用牛顿运动定律解决问题(二)(精选练习)(解析版)
高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)及解析
高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1;(2)物体运动到B 处的速度大小v B ;(3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s【解析】【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间.【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=① 物体沿斜面向上运动的时间:22B v t a = ② 物体沿斜面向上运动的最大位移为:222212s a t = ③ 因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:(2312 2.4t t t s s =+=+≈【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能.(2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+ 由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+ 之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律,对长木板: 2231321-()m m g m g m a μμ+-=对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++=对物块C :1334-m g m a μ=这一过程的相对位移为2222243()()1223a t a tx ma a∆=-=--整个过程物块与木板的相对位移为1282.673x x x m m∆=∆-∆==点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.3.如图所示,质量M=2kg足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg的小滑块,以6m/s的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g取l0m/s2.(1)若木板固定,求小滑块在木板上滑过的距离.(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止.(3)若木板不固定,求木板相对地面运动位移的最大值.【答案】(1)20 3.6m2vxa==(2)t=1s(3)121x x m+=【解析】【分析】【详解】试题分析:(1)225m/sa gμ==20 3.6m2vxa==(2)对m:2125/a g m sμ==,对M:221()Ma mg m M gμμ=-+,221m/sa=012v a t a t-=t=1s(3)木板共速前先做匀加速运动2110.52x at m==速度121m/sv a t==以后木板与物块共同加速度a3匀减速运动231/a g m sμ==,22310.52x vt a t m=+=X=121x x m+=考点:牛顿定律的综合应用4.传送带以恒定速率v=4m/s顺时针运行,传送带与水平面的夹角θ=37°.现将质量m=1 kg的小物块轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F=10 N拉小物块,经过一段时间物块被拉到离地高为H=1.8m的平台上,如图所示.已知物块与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g取10m/s2,已知sin37°=0.6,cos37°=0.8.求:(1)物块在传送带上运动的时间;(2)若在物块与传送带速度相等的瞬间撤去恒力F,则物块还需多少时间才能脱离传送带?【答案】(1)1s(2)【解析】【详解】(1)物体在达到与传送带速度v=4 m/s相等前,做匀加速直线运动,有:F+μmgcos37°-mgsin37°=ma1解得a1=8 m/s2由v=a1t1得t1=0.5s位移x1=a1t12=1m物体与传送带达到共同速度后,因F-mgsinθ=4 N=μmgcos37°故物体在静摩擦力作用下随传送带一起匀速上升.位移x2=-x1=2mt2==0.5s总时间为t=t1+t2=1s(2)在物体与传送带达到同速瞬间撤去恒力F,因为μ<tan37°,故有:mgsin37°-μmgcos37°=ma2解得:a2=2m/s2假设物体能向上匀减速运动到速度为零,则通过的位移为x==4 m>x2故物体向上匀减速运动达到速度为零前已经滑上平台.故x 2=vt 3-a 2t 32解得t 3=(2-)s 或t 3=(2+)s (舍去)【点睛】本题关键是受力分析后判断物体的运动状态,再根据牛顿第二定律求解出加速度,然后根据运动学公式列式求解时间.5.如图所示,光滑水平面上放有光滑直角斜面体,倾角θ=30°,质量M =2.5kg .平行于斜面的轻质弹簧上端固定,下端与质量m =1.5kg 的铁球相连,静止时弹簧的伸长量Δl 0=2cm.重力加速度g 取10m/s 2.现用向左的水平力F 拉着斜面体向左运动,铁球与斜面体保持相对静止,当铁球对斜面体的压力为0时,求:(1)水平力F 的大小;(2)弹簧的伸长量Δl .【答案】(1)403N (2)8cm【解析】【分析】斜面M 、物体m 在水平推力作用下一起加速,由牛顿第二定律可求出它们的加速度,然后结合质量可算出物体m 的合力,最后利用物体的重力与合力可求出F 和弹簧的弹力.【详解】(1)当铁球与斜面体一起向左加速运动,对斜面体压力为0时,弹簧拉力为T ,铁球受力如图:由平衡条件、牛顿第二定律得:sin T mg θ=cos T ma θ=对铁球与斜面体整体,由牛顿第二定律得:F M m a =+()联立以上两式并代入数据得:403F N =(2)铁球静止时,弹簧拉力为T 0,铁球受力如图:由平衡条件得: 0sin T mg θ=由胡克定律得:00T k l =∆T k l =∆联立以上两式并代入数据得:8?cm l ∆=【点睛】从整体与隔离两角度对研究对象进行受力分析,同时掌握运用牛顿第二定律解题方法.6.风洞实验室中可产生水平方向的,大小可调节的风力.现将一套有球的细直杆放入风洞实验室.小球孔径略大于细杆直径.如图所示.(1)当杆水平固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向夹角为37°并固定,则小球从静止出发在细杆上滑下距离s=3.75m 所需时间为多少?(sin37°=0.6,cos37°=0.8)【答案】(1)0.5(2)1s【解析】【分析】【详解】(1)小球做匀速直线运动,由平衡条件得:0.5mg=μmg ,则动摩擦因数μ=0.5; (2)以小球为研究对象,在垂直于杆方向上,由平衡条件得:000.5sin 37cos37N F mg mg +=在平行于杆方向上,由牛顿第二定律得:000.5cos37sin 37N mg mg F ma μ+-=代入数据解得:a=7.5m/s 2小球做初速度为零的匀加速直线运动,由位于公式得:s=12at 2 运动时间为22 3.7517.5s t s s a ⨯===; 【点睛】此题是牛顿第二定律的应用问题,对小球进行受力分析是正确解题的前提与关键,应用平衡条件用正交分解法列出方程、结合运动学公式即可正确解题.7.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。
(物理)物理牛顿运动定律的应用练习题含解析
(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
高中物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)含解析
高中物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
“牛顿第二定律”难题解析
(二)“牛顿第二定律”难题--压轴题参考答案与试题解析9.(2011•历城区校级模拟)在一个与水平面成α角的粗糙斜面上的A点放着一个物体,它系于一根不可伸长的细绳上,绳子的另一端B通过小孔C穿出底面,如图所示,开始时物体与C等高,当物体开始缓慢下滑时,适当的拉动绳端B,使物体在斜面上划过一个半圆到达C,则A和斜面之间的动摩擦因数μ为()A.s inαB.c osαC.!tanαD.c otα考点:牛顿第二定律;力的合成与分解的运用;向心力.专题:压轴题;牛顿第二定律在圆周运动中的应用.分析:物体缓慢转动,近似平衡,受力分析后,根据平衡条件列式求解.~解答:解:物体在斜面上缓慢运动时,受到4个力:重力G,绳子的拉力F1,斜面的支持力F2,物体在运动时受到的摩擦力F3,这四个力的合力近似为零;其中F1和F3同斜面平行,F2同斜面垂直,G同斜面成(90°﹣α).根据各力之间的平衡的原则,可列出以下公式:在垂直斜面方向,有:F2=G•cos α因此有摩擦力F3=μ F2=μGcosα接下来考虑平行于斜面的力,为了简化问题状态,可以直接以A点处的系统状态来进行分析,此时时摩擦力和重力在斜面平行方向上的力是反向、等大的,即应该是近似平衡的,有μGcosα=Gsinα因此μ=tan α故选C.》点评:这个解法最有技巧的部分就是选取了A点处受力分析,根据平衡条件得到重力的下滑分量等于摩擦力,然后列式求解;当然,也可以对其它点处,运用平衡条件列式.11.(2007•徐州模拟)压敏电阻的阻值随所受压力的增大而减小,有位同学利用压电陶瓷设计了判断小车运动状态的装置,其工作原理如图(a)所示,将压电陶瓷和一块挡板固定在绝缘小车上,中间放置一个绝缘重球,它的直径略小于陶瓷和挡板间的距离.小车向右做直线运动过程中,电压流表示数如图(b)所示,下列判断正确的是()A.从t1到t2时间内,小车做变加速直线运动B.从t1到t2时间内,小车做匀加速直线运动,C.从t2到t3时间内,小车做匀加速直线运动D.从t2到t3时间内,小车做匀速直线运动考点:牛顿第二定律;闭合电路的欧姆定律.专题::压轴题;恒定电流专题.分析:根据图象,结合题意,得到压力的变化规律,再根据牛顿第二定律判断出加速度的变化规律,从而得到小车的运动故小球的加速度不断变大,水平向右,由于速度向右,故小球向右做加速度不断变大的加速运动,故A正确,B错误;C、D、从t2到t3时间内,电陶瓷两端电压不变,故受到的压力恒定,故其对小球有向右且恒定大的压力,故小球的加速度恒定,水平向右,由于速度向右,故小球向右做匀加速直线运动,故C正确,D错误;故选AC.点评:本题关键是对小球受力分析,根据图象得到压力的变化规律,然后根据牛顿第二定律判断出加速度的情况,最后得到小车的运动情况.16.(2010•越秀区三模)如图所示装置中,光滑的定滑轮固定在高处,用细线跨过该滑轮,细线两端各拴一个质量相等的砝码m1和m2.在铁架上A处固定环状支架z,它的孔只能让m1通过.在m1上加一个槽码m,m1和m从O点由静止释放向下做匀加速直线运动.当它们到达A时槽码m被支架z托住,m1继续下降.在下图中能正确表示m1运动速度v与时间t和位移x与时间t关系图象的是()。
牛顿第二定律 练习与解析
牛顿第二定律 练习与解析1.一辆质量为10kg 的小车,受到20N 的拉力作用,求这辆小车在拉力作用下的加速度是多大?答案:2m/s 2解:由牛顿第二定律,F =maa =F /m =20/10m/s 2=2m/s 2.2.一个物体的质量为50kg ,在100N 的水平拉力的作用下,以1.5m/s 2的加速度加速运动,求物体受到的摩擦力的大小.答案:25N解:由牛顿第二定律可知物体受到的合外力的大小:F =ma =50×1.5N =75N物体受力如图所示:F =F 1-ff =f 1-F =(100-75)N =25N .3.要使重5N 的物体在竖直方向上做匀速直线运动,应对物体施加的拉力是_____N ,此力的方向为_____.答案:5 竖直向上解:物体做匀速直线运动,加速度a =0,由牛顿第二定律:F =ma =0;即物体受到的合外力为零.所以,物体受到的力和物体的重力大小相等,方向相反,所以应对物体施加5N 的力,方向竖直向上.4.一个5N 的力作用在一个物体上,使物体得到的加速度是8m/s 2,作用在另一个物体上所得到的加速度为24m/s 2.如果将两个物体拴在一起,仍用5N 的力作用,求物体得到的加速度是多大?答案:6m/s 2解:设第一个物体的质量为m 1,第二个物体的质量为m 2,第一个物体的加速度为a 1,第二个物体的加速度为a 2,它们共同的加速度为a .由牛顿第二定律得:F =m 1a 1F =m 2a 2 F =(m 1+m 2)a解得a =6m/s 2.5.地面上放一木箱,质量为40kg ,用100N 的力与水平成 37角推木箱,如图4-5所示,恰好使木箱匀速前进.若用此力与水平成 37角向斜上方拉木箱,木箱的加速度多大?(取g =10m/s 2,sin 37=0.6,cos37=0.8) 答案:0.56m/s 2解:当用力推木箱时,物体的受力如图(1)F cos 37-f =0f =μN =μ(mg +F sin 37)得μ=0.17当用力拉木箱时,物体的受力如图(2)合F =F cos 37-f 1=ma f 1=μN 1=μ(mg -F sin37)解得a=0.56m/s2.。
高中物理牛顿第二定律经典练习题专题训练(含答案)
高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。
根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。
2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。
2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。
1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。
将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。
2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。
将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。
3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。
掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。
牛顿第二定律应用典型题及答案
1、质量m=4kg的物块,在一个平行于斜面向上的拉力F=40N作用下,从静止开始沿斜面向上运动,如图所示,已知斜面足够长,倾角θ=37°,物块与斜面间的动摩擦因数μ=0.2,力F作用了5s,求物块在5s内的位移及它在5s末的速度。
(g=10m/s2,sin37°=0.6,cos37°=0.8)2、如图所示,质量为0.5kg的物体在与水平面成300角的拉力F作用下,沿水平桌面向右做直线运动,经过0.5m的距离速度由0.6m/s变为0.4m/s,已知物体与桌面间的动摩擦因数μ=0.1,求作用力F的大小。
(g=10m/s2)3、为了安全,在公路上行驶的汽车之间应保持必要的距离。
已知某高速公路的最高限速v=120km/h。
假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s。
刹车时汽车受到的阻力大小f为汽车重力的0.40倍。
该高速公路上汽车间的距离s至少应为多少?取重力加速度g=10 m/s2。
4、如下图所示,一个人用与水平方向成θ=37°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.5(g=10m/s2)。
(1)求推力F的大小(sin370=0.6 cos370=0.8)。
(2)若此人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3s后撤去,求箱子滑行的总位移为多大?5、滑雪是一个常见的体育运动项目,某一山坡滑道可看成倾角θ=30°的斜面,一名滑雪运动员连同滑雪装置总质量m=80 kg,他从静止开始自由匀加速下滑,在时间t=10 s内沿斜面滑道滑下的位移x=200 m,后又进入水平滑道.(设水平滑道足够长,不计空气阻力,取g=10 m/s2)问:(1)运动员在下滑过程中受到的摩擦力Ff为多大?(2)滑雪板与滑道之间的动摩擦因数μ为多少?(3)若水平滑道的动摩擦因数是山坡滑道动摩擦因数的2倍,求运动员在水平滑道上滑行的最大距离.6、一游客在峨眉山滑雪时,由静止开始沿倾角为37°的山坡匀加速滑下。
牛顿第二定律经典例题及答案
牛顿第二定律经典例题及答案
例题:如图,质量的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。
当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2,假定小车足够长,问:
(1)经过多长时间物块停止与小车间的相对运动?
(2)小物块从放在车上开始经过t0=3s 所通过的位移是多少?(g 取10m/s2)
【分析与解答】:
(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。
设物块在小车上相对运动时间为t,物块、小车受力分析如图:
物块放上小车后做初速度为零加速度为a1的匀加速直线运动,小车做加速度a2的匀加速运动。
其中对物块:由μmg=ma1,
有a1=μg=2m
对小车:F-μmg=Ma2
∴a2=0.5m/s2物块在小车上停止相对滑动时,速度相同
则有:a1t1=v0+a2t1
故答案为:
(1)经多2s物块停止在小车上相对滑动;
(2)小物块从放在车上开始,经过t=3.0s,通过的位移是8.4m.本文网络搜索,如有侵权联系删除。
物理必修用牛顿运动定律解决问题二课件
910N,方向竖直向下。
超重对宇航员的影响
宇航员在飞船起飞和返回地 面时,处于超重状态,特别是在 升空时,超重可达重力的9倍,超 重使人不适,起初会感到头晕、 呕吐,超重达到3倍重力时既感到 呼吸困难;超重达到4倍重力时, 颈骨已不能支持头颅,有折断的 危险。所以升空时宇航员必须采 取横卧姿势,以增强对超重的耐 受能力。
宇航员的 平躺姿势
用弹簧秤匀速拉物体时,突然向上减 速运动,弹簧秤的示数如何变化?
物体向上减速时:
F
根据牛顿第二定律:
G - F =maaBiblioteka F = G - ma < G
物体所受的拉力F与物体对弹簧秤
的压力F′(弹簧秤的示数)小于 v
物体的重力
G
2、失重
物体对支持物的压力(或 对悬挂物的拉力) 小于 物体所受到的重力的情 况称为失重现象。
用牛顿运动定律 解决问题(二)
物体的受力情况
物体向上加速时:
F
根据牛顿第二定律:
F-G=ma
a
F = ma+ G > G
物体所受的拉力F与物体对 弹簧秤的拉力F′(弹簧秤的
v
示数)大于物体的重力。
G
超重和失重
1、超重
物体对支持物的压 力(或对悬挂物的 拉力) 大于物体所 受到的重力的情况 称为超重现象。
本节小结
1、超重 2、失重 3、完全失重 4、共点力的平衡条件
再见!
空间站中的宇航员
例1.下列四个实验中,不能在绕地球飞 行的太空实验舱中完成的是( ABD )
A.用弹簧秤测物体的重力 B.用天平测物体的质量 C.用温度计测舱内的温度 D.用水银气压计测舱内气体的压强
共点力的平衡条件
牛顿第二定律应用习题(详解答案)
§4.4 牛顿第二定律的应用――― 连接体问题【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( ) A.F m m m 211+ B.F m m m 212+ C.FD.F m21扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。
2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。
例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止, 木板运动的加速度是多少?【针对训练】3.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的 加速度前进?(g =10m/s 2)4.如图所示,箱子的质量M =5.0kg ,与水平地面的动摩擦因数μ=0.22。
在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直 方向θ=30°角,则F 应为多少?(g =10m/s 2)【能力训练】1.如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、 倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( )A.等于零B.方向平行于斜面向上C.大小为μ1mgcos θD.大小为μ2mgcos θ2.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球。
小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加 速度大小为( )A.gB.g m m M - C.0 D.g mmM + 3.如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力FA.T a 增大B.T b 增大C.T a 变小D.T b 不变4.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量 为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时, 竿对“底人”的压力大小为( )A.(M+m )gB.(M+m )g -maC.(M+m)g+ma D.(M -m )g 5.如图,在竖直立在水平面的轻弹簧上面固定一块质量不计 的薄板,将薄板上放一重物,并用手将重物往下压,然后突 然将手撤去,重物即被弹射出去,则在弹射过程中,(即重 物与弹簧脱离之前),重物的运动情况是() A.一直加速B.先减速,后加速C.先加速、后减速D.匀加速6.如图所示,木块A 和B 用一轻弹簧相连,竖直放在木块C 上,三者静置于地面,它们的质量之比是1:2:3,设所有接触面都光滑,当沿水平方向抽出木块C 的瞬时,A 和A = ,a B=。
小学奥数 牛吃草问题(二) 精选练习例题 含答案解析(附知识点拨及考点)
1. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数); ⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.模块一、 “牛”吃草问题的变例【例 1】 在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有 级台阶.【考点】牛吃草问题 【难度】3星 【题型】填空【关键词】对比思想方法【解析】 本题非常类似于“牛吃草问题”,如将题目改为:“在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20秒后到达地面;如果每秒向上迈两级台阶,那么走过15秒到达地面.问:从站台到地面有多少级台阶?”例题精讲知识精讲教学目标6-1-10.牛吃草问题(二)采用牛吃草问题的方法,电梯20155-=秒内所走的阶数等于小强多走的阶数:21512010⨯-⨯=阶,电梯的速度为1052÷=阶/秒,扶梯长度为20(12)60⨯+=(阶)。
高中物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析
高中物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ;(2)细杆与地面间的倾角a .【答案】(1)m =1kg ,(2)a =30°.【解析】【详解】由图得:0-2s 内环的加速度a=v t=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α=由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°2.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为0.8h m =。
在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不动,而货物继续运动,最后恰好落在光滑轨道上的B 点。
已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。
()1求货物从小车右端滑出时的速度;()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车的长度是多少?【答案】(1)3m/s ;(2)6.7m【解析】【详解】()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动, 在竖直方向上:212h gt =, 水平方向:AB x l v t =解得:3/x v m s =()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研究对象,系统在水平方向动量守恒,由动量守恒定律得:()0mv m M v =+共,解得:4/v m s =共, 由能量守恒定律得:()2201122Q mgs mv m M v μ==-+共相对, 解得:6s m =相对, 当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得:2211'22x mgs mv mv 共μ-=-, 解得:'0.7s m =,车的最小长度:故L ' 6.7s s m =+=相对;3.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求:(1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移.【答案】(1)2N 3s (2)46.5m【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P =联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v '由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '=解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m4.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小;(2)两木块碰撞前瞬间,木块A 的速度大小;(3)两木块碰撞后瞬间,木块A 的速度大小.【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s【解析】【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ʹ.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2g v h== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga M μ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1 解得:210.80m/s Mv mv v M-==.5.如图为高山滑雪赛道,赛道分为斜面与水平面两部分,其中斜面部分倾角为37°,斜面与水平面间可视为光滑连接。
高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)含解析
高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有Nsinθ﹣μNcosθ=ma1竖直方向有Ncosθ+μNsinθ﹣mg=0对整体有 F 1=(M+m )a 1 代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2, 对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2 竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0 对整体有 F 2=(M +m )a 2 代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N . 【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.3.如图所示,质量M=1kg 的木板静置于倾角为37°的足够上的固定斜面上的固定斜面上的某个位置,质量m=1kg 的可视为质点的小物块以初速度v 0=5m/s 从木板的下端冲上木板,同时在木板上端施加一个沿斜面向上的外力F=14N ,使木板从静止开始运动,当小物块与木板共速时,撤去该外力,最终小物块从木板的下端滑出.已知小物块与木板之间的动摩擦因素为0.25,木板与斜面之间的动摩擦因数为0.5,g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)物块和木板共速前,物块和木板的加速度各为多少; (2)木板的长度至少为多少;(3)物块在木板上运动的总时间是多少.【答案】(1)a 1=8m/s 2,方向沿斜面向下, a 2=2m/s 2,方向沿斜面向上 (2)min 61m 48L =(3)561()s 896t = 【解析】试题分析:(1)物块与木板共速前,对物块分析:11sin cos mg mg ma θμθ+= 得:a 1=8m/s 2,方向沿斜面向下,减速上滑对木板分析:122cos sin ()cos F mg Mg m M g Ma μθθμθ+--+= 得:a 2=2m/s 2,方向沿斜面向上,加速上滑 (2)共速时:021=v v a t -共 得:10.5s t =,=1m/s v 共 共速前的相对位移:22101112111 1.25m 22x v t a t a t ∆=--=撤掉F 后:物块相对于木板上滑,加速度仍未a 1=8m/s 2,减速上滑而木板:212sin ()cos cos Mg M m g mg Ma θμθμθ++-=' 则:2212m/s a =',方向沿斜面向下,减速上滑 由于:12sin cos ()cos Mg mg M m g θμθμθ+<+ 木板停止后,物块在木板上滑动时,木板就不再运动 过21s 12t =,木板停止,过21s 8t '=,物块减速到0 此过程,相对位移:21m 48x ∆=木板至少长度min 1261m 48L x x =∆+∆=(3)物块在木板上下滑,木板不动物块加速度211sin cos 4m/s a g g θμθ=-=' 2min 1312L a t '=得:361s 96t =在木板上的总时间:123561()s 896t t t t =++=+' 考点:考查牛顿第二定律、匀变速直线运动.【名师点睛】动力学的解题思路:已知受力研究运动;已知运动研究受力情况.4.如图所示,质量M =1kg 的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m =1kg 、大小可忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,g 取10m/s 2,(1)若木板长L =1m ,在铁块上加一个水平向右的恒力F =8N ,经过多长时间铁块运动到木板的右端?(2)若在铁块右端施加一个从零开始连续增大的水平向右的力F 假设木板足够长,在图中画出铁块受到木板的摩擦力f 随拉力F 大小变化而变化的图像.【答案】(1)1s ;(2)见解析 【解析】 【分析】【详解】(1)铁块的加速度大小=4m/s2木板的加速度大小2m/s2设经过时间t铁块运动到木板的右端,则有解得:t=1s(2)5.如图所示,在竖直平面内有一倾角θ=37°的传送带BC.已知传送带沿顺时针方向运行的速度v=4 m/s,B、C两点的距离L=6 m。
牛顿第二定律典型例题
牛顿运动定律典型问题一、共点力平衡及动态平衡【例1】如图(甲)质量为m的物体,用水平细绳AB拉住,静止在倾角为θ的固定斜面上,求物体对斜面压力的大小。
【例2】如图所示,用竖直档板将小球夹在档板和光滑斜面之间,若缓慢转动挡板,使其由竖直转至水平的过程中,分析球对挡板的压力和对斜面的压力如何变化.【例3】如图所示,支杆BC一端用铰链固定于B,另一端连接滑轮C,重物P上系一轻绳经C固定于墙上A点。
若杆BC、滑轮C及绳子的质量、摩擦均不计,将绳端A点沿墙稍向下移,再使之平衡时,绳的拉力和BC杆受到的压力如何变化?【练习】1.如图所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?2.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求(1)物体A所受到的重力;(2)物体B与地面间的摩擦力;(3)细绳CO受到的拉力。
3.如图所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。
当细绳的端点挂上重物G,而圆环将要开始滑动时,试问(1)长为30cm的细绳的张力是多少?(2)圆环将要开始滑动时,重物G的质量是多少?4.如图,A、B两物体质量相等,B用细绳拉着,绳与倾角θ的斜面平行。
A与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数的值。
5.如图所示,用两根绳子系住一重物,绳OA与天花板夹角θ不变,且θ>45°,当用手拉住绳OB,使绳OB由水平慢慢转向OB′过程中,OB绳所受拉力将()A.始终减少B.始终增大C.先增大后减少D.先减少后增大6.如图所示,一重球用细线悬于O点,一光滑斜面将重球支持于A点,现将斜面沿水平面向右慢慢移动,那么细线对重球的拉力T及斜面对重球的支持力N的变化情况是:()A.T逐渐增大,N逐渐减小;B.T逐渐减小,N逐渐增大;C.T先变小后变大,N逐渐减小;D.T逐渐增大,N先变大后变小。
(完整版)高一物理牛顿第二定律典型例题答案及讲解
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作将作 [ ] [ ]A .匀减速运动.匀减速运动B .匀加速运动.匀加速运动C .速度逐渐减小的变加速运动.速度逐渐减小的变加速运动D .速度逐渐增大的变加速运动.速度逐渐增大的变加速运动【分析】 木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.的变加速运动. 【答】 D .【例2】 一个质量m=2kg 的木块,放在光滑水平桌面上,受到三个大小均为F=10N F=10N、与桌面平、与桌面平行、互成120120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?少?【分析】 物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120120°角的三个力的合力等于零,所以木块的加速度°角的三个力的合力等于零,所以木块的加速度a=0a=0..(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F 合=2F=20N =2F=20N,所以其加速度为:,所以其加速度为:,所以其加速度为:它的方向与反向后的这个力方向相同.它的方向与反向后的这个力方向相同.【例3】 沿光滑斜面下滑的物体受到的力是沿光滑斜面下滑的物体受到的力是 [ ] [ ] A .力和斜面支持力.力和斜面支持力B .重力、下滑力和斜面支持力.重力、下滑力和斜面支持力C .重力、正压力和斜面支持力.重力、正压力和斜面支持力D .重力、正压力、下滑力和斜面支持力.重力、正压力、下滑力和斜面支持力【误解一】选(选(B B )。
高中物理牛顿第二定律经典例题
牛顿第二运动定律【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A 点物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回,则以下说法正确的是:A 、物体从A 下降和到B 的过程中,速率不断变小B 、物体从B 上升到A 的过程中,速率不断变大C 、物体从A 下降B ,以及从B 上升到A 的过程中,速率都是先增大,后减小D 、物体在B 点时,所受合力为零【解析】本题主要研究a 与F 合的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。
对物体运动过程及状态分析清楚,同时对物体正确的受力分析,是解决本题的关键,找出AB 之间的C 位置,此时F 合=0,由A →C 的过程中,由mg>kx 1,得a=g-kx 1/m ,物体做a 减小的变加速直线运动。
在C 位置mg=kx c ,a=0,物体速度达最大。
由C →B 的过程中,由于mg<kx 2,a=kx 2/m-g ,物体做a 增加的减速直线运动。
同理,当物体从B →A 时,可以分析B →C 做加速度度越来越小的变加速直线运动;从C →A 做加速度越来越大的减速直线运动。
C 正确。
例2如图3-10所示,在原来静止的木箱内,放有A 物体,A 被一伸长的弹簧拉住且恰好静止,现突然发现A 被弹簧拉动,则木箱的运动情况可能是 A 、加速下降 B 、减速上升肥 C 、匀速向右运动 D 、加速向左运动【解析】木箱未运动前,A 物体处于受力平衡状态,受力情况为:重力mg ,箱底的支持力N ,弹簧拉力F 和最大的静摩擦力f m (向左)由平衡条件知:N=mg F=f m 。
由于发现A 弹簧向右拉动(已知),可能有两种原因,一种是由A 向右被拉动推知,F>f m ′,(新情况下的最大静摩擦力),可见f m >f m ′即是最大静摩擦力减小了,由f m =μN 知正压力N 减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A 、B 正确。
【物理】物理牛顿运动定律的应用练习题20篇含解析
(1)求经过多长时间煤块与小车保持相对静止 (2) 求 3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】
【分析】
分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停
止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位
k(X x) mg ma Fmax Mg Ma
以上各式代如数据联立解得
Fmax 168N
该开始向上拉时有最小拉力则
Fmin kX (M m)g (M m)a
解得
Fmin 72N
考点:牛顿第二定律的应用 点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列 出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.
(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;
(2)计算说明滑块能否从平板车的右端滑出.
【答案】(1)
,
(2)恰好不会从平板车的右端滑出.
【解析】
根据牛顿第二定律得
对滑块,有
,
解得
对平板车,有
,
解得
.
设经过 t 时间滑块从平板车上滑出 滑块的位移为:
.
平板车的位移为:
.
而且有 解得: 此时, 所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.
移.
【详解】
(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:
代入数据解得:a1=2m/s2 刚开始运动时对小车有:
FN ma1
FN-mg=0
F FN Ma2
解得:a2=0.6m/s2 经过时间 t,小黑煤块和车的速度相等,小黑煤块的速度为:
高考物理牛顿运动定律的应用解题技巧及练习题(含答案)及解析
高考物理牛顿运动定律的应用解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求:(1)m 、M 之间的动摩擦因数;(2)M 的质量及它与水平地面之间的动摩擦因数;(3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】(1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有:11mg ma μ=由乙图知214m /s a =解得10.4μ=(2)对M 由牛顿第二定律有122()F mg M m g Ma μμ--+=即12122()()F mg M m g mg M m g Fa M M Mμμμμ--+--+==+乙图知114M = 12()94mg M m g M μμ--+=-解得M = 4 kg μ2=0. 1(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左,设m 运动t 1时间速度减为零,则111s v t a == 位移21011112m 2x v t a t =-=M 的加速度大小2122()5m /s F mg M m ga Mμμ--+==方向向左, M 的位移大小22211 2.5m 2x a t == 此时M 的速度2215m /s v a t ==由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落,设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律23F Mg Ma μ-=可得2325m /s 4a =在t =2s 时m 与M 右端的距离2321311()()8.125m 2x v t t a t t =-+-=.2.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:(1)物体从A 点到达B 点所需的时间;(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.【答案】(1)2s (2)5m 【解析】 【分析】(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s此过程中物体的位移01192v vx t m +== 传送带的位移:214x vt m ==当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2物体向上减速运动s 1=L-x 1=3m根据位移公式:s 1=vt 2-12a 2t 22 解得:t 2=1 s (t 2=3 s 舍去)则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s (2)物体减速上滑时,传送带的位移:224s vt m == 则物体相对传送带向下的位移211s s s m ∆=-=因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.3.如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m =2 kg 的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s 末物体到达B 端,取沿传送带向下为正方向,g =10 m/s 2,sin 37°=0.6,求:(1)小物体在传送带A 、B 两端间运动的平均速度v ; (2)物体与传送带间的动摩擦因数μ; (3)2 s 内物体机械能的减少量ΔE . 【答案】(1)8 m/s (2)0.5 (3)48 J 【解析】 【详解】(1)由v-t 图象的面积规律可知传送带A 、B 间的距离L 即为v-t 图线与t 轴所围的面积,所以:112122v v v L t t t =++代入数值得:L =16m由平均速度的定义得:168/2L v m s t ===(2)由v-t 图象可知传送代运行速度为v 1=10m/s ,0-1s 内物体的加速度为:22110/10/1v a m s m s t V V === 则物体所受的合力为:F 合=ma 1=2×10N=20N .1-2s 内的加速度为:a 2=21=2m /s 2, 根据牛顿第二定律得:a 1=mgsin mgcos mθμθ+=gsinθ+μgcosθa 2= mgsin mgcos mθμθ-=gsinθ-μgcosθ联立两式解得:μ=0.5,θ=37°.(3)0-1s 内,物块的位移:x 1=12a 1t 12=12×10×1m =5m 传送带的位移为:x2=vt1=10×1m=10m 则相对位移的大小为:△x1=x2-x1=5m则1-2s内,物块的位移为:x3=vt2+1 2 a2t22=10×1+12×2×1m=11m0-2s内物块向下的位移:L=x1+x3=5+11=16m物块下降的高度:h=L sin37°=16×0.6=9.6m物块机械能的变化量:△E=12m v B2−mgh=12×2×122−2×10×9.6=-48J负号表示机械能减小.4.如图所示,从A点以v0=4m/s 的水平速度抛出一质量m=1kg的小物块(可视为质点),当物块运动至B点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC,其中轨道C端切线水平。
高中物理牛顿运动定律解题技巧讲解及练习题(含答案)
高中物理牛顿运动定律解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。
已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。
求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。
【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。
设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。
水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。
传送带BC 间距0.8L m =,以01/v m s =顺时针运转。
两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版物理必修1第四章《牛顿运动定律》
第七节用牛顿运动定律解决问题(二)
精选练习
一、夯实基础
1.当物体在共点力的作用下处于平衡状态时,下列说法正确的是()
A.物体一定保持静止B.物体一定做匀速直线运动
C.物体的加速度为零D.物体一定做匀加速直线运动
【答案】 C
【解析】平衡状态指的是匀速直线运动状态或静止状态,物体在共点力的作用下处于平衡状态时,可能
做匀速直线运动,也可能处于静止状态,A、B、D选项错误;物体处于平衡状态的条件是合力为零,加速
度为零,C选项正确.
2.(多选)下列事例中的物体处于平衡状态的是()
A.“神舟”号飞船匀速落到地面的过程B.汽车在水平路面上启动或刹车的过程
C.汽车停在斜坡上D.竖直上抛的物体在到达最高点的那一瞬间
【答案】:AC
【解析】:物体处于平衡状态,从运动状态来说,即物体保持静止或做匀速直线运动.从受力情况来说,物
体所受合力为零.“神舟”号飞船匀速落到地面的过程中,飞船处于平衡状态,A正确;B项中汽车在水平路面上启动或刹车过程中,汽车的速度在增大或减小,其加速度不为零,其合力不为零,所以汽车不是处于
平衡状态;C项中汽车停在斜坡上,速度和加速度均为零,合力为零,保持静止状态不变,即汽车处于平衡
状态;D项中物体上升到最高点时,只是速度为零,而加速度为g,所以物体不是处于平衡状态.
3.(多选)电梯的顶部拴一弹簧秤,弹簧秤下端挂一重物,电梯静止时,电梯中的人观察到弹簧秤的示数为10 N.某时刻电梯中的人观察到弹簧秤的示数为12 N,取g=10 m/s2,则此时()
A.电梯可能向上加速运动,加速度大小为 2 m/s2
B.电梯可能向上减速运动,加速度大小为 2 m/s2
C.电梯中的人一定处于超重状态
D.电梯中的人一定处于平衡状态
【答案】AC
【解析】弹簧秤的示数增大,根据牛顿第二定律得,F-mg=ma,解得加速度a=2 m/s2,方向向上,电
梯可能做向上的加速运动,或向下的减速运动,A选项正确,B选项错误;电梯中的人加速度向上,处于超重状态,C选项正确,D选项错误.
4.在探究超重和失重规律时,某体重为G的同学站在一压力传感器上完成一次下蹲动作.传感器和计算机
相连,经计算机处理后得到压力F随时间t变化的图象,则下列图象中可能正确的是()
A B C D
【答案】:D
【解析】:对人的运动过程分析可知,人在加速下蹲的过程中,有向下的加速度,处于失重状态,此时人对
传感器的压力小于人的重力的大小;在减速下蹲的过程中,加速度方向向上,处于超重状态,此时人对传
感器的压力大于人的重力的大小,D正确.
5.如图所示,用一根长为l的细绳一端固定在O点,另一端悬挂质量为m的小球A,为使细绳与竖直方向夹30°角且绷紧,小球A处于静止,对小球施加的最小的力是()
A.3mg
B.1
2 mg
C.
3
2
mg D.
1
3
mg
【答案】 B
【解析】以小球为研究对象,分析受力,作出受力图如图,
根据作图法分析得到,当小球施加的力
F 与细绳垂直时,所用的力最小.根据平衡条件,F 的最小值为F min
=Gsin30°=mg ×12=12mg ,故选 B. 6.如图所示,A 、B 两物体叠放在一起,以相同的初速度上抛(不计空气阻力).下列说法正确的是()
A .在上升和下降过程中
A 对
B 的压力一定为零B .上升过程中
A 对
B 的压力大于A 物体受到的重力
C .下降过程中A 对B 的压力大于A 物体受到的重力
D .在上升和下降过程中
A 对
B 的压力等于A 物体受到的重力【答案】:A
【解析】:上升和下降过程中,两物体均处于完全失重状态,A 对B 的压力为零.
7.(2019·永州三模)科技的发展正在不断地改变着我们的生活,图甲是一款放在水平桌面上的手机支架,其表面采用了纳米微吸材料,用手触碰无粘感,接触到平整光滑的硬性物体时,会牢牢吸附在物体上.图乙是手机静止吸附在该手机支架上的侧视图,若手机的重力为G ,下列说法正确的是()
A .手机受到的支持力大小为Gcos θ
B .手机受到的摩擦力大小大于Gsin θ
C .纳米微吸材料对手机的作用力方向竖直向上
D .纳米微吸材料对手机的作用力大小为
Gsin θ【答案】:C 【解析】:手机受力平衡,根据平衡条件可知,在垂直支架方向上,重力垂直支架的分力与吸附力之和等于手机受到的支持力,F N =Gcos θ+F 吸,A 选项错误;在平行支架方向上,f =Gsin θ,B 选项错误;纳米微吸。