医学统计学重点要点
医学统计学考试重点资料
一、名解:1、定量资料:以定量值表达每个观察单位的某项观察指标2、定性资料:以定性方式表达每个观察单位的某项观察指标3、等级资料:以等级方式表达每个观察单位的某项观察指标4、总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。
5、样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。
6、参数:描述某总体特征的指标称为总体参数。
7、统计量:描述某样本特征的指标称为样本统计量。
8、小概率事件:当某事件发生的概率小于或等于0.05时,统计学上称该事件为小概率事件9、小概率原理:其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。
小概率原理是进行统计推断的依据。
(8&9常写在一起)10∙变异,是以具有同质性的观察单位为载体,某项观察指标在其单位之间显示的差别。
11标准化率:用统一的标准对内部构成不同的各组频率进行调整和对比,对比后的率为标准化率。
12参考值范围:又称正常值范围,大多数人正常人某观察指标所在的范围。
由于正常人的形态、功能、生化等各种指标的数据因人而异,而且同一个人的某些指标还会随着时间、机体内外环境的改变而变化,因此需要确定其波动范围,即正常值范围,简称正常值。
13、抽样误差:由抽样引起的样本统计量与总体参数间的差别。
14、中心极限定理:①从均数为U,标准差为。
的总体中独立随机抽样,当样本含量?增加时,样本均数的分布将趋于正态分布,均数为标准差为。
X②从非正态分布的总体中随机抽样,只要样本含量足够大,样本均数趋于正态分布。
15、统计推断:就是根据样本所提供的信息,以一定的概率推断总体的性质。
16、区间估计/参数估计/可信区间:包括点估计和区间估计,由样本信息估计总体参数。
按一定的概率或可信度(La)用一个区间估计总体参数所在范围。
这个范围称作可信度为l-α的可信区间(ConfidenCeinterval,Cl),又称置信区间。
医学统计学重点概要
第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。
总体包括有限总体和无限总体。
样本:从总体中随机抽取的部分观察单位,其实测值的集合。
获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。
资料的类型计量资料、计数资料和等级资料。
误差包括随机误差、系统误差和非系统误差。
抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。
概率:是描述随机事件发生可能性大小的一个度量。
取值范围0≤P ≤1。
小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。
P ≤0.05或P ≤0.01。
医学统计学的步骤:设计、收集资料、整理资料和分析资料。
统计分析包括:统计描述和统计推断。
统计推断包括:参数估计和假设检验。
第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。
对称分布:集中位置在中间,左右两侧頻数基本对称。
偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。
(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。
计量资料集中趋势包括算术均数、几何均数和中位数。
算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。
中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。
医学统计学重点总结
计算概率P (该样本是否支持零假设);
结论(根据小概率原理)。
医学课件ppt
22
均数的假设检验
➢ ① 各观察单位间或者相同,或者存在质的 差别;
➢ ② 有质的差别者之间无连续性。
医学课件ppt
3
三类资料
(3) 等级资料(ranked data,ordinal data) ➢ 以等级表达每个观察单位的某项观察指标,如 疗效分级、心功能分级等。 ➢ 特点:
➢ ① 各观察单位间或者相同,或者存在质的差别; ➢ ② 各等级间只有顺序,而无数值大小,故等级之
➢ 样本均数的标准差称为均数的标准误。
➢ 均数的标准误表示样本均数的变异度。
x
n
➢ 当总体标准差未知时,用样本方差代替,
sx
s n
➢ 前者称为理论标准误,后者称为样本标准误。
医学课件ppt
16
标准误与标准差(1)
➢ 联系:
➢ 都表示变异的大小;
SX S/ n
➢ 样本含量一定时,标准差越大,标准误越大。
同质的人群。
医学课件ppt
13
抽样误差(sampling error)
➢ 由抽样引起的样本统计量与总体参数间的 差别。
➢ 原因:个体变异+抽样 ➢ 表现:
➢ 样本统计量与总体参数间的差别 ➢ 不同样本统计量间的差别 ➢ 抽样误差是有规律的!
医学课件ppt
14
中心极限定理
从正态总体中随机抽样,样本均数服从正 态分布;
间不可度量。
医学课件ppt
4
定量资料的描述
集中趋势: 算术均数 几何均数 中位数 百分位数
离散趋势: 极差 四分位数间距 标准差、方差 变异系数
医学统计学重点
医学统计学重点说明:本重点仅供参考:不能包括所有选择题考题,名词和简答可信度高,计算题熟练运算过程;同时自己要清楚各种检验方法的基本思想,重点程度与星号数量相关)一、名词解释1、★★★医学统计学:用概率论和数理统计方法研究医学事件的群体特征的一门方法。
2、★总体:根据研究目的确定的同质的研究对象的全体(集合)。
3、样本:从总体中随机抽取的部分研究对象。
4、随机:总体中每个个体有同等的机会进入样本。
5、系统误差:指数据搜集和测量过程中由于仪器不准确、标准不规范等原因,造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差。
6、随机误差:由于一些非人为的偶然因素使得结果或大或小,是不确定、不可预知的。
7、★★抽样误差:由于抽样原因造成的样本指标与总体指标之间的差,或者是样本指标与样本指标之间的差。
8、准确度(accuracy)或真实性(validity):观察值与真值的接近程度,受系统误差的影响(9、可靠度(reliabiliy)——也称精密度(precision)或重复性(repeatability):重复观察时观察值与其均值的接近程度,受随机误差的影响。
10、★★★小概率事件:一般常将p ≤ 0.05或p ≤ 0.01称为小概率事件,表示某事件发生的可能性很小。
通俗讲一次抽样是不可能发生的事件。
11、★★正态分布定:又称高斯分布,是一条中间高,两头低,左右完全对称地下降,但永远不与横轴相交的钟形曲线。
12、★★医学参考值范围:指绝大多数正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
最常用的是95%参考值范围。
13、★★标准误:用于反映均数抽样误差大小的指标,也叫样本均数的标准差,它反映了样本均数之间的离散程度。
14、★95%的可信区间:如果从同一总体中重复抽取100个独立样本,将可能有95个可信区间包括总体均数,有5个可信区间未包括总体均数。
二、填空题1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。
医学统计学重点重点知识总结
医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。
(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。
这个范围称作可信度为1-a的可信区间,又称置信区间。
3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。
三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。
分辨一个样本是否属于某特定总体等。
区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。
(完整版)医学统计学重点总结
1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。
≤6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P 25 P 50 P 75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
2023年医学统计学必背重点
绪论2选1总体:总体(population)指特定研究对象中所有观测单位旳测量值。
可分为有限总体和无限总体。
总体中旳所有单位都可以标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观测单位,其测量成果旳集合称为样本(sample)。
样本应具有代表性。
所谓有代表性旳样本,是指用随机抽样措施获得旳样本。
3选1小概率事件:我们把概率很靠近于0(即在大量反复试验中出现旳频率非常低)旳事件称为小概率事件P值:成果旳记录学意义是成果真实程度(可以代表总体)旳一种估计措施。
p值是将观测成果认为有效即具有总体代表性旳出错概率。
一般成果≤0.05被认为是有记录学意义小概率原理:一种事件假如发生旳概率很小旳话,那么可认为它在一次试验中是不会发生旳,数学上称之小概率原理。
记录学中,一般认为等于或不不小于0.05或0.01旳概率为小概率。
资料旳类型(3选1)(1)计量资料:对每个观测单位用定量旳措施测定某项指标量旳大小,所得旳资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量旳,表现为数值大小,一般有度量衡单位。
如某一患者旳身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。
(2)计数资料:将观测单位按某种属性或类别分组,所得旳观测单位数称为计数资料(count data)。
计数资料亦称定性资料或分类资料。
其观测值是定性旳,体现为互不相容旳类别或属性。
如调查某地某时旳男、女性人口数;治疗一批患者,其治疗效果为有效、无效旳人数;调查一批少数民族居民旳A、B、AB、O 四种血型旳人数等。
(3)等级资料:将观测单位按测量成果旳某种属性旳不一样程度分组,所得各组旳观测单位数,称为等级资料(ordinal data)。
等级资料又称有序变量。
如患者旳治疗成果可分为治愈、好转、有效、无效或死亡,多种成果既是分类成果,又有次序和等级差异,但这种差异却不能精确测量;一批肾病患者尿蛋白含量旳测定成果分为+、++、+++等。
医学统计学重点
1.变异:同质事物之间的差别。
2.频数分布的两个特征:集中位置,离散趋势3.数据分布的类型:对称分布和非对称分布。
非对称分布又称偏态分布,包括正偏态和负偏态。
单峰分布,双峰分布,多峰分布。
4.统计描述:用统计表、统计图和统计指标等方法对资料的数量特征与分布规律进行描述。
5.集中位置的描述,集中位置指标又称平均数指标。
有哪些及适用条件?(1)算数平均数:最适用于单峰对称分布资料的平均水平的描述,特别是正态分布资料(2)几何平均数:适用于①等比资料②对数正态分布资料(3)中位数和百分位数:适用于①偏态分布的资料②开口资料③资料分布不明等6.离散趋势的描述(1)全距亦称极差,适用于单峰小样本资料(2)四分位数间距,适用于单峰小样本资料(3)方差和标准差,适用于对称分布尤其是正态分布资料(4)变异系数,常用于①比较度量衡单位不同的两组或多种资料的变异度②比较均数相差悬殊的两组或多组资料的变异度7.常用相对数(1)率,是二分类指标(2)构成比(3)比8.正确应用相对数应注意几个问题:(1)计算相对数的分母不宜过小(2)分析时不能以构成比代替率(3)对观察单位数不等的几个率,不能直接相加求其总率(4)计算率时要注意资料的同质性,对比分析时应注意资料的可比性(5)也有抽样误差,需要假设检验。
9.率的标准法(1)基本思想:采用统一的标准,以消除病情构成不同对治愈率比较的影响,使算得的标准化治愈率有可比性。
(2)目的:控制混杂因素对研究结果的影响。
10.正态分布(1)概念P16(2)标准正态分布,u变换:u=σμ-X,u是标准正态离差,μ是均数,σ是标准差。
u~N(0,1)(3)正态分布的特征:①是单峰分布,高峰位置在均数X=μ处。
②以均数为中心,左右完全对称。
③取决于两个参数,均数μ和标准差σ。
μ为位置参数,μ越大,则曲线沿横轴向右移动;μ越小,则曲线沿横轴向左移动。
σ为形态参数,表示数据的离散程度,若σ小,则曲线形态“瘦高”;σ大,则曲线形态“矮胖”。
医学统计学重点官方版
一:基本概念:1.参数:反映总体的统计指标。
2. 统计量:反映样本的统计指标称为统计量。
3. 概率:描述随机事件发生的可能性的大小的一个量度4.小概率事件:把p小于等于0.05或小于等于0.01的随机事件。
资料类型:计量资料,计数资料,等级资料。
医学统计的基本步骤:研究设计,收集资料,整理资料,分析资料,结果报告与结论表达。
二:变量分布:1.正态分布:指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布。
特征:(1)正态分布曲线是单峰,对称,钟形曲线,X=μ时曲线达到最高峰。
(2)正态曲线有两个参数,总体均数μ和总体标准差σ,μ越大曲线右移,越小左移,故称位置参数,σ越小曲线越瘦高,越大曲线越矮胖,故称形状参数。
(3)正态分布曲线下的面积分布具有一定的规律。
P80页。
应用:(1)质量控制(2)是统计学的理论基础(3)制定医学参考值范围制定医学参考值范围:包括绝大多数正常人的人体形态功能和代谢反应等各种生理生化指标的波动范围,是作为判定某项指标正常与否的参考标准。
方法:确定正常人对象的范围,统一测量标准,确定分组,样本含量确定,确定参考值范围的但双侧,确定百分界值,医学参考值范围的估计。
2.二项分布特征:(1)二项分布的图形:当π=0.5时图形对称,π≠0.5时,图形呈偏态,且当n的含量增大时,图形趋于对称。
(2)二项分布的均数与标准差:μ=n π;σ²=nπ(1-π);σ=根号下nπ(1-π)(3)二项分布的正态近似:当n无限增大时越趋近于正态分布。
应用:对立性,独立性,重复性三:统计分析:㈠1.统计描述:图表和指标(1)图表:频数分布图分为正偏态和负偏态,长尾向右侧延伸为正偏态,向左侧延伸为负偏态。
频数分布的特点:集中趋势和离散趋势。
(2)指标:分为计数指标和计量指标。
计数指标:相对数。
应用相对数的注意事项:①计算相对数时分母不宜太小②观测单位数不等的几个率不能直接想加求其合计率③资料对比时注意可比性④资料分析时不能以构成比代替率⑤考虑存在抽样误差计量指标:1.集中趋势:①算数均数χ:适用于对称分布资料,特别是正态或近似正态分布的计量资料。
医学统计学 必过重点
1.总体:是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
2.随机抽样:随机抽样是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
3.变异:在自然状态下,个体间测量结果的差异称为变异。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
4.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(。
计数资料亦称定性资料或分类资料。
其观察值是定性的,表现为互不相容的类别或属性。
如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。
等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。
等级资料又称有序变量。
如患者的治疗结果可分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为+、++、+++等。
等级资料与计数资料不同:属性分组有程度差别,各组按大小顺序排列。
等级资料与计量资料不同:每个观察单位未确切定量,故亦称为半计量资料。
医学统计学重点
医学统计学重点医学统计学是医学领域中不可或缺的一门学科,它借助数理统计方法研究医学数据和临床试验的结果,为医学决策提供可靠的依据。
以下是医学统计学的几个重点内容。
一、描述统计学描述统计学是医学统计学的基础,主要研究如何分类、整理和描述医学数据。
其主要方法包括测量尺度、频率分布表、中心趋势测量和变异程度测量。
1. 测量尺度在医学统计学中,常见的测量尺度包括名目尺度、有序尺度和数值尺度。
名目尺度适用于无序分类的变量,有序尺度适用于有序分类的变量,而数值尺度适用于具有度量意义的变量。
2. 频率分布表频率分布表用来展示变量的分布情况,主要包括类别、频数和频率等内容。
通过频率分布表,可以直观地了解变量的分布状况。
3. 中心趋势测量中心趋势测量主要包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排列后的中间值,众数是出现次数最多的观测值。
4. 变异程度测量变异程度测量用来描述数据的分散程度,主要包括极差、方差和标准差。
极差是最大观测值与最小观测值之间的差异,方差是观测值与均值之间的差异的平方的平均数,标准差是方差的平方根。
二、推断统计学推断统计学是医学统计学的核心内容,主要研究如何通过样本数据推断总体参数,并对假设进行检验。
其中包括参数估计、假设检验和置信区间等方法。
1. 参数估计参数估计是利用样本数据估计总体参数,常用的方法有点估计和区间估计。
点估计是通过样本数据得到一个单一的数值作为总体参数的估计值,区间估计是通过样本数据得到一个范围作为总体参数的估计区间。
2. 假设检验假设检验是用来检验某个陈述是否与观察数据相符的方法。
在医学研究中,研究者常常根据实验数据对研究假设进行检验,以确定是否有统计显著性。
3. 置信区间置信区间是对总体参数的一个范围估计。
置信区间的计算方法与区间估计相似,通过对样本数据进行分析计算得到。
三、生存分析生存分析是医学统计学中的一个重要分支,主要研究疾病患者的生存时间和生存率等问题。
(完整版)医学统计学复习要点
(完整版)医学统计学复习要点第⼀章绪论1、数据/资料的分类:①、计量资料,⼜称定量资料或者数值变量;为观测每个观察单位某项治疗的⼤⼩⽽获得的资料。
②、计数资料,⼜称定性资料或者⽆序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后⽽得到的资料。
③、等级资料,⼜称半定量资料或者有序分类变量。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后⽽得到的资料。
2、统计学常⽤基本概念:①、统计学(statistics)是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、总体(population)指的是根据研究⽬的⽽确定的同质观察单位的全体。
③、医学统计学(medical statistics):⽤统计学的原理和⽅法处理医学资料中的同质性和变异性的科学和艺术,通过⼀定数量的观察、对⽐、分析,揭⽰那些困惑费解的医学问题背后的规律性。
④、样本(sample):指的是从总体中随机抽取的部分观察单位。
⑤、变量(variable):对观察单位某项特征进⾏测量或者观察,这种特征称为变量。
⑥、频率(frequency):指的是样本的实际发⽣率。
⑦、概率(probability):指的是随机事件发⽣的可能性⼤⼩。
⽤⼤写的P表⽰。
3、统计⼯作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个⽅⾯。
第⼆章计量资料的统计描述1. 频数表的编制⽅法,频数分布的类型及频数表的⽤途①、求极差(range):也称全距,即最⼤值和最⼩值之差,记作R;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L,上限为U,变量X值得归组统⼀定为L≤X<U,最后⼀组包括下限。
医学统计学重点
<<医学统计学>>重点1. 总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。
2. 样本:按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
3. 同质:影响究指研标的主要因素易控制的因素基本上相同。
4. 抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。
样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为。
5. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
6. 截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。
原因:失访/退出/终止(研究时限已到而终止观察)。
7. 卡方基本思想:X2分布是一种连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相等等问题。
X2反应实现了实际频数与理论频数的吻合程度。
如果检验假设成立,则A-T一般不大,X2应很小,即出现大X2值概率很小。
即X2越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则没有理由拒绝H0。
8. X2用途:(1)实际频数与拟合频数拟合优度:A推断两个或两个以上总体率或构成比有无差别(四格表/行x列表)。
B两变量之间有无相互关系。
C频数分布的拟合优度检验(判断次样本是否来自某种分布)。
(2)某些分布可用X2近似。
(3)间接应用:如t分布和F分布就是在X2分布基础上推导出来的。
9. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是否具有统计学意义。
10. 假设检验中P,a,b(倍他)的关系及统计学意义:a:检验水准,即显著性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”,以此判断是否不拒绝H0无效假设,在假设检验中,按a检验水准,拒绝了原来正确的H0,即犯了第1类错误,犯此错误的概率为a。
医学统计学重点要点
医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取部分个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知.统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数.抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异.频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。
称m/n为事件A在n次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3。
资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4。
统计工作基本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。
3.实验设计的三个基本原则:对照原则、随机化分组原则、重复原则。
医学统计学 重点知识总结
名词解释1、一类错误:拒绝了实际上成立的H。
,这类“弃真”的错误称为I型错误或第一类错误。
2、参数和统计量:这些总体的统计指标或特征值称为参数。
由样本所算出的统计指标或特征值称为统计量。
3、变异系数:亦称离散系数,为标准差与均数之比,常用百分数表示。
4、P值:即概率,反映某一事件发生的可能性大小。
5、检验效能:B称为检验效能或把握度,即两总体却有差别,按α水准能发现它们有差别的能力。
简答题1、描述数值变量资料(统计资料)的集中程度有哪些指标,有何运用条件?算数均数:单峰对称分布的资料几何均数:对数变换后的单峰对称的资料中位数:偏态分布,分布不明资料,有不确定值的资料。
百分位数:当样本含量较少时不宜用靠近俩端的百分位数来估计频数分布范围。
2、实验研究的基本要素和基本原则是什么?基本要素:处理因素、受试对象和实验效应。
基本原则:对照原则、随机化原则和重狂原则大题1、(1)变量资料(2)成组t检验对立性正态性方差齐性(3)H0ιμ1=μ2,新药与常规药物的疗效相同H1rμ1≠μ2,新药与常规药物的疗效不同α=0.05T=1.0195V=n1+n2-2=18(2)t<t0.05z18,p>0.05,按a=0.05水准,不拒绝H0,差别无统计学意义。
结论:t检验结果表明,故尚不能认为新药与常规药物的疗效相同。
2、(1)T=13×17/47=4.7(2)x2检验(3)X2>X2(0.05,1),p<0.05,按a=0.05水准,拒绝H0,接受HQ差别有统计学意义。
结论:x2检验结果表明,乙疗法比甲疗法好。
3、(1)成组设计两样本比较的秩和检验(2)实验组秩次:13、I15、8.5、14、15.5、15.5、17、18对照组秩次:1、2、4、3、5、6、8.5、7、10、11.5(3)H0:两组局部温热的疗效总体分布相同H1:两组局部温热的疗效总体分布不同4(1)Ho:P=O,即母体内时间与体重无线性相关关系H1:P≠0,即母体内时间与体重有线性相关关系a=0.05F>5.23,拒绝HO,接受HI,相关系数有统计学意义。
医学统计学重点知识总结
医学统计学第一章 绪言研究设计、资料分析、结论定量资料:以定量值表达每个观察单位的某项观察指标,如血脂心率等。
定性资料:以定性方式表达每个观察单位的某项观察指标,如血型性别等。
等级资料:以等级方式表达每个观察单位的某项观察指标,如疗效分级等。
总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。
样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。
(以上均可能考名解)描述某总体特征的指标称为总体参数,简称参数;描述某样本特征的指标称为样本统计量,简称统计量。
概率是随机事件发生可能性大小的一个度量,概率小于或等于0.05时,统计学通常称该事件为小概率事件,其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。
定量资料的统计指标(大题):算术均数,几何均数,中位数和百分位数。
同质性与异质性:同质是指观察单位具有相同的性质,是构成研究总体的必备条件;异质性是指性质不同,研究内容不同,对同质性的要求不同。
第二章 个体变异与变量分布变异(名解):是以具有同质性的观察单位为载体,某项观察指标在观察单位之间显示的差别。
【在同质的基础上各观察单位(或个体)之间的差异】 正偏态与负偏态【2.3节为重点,尤其是统计指标与图的关系】几何均数应用于比值数据,中位数适用于偏态分布离散趋势指标(重点简答):全距,四分位数间距,方差,标准差和变异系数,其中常用的是标准差和变异系数。
变异系数(名解):亦称离散系数,是标准差s 与均数x 之比,即XS CV X100%,变异系数常用于比较度量衡单位不同的两组或多组资料的变异度、比较均数相差悬殊的两组或多组资料的变异度。
如何正确使用相对数(选择或简答):1,计算相对数的分母不宜过小。
2,分析时不能以构成比代替率。
3,对观察单位数不等的几个率,不能直接相加求其平均率(或称总率)。
4,计算率时要注意资料的同质性,对比分析时应注意资料的可比性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取部分个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。
称m/n为事件A在n次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。
3.实验设计的三个基本原则:对照原则、随机化分组原则、重复原则。
4.实验设计方法有析因设计正交试验设计均匀试验设计交互作用两组:异体配对设计同体配对设计交叉设计无随机同期对照实验设计(单因素两水平)扩展多组:单因素多水平配伍组设计拉丁方设计(两因素多水平)(三因素多水平)配伍组设计:也称随机区组设计,将条件相近的受试对象配伍,每个配伍组中的对象随机分配到各处理组中。
析因设计:考察两个或两个以上的处理因素,将各个因素的水平进行全面组合,每个组合下至少有两个以上的观察对象重复测量。
一般来讲,应尽可能安排等重复试验,以简化计算,2-3个水平数。
优点是全面性和均衡性较好,可同时分析处理因素的效应及因素间的交互作用。
拉丁方设计:用于三因素等水平无交互。
第三章定量资料的统计描述、参考值范围1.频数表编制过程(了解)(1)找出样本数据的最大值和最小值,计算极差 R;(2)分组:确定分组的组距 d 和组数 k;一般n<50,5-6组;n在100左右,7-10组;n>100,10-15组(3)求频率密度:统计频数,算出频率、频率密度和累积频率;(4)画出直方图。
2.频数表和直方图的作用:用于观察个数较多资料的统计描述,可以直观提示资料的分布特征和分布类型。
3.集中趋势、离散趋势的指标及适用范围(1)集中趋势:x,G,M,Px ,M算术均数:适用于对称分布;不适用于偏态分布和资料中出现极值的资料。
几何均数:适用于呈倍数关系的资料或对数正态分布的资料,尤其是正偏态分布。
不适用与观察值中有0或正负数值同时出现的资料。
中位数:适用于大样本偏态分布或分布情况不明的资料或资料中有不确定数值的资料。
百分位数的作用:多个百分位数结合使用,全面描述数据分布的特征;用于确定医学参考值范围(偏态或分布不明的资料)。
众数:适用于大样本,较粗糙。
(2)离散趋势:极差:优点:简单明了、容易使用。
缺点:①只反映最大值和最小值间的差异,不能反映其他观察值的变异程度。
②样本容量越大,极差可能越大。
③极差的抽样误差大,不稳定。
四分位数间距:适用于确定医学参考值范围,与中位数一起描述偏态分布资料变异程度。
缺点:类似于极差,利用度低。
方差与标准差:与均数一起描述对称分布,特别是正态分布的分布特征。
变异系数:适用于:①适用于比较度量衡单位不同资料的变异度。
②比较均数相差悬殊的资料的变异度。
③衡量实验精密度和稳定性的常用指标。
(3)频数分布特征高峰在中间,左右大致对称,称为对称分布。
平均数=中位数=众数高峰偏向小值的一侧(左侧),称正偏态分布(亦称右偏态)。
平均数>中位数>众数高峰偏向大值的一侧(左侧),称负偏态分布(亦称左偏态)。
平均数<中位数<众数对称分布正(右)偏态分布负(左)偏态分布4.正态分布图形的特点及意义(1)特点:①f (x )关于x=μ对称 ②x=μ时取得最大值③在x=μ±σ处为拐点,且以 x 轴为水平渐近线 ④f (x )大于0⑤P (x=a )=0⑥若 f (x) 在点 x 处连续,则F ´(x )=f (x) (2)意义:⎰+∞∞-)(x f =1,f (x )在负无穷到正无穷的积分值为1,即曲线下方面积为1。
5.μ和σ2的意义μ:位置参数,当σ固定时,μ增大,曲线沿横轴向右移动;μ减小,曲线沿横轴向左移动。
σ2:形状参数,当μ固定时,σ越大,曲线越矮胖;σ越小,曲线越高瘦。
6.标准化变换z=σμ-x x ~N (μ,σ2) z ~N (0,1) F (x)=Ф(σμ-x )=Ф(z) 即P (X ≤x)=Ф(σμ-x )=P (Z ≤z)P (a<x<b)=F (b)-F (a)=Ф(σμ-b )-Ф(σμ-a P (σμ-a <σμ-x <σμ-b )=P (σμ-a < Z <σμ-b )7.标准正态分布界值规定:界值右侧曲线下方面积等于它的下角标。
下角标一致,x 轴上方中间面积一致。
双侧界值:P (|z|≤z 2α)=1-α P (z<z 2α)=1-2αP (|z|≥z 2α)=α P (z>z 2α)=2α单侧界值:上限: 下限:P (z>z α)=α P (z>z 1-α)=1-α P (z<z α)=1-α P (z<z 1-α)=α8.正常值范围及意义概念:医学临床中,常将就诊者的某些生理、生化、免疫学指标的测定结果,与排除了对研 究指标有影响的疾病和有关因素的大多数“正常人”的相应数值进行比较,以就诊者 的测定值是否超出了大多数“正常人”相应指标的波动范围,作为临床诊断的重要参 考,又称医学参考值范围。
意义:95%的参考值范围含义是指:样本中有95%的个体测定值在所求范围之内。
以95%的置信区间来说,意义是:该区间以95%的概率包含了待估计的参数,这种 估计的可信度是95%,会冒5%的风险。
公式: 双侧95%的界限值:x ±1.96s 单侧95%的上限值:x +1.645s 单侧95%的上限值:x -1.645s第四章 总体均数的估计、假设检验1.标准误(1)概念:每次样本计算出的x 不同,这些x 的标准差称为均数的标准误。
(2)意义:是衡量样本统计量抽样误差大小的统计指标。
(3)与标准差的区别:二者都是描述变异程度的指标,标准差描述个体值的变异,标准误描 述统计量的变异。
(4)均数标准误的公式:S x =ns 2.置信区间(1)定义:设θ为总体的未知参数,若由样本确定的两个统计量θ1(x 1、x 2、…、xn)和θ2(x 1、 x 2、…、x n ),且θ1<θ2,对于预先给定的值α(0<α<1),若满足P(^θ1<^θ2)=1-α, 则称随机区间(^θ1,^θ2)为θ的1-α置信区间,其中称为^θ1置信下限,称为^θ2 置信上限,1-α称置信度。
(2)意义:区间(^θ1,^θ2)包含有参数θ的概率为1-α,不能说θ在(^θ1,^θ2)的概率为 1-α。
例:可以说(a ,b )包含均数μ的概率为95%,不能说μ在(a ,b )的概率为95%。
(3)公式:单个正态总体均数μ的区间估计①σ已知:双侧:nz x σα2± 即 x z x σα2±z 分布单侧:nz x σα± 即 x z x σα±②σ未知:双侧:n st x 2α± 即 x s t x 2α± 小样本(n ≤50) t 分布单侧:nst x α± 即 x s t x α±双侧:n sz x 2α± 即 x s z x 2α± 大样本(n>50) z 分布单侧:nsz x α± 即 x s z x α± (4)两要素:准确度:由1-α 决定,1-α 越大,准确度越高。
精确度:由区间长度决定。
99%置信区间准确度高于95%置信区间。
95%置信区间精确度更高。
3.抽样分布(1)t 分布①定义: 来自正态总体的一组样本,x 和s 分别是样本的均数和标准差。
则t=ns x /μ-~t 分布,自由度 df=n-1,极限分布是标准正态分布。
②图形分布特征:以0为中心,左右对称的单峰分布。
自由度越大,越高瘦③界值: 双侧:P (|t|≤t 2α)=1-α P (t<t 2α)=1-2αP (|t|≥t 2α)=α P (t>t 2α)=2α单侧:上限: 下限:P (t<t α)=1-α P (t<t 1-α)=α P (t>t α)=α P (t>t 1-α)=1-α (2)χ2分布①定义:若从均数为μ,标准差σ的正态总体中,每次抽取样本含量为n 的样本,计算 样本标准差s ,则χ2=(n-1)s 2/σ2服从自由度df=n-1的χ2分布。
②图形分布特征: 曲线偏向左边 自由度越小曲线越偏 ③界值: 双侧:P (x 2>x 22α)=2α P (x 2>212α-x )=1-2α P (x 2<x 22α)=1-2α P (x 2<212α-x )=2α 单侧:上限: 下限:P (x 2>x 2α)=α P (x 2>x 21-α)=1-α P (x 2<x 2α)=1-α P (x 2<x 21-α)=α (3)F 分布①定义:如果分别从两个正态总体N (μ1,σ1)和N (μ1,σ1)中随机抽取样本含量 n 1、n 2的两个样本,算出样本均数和方差分别为x 1,s 21和x 2,s 22,则σσ22222121//s s F =服从df 1=n 1-1,df 2=n 2-1的F 分布。