y =93ax −4by =18与{4x −y =5ax +by =−1的解相同,求a ,b 的值.22. 如图,⊙O 是△ABC 的外接圆,AC 是直径,弦BD =BA ,EB ⊥DC ,交DC 的延长线于点E .(1)求证:BE 是⊙O 的切线;(2)当sin∠BCE=3,AB=3时,求AD的长.423.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?(m>0,x>0)图象上的两点,一次函数y=kx+ 24.如图,点A(2,n)和点D是反比例函数y=mx3(k≠0)的图象经过点A,与y轴交于点B,与x轴交于点C,过点D作DE⊥x轴,垂足为E,连接OA,OD.已知△OAB与△ODE的面积满足S△OAB:S△ODE=3:4.(1)S△OAB=______,m=______;(2)已知点P(6,0)在线段OE上,当∠PDE=∠CBO时,求点D的坐标.25.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=−2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4,故选B.3.答案:A解析:本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:点P(3,−1)关于x轴对称的点的坐标是(3,1),故选A.4.答案:D解析:解:设这个多边形的边数是n,根据题意得,(n−2)⋅180°=1440°,解得n=10.故选:D.根据多边形的内角和公式(n−2)⋅180°列出方程,然后求解即可.本题考查了多边形的内角和公式,熟记公式并列出方程是解题的关键.5.答案:D解析:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.根据二次根式有意义的条件可得:4−3x≥0,再解即可.解:由题意得:4−3x≥0,解得:x≤43,故选D.6.答案:B解析:解:∵点E、F分别为AB、AC的中点.∴EF=12BC,EA=12BA,AF=12AC,∵△ABC的周长为6,即AB+AB+BC=6,∴△AEF的周长=AE+AF+EF=12(AB+AC+BC)=3,故选B.根据题意可得出EF=12BC,再根据三角形的周长公式可得出答案.本题考查了三角形的中位线定理,三角形的中位线等于第三边的一半.7.答案:C解析:此题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,解答此题可先将二次函数配成顶点式,写出顶点坐标,然后得到平移后的顶点坐标,从而可得到平移后的二次函数的解析式.解:y=x2−4x−5=(x−2)2−9,∴顶点坐标为(2,−9),向右平移一个单位后的顶点坐标为(3,−9),∴平移后的函数解析式为:y=(x−3)2−9=x2−6x+9−9=x2−6x.故选C.8.答案:A解析:解:解不等式x−2<0,得:x<2,解不等式3x<4x+3,得:x>−3,则不等式组的解集为−3<x<2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=13√3.故选:B.10.答案:B解析:本题考查了二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0,否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=−b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0,否则c<0;(4)b2−4ac由抛物线与x轴交点的个数确定:2个交点,b2−4ac>0;1个交点,b2−4ac=0;没有交点,b2−4ac<0.先充分挖掘图象所给出的信息,包括对称轴、开口方向、与坐标轴的交点、顶点位置等,然后根据二次函数图象的性质解题.解:如图所示:①∵开口向上,∴a>0,又∵对称轴在y轴左侧,∴−b2a<0,∴b>0,又∵图象与y轴交于负半轴,∴c<0,正确.②由图,当x=−1时,y<0,把x=−1代入解析式得:a−b+c<0,错误.③∵对称轴在x=−12左侧,∴−b2a <−12,∴ba>1,∴b>a,错误.④由图,x1x2>−3×1=−3;根据根与系数的关系,x1x2=c,a >−3,故3a+c>0,正确.于是ca⑤由图,当x=−3时,y>0,把x=−3代入解析式得:9a−3b+c>0,正确.所以其中正确的有①④⑤,故选B.11.答案:x(y−1)解析:[分析]直接提取公因式x,进而分解因式得出答案.[详解]解:xy―x=x(y−1)故答案为:x(y−1).[点睛]此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:18解析:解:单项式2a x+1b与−3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=−3.∴x y=2−3=1.8故答案为:1.8依据同类项的相同字母指数相同列方程求解即可.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.答案:√2−1解析:解:由题意得,a−√2=0,b−1=0,解得a=√2,b=1,所以,1a+b =√2+1=√2−1.故答案为:√2−1.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.答案:8解析:解:∵x−2y=−3,∴5−x+2y=5−(x−2y)=5−(−3)=8.故本题答案为8.将已知条件整体代入所求代数式即可.本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.15.答案:105°解析:解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°−50°−25°=105°.故答案为:105°.利用线段垂直平分线的性质得出DC=BD,再利用三角形外角的性质以及三角形内角和定理得出即可.此题主要考查了基本作图以及线段垂直平分线的性质,得出∠A=∠CDA=50°是解题关键.16.答案:√3解析:连接OA,作OD⊥AB于点D,利用勾股定理即可求得AD的长,则AB的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可求得半径.本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.解:连接OA,BC,OB,作OD⊥AB于点D.∵圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),∴AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴∠ACB=60°,∴∠AOB=2∠ACB=120°,又∵OA=OB,∴∠OAD=30°,在直角△OAD中,OA=6,∠OAD=30°,则AD=3√3.则AB=2AD=6√3,=2√3π,则扇形的弧长是:60π×6√3180设底面圆的半径是r,则2πr=2√3π,解得:r=√3.故答案为:√3.17.答案:√13−1解析:本题考查点与圆的位置关系、坐标与图形性质等知识,由题意PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小.解:∵AB=AC=t,∠BPC=90°,∴PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小,PA最小值=√32+22−1=√13−1,∴t的最小值为√13−1.故答案为√13−1.18.答案:解:[(x+2y)2−(x+4y)(3x+y)]÷(2x)=[x2+4xy+4y2−(3x2+xy+12xy+4y2)]÷(2x)=(x2+4xy+4y2−3x2−xy−12xy−4y2)÷(2x)=(−2x2−9xy)÷(2x)=−x−92y,当x=−2,y=12时,原式=2−94=−14.解析:本题主要考查整式的混合运算及求代数式的值,解题的关键是掌握整式的混合运算顺序和运算法则.先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.19.答案:解:(1)调查人数为20÷10%=200(人),喜欢动画的比例为(1−46%−24%−10%)=20%,喜欢动画的人数为200×20%=40(人);(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).解析:此题考查了条形统计图与扇形统计图.注意掌握条形统计图与扇形统计图的有关知识是解此题的关键.(1)首先由喜欢新闻的有20人,占10%,求得总人数;然后由扇形统计图,求得喜爱动画的学生人数所占比例,继而求得喜爱动画的学生人数;(2)由(1)可将条形统计图补充完整;(3)直接利用样本估计总体的方法求解即可求得答案.20.答案: 解:(1)∵∠A =∠D =90°,∴在Rt △ABC 和Rt △DCB 中,{BC =CB AB =DC, ∴Rt △ABC≌Rt △DCB(HL).(2)∵Rt △ABC≌Rt △DCB ,∴∠ACB =∠DBC ,∴BE =CE ,∴△EBC 是等腰三角形.解析: 本题考查了全等三角形的判定与性质以及等腰三角形的判定,证明三角形全等是解题的关键.(1)由“HL ”可证Rt △ABC≌Rt △DCB ;(2)由全等三角形的性质可得∠ACB =∠DBC ,可得BE =CE ,可得结论.21.答案:解:把3x +y =9和4x −y =5联立,得:{3x +y =9①4x −y =5②①+②得:7x =14,则x =2,把x =2代入①得:y =3,则{x =2y =3, 把{x =2y =3代入{3ax −4by =18ax +by =−1中, 得到{a −2b =32a +3b =−1解得:{a =1b =−1.解析:此题主要考查了二元一次方程组的解,熟练掌握方程组的解法是解本题的关键.将第一个方程组第一个方程与第二个方程组第一个方程联立求出x 与y 的值,代入剩下的方程得到关于a 与b 的方程组,即可求出a 与b 的值.22.答案:解:(1)证明:连结OB ,OD ,在△ABO 和△DBO 中,{AB =BD BO =BO OA =OD,∴△ABO≌△DBO(SSS),∴∠DBO =∠ABO ,∵∠ABO =∠OAB =∠BDC ,∴∠DBO =∠BDC ,∴OB//ED ,∵BE ⊥ED ,∴EB ⊥BO ,∴BE 是⊙O 的切线;(2)∵AC 是直径,∴∠ABC =90°,∵∠OBA +∠OBC =∠EBC +∠OBC =90°,∴∠OBA =∠EBC ,∴∠BAC =∠EBC ,∵BE ⊥DE ,∴∠E =90°,∴∠BCE +∠EBC =∠BAC +∠ACB =90°,∵∠BAC =∠EBC ,∴∠ACB =∠BCE ,∵sin∠BCE =34,∴sin∠ACB =34,∵AB =3,∴AC =4,∵∠BDE =∠BAC ,∴sin∠DBE =34,∵BD =AB =3,∴DE =94, ∴BE =√BD 2−DE 2=3√74,∵∠CBE =∠BAC =∠BDC ,∠E =∠E ,∴△BDE∽△CBE ,∴BE CE =DE BE ,∴CE =74,∴CD =12,∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设A 种型号健身器材的单价为x 元/套,B 种型号健身器材的单价为1.5x 元/套, 根据题意,可得:7200x −54001.5x =10,解得:x =360,经检验x =360是原方程的根,1.5×360=540(元),因此,A ,B 两种健身器材的单价分别是360元,540元;(2)设购买A 种型号健身器材m 套,则购买B 种型号的健身器材(50−m)套,根据题意,可得:360m+540(50−m)≤21000,,解得:m≥3313因此,A种型号健身器材至少购买34套.解析:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B 种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x的分式方程,解之即可得出结论;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50−m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.答案:解:(1)3;8;(2)如图:由(1)知,反比例函数解析式是y=8.x∴2n=8,即n=4.故A(2,4),将其代入y=kx+3得到:2k+3=4..解得k=12x+3.∴直线AC的解析式是:y=12x+3=0,令y=0,则12∴x=−6,∴C(−6,0).∴OC =6.由(1)知,OB =3.设D(a,b),则DE =b ,PE =a −6.∵∠PDE =∠CBO ,∠COB =∠PED =90°,∴△CBO∽△PDE ,∴OB DE =OC PE ,即3b =6a−6 ①, 又ab =8 ②.联立①②,得{a =−2b =−4(舍去)或{a =8b =1. 故D (8,1).解析:本题考查了反比例函数综合题,需要掌握待定系数法确定函数关系式,函数图象上点的坐标特征,反比例函数系数k 的几何意义,三角形的面积公式,相似三角形的判定与性质等知识点,综合性较强.(1)由一次函数解析式求得点B 的坐标,易得OB 的长度,结合点A 的坐标和三角形面积公式求得S △OAB =3,所以S △ODE =4,由反比例函数系数k 的几何意义求得m 的值;(2)利用待定系数法确定直线AC 函数关系式,易得点C 的坐标;利用∠PDE =∠CBO ,∠COB =∠PED =90°判定△CBO∽△PDE ,根据该相似三角形的对应边成比例求得PE 、DE 的长度,易得点D 的坐标.解:(1)由一次函数y =kx +3知,B(0,3).又点A 的坐标是(2,n),∴S △OAB =12×3×2=3. ∵S △OAB :S △ODE =3:4.∴S △ODE =4.∵点D 是反比例函数y =m x (m >0,x >0)图象上的点, ∴12m =S △ODE =4,则m =8.故答案是:3;8;(2)见答案.25.答案:解:(1)由题意得:x=−b2a =−b2=−2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=−2,BC=6,∴B横坐标为−5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(−5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=−1,即y=−x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴QHBM =AQAB,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:AB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=−2代入直线AB解析式得:y=4,此时Q(−2,4),直线CQ解析式为y=x+6,令y=0,得到x=−6,即P(−6,0);当QH=3时,把x=−3代入直线AB解析式得:y=5,此时Q(−3,5),直线CQ解析式为y=12x+132,令y=0,得到x=−13,此时P(−13,0),综上,P的坐标为(−6,0)或(−13,0).解析:(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东省实验中学中考数学一模试卷一.选择题(共10小题)1.0这个数()A.是正数B.是负数C.不是有理数D.是整数2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列计算,正确的是()A.x4﹣x3=x B.x5÷x3=x2C.x•x3=x3D.(xy2)2=xy4 5.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)26.已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()A.﹣1B.﹣2C.﹣3D.17.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣38.已知反比例函数图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1<y29.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm210.关于x的一元二次方程kx2﹣2x+1=0有两个实数根,那么实数k的取值范围是()A.k≤1B.k<1且k≠0C.k≤1且k≠0D.k≥1二.填空题(共6小题)11.使式子有意义的x的取值范围是.12.把多项式9m2﹣36n2分解因式的结果是.13.在平面直角坐标系中,若点M(﹣2,3)与点N(x,3)之间的距离是5,则x的值是.14.已知函数y=﹣x2﹣2x,当时,函数值y随x的增大而增大.15.实数a在数轴上的位置如图所示,化简|a﹣2|+=.16.二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为﹣3、1,与y轴交于点C,下面四个结论:①16a+4b+c>0:②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1<y2;③c=3a;④若△ABC是等腰三角形,则b=﹣或﹣.其中正确的有.(请将正确结论的序号全部填在横线上)三.解答题(共9小题)17.计算:.18.解方程:.19.先化简,再求值:,再从不等式组<x<中选取一个你认为合适的整数作为x的值代入求值.20.对于实数a,b,定义新运算“*”:a*b=,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.(1)求(﹣7)*(﹣2)的值;(2)若x1,x2是一元次方程x2﹣5x﹣6=0的两个根,求x1*x2的值.21.某单位计划从商店购买同一种品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用20元,若用1500元购买钢笔和用600元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买一支钢笔、一个笔记本各需要多少元?(2)经商谈,商店给予优惠,优惠方式是每购买一支钢笔赠送一个笔记本;如果此单位需要笔记本的数量是钢笔数量的3倍还少6个,且购买钢笔和笔记本的总费用不超过1020元,那么最多可购买多少支钢笔?22.一次函数y=kx+6与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<6)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W 的最小值.23.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.(1)k1=,k2=;(2)根据函数图象知,①当y1>y2时,x的取值范围是;②当x为时,y2>﹣2x.(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=4:1时,求点P的坐标.(4)点M是y轴上的一个动点,当△MBC为直角三角形时,直接写出点M的坐标.24.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.25.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D)在抛物线上,当AM=AD,m=3时,求b的值;(3)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.(说明:y D表示D点的纵坐标,y Q表示Q点的纵坐标)2020年广东省实验中学中考数学一模试卷参考答案与试题解析一.选择题(共10小题)1.0这个数()A.是正数B.是负数C.不是有理数D.是整数【分析】根据0的意义,可得答案.【解答】解:A、0不是正数也不是负数,故A错误;B、0不是正数也不是负数,故B错误;C、0是有理数,故C错误;D、0是整数,故D正确.故选:D.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm=100×10﹣9m=1×10﹣7m.故选:C.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.4.下列计算,正确的是()A.x4﹣x3=x B.x5÷x3=x2C.x•x3=x3D.(xy2)2=xy4【分析】根据同底数幂的除法,可判断还能A、B,根据同底数幂的乘法底数不变指数相加,可判断C,根据积的乘方,可判断D.【解答】解:A、不是同底数幂的除法指数不能相减,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.5.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)2【分析】各项分解得到结果,即可作出判断.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.6.已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()A.﹣1B.﹣2C.﹣3D.1【分析】根据方程的解为x=3,将x=3代入方程即可求出a的值.【解答】解:将x=3代入方程得:3a+2×3﹣3=0,解得:a=﹣1.故选:A.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.已知反比例函数图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1<y2【分析】由反比例函数的图象可得k<0,y随x的增大而增大;由矩形OABC面积为2,可得k=﹣2.【解答】解:如图,k<0,y随x的增大而增大;∵矩形OABC面积为2,k=﹣2,故选:D.9.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm2【分析】设小长方形的长为xcm,宽为ycm,观察图形,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.【解答】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴14×(6+2×2)﹣6×8×2=44(cm2).故选:A.10.关于x的一元二次方程kx2﹣2x+1=0有两个实数根,那么实数k的取值范围是()A.k≤1B.k<1且k≠0C.k≤1且k≠0D.k≥1【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac≥0,建立关于k 的不等式,求出k的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程kx2﹣2x+1=0有两个实数根,∴根的判别式△=b2﹣4ac=4﹣4k≥0,且k≠0.即k≤1且k≠0.故选:C.二.填空题(共6小题)11.使式子有意义的x的取值范围是x≥﹣.【分析】二次根式的被开方数是非负数.【解答】解:根据题意,得2x+1≥0,解得,x≥﹣.故答案是:x≥﹣.12.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).13.在平面直角坐标系中,若点M(﹣2,3)与点N(x,3)之间的距离是5,则x的值是﹣7或3.【分析】点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x+2|=5,从而解得x的值.【解答】解:∵点M(﹣2,3)与点N(x,3)之间的距离是5,∴|x+2|=5,解得x=﹣7或3.故答案为:﹣7或3.14.已知函数y=﹣x2﹣2x,当x<﹣1时,函数值y随x的增大而增大.【分析】先运用配方法将抛物线写成顶点式y=﹣(x+1)2+1,由于a=﹣1<0,抛物线开口向下,对称轴为直线x=1,根据抛物线的性质可知当x<﹣1时,y随x的增大而增大,即可求出.【解答】解:∵y=﹣x2﹣2x=﹣(x+1)2+1,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x<﹣1时,y随x的增大而增大,故答案为:x<﹣1.15.实数a在数轴上的位置如图所示,化简|a﹣2|+=2.【分析】先根据点a在数轴上的位置判断出其大小,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知,2<a<4,∴原式=a﹣2+=a﹣2+4﹣a=2.故答案为:2.16.二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为﹣3、1,与y轴交于点C,下面四个结论:①16a+4b+c>0:②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1<y2;③c=3a;④若△ABC是等腰三角形,则b=﹣或﹣.其中正确的有①④.(请将正确结论的序号全部填在横线上)【分析】①根据抛物线开口方向和与x轴的两交点可知:当x=﹣4时,y<0,即16a﹣4b+c<0;②根据图象与x轴的交点A、B的横坐标分别为﹣3,1确定对称轴是:x=﹣1,可得:(﹣4.5,y3)与Q(,y2)是对称点,所以y1<y2;③根据对称轴和x=1时,y=0可得结论;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,先计算c的值,再联立方程组可得结论.【解答】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确,符合题意;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(,y2)是对称点,∴则y1<y2;故②不正确,不符合题意;③∵﹣=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0,∴3a+c=0,∴c=﹣3a,故③错误,不符合题意;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵BO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AB=AC=4时,∵AO=3,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AC=BC时,在△AOC中,AC2=9+c2,在△BOC中,BC2=c2+1,∵AC=BC,∴1+c2=c2+9,此方程无实数解.经解方程组可知有两个b值满足条件.故④正确,符合题意.综上所述,正确的结论是①④.故答案是:①④.三.解答题(共9小题)17.计算:.【分析】根据负整数指数幂、零指数幂、绝对值的意义计算,然后分母有理化后合并即可.【解答】解:原式=2×1+﹣=2.18.解方程:.【分析】观察可得最简公分母是(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣1),得:x+1=﹣(x﹣3)+x﹣1,解得:x=1.检验:把x=1代入(x﹣1)=0,即x=1不是原分式方程的解.则原分式方程无解.19.先化简,再求值:,再从不等式组<x<中选取一个你认为合适的整数作为x的值代入求值.【分析】首先计算括号里面分式的加法,然后再计算括号外分式的除法,化简后,再确定x的值,然后代入x的值可得答案.【解答】解:原式=[+]•,=•,=•,=,∵x+1≠0,x﹣1≠0,x≠0,∴x≠±1和0,∴选x=2,当x=2时,原式==1.20.对于实数a,b,定义新运算“*”:a*b=,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.(1)求(﹣7)*(﹣2)的值;(2)若x1,x2是一元次方程x2﹣5x﹣6=0的两个根,求x1*x2的值.【分析】(1)根据题中的新定义化简,计算即可得到结果;(2)求出已知方程的解得到x1与x2的值,利用题中新定义计算即可得到结果.【解答】解:(1)∵﹣7<﹣2,∴(﹣7)*(﹣2)=14﹣4=10;(2)方程x2﹣5x﹣6=0变形得:(x+1)(x﹣6)=0,解得:x=﹣1或x=6,当x1=﹣1,x2=6时,x1*x2=﹣6﹣36=﹣42;当x1=6,x2=﹣1时,x1*x2=36+6=42.21.某单位计划从商店购买同一种品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用20元,若用1500元购买钢笔和用600元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买一支钢笔、一个笔记本各需要多少元?(2)经商谈,商店给予优惠,优惠方式是每购买一支钢笔赠送一个笔记本;如果此单位需要笔记本的数量是钢笔数量的3倍还少6个,且购买钢笔和笔记本的总费用不超过1020元,那么最多可购买多少支钢笔?【分析】(1)设购买一个笔记本需要x元,则购买一支钢笔需要(x+20)元,根据数量=总价÷单价结合用1500元购买钢笔的数量是用600元购买笔记本数量的一半,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m支钢笔,则购买(3m﹣6)个笔记本,根据总价=单价×数量结合总费用不超过1020元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买一个笔记本需要x元,则购买一支钢笔需要(x+20)元,依题意,得:2×=,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,∴x+20=25.答:购买一支钢笔需要25元,购买一个笔记本需要5元.(2)设购买m支钢笔,则购买(3m﹣6)个笔记本,依题意,得:25m+5(3m﹣6﹣m)≤1020,解得:m≤30.答:最多可购买30支钢笔.22.一次函数y=kx+6与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<6)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W 的最小值.【分析】(1)由交点为(1,2),代入y=kx+6,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣4x2+6,令y=m,得4x2+m﹣6=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+6=2,解得k=﹣4,又∵二次函数顶点为(0,6),∴c=6,把(1,2)代入二次函数表达式得a+c=2,解得a=﹣4;(2)由(1)得二次函数解析式为y=﹣4x2+6,令y=m,得4x2+m﹣6=0,∴x=±=±,设B,C两点的坐标分别为(x1,m)(x2,m),则BC=|x1﹣x2|=2×=,∴W=OA2+BC2=m2+6﹣m=+,∴当m=时,W取得最小值.23.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.(1)k1=1,k2=12;(2)根据函数图象知,①当y1>y2时,x的取值范围是﹣6<x<0或x>2;②当x为x>0时,y2>﹣2x.(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=4:1时,求点P的坐标.(4)点M是y轴上的一个动点,当△MBC为直角三角形时,直接写出点M的坐标.【分析】(1)根据点B的坐标,利用待定系数法即可求出k1、k2的值;(2)观察两函数图象的上下位置关系,由此即可得出不等式的解集;(3)根据一次函数图象上点的坐标特征求出点A、C的坐标,根据梯形的面积公式求出S四边形ODAC的值,进而即可得出S△ODE的值,结合三角形的面积公式即可得出点E的坐标,利用待定系数法即可求出直线OP的解析式,再联立直线OP与双曲线的解析式成方程组,通过解方程组求出点P的坐标;(4)分∠CMB=90°或∠CBM=90°两种情况考虑,当∠CMB=90°时,根据点B的坐标即可找出点M的坐标;当∠CBM=90°时,由直线AB的解析式可得出△BCM为等腰直角三角形,根据等腰直角三角形的性质结合点A、B的坐标即可得出点M的坐标.综上即可得出结论.【解答】解:(1)将点B(﹣6,﹣2)代入y1=k1x+4,﹣2=﹣6k1+4,解得:k1=1;将点B(﹣6,﹣2)代入y2=①,﹣2=,解得:k2=12.故答案为:1;12.(2)①观察函数图象可知:当﹣6<x<0或x>2时,一次函数图象在反比例函数图象上方,∴当y1>y2时,x的取值范围是﹣6<x<0或x>2.故答案为:﹣6<x<0或x>2.②过点O作直线l:y=﹣2x,如图1所示.观察图形可知:x>0时,反比例函数图象在直线l上方,故答案为:x>0.(3)依照题意,画出图形,如图2所示.当x=2时,m=x+4=6,∴点A的坐标为(2,6);当x=0时,y1=x+4=4,∴点C的坐标为(0,4).∵S四边形ODAC=(OC+AD)•OD=×(4+6)×2=10,S四边形ODAC:S△ODE=4:1,∴S△ODE=OD•DE=×2DE=10×,∴DE=2.5,即点E的坐标为(2,2.5).设直线OP的解析式为y=kx,将点E(2,2.5)代入y=kx,得2.5=2k,解得:k=,∴直线OP的解析式为y=x②.联立①②并解得:,,∵点P在第一象限,∴点P的坐标为(,).(4)依照题意画出图形,如图3所示.当∠CMB=90°时,BM∥x轴,∴点M的坐标为(0,﹣2);当∠CBM=90°时,∵直线AC的解析式为y=x+4,∴∠BCM=45°,∴△BCM为等腰直角三角形,∴CM=﹣2x B=12,∴点M的坐标为(0,﹣8).综上所述:当△MBC为直角三角形时,点M的坐标为(0,﹣2)或(0,﹣8).24.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E在x轴正半轴且点A在线段OE上得到点A在x轴正半轴上,所以A(2,0);由OA=2,且OA:AD=1:3得AD=6.由于四边形ABCD为矩形,故有AD⊥AB,所以点D在第四象限,横坐标与A的横坐标相同,进而得到点D坐标.由抛物线经过点D、E,用待定系数法即求出其解析式.(2)画出四边形MNGF,由于点F、G分别在x轴、y轴上运动,故可作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',得FM=FM'、GN=GN'.易得当M'、F、G、N'在同一直线上时N'G+GF+FM'=M'N'最小,故四边形MNGF周长最小值等于MN+M'N'.根据矩形性质、抛物线线性质等条件求出点M、M'、N、N'坐标,即求得答案.(3)因为OD可求,且已知△ODP中OD边上的高,故可求△ODP的面积.又因为△ODP的面积常规求法是过点P作PQ平行y轴交直线OD于点Q,把△ODP拆分为△OPQ 与△DPQ的和或差来计算,故存在等量关系.设点P坐标为t,用t表示PE的长即列得方程.求得t的值要讨论是否满足点P在x轴下方的条件.(4)由KL平分矩形ABCD的面积可得K在线段AB上、L在线段CD上,画出平移后的抛物线可知,点K由点O平移得到,点L由点D平移得到,故有K(m,0),L(2+m,﹣6).易证KL平分矩形面积时,KL一定经过矩形的中心H且被H平分,求出H坐标为(4,﹣3),由中点坐标公式即求得m的值.【解答】解:(1)∵点A在线段OE上,E(8,0),OA=2∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN,∴C四边形MNGF=MN+NG+GF+FM=MN+N'G+GF+FM'∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小∴C四边形MNGF=MN+M'N'==2+10=12∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PQ∥y轴交直线OD于点Q,∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x,设点P坐标为(t,t2﹣4t)(0<t<8),则点Q(t,﹣3t),①如图2,当0<t<2时,点P在点D左侧,∴PQ=y Q﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t,∴S△ODP=S△OPQ+S△DPQ=PQ•x P+PQ•(x D﹣x P)=PQ(x P+x D﹣x P)=PQ•x D=PQ=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h,∴﹣t2+t=×2×,方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP=S△OPQ﹣S△DPQ=PQ•x P﹣PQ•(x P﹣x D)=PQ(x P﹣x P+x D)=PQ•x D =t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,﹣6)连接AC,交KL于点H∵S△ACD=S四边形ADLK=S矩形ABCD∴S△AHK=S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.25.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D)在抛物线上,当AM=AD,m=3时,求b的值;(3)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.(说明:y D表示D点的纵坐标,y Q表示Q点的纵坐标)【分析】(1)将点A(﹣1,0)代入y=x2﹣bx+c,求出c关于b的代数式,再将b代入即可求出c的值,可进一步写出抛物线解析式及顶点坐标;(2)将点D(b,y D)代入抛物线y=x2﹣bx﹣b﹣1,求出点D纵坐标为﹣b﹣1,由b>0判断出点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE ⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(3)将点Q(b+,y Q)代入抛物线y=x2﹣bx﹣b﹣1,求出Q纵坐标为﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q 作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,可得方程[(﹣)﹣(﹣1)]+2•[(b+)﹣(﹣)]=,即可求解.【解答】解:(1)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(2)由(1)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=3,∴3﹣(﹣1)=(b+1),∴b=2﹣1;(3)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM=,∴[(﹣)﹣(﹣1)]+2•[(b+)﹣(﹣)]=,∴b=6.。