初中圆知识点总结

合集下载

初中数学圆知识点总结

初中数学圆知识点总结

A图5圆的总结一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 d<r 点C 点在圆上 d=r 点B在圆上 点在此圆外 d >r 点A在圆外2 直线与圆的位置关系:直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d < 3 圆与圆的位置关系:外离(图1) 无交点 外切(图2) 相交(图3) 内切(图4) 内含(图5) 无交点DBB A四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①A B是直径 ②AB ⊥CD ③CE =DE ④⑤推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O中,∵AB ∥CD五 圆心角定理六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠AC B圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O中,∵∠C 、∠D 都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角BC BD =AC AD =P形即:在△ABC 中,∵O C=OA=O B∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

初中数学知识点归纳圆

初中数学知识点归纳圆

初中数学知识点归纳圆初中数学中与圆相关的知识点有很多,包括圆的定义、圆的性质、弦、切线、弧长、扇形、面积等。

下面将详细介绍这些知识点。

一、圆的定义和性质1.圆的定义:圆是平面上距离其中一定点(圆心)距离相等的所有点的集合。

2.圆的性质:(1)圆心到圆上任意一点的距离都相等。

(2)具有相同半径的两个圆互为同心圆。

(3)同心圆的内圆的半径小于外圆的半径。

二、弦和切线1.弦:弦是圆上的两个点之间的线段。

弦的长度可以通过通过勾股定理计算。

2.弦的性质:(1)圆心角相等的弦相等。

(2)等长的弦对应的圆心角相等。

(3)等长的弦与半径相等的圆心角相等。

3.切线:切线是圆与圆心的一条直线,它只与圆相交于一个点,这个点称为切点。

4.切线的性质:(1)切线与半径的夹角是直角(垂直)。

(2)切点到圆心的距离与切线的长度相等。

三、弧、弧长和扇形1.弧:弧是圆上两个点之间的一段弧线。

2.弧的性质:(1)相等弧所对的圆心角相等。

(2)圆的一条弧上的任意两个点与圆心和其他点构成的圆心角相等。

3.弧长:弧长是弧上的一段弧线的长度,可以通过圆的周长与圆心角的比例来计算。

4.扇形:扇形是由圆心、圆上两个点和相应的弧所构成的图形。

5.扇形的性质:扇形的面积可以通过扇形的圆心角与整个圆所对应的圆心角的比例来计算。

四、圆的面积1.圆的面积公式:圆的面积可以通过半径或直径来计算,公式如下:圆的面积=π*半径²=π*(直径/2)²2.π的近似值:π是一个无理数,通常取近似值3.14或22/7以上就是初中数学中与圆相关的知识点的归纳,涵盖了圆的定义和性质、弦和切线、弧、弧长和扇形、圆的面积等内容。

通过学习和掌握这些知识点,可以更好地理解和解决与圆相关的数学问题。

了解这些知识,不仅有助于学生提高数学水平,还能够培养学生的逻辑思维能力和解决问题的能力。

初中数学圆知识点总结

初中数学圆知识点总结

初中数学圆知识点总结一、圆的基本概念1. 圆的定义圆是平面上到一个定点距离等于定长的所有点的集合。

这个定点称为圆心,定长称为半径。

2. 圆的元素一个圆包括以下几个元素:- 圆心:圆的中心点,用O表示;- 半径:以圆心为端点的线段,用r表示;- 直径:穿过圆心的线段,用d表示;- 弦:圆上的两点间的线段,用AB表示;- 弦长:弦所对应的圆心角的对边,用l表示;- 弧:圆上的弦所对应的曲线部分。

3. 圆的相关术语(1)圆周:圆的边界。

(2)圆内:圆的内部。

(3)圆外:圆的外部。

4. 圆的定理定理1:圆的半径相等。

定理2:圆的直径是圆内任意两点之间的最长的线段。

二、圆的性质1. 圆心角圆心角是以圆心作为顶点的角,它所对应的弧的长度就是这个圆心角的度数。

圆心角的度数是以弧所对应的圆周角分之方式来确定的。

圆心角的度数等于这个弧长所对应的圆周角的度数。

2. 圆周角圆周角是以圆的周长作为顶点的角。

它的度数是圆心角的度数的两倍。

3. 切线切线是与圆相切的直线。

与圆相切的直线都有与圆心的连线垂直。

4. 弦长定理两条相同弦所对应的圆心角相等。

两条不同弦所对应的圆心角不等。

5. 弧长定理圆周角相等的弧相等。

圆周角不相等的弧不等。

6. 直角三角形中的圆如果一个直角三角形的两条直角边刚好是一个直径和一个切线,那么这个三角形是直径的垂直三角形。

7. 圆的垂直平分弦定理如果一个直径所对应的两个弦长度相等,那么这个直径垂直平分这个弦。

8. 点到圆的距离点到圆的距离是指点到圆的圆周上的任意一点的距离。

圆内的点到圆的距离为正。

圆外的点到圆的距离为负。

9. 切线定理当直线与圆相切时,切线与半径的夹角是90度。

三、圆的周长和面积1. 圆的周长圆的周长就是圆的边界的长度,也就是圆的长度。

圆的周长可以用公式2πr来表示,其中r是圆的半径。

2. 圆的面积圆的面积就是圆的内部的面积。

圆的面积可以用公式πr²来表示,其中r是圆的半径。

初中 圆形 知识点总结

初中 圆形 知识点总结

初中圆形知识点总结一、圆的定义圆是一个平面上的封闭曲线,其上任意两点的距离都相等,这个距离就是圆的半径。

圆的内部部分是圆内部,圆的外部部分是圆外部。

二、圆的性质1. 圆上任意一点到圆心的距离都相等。

2. 圆的直径是圆上任意两点的连线,且通过圆心。

3. 圆周角是指以圆心为顶点的角,它的度数恰好是所对圆心角弧的度数的一半。

4. 圆内切正多边形的边数越多,它逼近于圆。

三、圆周长和面积1. 圆周长的计算公式圆的周长= 2 × π × 半径,或者圆的周长= π × 直径其中,π 是一个无理数,约为3.14159。

2. 圆面积的计算公式圆的面积= π × 半径的平方四、圆的应用1. 圆在日常生活中的应用:圆形的一些实例包括钟表、轮胎、餐具的底部等。

这些都是我们日常生活中经常见到的圆形物体。

2. 圆在数学中的应用:圆形广泛应用于数学中的几何问题,如计算圆环的面积、计算扇形的面积等等。

同时在工程设计中,也会用到圆形的知识。

五、圆形的相关概念1. 圆心角圆的周角的顶点是圆的中心,它们是圆心角,圆心角的度数等于所对的圆弧的度数。

2. 圆的中心圆的中心点称之为圆心,是圆的重要属性。

3. 圆幂圆幂定理是圆的一个重要定理,它可以用来解决和圆相关的问题。

六、扩展知识1. 圆锥和圆柱的体积计算:圆锥的体积 = 1/3 × 底面积 × 高圆柱的体积 = 底面积 × 高2. 圆形的切线和切点:圆内任意一点到圆上的切点的线段叫做切线。

切线和圆的半径垂直相交。

在初中数学中,圆形作为一个重要的几何形状,不仅有着自己的定义和性质,还有着广泛的应用。

通过学习圆形的知识,可以帮助学生理解几何形状的特点,提高数学解题的能力。

希望本文对初中生学习圆形知识有所帮助。

初中数学圆知识点总结归纳

初中数学圆知识点总结归纳

初中数学圆知识点总结归纳一、圆的基本性质圆的定义:平面内到定点距离等于定长的所有点组成的图形叫做圆。

其中定点称为圆心,定长称为半径。

圆的基本性质:(1)圆是中心对称图形,对称中心为圆心。

(2)圆是轴对称图形,对称轴为经过圆心的任意一条直线。

(3)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

(4)圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

(5)弦心距定理:在同圆或等圆中,弦心距等于所对弧的半径的一半。

二、圆的几何表示圆的方程:在平面直角坐标系中,以圆心为坐标原点,以半径为r的圆的方程为x^2 + y^2 = r^2。

圆的标准方程:以圆心为坐标原点,以半径为r,且经过点P(x0, y0)的圆的方程为(x - x0)^2 + (y - y0)^2 = r^2。

圆的参数方程:以x为参数,描述圆的方程为x = x0 + rcos(θ),y = y0 + rsin(θ),其中θ为参数。

三、与圆相关的定理和性质切线判定定理:经过半径的外端点并且垂直于这条半径的直线是圆的切线。

切线性质定理:圆的切线上的任一点到圆心的距离等于半径。

切线长定理:经过圆外一点引两条切线,它们的切线长相等。

相交弦定理:经过圆内一点引两条弦,它们的交点与该点的距离乘积等于常数。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等。

圆幂定理:对于同圆或等圆中的两个相等的非零实数,有:(ab)(cd) = (ac)(bd) - (ad)(b*c)。

弦中点定理:经过弦的两个端点的直径垂直于这条弦。

相交弦定理:两弦交于圆内一点,各弦被这点所平分。

余弦定理:对于任何三角形ABC,有c^2 = a^2 + b^2 - 2ab*cos(C)。

正弦定理:对于任何三角形ABC,有a/sin(A) = b/sin(B) = c/sin(C)。

初中数学知识点总结圆

初中数学知识点总结圆

初中数学知识点总结圆一、圆的基本概念1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合称为圆。

2. 圆心:圆心是圆的中心点,通常用符号O表示。

3. 半径:圆心到圆上任意一点的距离称为半径,通常用符号r表示。

4. 直径:通过圆心,且两端都在圆上的线段称为直径,通常用符号d 表示,直径是半径的两倍。

5. 弦:圆上任意两点间的线段称为弦。

6. 弧:圆上任意两点间的曲线部分称为弧。

7. 优弧:大于半圆的弧称为优弧。

8. 劣弧:小于半圆的弧称为劣弧。

9. 半圆:圆的一半,即180度的弧。

二、圆的性质1. 所有半径的长度相等。

2. 直径是圆内最长的线段。

3. 圆周角定理:圆周上同弧所对的圆周角等于该弧的一半。

4. 圆心角定理:圆心角的大小是其所对弧的三分之一。

5. 圆内接四边形的性质:圆内接四边形的对角互补。

6. 切线的性质:圆的切线垂直于过切点的半径。

三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(S):S = πr²3. 扇形面积:S = (θ/360)πr²,其中θ为扇形的圆心角,单位为度。

4. 弓形面积:S = (θ/360)πr² - (θ/360)α²,其中θ为扇形的圆心角,α为弦与圆心的夹角,单位为度。

四、圆的应用题解法1. 已知圆的直径或半径求周长和面积。

2. 已知圆的周长求半径和直径。

3. 已知圆的面积求半径和直径。

4. 已知圆的某一段弧长求其所对的圆心角。

5. 已知圆的半径和圆心角求扇形的弧长和面积。

6. 圆与直线或线段相交时,求切线长、切点坐标等。

五、圆的相关定理和概念1. 垂径定理:直径垂直于弦,并且平分弦(及弦所对的弧)。

2. 外切线定理:两个圆的外切线相交于一点,这一点称为两圆的公切点。

3. 内切线定理:两个圆的内切线相交于一点,这一点称为两圆的公切点。

4. 切线长定理:从圆外一点引圆的两条切线,这两条切线长相等。

初中数学圆的知识点总结

初中数学圆的知识点总结

初中数学圆的知识点总结初中数学圆的知识点总结【一】一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O 叫圆心,线段OA叫半径。

由圆的意义可知:圆上各点到定点〔圆心O〕的间隔等于定长的点都在圆上。

就是说:圆是到定点的间隔等于定长的点的集合,圆的内部可以看作是到圆。

心的间隔小于半径的点的集合。

圆的外部可以看作是到圆心的间隔大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的局部叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心一样,半径不相等的两个圆叫同心圆。

可以重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,可以互相重合的弧叫等弧。

二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角那么两个钝角之和》180°与三角形内角和等于180°矛盾。

不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。

初中圆形几何知识点总结

初中圆形几何知识点总结

初中圆形几何知识点总结一、圆的基本概念1. 圆的定义:圆是平面上到一个点(圆心)的距离等于一个定长(半径)的所有点的集合。

2. 圆的要素:圆心、半径、直径、圆周、圆心角等。

3. 与圆有关的基本量:圆的周长、圆的面积等。

二、圆的周长和面积计算1. 圆的周长:圆的周长就是圆的边界的长度,计算公式为C=2πr,其中C为圆的周长,r为圆的半径。

2. 圆的面积:圆的面积就是圆内部的面积,计算公式为S=πr²,其中S为圆的面积,r为圆的半径。

三、圆心角与圆弧1. 圆心角:以圆的圆心为顶点的角称为圆心角。

2. 圆弧:圆弧是圆周的一部分。

四、切线、切点与切圆1. 切线:直线与圆相切时称为切线。

2. 切点:切线与圆相交的点称为切点。

3. 切圆:如何确定直线与圆相切呢?只需求圆心到直线的距离,若为半径则直线与圆相切。

五、相交圆与相切圆1. 相交圆:两个圆在平面上的位置关系,既不相离,也不相切。

(两圆无交集)2. 相切圆:两个圆在平面上的位置关系,其相交,且共有一点。

(两圆之间关系相交且只有一个交点)六、扇形与弧1. 扇形:两条半径所夹的区域,称为扇形。

圆心角为180°的扇形称为半圆。

2. 弧:任意两个点间的圆上的一段。

七、圆锥、圆柱与圆环1. 圆锥:以一个圆为底面,从底面的任意点引射线与一个固定点相交,这些射线构成的曲面称为圆锥。

2. 圆柱:以一个圆为底面,在底面的平行平面上,引射线与一个固定点相交,这些射线构成的曲面称为圆柱。

3. 圆环:由两个同心圆组成,外圆的半径减去内圆的半径,得到圆环的宽度。

八、解题技巧1. 圆与其它几何图形的问题:在解题中,可通过构造图形,利用已知条件,运用勾股定理、相似三角形等几何知识分析问题。

2. 圆的应用:在现实生活中,圆相关的知识经常用于推广广告、建筑建造等领域。

通过以上圆形几何知识的总结,我们可以有效地应对与圆相关的数学题,也可以更好地理解现实生活中的几何关系。

初中关于圆的知识点总结

初中关于圆的知识点总结

初中关于圆的知识点总结一、定义和性质圆是平面上的一个几何图形,由平面上到一个点的距离都相等的所有点组成。

圆的性质有:1. 圆的半径是从圆心到圆上任意一点的距离,圆的直径是通过圆心的两个点之间的距离。

直径是半径的两倍。

2. 圆的周长是圆上的一条线段,它的长度等于圆的直径乘以π(圆周率)。

3. 圆的面积是圆内部的所有点组成的区域,它的大小等于圆的半径的平方乘以π。

4. 圆的直径、半径和周长之间有以下关系:周长等于直径乘以π,周长等于半径的两倍乘以π。

5. 圆的面积和半径之间有以下关系:面积等于半径的平方乘以π。

二、圆的元素1. 圆心:圆的中心点,标记为O。

2. 圆周:由圆上的所有点组成的曲线。

3. 弧:圆周上的一段曲线。

4. 弦:连接圆上两点的线段。

5. 切线:与圆的圆周相切的直线,切点为切线与圆的交点。

6. 弧长:圆周上的一段弧的长度。

7. 弧度:以半径为单位的弧长,常用符号为rad。

8. 扇形:由圆心和圆周上的两点组成的区域。

9. 圆心角:以圆心为顶点的角,其两边分别为从圆心到圆周上的两点。

三、圆的相关定理1. 圆的直径是圆上任意两点之间的最长距离。

2. 圆的半径垂直于其所在的弦,并且平分弦。

3. 圆的半径与切线垂直,切线与半径的交点处的角是直角。

4. 圆内接四边形的对角线互相垂直,并且对角线互相平分。

5. 圆内接正多边形的外接圆的半径等于正多边形的边长。

四、圆的应用1. 圆的几何图形在日常生活中的应用非常广泛,如轮胎、餐盘、表盘等。

2. 圆的运动学应用,如车轮的滚动、摆锤的摆动等。

3. 圆的几何问题的解决,如求圆的周长、面积等。

4. 圆的图形转换,如圆的旋转、平移等。

总结:初中阶段学习圆的知识是几何学的基础,通过了解圆的定义、性质、元素和相关定理,可以更好地理解和应用圆的概念。

同时,圆的知识也有许多实际应用,对于培养学生的几何思维和解决问题的能力有着重要的作用。

希望通过本文的总结,能够帮助初中学生更好地掌握圆的知识。

初中关于圆的知识点总结

初中关于圆的知识点总结

初中关于圆的知识点总结一、圆的定义与性质1. 圆是平面上的一个几何图形,由平面上的所有与给定点的距离相等的点组成。

2. 圆的性质:圆上任意两点之间的线段叫做弦,通过圆心的弦叫做直径,直径是弦中最长的一条,直径恰好是半径的两倍。

二、圆的元素1. 圆心:圆的中心点,用O表示。

2. 半径:圆心到圆上任意一点的距离,用r表示。

3. 直径:通过圆心的弦,用d表示,d=2r。

4. 弧:圆上两点之间的部分,用弧上任意两点表示,如AB表示弧上的一部分。

5. 弦:圆上任意两点之间的线段,如AB。

三、圆的计算1. 圆的周长:圆的周长等于圆的直径乘以π(圆周率),C=πd或C=2πr。

2. 圆的面积:圆的面积等于圆的半径平方乘以π,S=πr²。

四、圆与其他几何图形的关系1. 圆与直线的关系:a. 直线与圆相切:直线与圆只有一个交点,且交点在圆上。

b. 直线与圆相离:直线与圆没有交点。

c. 直线与圆相交:直线与圆有两个交点,且交点在圆上。

2. 圆与多边形的关系:a. 圆内接多边形:多边形的每个顶点都与圆相切,且多边形的边都在圆上。

b. 圆外接多边形:多边形的每条边都与圆相切,且多边形的顶点都在圆上。

c. 圆内切多边形:多边形的每个顶点都与圆相切,但多边形的边不一定在圆上。

五、圆的应用1. 圆在生活中的应用:a. 轮胎:轮胎是由圆形钢圈和橡胶圆环组成,圆形的结构使得轮胎更加稳定。

b. 餐盘:餐盘通常是圆形的,这样方便食物的摆放和旋转。

c. 钟表:钟表的表盘通常是圆形的,指针绕着圆形轨道运动,方便读取时间。

2. 圆在数学中的应用:a. 几何学:圆是几何学中最基本的图形之一,广泛应用于平面几何和立体几何的研究中。

b. 物理学:在物理学中,圆的运动是一种最简单的运动形式,例如行星绕太阳的轨道就是近似圆形的。

c. 统计学:在统计学中,圆形的统计图形如饼图常用于表达各个部分占整体的比例关系。

圆是平面几何中的重要概念,具有丰富的性质和应用。

圆的综合知识点总结(初中数学)

圆的综合知识点总结(初中数学)

圆的基本概念和性质要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.垂径定理知识点一、垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即⎩⎨⎧⇒⎭⎬⎫平分弦所对的弧平分弦垂直于弦直径(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)弧、弦、圆心角、圆周角要点一、弧、弦、圆心角的关系1.圆心角定义:如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

初中数学圆的知识点总结

初中数学圆的知识点总结

初中数学圆的知识点总结圆是数学中的一个重要概念,是平面几何中的基础知识之一。

在初中数学中,圆的知识点主要包括圆的定义、圆的性质、圆的元素和圆的相关定理等内容。

下面是对初中数学圆的知识点进行总结:一、圆的定义圆是平面上的一条封闭曲线,由与一个点的距离恒定的所有点组成。

二、圆的性质1. 圆的内部任意两点之间的距离都小于它们到圆心的距离,即圆内部的所有点到圆心的距离相等。

2. 圆的任意一条弦都不能长于圆的直径。

3. 圆的内接四边形的对角线相等。

4. 圆的弧是圆心角所对的线段所确定的曲线部分。

5. 圆的弦是任意两点所确定的线段。

三、圆的元素1. 圆心:圆的中心点,通常用字母O表示。

2. 圆的半径:从圆心到圆上任意一点的距离,通常用字母r表示。

3. 圆的直径:通过圆心的任意一条弦,将圆分成两个等分的线段,直径是弦的两个端点的距离的两倍,通常用字母d表示。

4. 圆的弧:圆的一部分,由圆上的两个点所确定,通常用字母l 表示。

5. 圆的弦:圆上任意两点所确定的线段,通常用字母AB表示,其中A、B为圆上的两点。

6. 圆的切线:与圆只有一个交点的直线,该交点与圆心的连线垂直于切线。

四、圆的相关定理1. 圆上的弧对应的圆心角相等,即两个圆心角相等的弦所对应的弧相等。

2. 圆的两个弧对应的圆心角互补,即一个弧所对应的圆心角与另一个弧所对应的圆心角之和等于180度或π弧度。

3. 圆上的两个弧所对应的圆心角互为补角,换句话说,两个互为补角的弧所对应的圆心角相等。

4. 圆的切线与半径垂直,切线与切点所在的半径构成直角。

5. 圆的切线与切点所在的半径的乘积相等,即切线上任意一点到切点的距离与切线上该点到圆心的距离的乘积等于半径的平方。

总结:初中数学圆的知识点主要包括圆的定义、圆的性质、圆的元素和圆的相关定理等。

掌握了这些知识点,可以帮助我们理解和解题圆相关的问题,包括圆的面积和周长计算、圆心角、正多边形内切圆等内容。

在学习过程中,应注意灵活运用这些概念和定理,多做相关练习和应用题,以加深理解和提高解决问题的能力。

初中圆知识点归纳总结

初中圆知识点归纳总结

初中圆的知识点归纳总结:
1. 圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

2. 圆的性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆有无数条对称轴。

3. 圆的半径:连接圆心到圆上任意一点的线段叫做圆的半径,用字母r表示。

4. 圆的直径:通过圆心且两个端点都在圆周上的线段叫做圆的直径,用字母d 表示。

5. 圆直径与半径的关系:在同圆或等圆中,直径的长度是半径的2倍,半径的长度是直径的1/2。

6. 圆心角:顶点在圆心上的角叫做圆心角,圆心角的大小与所对的弧长有关。

7. 弧长与扇形面积:在同圆或等圆中,弧长与扇形面积成正比关系。

8. 圆的周长:圆的周长等于2πr,其中r为圆的半径。

9. 圆的面积:圆的面积等于πr²,其中r为圆的半径。

10. 直线与圆的位置关系:直线与圆有三种位置关系,分别是相交、相切和相离。

11. 切线与切线长:过圆外一点作圆的切线,这一点到切点的线段叫做切线,圆的切线长度叫做切线的长度。

12. 正多边形与圆的关系:正多边形的外接圆直径叫做正多边形的直径,正多边形的内切圆直径叫做正多边形的半径。

13. 弧长公式:弧长公式可以用来计算弧长,其公式为L = nπr/180,其中n 为扇形的圆心角度数,r为扇形的半径。

14. 扇形面积公式:扇形面积公式可以用来计算扇形面积,其公式为S =
nπr²/360,其中n为扇形的圆心角度数,r为扇形的半径。

15. 圆的切线定理:圆的切线定理指出,圆的切线垂直于经过切点的半径。

初中圆形知识点总结

初中圆形知识点总结

初中圆形知识点总结一、基本概念1. 圆的定义圆是由一个平面内的一点到另一点距离不大于给定长度的所有点构成的集合。

这个给定长度称为圆的半径,用字母r表示。

2. 圆心和半径圆心是圆上任意两点的连线的中点,通常用字母O来表示。

半径是从圆心到圆上的任意一点的距离,通常用字母r来表示。

3. 圆的直径圆的直径是通过圆心的两点之间的线段,它等于半径的两倍。

通常用字母d来表示圆的直径,d=2r。

4. 圆的周长和面积圆的周长等于它的直径乘以π(圆周率),通常用字母C表示,C=πd或C=2πr。

圆的面积等于圆周率π乘以半径的平方,通常用字母A表示,A=πr²。

二、圆的性质1. 圆的周长和面积圆的周长是圆周率π与直径或半径的乘积,圆的面积是圆周率π与半径的平方的乘积。

2. 圆心角和弧长圆心角是指圆的中心的两条射线围成的角,它的大小等于对应的圆周上的弧长所对的圆心角的大小。

两个相等的圆心角所对的弧长也相等。

3. 弦圆内任意两点之间的线段叫做弦。

圆上的弦等于半径时,这条弦叫做直径,决定了圆的大小。

4. 直角圆的符号若端点为中心则记为⊙O,其中 O 为圆心若端点为直线,则直接用画线表示,即AB5. 竖直圆口的符号端点与弧上的端点一致时,直接采用端点命名;端点与圆心为一致的端点时,圆心小写,注意加“”;6. 圆的外接角一个在圆上的等于在圆外的补角叫做圆的外接角,外接角是180°。

7. 切割圆的边界弧是处在圆的边界上的。

弦是圆的直径,没有端点在边界上。

8. 圆的常用公式圆的面积公式:C=2πr S=πr²弧长计算公式:()=°×()÷360°或:x=πr*()÷180°9. 圆的基本性质①:圆的周长是相等的圆的直径成比例(直径与周长成比例)②:圆上任意点P到直径线段的距离是相等的(任意点和圆心的距离都是相等的).③:相似圆的所有相似东西的单向和边都成比例。

初中知识点圆总结

初中知识点圆总结

初中知识点圆总结一、圆的基本概念圆是由平面上的一点到另一点的距离恒定且等于半径的所有点的集合。

这个距离通常称为半径。

通常情况下,我们所说的圆指的是圆的内部和边界。

二、圆的性质1. 圆的半径相等性质:圆上的任何一条半径的长度都相等。

2. 圆周角性质:圆周角的度数是圆心角的一半。

3. 圆的弦性质:圆上的任何一条弦都将圆分成两个小圆,这两个小圆的半径相等。

4. 圆的切线性质:过圆外一点,可以有且只有一条直线与圆相切,且与圆的切点处的切线垂直于半径。

三、圆的周长和面积1. 圆的周长:圆的周长等于圆的直径乘以π,即C=πd,或者等于2倍半径乘以π,即C=2πr。

2. 圆的面积:圆的面积等于半径的平方乘以π,即A=πr²。

四、圆的相关角度1. 对圆心角的概念,记住在同一个圆的圆心角相等。

2. 对于圆周角和弦的关系,圆周角等于其所对的弦的圆心角。

五、圆的应用1. 圆的平移:圆平移后仍然是圆。

2. 圆的旋转:圆绕定点旋转后仍然是圆。

3. 圆的相似与全等:圆的相似和全等的概念及判定条件。

六、常见的圆相关问题1. 直角三角形内切圆和外接圆的性质。

2. 圆心角的性质和应用。

3. 关于弦的问题,比如等于半径的弦和垂直于半径的弦的关系。

七、圆的相关定理1. 相交弦定理:如果两条弦相交,那么这两条弦的乘积相等。

2. 弧长定理:在同一个圆上,两个圆周角所对的弧长比等于它们所在圆周的弧长比。

3. 正切定理:切线与半径的关系。

以上就是初中知识点圆的总结。

圆是数学中一个非常基础,又非常重要的知识点,掌握圆的性质和相关定理对后续数学学习和生活中的问题解决都有极大的帮助。

希望同学们能够认真学习和理解圆的相关内容,加深对圆的理解和运用。

初中圆知识点归纳总结

初中圆知识点归纳总结

初中圆知识点归纳总结1. 圆的定义圆是平面上到定点的距离等于定长的点的全体构成的集合。

定点称为圆心,定长称为半径,记作圆O,半径r,圆上的任意一点A到圆心O的距离等于r,即OA=r。

2. 圆的性质(1)圆的性质a. 圆上任意两点之间的距离相等。

b. 圆的半径相等。

c. 圆的直径是圆的两个半径之和。

d. 圆的直径上任意一点到圆的直径上的另一点的距离等于圆的半径。

e. 直径是圆上最远的两个点。

(2)圆的其他相关性质a. 圆周角是圆周上顶点为圆心的角,它的度数是圆心角的一半。

b. 圆内接四边形的对角和相等。

3. 圆的相关定理(1)圆的相关定理a. 圆心角定理:圆的内部任一点的圆心角是不变的,且为180°的倍数。

b. 弦长定理:圆内一条弦的长度等于两条弦的长度之积等于其中线所分你的两条弦的长度之积。

(2)圆的面积和周长a. 圆的周长:L=2πr,其中r为圆的半径。

b. 圆的面积:S=πr^2,其中r为圆的半径。

(3)圆的位置关系a. 外切圆:如果两圆相切于一个点,且这个点不在任何一个圆内,称这种情况为外切。

b. 内切圆:如果一个圆与另一个圆相切于一个点,且这个点在另一个圆的内部,叫做内切情况。

4. 圆的应用(1)圆的应用a. 圆的运动相关问题:圆的运动轨迹、速度、角度等问题。

b. 圆柱、圆锥与圆盘的相关问题:求体积、表面积等。

c. 圆的相关方程:圆的方程、圆心角、弧度相关的方程等。

d. 圆的几何问题:圆的切线、弦、圆心角等。

(2)圆在生活中的应用a. 圆形的物体:圆形的球、圆盘、车轮等。

b. 圆形的园艺艺术:园林建筑中的圆形花坛、喷泉等。

通过上述的总结,我们可以看出圆是一个非常重要的几何概念,在初中数学学习中有广泛的应用。

掌握好圆的定义、性质、相关定理和应用对于学生的数学学习都有重要的意义。

希望学生通过认真学习,灵活应用,能够牢固掌握圆相关知识,为今后的学习打下坚实的基础。

圆的全部知识点总结初中

圆的全部知识点总结初中

圆的全部知识点总结初中一、基本概念圆是平面上的一个几何图形,由平面上离一个固定点距离不超过一定值的所有点组成。

这个固定点称为圆心,这个固定距离称为半径。

圆的边界叫做圆周,两个半径的端点连线叫做直径。

圆的基本元素包括圆心、半径、圆周、直径。

二、圆的性质1. 圆的半径相等在同一个圆中,所有的半径都相等,这是圆的基本性质之一。

2. 圆的周长和面积圆的周长和面积是圆的重要属性。

圆的周长可以通过公式C=2πr进行计算,其中r为半径,π为圆周率。

圆的面积可以通过公式A=πr^2进行计算。

3. 弧和角圆的圆周可以被分成若干个弧,当弧的长度正好等于半径时,这个角称为圆心角。

圆周上的任意一点和圆心之间的连线称为弧,圆周上的弧相对于圆心的角称为弧度。

4. 圆心角的性质在同一个圆中,圆心角的度数是弧长半径的两倍。

即圆心角的度数等于以这个角所对应的弧长所对应的圆心角的弧长的两倍。

5. 弧长和扇形面积弧是圆周的一部分,它的长度可以通过公式L=2πr×(α/360)进行计算,其中α为对应的圆心角的度数。

扇形是圆心角对应的部分,它的面积可以通过公式S=πr^2×(α/360)进行计算。

6. 相交圆的性质当两个圆相交时,它们的交点可以构成两个弧和四个圆心角,根据圆的性质可以得到诸多推论。

7. 圆与直线的关系圆与直线的关系包括内切、外切、相交、相离等情况,而且这些关系会受到垂直角、周角、对顶角等角的影响。

8. 圆的应用圆是几何学中最基本的图形之一,它在生活中有着广泛的应用。

例如,圆形的轮子、钟表、铁路、汽车轨道等都离不开圆的几何原理。

三、常见的圆的定理1. 切线定理当直线与圆相切时,切线与圆的切点之间的连线垂直于半径。

2. 圆的对称性圆具有各种对称性,包括中心对称、轴对称等。

3. 圆心角和弧的关系圆心角和其所对应的弧的关系是两者之间的重要性质,可以帮助解决各种与圆相关的题目。

四、圆的相关解题技巧1. 圆的基本计算掌握圆的周长和面积的计算公式是解题的基础。

初中数学圆的知识点(通用4篇)

初中数学圆的知识点(通用4篇)

初中数学圆的知识点〔通用4篇〕篇1:初中数学圆知识点 1.圆的定义(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。

固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。

(2)圆可以看作是平面内到定点的间隔等于定长的点的集合,定点为圆心,定长为圆的半径。

说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。

2.圆的有关概念(1)弦:连结圆上任意两点的线段。

(如右图中的CD)。

(2)直径:经过圆心的弦(如右图中的AB)。

直径等于半径的2倍。

(3)弧:圆上任意两点间的局部叫做圆弧。

(如右图中的CD、CAD)其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。

(4)圆心角:如右图中∠COD就是圆心角。

3.圆心角、弧、弦、弦心距之间的关系。

(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。

(2)推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

4.过三点的圆。

(1)定理:不在同一条直线上的三点确定一个圆。

(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。

5.垂径定理。

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对的另一条弧。

(2)圆的两条平行弦所夹的弧相等。

6.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。

③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。

(2)与圆相关的角的性质AB①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

初中关于圆的知识点

初中关于圆的知识点

初中关于圆的知识点一、圆的基本概念1、圆的定义平面内到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

以点 O 为圆心的圆记作“⊙O”,读作“圆O”。

2、圆的相关元素圆心:圆的中心,用字母 O 表示。

半径:连接圆心和圆上任意一点的线段,用字母 r 表示。

直径:通过圆心并且两端都在圆上的线段,用字母 d 表示。

且 d =2r 。

弦:连接圆上任意两点的线段。

弧:圆上任意两点间的部分。

半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

优弧:大于半圆的弧。

劣弧:小于半圆的弧。

二、圆的基本性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论 1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

推论 2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

推论 3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

三、圆的相关位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:d > r ,点在圆外。

d = r ,点在圆上。

d < r ,点在圆内。

2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:d > r ,直线与圆相离,无交点。

d = r ,直线与圆相切,有一个交点。

d < r ,直线与圆相交,有两个交点。

初中数学圆知识点总结

初中数学圆知识点总结

初中数学圆知识点总结初中数学圆知识点总结1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>dd>r.二.圆的对称性:1.与圆相关的概念:④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦圆心角:顶点在圆心的角叫做圆心角.⑧弦心距:从圆心到弦的距离叫做弦心距.2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.三.圆周角和圆心角的关系:1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;四.确定圆的条件:1.理解确定一个圆必须的具备两个条件:经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2.定理:不在同一直线上的三个点确定一个圆.3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.初中数学圆知识点学习技巧一.1、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.S=1/2×l×2πr=πrl4.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中圆知识点总结
1、圆是到定点的距离等于定长的点组成的图形。

2、圆的内部可以看作是圆心的距离小于半径的点组成的图形。

3、圆的外部可以看作是圆心的距离大于半径的点组成的图形。

4、同圆或等圆的半径相等。

5、到定点的距离等于定长的点组成的图形,是以定点为圆心,定长为半径的圆。

6、和已知线段两个端点的距离相等的点,在这条线段的垂直平分线上。

7、到已知角的两边距离相等的点组成的图形,是这个角的平分线。

8、到两条平行线距离相等的点组成的图形,是和这两条平行线平行且距离相等的一条直线。

9、定理:不在同一直线上的三点确定一个圆。

10、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

②弦的垂直平分线经过圆心,并且平分弦所
对的两条弧。

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

12、推论2:圆的两条平行弦所夹的弧相等
13、圆是以圆心为对称中心的中心对称图形
14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆周角相等,所对的弦的弦心距相等。

15、推论:在同圆或等圆中,如果两个圆心角、圆周角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

16、定理:一条弧所对的圆周角等于它所对的圆心角的一半
17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
18、推论:2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径
19、推论:3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形(注:这是用来证明三角形是直角三角形的一种方法)
20、定理:
圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角(这个定理现在的书上没有)。

21、直线和圆的位置关系:①直线L和⊙O相交 d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离 d﹥r(其中:d表示直线到圆心的距离,r表示圆的半径)
22、切线的判定定理:经过半径的外端(或者直径的一端)并且垂直于这条半径(或这条直径)的直线是圆的切线。

23、切线的性质定理:圆的切线垂直于经过切点的半径(或直径)。

24、推论1 经过圆心且垂直于切线的直线必经过切点
25、推论2 经过切点且垂直于切线的直线必经过圆心注:小结为过圆心、过切点,垂直于切线,
26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角。

(这个定理书上没有)
27、定理:圆的外切四边形的两组对边的和相等。

(这个定理书上没有)
28、弦切角定理:弦切角等于它所夹的弧对的圆周角。

(这个定理书上没有)
29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

(这个定理书上没有)
30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

(这个定理书上没有)
31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

(这个定理书上没有)
32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

(这个定理书上没有)
33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

(这个定理书上没有)
34、如果两个圆相切,那么切点一定在连心线上(其中:d表示圆心距,R表示大圆的半径,r表示小圆的半径)
35、①两圆外离 d﹥R+r②两圆外切d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切 d=R-r(R﹥r)⑤两圆内含 d﹤R-r(R﹥r)
36、定理:相交两圆的连心线垂直平分两圆的公共弦
37、正三角形面积√3a/4(其中:
a表示边长)。

38、扇形弧长计算公式:L=n兀R/180(其中:L表示弧长,n表示圆心角的度数,R表示扇形的半径)
39、扇形面积公式:S扇形=n兀R^2/360=LR/2(其中:L
表示弧长,n表示圆心角的度数,R表示扇形的半径)40 、圆锥的侧面积公式:S侧=S扇形 =(1/2)扇形半径扇形弧长= π rL (其中:r表示底面圆的半径,L表示扇形的半径:即圆锥的母线长)41 、圆锥的全面积:S全= S侧+ S底面圆=πrL+π r2注:(圆的知识中的几条经常作的重要的辅助线:①连接圆心和
圆上的点(构成半径),②过圆心作弦的弦心距,(以便利用垂径定理),③作直径所对的圆周角,(以便得到直径所对的圆周角是直角)④连接圆心和切点(以便利用切线的性质定理)⑤两圆相切时作两圆的连心线和公切线,(以便利用相切两圆的性质),⑥两圆相交时作两圆的连心线和公共弦。

(以便利用相交两圆的性质)。

相关文档
最新文档