第四届(2019)全国高校密码数学挑战赛赛题一-ECDLP
2019届全国高考仿真试卷(四)数理试卷
2019届全国高考仿真试卷(四)数学理科本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合, ,则()A. B. C. D.【答案】B【解析】分析:由不等式求出的范围,得出集合,再求出。
详解:由有,,所以,故,选B.点睛:本题主要考查了不等式的解集及集合间的交集运算,属于容易题。
2. 复数 (为虚数单位)在复平面内表示的点的坐标为()A. B. C. D.【答案】A【解析】分析:求出复数的代数形式,再写出在复平面内表示的点的坐标。
详解:复数,所以复数在复平面内表示的点的坐标为,选A.点睛:本题主要考查了复数的四则运算,以及复数在复平面内所表示的点的坐标,属于容易题。
3. 若实数满足约束条件,则的最大值为()A. -4B. 0C. 4D. 8【答案】D【解析】分析:由已知线性约束条件,作出可行域,利用目标函数的几何意义,采用数形结合求出目标函数的最大值。
详解:作出不等式组所对应的平面区域(阴影部分),令,则,表示经过原点的直线,由有,当此直线的纵截距有最大值时,有最大值,由图知,当直线经过A点时,纵截距有最大值,由有,即,此时,选D.点睛:本题主要考查了简单的线性规划,考查了数形结合的解题方法,属于中档题。
2019年全国数学竞赛试题详细参考答案
中国教育学会中学数学教学专业委员会《数学周报》杯” 2013年全国初中数学竞赛试题参考答案题号-一一 _ 二 _ 三总分1〜56〜1011121314得分评卷人复查人答题时注意:1用圆珠笔或钢笔作答2•解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为 A , B , C , D 的四个选项,其中有且只有一个选项是正确的 .请将正确选项的代号填入题后的括号 里.不填、多填或错填都得0分)1.已知实数x , y 满足 刍二=3, y 4 - y^3,则-44 y 4的值为().XXx(A ) 7 (B )(C ) 7 "3(D )52 2【答】(A ) 解:因为x 20,y 2 > 0,由已知条件得-1,13244 y 4 乡 3 3-y 2£ -y 2 6 =7.X XX程为t 2 +t-3=0,所以(一W )+ y 2 =-1, (―寸=-3X X2.把一枚六个面编号分别为1, 2, 3, 4, 5, 6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为 m , n ,则二次函数y = x 2 • mx • n 的图象与X 轴 有两个不同交点的概率是().(D)所以另解:由已知得: 2 2 2」(一P )2+(—P )—3=0 X X Q 2) + y 2-3 = 0显然 2 2 2 2 2 -y 2,以- 2 ,y 2为根的一元二次方 XX42故 4y 4 二[(- 2)y 2]2 -2XX2 2 22)y =(T) -2 (-3)=7 X12.4 4 4 3[答]( C )解:基本事件总数有60 = 36,即可以得到36个二次函数.由题意知;_ =_4n >0,即卩 m 2 >4n .通过枚举知,满足条件的 m, n 有 17 对.363.有两个同心圆,大圆周上有 4个不同的点,小圆周上有 可以确定的不同直线最少有().2个不同的点,则这6个点 (A ) 6条 (B ) 8 条(C ) 10 条(D ) 12 条【答](B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线 可以确定6条不同的直线;小圆周上的两个点 E ,F 中,至少有一 个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C , D 的连线中,至少有两条不同于 A ,B ,C ,D 的两两连线.从而这 6个点可以确定的直线不少于 8条.当这6个点如图所示放置时,恰好可以确定 8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4 .已知AB 是半径为1的圆O 的一条弦,且 AB 二a :::1 .以AB 为一边在圆O 内作正△ ABC ,点D 为圆O 上不同于点A 的一点,且DB 二AB 二a , AE 的长为().(B) 1(C )乎【答](B )解:女口图,连接 OE ,OA ,OB .设.D =:,贝UECA=120- EAC .11又因为 ABO ABD 60180 -2:-120 -:22所以△ ACE 也△ ABO ,于是AE = OA = 1 .另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 为半径 作。
2019年夏季数学大联盟4-5年级个人赛(Iindividual Part1)真题与解析【决赛】
Individual Questions – Part 1 of 2Each question is worth 10 points. Calculators are PROHIBITED.#1.(Time Limit: 7 minutes ) If six circles are tangent as shown, and each has an area of π, what is the area of the rectangle that just surrounds them, as shown?题目翻译: 如果6个面积为π的圆排列成图中的形状,那么图中的长方形的面积是多少?Solution:Since the area of each circle is π, each circle has a radius of 1 and a diameter of 2. The length across the rectangle consists of 3 diameters, and the width across the rectangle consists of 2 diameters. The dimensions of the rectangle are 6 by 4 and its area is 24.#2.(Time Limit: 7 minutes ) What is the least possible integer greater than 2019 that has remainder 11 when divided by 20 and 19?题目翻译: 请问大于2019的整数中满足除以20 和 19 都余11 的最小的数是多少?Solution:The least common multiple of 20 and 19 is 380, so we need an integer that is 11 more than amultiple of 380 and that is greater than 2019. Since 5 < 2019¸380 < 6, the least acceptable multiple is = 2280 and the number 11 more than this is 2291.#3. (Time Limit: 7 minutes ) I wrote each of the first 2019 positive integers in increasing order. Eachodd integer was written three consecutive times and each even integer was written two consecutive times. The first five integers I wrote were 1, 1, 1, 2, 2. What was the 2019th integer that I wrote?题目翻译:我把前2019个正整数按照从小到大的顺序写了出来。
2019届九年级数学上学期第四届命题竞赛试题C3 (新版)苏科版
中考数学模拟试卷一、选择题 1. 2×(-12)的结果是 ( ) A .-4 B .-1 C .-14 D .322.下列运算中,正确的是 ( )A .4m -m =3B .-(m -n)=m +nC .(m 2)3=m 6D .m 2÷m 2=m3有意义,则x 的取值范围是 ( ) A .x ≥0 B .x ≤0 C .x >0 D .x <04.不等式x >1在数轴上表示正确的是 ( )5.如图所示的四个立体图形中,左视图是圆的个数是 ( )A .4B .3C .2D .16.反比例函数y =-2k x(k 为常数,k ≠0)的图象位于 ( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限7.体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,则这组数据的中位数和极差分别是 ( )A .2.1,0.6B .1.6,1.2C .1.8 ,1.2D .1.7,1.28.如图,已知⊙O 的半径为12,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于 ( )A .OM 的长B .2OM 的长C .CD 的长 D .2CD 的长9.二次函数y =-2x 2+4x +1的图象如何平移就得到y =-2x 2的图象 ( ) A .向左平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向上平移3个单位 C .向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位10.如图,用围棋子按一定的规律摆图形,则摆第n个图形需要围棋子的枚数是 ( )A.5n B.5n-1 C.6n-1 D.2n2+1二、填空题(本大题共有8小题,每小题3分,共24分)11.已知地球上海洋面积约为316000000km2,316000000这个数用科学记数法可表示为______.12.分解因式:xy2-2xy+2y-4=______.13.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元.14.根据如图所示程序计算函数值,若输入的x的值为52,则输出的函数值为______.15.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1-7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是______.16.已知点P的坐标为(1,1),若将点P绕原点顺时针旋转45°,得到点P1,则点P1的坐标为______.17.小刚有一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是______.18.将宽2 cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是______.三、解答题(本大题共有11小题,共76分.解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题5分)计算:(1))199110.12583-⎛⎫+-⨯ ⎪⎝⎭(2)22242442a a a a a a a -⎛⎫⎛⎫-÷- ⎪ ⎪++++⎝⎭⎝⎭.20.(本题5分)解方程:23311x x x +---=0.21.(本题5分)某市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,2000元/台. (1)求该商场至少购买丙种电视机多少台?(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案?22.(本题6分)某工厂用A 、B 、C 三台机器加工生产一种产品,对2011年第一季度的生产情况进行统计,图(1)是三台机器的产量统计图,图(2)是三台机器产量的比例分布图.(图中有部分信息未给出) (1)利用图(1)信息,写出B 机器的产量,并估计A 机器的产量;(2)综合图(1)和图(2)信息,求C 机器的产量.23.(本题6分)某校九年级两个班各为某灾区捐款1 800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.24.(本题6分)如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45°,连接BO并延长交AC于点G,AB=4,AG=2.(1)求∠A的度数;(2)求⊙O的半径.25.(本题8分)如图,ABCD是正方形.G是BC上的一点,DE⊥AG于E,BF⊥AG于F.(1)求证:△ABF ≌△DAE;(2)求证:DE=EF+FB.26.(本题8分)如图,某剧组在东海拍摄广泛风光片,拍摄基地位于A处,在其正南方向15海里处有一小岛B,在B的正东方向20海里处有一小岛C,小岛D位于AC上,且与小岛A的距离为10海里.(1)求∠A的度数和点D到BC的距离;(2)摄制组甲从A处乘甲船出发,沿A→B→C的方向匀速航行,摄制组乙从D处乘乙船出发,沿南偏西方向匀速直线航行,已知甲船的速度是乙船速度的2倍,若两船同时出发并且在B、C间的F处相遇.问相遇时乙船航行了多少海里?(结果精确到0.1海里)(t a n53°≈43,t a n37°≈0.753)27.(本题8分)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,若从中任意摸出一个球,这个球是白球的概率为25.(1)求口袋中红球的个数;(2)把口袋中的球搅匀后摸出一个球,放回搅匀再摸出第二个球,求摸到的两个球是一红一白的概率.(请结合树状图或列表加以解答)28.(本题9分)如图,四边形OABC是面积为4的正方形,函数y=kx(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC'、NA'B C.设线段MC'、NA,分别与函数y=kx(x>0)的图象交于点E、F,求线段EF所在直线的解析式.29.(本题10分)已知二次函数y =ax 2+bx +c(a ≠0)的图象经过点A(1,0),B(2,0),C (0,-2);直线x =m(m>2)与x 轴交于点D . (1)求二次函数的解析式;(2)在直线x =m(m>2)上有一点E(点E 在第四象限),使得以E 、D 、B 为顶点的三角形与以A 、O 、C 为顶点的三角形相似,求E 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.参考答案1.B 2.C 3.A 4.C 5.D 6.C 7.D 8.B 9.C 10.C11.3.16×10812.(xy +2)(y -2) 13.96 14.13 15.5716,0) 17.240πcm 218.43.(1)-2 (2)()12a a + 20.x =021.(1)10台 方案一:购进甲、乙、丙三种不同型号的电视机分别为40台、58台、10台; 方案二:购进甲、乙、丙三种不同型号的电视机分别为44台、53台、11台; 方案三:购进甲、乙、丙三种不同型号的电视机分别为48台、48台、12台. 22.(1)B 机器的产量为150件,A 机器的产量约为210件 (2)240件.23.略 24.(1)90° (2)4325.略 26.(1)∠A≈53° D到BC的距离为9海里.(2)相遇时乙船航行了9.7海里27.(1)2个 (2)8 2528.(1)4 (2)y=-x+5 29.(1)y=-x2+3x-2 (2)E1(m,22m) E2(m,4-2m) (3)存在 m=72四边形ABEF的面积为6。
第四届(2019)全国高校密码数学挑战赛赛题二-小整数解问题
第四届(2019)全国高校密码数学挑战赛赛题二一、赛题名称:小整数解二、赛题描述:2.1 符号说明n ,m ,q 表示正整数,ℤ表示整数集,ℤ�表示ℤ模q 所构成的集合,ℤ�表示定义在ℤ上的m 维(列)向量所构成的集合,ℤ��×�表示定义在ℤ�上的n ×m 阶矩阵所构成的集合。
ℝ表示实数集,ℝ�表示定义在ℝ上的m 维(列)向量所构成的集合。
小写黑体字母表示向量,如x ∈ℤ�,大写黑体字母表示矩阵,如A ∈ℤ��×�。
‖x ‖=�x ��+x ��+⋯+x �表示向量x 的长度。
2.2基础知识设b �,b �,…,b �∈ℝ�是m 个线性无关的向量,由b �,b �,…,b �的所有整系数线性组合构成的集合称为一个格,记作ℒ(B )=� �z �b �����: z �∈ℤ �其中矩阵B =(b �,b �,…,b �)称为格ℒ(B )的一组基。
格上的最短向量问题(Shortest V ector Problem, SVP )定义为,给定格ℒ(B )的一组基B ,找出ℒ(B )中最短向量v ,即∀ w ∈ℒ(B ),‖w ‖≥‖v ‖。
2.3问题描述给定正整数0<n <m 、模数q 以及均匀随机矩阵A ∈ℤ��×�,求解x ∈ℤ�满足:�Ax =0 mod q �‖x ‖≤√m例如,n =2,m =4,q =11,A=�13−35624−5�∈ℤ���×�,则x=(1,0,1,1)�是该实例的一个解。
挑战问题的参数设置请参见附件:小整数解问题数据文件.txt。
2.4成绩评判1. 参赛者在报告摘要中明确列出每个问题实例的解;在报告正文中详细描述每个问题实例的求解方法。
2. 引用前人的方法需在解题报告中明确指出,否则内容作废。
3. 每个问题实例仅需给出一个正确解x,‖x‖越小,得分越高。
三、密码学背景及相关问题的研究进展量子计算对传统公钥密码(基于大数分解和离散对数问题)的威胁以及近些年量子计算机的飞速发展,使得“后量子密码”(能够抵抗量子攻击的密码体制)成为学术界和产业界的热门研究领域。
2019年全国数学竞赛试题详细参考答案
中国教育学会中学数学教学专业委员会《数学周报》杯” 2013年全国初中数学竞赛试题参考答案题号-一一 _ 二 _ 三总分1〜56〜1011121314得分评卷人复查人答题时注意:1用圆珠笔或钢笔作答2•解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为 A , B , C , D 的四个选项,其中有且只有一个选项是正确的 .请将正确选项的代号填入题后的括号 里.不填、多填或错填都得0分)1.已知实数x , y 满足 刍二=3, y 4 - y^3,则-44 y 4的值为().XXx(A ) 7 (B )(C ) 7 "3(D )52 2【答】(A ) 解:因为x 20,y 2 > 0,由已知条件得-1,13244 y 4 乡 3 3-y 2£ -y 2 6 =7.X XX程为t 2 +t-3=0,所以(一W )+ y 2 =-1, (―寸=-3X X2.把一枚六个面编号分别为1, 2, 3, 4, 5, 6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为 m , n ,则二次函数y = x 2 • mx • n 的图象与X 轴 有两个不同交点的概率是().(D)所以另解:由已知得: 2 2 2」(一P )2+(—P )—3=0 X X Q 2) + y 2-3 = 0显然 2 2 2 2 2 -y 2,以- 2 ,y 2为根的一元二次方 XX42故 4y 4 二[(- 2)y 2]2 -2XX2 2 22)y =(T) -2 (-3)=7 X12.4 4 4 3[答]( C )解:基本事件总数有60 = 36,即可以得到36个二次函数.由题意知;_ =_4n >0,即卩 m 2 >4n .通过枚举知,满足条件的 m, n 有 17 对.363.有两个同心圆,大圆周上有 4个不同的点,小圆周上有 可以确定的不同直线最少有().2个不同的点,则这6个点 (A ) 6条 (B ) 8 条(C ) 10 条(D ) 12 条【答](B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线 可以确定6条不同的直线;小圆周上的两个点 E ,F 中,至少有一 个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C , D 的连线中,至少有两条不同于 A ,B ,C ,D 的两两连线.从而这 6个点可以确定的直线不少于 8条.当这6个点如图所示放置时,恰好可以确定 8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4 .已知AB 是半径为1的圆O 的一条弦,且 AB 二a :::1 .以AB 为一边在圆O 内作正△ ABC ,点D 为圆O 上不同于点A 的一点,且DB 二AB 二a , AE 的长为().(B) 1(C )乎【答](B )解:女口图,连接 OE ,OA ,OB .设.D =:,贝UECA=120- EAC .11又因为 ABO ABD 60180 -2:-120 -:22所以△ ACE 也△ ABO ,于是AE = OA = 1 .另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 为半径 作。
专题14概率统计解答题突破(第四季)-2019年领军高考数学(理)压轴题必刷题
专题144概率统计解答题突破第四季1.“中国大能手”是央视推出的一档大型职业技能挑战赛类节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加“中国大能手”职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如下表1:序号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15×96 93 ×92 ×90 86 ××8380 78 77 75×95 ×93 ×92 ×88 83 ×82 80 80 74 73据上表中的数据,应用统计软件得下表2:均值(单位:秒)方差方差线性回归方程甲85 50.2乙84 54(1)根据上述回归方程,预测甲、乙分别在下一次完成该项关键技能挑战所用的时间;(2)若该公司只有一个参赛名额,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.【答案】(1)甲用时73.84秒,乙用时72.57秒;(2)选手乙,见解析.【解析】(1)当时,(秒)(秒)(2)甲、乙两位选手完成关键技能挑战成功的次数都为10次,失败次数都为5次,所以,只需要比较他们完成关键技能挑战成功的情况即可,根据所给信息,结合(1)中预测结果,综合分析,选手乙代表公司参加技能挑战赛更合适,理由如下:因为在相同次数的挑战练习中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,,乙选手用时更短;由于,虽然甲选手的发挥更稳定,但稳定在较大的平均数上,随着训练次数增加,甲、乙用时都在逐步减少,乙的方差大,说明乙进步更大;从(1)的计算结果进一步说明,选手乙代表公司参加技能挑战赛更合适.2.大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程,这两年学习先修课程的学生都参加了高校的自主招生考试(满分100分),结果如下表所示:分数人数25 50 100 50 25参加自主招生0.9 0.8 0.6 0.4 0.3获得通过的概率(Ⅰ)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过0.01的前提下认为学习先修课程与优等生有关系?优等生非优等生总计学习大学先修课程250没有学习大学先修课程总计150(Ⅱ)已知今年全校有150名学生报名学习大学选项课程,并都参加了高校的自主招生考试,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.(ⅰ)在今年参与大学先修课程学习的学生中任取一人,求他获得高校自主招生通过的概率;(ⅱ)某班有4名学生参加了大学先修课程的学习,设获得高校自主招生通过的人数为,求的分布列,试估计今年全校参加大学先修课程学习的学生获得高校自主招生通过的人数.参考数据:0.15 0.10 0.05 0.025 0.010 0.0052.072 2.7063.841 5.024 6.635 7.879参考公式:,其中【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)列联表如下:优等生非优等生总计学习大学先修课程50 200 250没有学习大学先修课程100 900 1000总计150 **** ****由列联表可得,因此在犯错误的概率不超过0.01的前提下认为学习先修课程与优等生有关系.(Ⅱ)(ⅰ)由题意得所求概率为.(ⅱ)设获得高校自主招生通过的人数为,则,,,∴的分布列为0 1 2 3 4估计今年全校参加大学先修课程的学生获得大学自主招生通过的人数为.3.交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:交强险浮动因素和费率浮动比率表浮动因素浮动比率A 上一个年度未发生有责任道路交通事故下浮10%B 上两个年度未发生有责任道路交通事故下浮20%C 上三个以及以上年度未发生有责任道路交通事故下浮30%D 上一个年度发生一次有责任不涉及死亡的道路交通事故0%E 上一个年度发生两次及两次以上有责任道路交通事故上浮10%F 上一个年度发生有责任道路交通死亡事故上浮30%某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了70辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型 A B C D E F数量10 13 7 20 14 6(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损6000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有7辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆,求这2辆车恰好有一辆为事故车的概率;②若该销售商一次性购进70辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值(结果用分数表示). 【答案】(1);(2)①;②元【解析】(1)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为(2)①由统计数据可知,该销售商店内的7辆该品牌车龄已满三年的二手车中有2辆事故车,设为,,5辆非事故车,设为,,,.从7辆车中随机挑选2辆车的情况有,,,,,,,,,,,,,,,,,,,,共21种.其中2辆车恰好有一辆为事故车的情况有,,,,,,,,共10种,所以该顾客在店内随机挑选2辆车,这2辆车恰好有一辆事故车的概率为.②由统计数据可知,该销售商一次购进70辆该品牌车龄已满三年的二手车有事故车20辆,非事故车50辆,所以一辆车盈利的平均值为(元).4.为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)分数甲班频数乙班频数(1)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?甲班乙班总计成绩优秀成绩不优秀总计(2)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列.参考公式:,其中.临界值表【答案】(1)有以上的把握认为“成绩优秀与教学方式有关”.(2)的分布列为【解析】(1)补充的列联表如下表:甲班乙班总计成绩优秀成绩不优秀总计根据列联表中的数据,得的观测值为,所以有以上的把握认为“成绩优秀与教学方式有关”.(2)的可能取值为,,,,,,,,所以的分布列为5.为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)分数甲班频数乙班频数(1)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?甲班乙班总计成绩优秀成绩不优秀总计(2)在上述样本中,学校从成绩为的学生中随机抽取人进行学习交流,求这人来自同一个班级的概率.参考公式:,其中.临界值表【答案】(1)有以上的把握认为“成绩优秀与教学方式有关”.(2)【解析】(1)补充的列联表如下表:甲班乙班总计成绩优秀成绩不优秀总计根据列联表中的数据,得的观测值为,所以有以上的把握认为“成绩优秀与教学方式有关”.(2)设,表示成绩为的甲班学生,,,,表示成绩为的乙班学生,则从这名学生中抽取名学生进行学习交流共有15种等可能的结果:,,,,,,,,,,,,,,,根据古典概率计算公式,从名学生中抽取名学生进行学习交流,来自同一个班级的概率为. 6.经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:(1)按分层抽样的方法从质量落在,的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:A.所有黄桃均以20元/千克收购;B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购.请你通过计算为该村选择收益最好的方案.(参考数据:)【答案】(1)(2)B【解析】(1)由题得黄桃质量在和的比例为,∴应分别在质量为和的黄桃中各抽取3个和2个.记抽取质量在的黄桃为,,,质量在的黄桃为,,则从这5个黄桃中随机抽取2个的情况共有以下10种:,,,,,,,,,其中质量至少有一个不小于400克的7种情况,故所求概率为.(2)方案好,理由如下:由频率分布直方图可知,黄桃质量在的频率为同理,黄桃质量在,,,,的频率依次为0.16,0.24,0.3,0.2,0.05若按方案收购:∵黄桃质量低于350克的个数为个黄桃质量不低于350克的个数为55000个∴收益为元若按方案收购:根据题意各段黄桃个数依次为5000,16000,24000,30000,20000,5000,于是总收益为(元)∴方案的收益比方案的收益高,应该选择方案.7.为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).某市随机抽取10户同一个月的用电情况,得到统计表如下:(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯每度0.8元,试计算居民用电户用电410度时应交电费多少元?(2)现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.【答案】(1)元;(2)分布列见解析,期望为;(3).【解析】(1)元(2)设取到第二阶梯电量的用户数为,可知第二阶梯电量的用户有3户,则可取0,1,2,3,,,,故的分布列为∴(3)可知从全市中抽取10户的用电量为第一阶梯,满足,可知()令解得:,∴当时概率最大,∴.8.从某电子商务平台随机抽取了1000位网上购物者(年消费都达到2000元),并对他们的年龄进行了调查,统计情况如下表所示:年龄人数100 150 400 200 100 50该电子商务平台将年龄在的人群定义为消费主力军,其它年龄段定义为消费潜力军.(1)若该电子商务平台共10万位网上购物者,试估计消费主力军的人数;(2)为了鼓励消费潜力军消费,该平台决定对年消费达到2000元的购物者发放代金券,消费主力军每人发放100元,消费潜力军每人发放200元.现采用分层抽样(按消费主力军与消费潜力军分层)的方式从参与调查的1000位网上购物者中抽取10人,并在这10人中随机抽取3人进行回访,求这3人获得代金券总金额(单位:元)的分布列及数学期望.【答案】(1)万;(2)分布列见解析,期望为元.【解析】(1)由表可知年龄分布在的频率为,故消费主力军的人数约为万.(2)由题可知这10人中有6人属于消费主力军,4人属于消费潜力军,则的所有可能取值为300,400,500,600,,,,,故的分布列为300 400 500 600元.9.未了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,将这100人的年龄数据分成5组:,,,,,整理得到如图所示的频率分布直方图.在这100人中不支持“延迟退休”的人数与年龄的统计结果如下:年龄不支持“延迟退15 5 15 23 17休”的人数(1)由频率分布直方图,估计这100人年龄的平均数;(2)由频率分布直方图,若在年龄,,的三组内用分层抽样的方法抽取12人做问卷调查,求年龄在组内抽取的人数;(3)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的不支持态度存在差异?\ 45岁以下45岁以上总计不支持支持总计附:,其中.参考数据:0.100 0.050 0.0100.0012.7063.841 6.635 10.828【答案】(1);(2)人;(3)表格见解析,能在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的不支持态度存在差异.【解析】(1)估计这100人年龄的平均数为.(2)由频率分布直方图可知,年龄在,,内的频率分别为0.1,0.2,0.3,所以在这三组内抽取的人数之比为1:2:3,所在年龄在组内抽取的人数为(人).(3)由频率分布直方图可知,得年龄在,,这三组内的频率和为0.5,所以45岁以下共有50人,45岁以上共有50人.列联表如下:45岁以下45岁以上总计不支持35 45 80支持15 5 20总计50 50 100所以,所以能在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的不支持态度存在差异.10.2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450 人)中,采用分层抽样的方法从中抽取名学生进行调查.(1)已知抽取的名学生中含女生45人,求的值及抽取到的男生人数;(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的列联表. 请将列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;(3)在抽取的选择“地理”的学生中按分层抽样再抽取6名,再从这6名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率.0.05 0.013.841 6.635参考公式:.【答案】(1),男生55人;(2)见解析;(3)【解析】(1)由题意得:,解得,男生人数为:550×=55人.(2)列联表为:选择“物理”选择“地理”总计男生45 10 55 女生25 20 45 总计70 30 100,,所以有99%的把握认为选择科目与性别有关.(3)从30个选择地理的学生中分层抽样抽6名,所以这6名学生中有2名男生,4名女生,男生编号为1,2,女生编号为a,b,c,d,6名学生中再选抽2个,则所有可能的结果为Ω={ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12},至少一名男生的结果为{a1,a2,b1,b2,c1,c2,d1,d2,12},所以2人中至少一名男生的概率为。
(绝密)2019考研数学完整版及参考答案
2019考研数学完整版及参考答案一、选择题:1-8小题,每题4分,共32分. 每题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.〔1〕设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,假设0x ∆>,则〔 〕(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .〔2〕设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()d x f t t ⎰是〔A 〕连续的奇函数.〔B 〕连续的偶函数〔C 〕在0x =间断的奇函数〔D 〕在0x =间断的偶函数. 〔 〕〔3〕设函数()g x 可微,1()()e ,(1)1,(1)2g x h x h g +''===,则(1)g 等于〔 〕〔A 〕ln31-. 〔B 〕ln3 1.--〔C 〕ln 2 1.--〔D 〕ln 2 1.-〔4〕函数212e e e xx x y C C x -=++满足的一个微分方程是 [ ]〔A 〕23e .xy y y x '''--= 〔B 〕23e .xy y y '''--=〔C 〕23e .x y y y x '''+-=〔D 〕23e .x y y y '''+-=〔5〕设(,)f x y 为连续函数,则140d (cos ,sin )d f r r r r πθθθ⎰⎰等于〔〕〔A〕0(,)d xx f x y y . 〔B 〕0(,)d x f x y y .(C)(,)d yy f x y x . (D) 0(,)d y f x y x .〔6〕设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,以下选项正确的选项是〔〕(A) 假设00(,)0x f x y '=,则00(,)0y f x y '=. (B) 假设00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 假设00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 假设00(,)0x f x y '≠,则00(,)0y f x y '≠.〔7〕设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,以下选项正确的选项是 [ ](A) 假设12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B) 假设12,,,s ααα线性相关,则12,,,s A A A ααα线性无关. (C) 假设12,,,s ααα线性无关,则12,,,s A A A ααα线性相关.(D) 假设12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.〔8〕设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则〔〕〔A〕1C P AP -=. 〔B〕1C PAP -=.〔C〕T C P AP =. 〔D〕T C PAP =.一.填空题 〔9〕曲线4sin 52cos x xy x x+=- 的水平渐近线方程为〔10〕设函数2301sin d ,0(),0x t t x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =〔11〕广义积分22d (1)x xx +∞=+⎰. 〔12〕 微分方程(1)y x y x-'=的通解是 〔13〕设函数()y y x =由方程1e yy x =-确定,则d d x y x==〔14〕设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .三 、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤. 〔15〕〔此题总分值10分〕 试确定,,A B C 的值,使得23e (1)1()x Bx Cx Ax o x ++=++,其中3()o x是当0x →时比3x 高阶的无穷小.〔16〕〔此题总分值10分〕求 arcsin e d exxx ⎰. 〔17〕〔此题总分值10分〕设区域{}22(,)1,0D x y x y x =+≤≥, 计算二重积分221d d .1Dxyx y x y +++⎰⎰ 〔18〕〔此题总分值12分〕设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==〔Ⅰ〕证明lim n n x →∞存在,并求该极限;〔Ⅱ〕计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 〔19〕〔此题总分值10分〕 证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.〔20〕〔此题总分值12分〕设函数()f u 在(0,)+∞内具有二阶导数,且z f=满足等式22220z zx y∂∂+=∂∂. 〔I 〕验证()()0f u f u u'''+=; 〔II 〕假设(1)0,(1)1f f '==,求函数()f u 的表达式.〔21〕〔此题总分值12分〕已知曲线L 的方程221,(0)4x t t y t t⎧=+≥⎨=-⎩〔I 〕讨论L 的凹凸性;〔II 〕过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; 〔III 〕求此切线与L 〔对应于0x x ≤的部分〕及x 轴所围成的平面图形的面积. 〔22〕〔此题总分值9分〕 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有3个线性无关的解.〔Ⅰ〕证明方程组系数矩阵A 的秩()2r A =;〔Ⅱ〕求,a b 的值及方程组的通解. 〔23〕〔此题总分值9分〕设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解. (Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ.数学答案1. A 【分析】 题设条件有明显的几何意义,用图示法求解. 【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).【评注】 对于题设条件有明显的几何意义或所给函数图形容易绘出时,图示法是求解此题的首选方法.此题还可用拉格朗日定理求解:0000()()(),y f x x f x f x x x x ξξ'∆=+∆-=∆<<+∆因为()0f x ''>,所以()f x '单调增加,即0()()f f x ξ''>,又0x ∆>,则0()()d 0y f x f x x y ξ''∆=∆>∆=>,即0d y y <<∆.定义一般教科书均有,类似例题见《数学复习指南》〔理工类〕P.165【例6.1】,P.193【1〔3〕】.2. B 【分析】由于题设条件含有抽象函数,此题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去计算0()()d x F x f t t =⎰,然后选择正确选项.【详解】取,0()1,0x x f x x ≠⎧=⎨=⎩. 则当0x ≠时,()2220011()()d lim d lim 22x xF x f t t t t x x εεεε++→→===-=⎰⎰,而0(0)0lim ()x F F x →==,所以()F x 为连续的偶函数,则选项〔B〕正确,故选〔B〕.【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.符合题设条件的函数在多教科书上均可见到,完全类似例题见2006文登最新模拟试卷〔数学三〕〔8〕.3. C 【分析】题设条件1()()e g x h x +=两边对x 求导,再令1x =即可.【详解】1()()e g x h x +=两边对x 求导,得1()()e ()g x h x g x +''=.上式中令1x =,又(1)1,(1)2h g ''==,可得1(1)1(1)1(1)e (1)2e (1)ln 21g g h g g ++''===⇒=--,故选〔C 〕.【评注】此题考查复合函数求导,属基此题型. 完全类似例题见文登暑期辅导班《高等数学》第2讲第2节【例12】,《数学复习指南》理工类P.47【例2.4】,《数学题型集粹与练习题集》理工类P.1【典例精析】.4. D 【分析】此题考查二阶常系数线性非齐次微分方程解的结构及非齐次方解分析出对应齐次微分方程的特征方程的根,然后由特解形式判定非齐次项形式.【详解】由所给解的形式,可知原微分方程对应的齐次微分方程的特征根为 121,2λλ==-.则对应的齐次微分方程的特征方程为 2(1)(2)0,20λλλλ-+=+-=即.故对应的齐次微分方程为20y y y '''+-=. 又*e x y x =为原微分方程的一个特解,而1λ=为特征单根,故原非齐次线性微分方程右端的非齐次项应具有形式()e x f x C =〔C 为常数〕.所以综合比较四个选项,应选〔D 〕.【评注】对于由常系数非齐次线性微分方程的通解反求微分方程的问题,关键是要掌握对应齐次微分方程的特征根和对应特解的关系以及非齐次方程的特解形式..完全类似例题见文登暑期辅导班《高等数学》第7讲第2节【例9】和【例10】,《数学复习指南》P.156【例5.16】,《数学题型集粹与练习题集》〔理工类〕〔题型演练3〕,《考研数学过关基此题型》〔理工类〕P.126【例14】及练习.5. C 【分析】 此题考查将坐标系下的累次积分转换为直角坐标系下的累次积分,首先由题设画出积分区域的图形,然后化为直角坐标系下累次积分即可.【详解】 由题设可知积分区域D 如右图所示,显然是Y型域,则原式2212d (,)d y yy f x y x -=⎰⎰.故选〔C〕.【评注】 此题为基此题型,关键是首先画出积分区域的图形.完全类似例题见文登暑期辅导班《高等数学》第10讲第2节例4,《数学复习指南》〔理工类〕P.286【例10.6】,《考研数学过关基此题型》〔理工类〕P.93【例6】及练习.6. D 【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ〔0λ是对应00,x y 的参数λ的值〕取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.〔因为(,)0y x y ϕ'≠〕, 假设00(,)0x f x y '≠,则00(,)0y f x y '≠.故选〔D〕.【评注】 此题考查了二元函数极值的必要条件和拉格朗日乘数法. 相关定理见《数学复习指南》〔理工类〕P.251定理1及P.253条件极值的求法.7. A 【分析】 此题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】 记12(,,,)s B ααα=,则12(,,,)s A A A AB ααα=.所以,假设向量组12,,,s ααα线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα也线性相关,故应选(A).【评注】 对于向量组的线性相关问题,可用定义,秩,也可转化为齐次线性方程组有无非零解进行讨论.8. B 【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】由题设可得110110*********,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而 1110010001P --⎛⎫ ⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选〔B〕.【评注】〔1〕每一个初等变换都对应一个初等矩阵,并且对矩阵A 施行一个初等行〔列〕变换,相当于左〔右〕乘相应的初等矩阵.〔2〕牢记三种初等矩阵的转置和逆矩阵与初等矩阵的关系. 完全类似例题及性质见《数学复习指南》〔理工类〕P.381【例2.19】,文登暑期辅导班《线性代数》第2讲例12.9. 【分析】 直接利用曲线的水平渐近线的定义求解即可.【详解】 4sin 14sin 1lim lim 2cos 52cos 55x x xx x x x x x x →∞→∞++==--. 故曲线的水平渐近线方程为 15y =.【评注】此题为基此题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在,为什么?完全类似例题见文登暑期辅导班《高等数学》第6讲第4节【例12】,《数学复习指南》〔理工类〕P.180【例6.30】,【例6.31】.10. 【分析】此题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可.【详解】 由题设知,函数()f x 在 0x =处连续,则 0lim ()(0)x f x f a →==,又因为2203200sin d sin 1lim ()lim lim 33xx x x t t x f x x x →→→===⎰. 所以 13a =. 【评注】遇到求分段函数在分段点的连续性问题,一般从定义入手.此题还考查了积分上限函数的求导,洛必达法则和等价无穷小代换等多个基本知识点,属基此题型.完全类似例题见文登暑期辅导班《高等数学》第1讲第1节【例13】,《数学复习指南》〔理工类〕P.35【例1.51】.88年,89年,94年和03年均考过该类型的试题,此题属重点题型.11. 【分析】利用凑微分法和牛顿-莱布尼兹公式求解.【详解】2022222200d 1d(1+)111111lim lim lim (1)2(1)21+21+22b b b b b x x x x x x b +∞→∞→∞→∞==-=-+=++⎰⎰. 【评注】 此题属基此题型,对广义积分,假设奇点在积分域的边界,则可用牛顿-莱布尼兹公式求解,注意取极限.完全类似例题见文登暑期辅导班《高等数学》第5讲第6节【例1】,《数学复习指南》〔理工类〕P.119【例3.74】.12 .【分析】本方程为可别离变量型,先别离变量,然后两边积分即可【详解】 原方程等价为d 11d y x y x ⎛⎫=- ⎪⎝⎭, 两边积分得 1ln ln y x x C =-+,整理得e x y Cx -=.〔1e CC =〕【评注】 此题属基此题型.完全类似公式见《数学复习指南》〔理工类〕P.139.13. 【分析】此题为隐函数求导,可通过方程两边对x 求导〔注意y 是x 的函数〕,一阶微分形式不变性和隐函数存在定理求解.【详解】 方法一:方程两边对x 求导,得e e y y y xy ''=--.又由原方程知,0,1x y ==时.代入上式得d e d x x yy x=='==-.方法二:方程两边微分,得d e d e d y y y x x y =--,代入0,1x y ==,得0d e d x yx==-.方法三:令(,)1e y F x y y x =-+,则()0,10,10,10,1ee,1e 1yy x y x y x y x y F F x xy========∂∂===+=∂∂,故0,10,1d e d x y x x y F y xF xy=====∂∂=-=-∂∂.【评注】 此题属基此题型.求方程确定的隐函数在某点处的导数或微分时,不必写出其导数或微分的一般式完全类似例题见文登暑期辅导班《高等数学》第2讲第2节【例14】,《数学复习指南》〔理工类〕P.50【例2.12】.14. 【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 ()2B A E E -= 于是有4B A E -=,而11211A E -==-,所以2B =.【评注】 此题关键是将其转化为用矩阵乘积形式表示.类似题2005年考过.完全类似例题见文登暑期辅导班线性代数第1讲例6,《数学复习指南》〔理工类〕P.378【例2.12】15.【分析】题设方程右边为关于x 的多项式,要联想到e x 的泰勒级数展开式,比较x 的同次项系数,可得,,A B C 的值.【详解】将e x 的泰勒级数展开式233e 1()26xx xx o x =++++代入题设等式得 233231()[1]1()26x x x o x Bx Cx Ax o x ⎡⎤++++++=++⎢⎥⎣⎦整理得233111(1)()1()226B B x B C x C o x Ax o x ⎛⎫⎛⎫+++++++++=++ ⎪ ⎪⎝⎭⎝⎭比较两边同次幂系数得11021026B AB C BC ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩,解得 132316A B C ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩.【评注】题设条件中含有高阶无穷小形式的条件时,要想到用麦克劳林公式或泰勒公式求解.要熟练掌握常用函数的泰勒公式.相应公式见《数学复习指南》理工类P.124表格.16.【分析】题设积分中含反三角函数,利用分部积分法.【详解】arcsin e d arcsin e de e arcsin e e e x x x x x x xx x x --=-=-+⎰⎰⎰-21e arcsin e d 1ex x xx -=-+-⎰.令21e xt=-,则221ln(1),d d 21t x t x t t=-=--, 所以2211111d d d 12111e xx t t t t t ⎛⎫==- ⎪--+⎝⎭-⎰⎰⎰ 221111e 1ln ln 2121e 1x x t C t ---=+=+-+.【评注】被积函数中为两种不同类型函数乘积且无法用凑微分法求解时,要想到用分部积分法计算;对含根式的积分,要想到分式有理化及根式代换.此题为基此题型,完全相似例题见文登暑期辅导班《高等数学》第3讲第3节【例6】,《数学复习指南》理工类P.79【例3.21】.17. 【分析】 由于积分区域D 关于x 轴对称,故可先利用二重积分的对称性结论简化所求积分,又积分区域为圆域的一部分,则将其化为极坐标系下累次积分即可.【详解】 积分区域D D 关于x 轴对称,函数221(,)1f x y x y =++是变量y 的偶函数,函数22(,)1xy g x y x y=++是变量y 的奇函数. 则112222220011ln 2d d 2d d 2d d 1112DD r x y x y r xy x y r ππθ===+++++⎰⎰⎰⎰⎰⎰22d d 01Dxyx y x y =++⎰⎰, 故 22222211ln 2d d d d d d 1112D D Dxy xy x y x y x y x y x y x y π+=+=++++++⎰⎰⎰⎰⎰⎰. 【评注】只要见到积分区域具有对称性的二重积分计算问题,就要想到考查被积函数或其代数和的每一部分是否具有奇偶性,以便简化计算.完全类似例题见文登暑期辅导班《高等数学》第10讲第1节例1和例2,《数学复习指南》〔理工类〕P.284【例10.1】18. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在. 〔Ⅱ〕的计算需利用〔Ⅰ〕的结果.【详解】 〔Ⅰ〕因为10x π<<,则210sin 1x x π<=≤<.可推得10sin 1,1,2,n n x x n π+<=≤<=,则数列{}n x 有界.于是 1sin 1n nn nx x x x +=<,〔因当0sin x x x ><时,〕, 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即lim 0n n x →∞=.〔Ⅱ〕 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由〔Ⅰ〕知该极限为1∞型, 令n tx =,则,0n t →∞→,而222sin 111111sin 1000sin sin sin lim lim 11lim 11tt t t t t t t t t t t t t t t -⋅-→→→⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=+-=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又 33233000()1sin sin 13!lim 1lim lim 6t t t t t o t tt t t t t t t →→→-+--⎛⎫-===- ⎪⎝⎭. 〔利用了sin x 的麦克劳林展开式〕故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.19. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<,则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,〔0,sin 0x x x π<<>时〕,故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.20利用复合函数偏导数计算方法求出2222,z z x y ∂∂∂∂代入22220z zx y∂∂+=∂∂即可得〔I 〕.按常规方法解〔II 〕即可.【详解】 〔I 〕设u =((z z f u f u x y ∂∂''==∂∂. 22()()z f u f u x ∂'''=∂()22322222()()x y f u f u x y x y '''=⋅+⋅++,()2223222222()()z y x f u f u y x y xy ∂'''=⋅+⋅∂++.将2222,z z x y ∂∂∂∂代入22220z zx y∂∂+=∂∂得 ()()0f u f u u'''+=. 〔II 〕 令()f u p '=,则d d 0p p up u p u'+=⇒=-,两边积分得 1ln ln ln p u C =-+,即1C p u=,亦即1()C f u u'=. 由(1)1f '=可得11C =.所以有1()f u u'=,两边积分得 2()ln f u u C =+,由(1)0f =可得20C =,故()ln f u u =.【评注】 此题为基础题型,着重考查多元复合函数的偏导数的计算及可降阶方程的求解.完全类似例题见文登暑期辅导班《高等数学》第8讲第1节【例8】,《数学复习指南》〔理工类〕P.336【例12.14】,P.337【例12.15】21. 【分析】 〔I 〕利用曲线凹凸的定义来判定;〔II 〕先写出切线方程,然后利用 (1,0)-在切线上 ; 〔III 〕利用定积分计算平面图形的面积.【详解】 〔I 〕因为d d d d 422d 2,421d d d d 2d yx y y t t t t x t t x t tt-==-⇒===-2223d d d 12110,(0)d d d d 2d y y t x x t x t tt t⎛⎫⎛⎫=⋅=-⋅=-<> ⎪ ⎪⎝⎭⎝⎭故曲线L 当0t ≥时是凸的.〔II 〕由〔I 〕知,切线方程为201(1)y x t ⎛⎫-=-+ ⎪⎝⎭,设2001x t =+,20004y t t =-,则220000241(2)t t t t ⎛⎫-=-+⎪⎝⎭,即23200004(2)(2)t t t t -=-+ 整理得 20000020(1)(2)01,2(t t t t t +-=⇒-+=⇒=-舍去).将01t =代入参数方程,得切点为〔2,3〕,故切线方程为231(2)1y x ⎛⎫-=-- ⎪⎝⎭,即1y x =+.〔III 〕由题设可知,所求平面图形如以下图所示,其中各点坐标为 (1,0),(2,0),(2,3),(1,0)A B C D -, 设L 的方程()x g y =,则()30()(1)d S g y y y =--⎡⎤⎣⎦⎰ 由参数方程可得24t y =±-,即()2241x y =±-+.由于〔2,3〕在L 上,则()2()241924x g y yy y ==--+=---.于是 ()30944(1)d S y y y y ⎡⎤=-----⎣⎦⎰3300(102)d 44d y y y y =---⎰⎰()()3233208710433y yy =-+-=. 【评注】 此题为基此题型,第3问求平面图形的面积时,要将参数方程转化为直角坐标方程求解.完全类似例题和公式见《数学复习指南》〔理工类〕P.187【例6.40】.22. 【分析】 〔I 〕根据系数矩阵的秩与基础解系的关系证明;〔II 〕利用初等变换求矩阵A 的秩确定参数,a b ,然后解方程组.【详解】 〔I 〕 设123,,ααα是方程组Ax β=的3个线性无关的解,其中111114351,1131A a b β-⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.则有 1213()0,()0A A αααα-=-=.则1213,αααα--是对应齐次线性方程组0Ax =的解,且线性无关.〔否则,易推出123,,ααα线性相关,矛盾〕.所以 ()2n r A -≥,即4()2()2r A r A -≥⇒≤. 又矩阵A 中有一个2阶子式111043=-≠,所以()2r A ≤.因此 ()2r A =. 〔II 〕 因为11111111111143510115011513013004245A a b a a b a a b a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----+-⎝⎭⎝⎭⎝⎭.又()2r A =,则42024503a ab a b -==⎧⎧⇒⎨⎨+-==-⎩⎩. 对原方程组的增广矩阵A 施行初等行变换,111111024243511011532133100000A --⎛⎫⎛⎫ ⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,故原方程组与下面的方程组同解. 13423424253x x x x x x =-++⎧⎨=--⎩.选34,x x 为自由变量,则134234334424253x x x x x x x x x x =-++⎧⎪=--⎪⎨=⎪⎪=⎩. 故所求通解为12242153100010x k k -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12,k k 为任意常数.【评注】 此题综合考查矩阵的秩,初等变换,方程组系数矩阵的秩和基础解系的关系以及方程组求解等多个知识点,特别是第一部分比较新颖. 这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多.完全类似例题见《数学复习指南》〔理工类〕P.427【例4.5】,P.431【例4.11】. 23. 解: 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q .【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交.取11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭. 再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪⎪⎪⎪⎪⎪ ⎪⎝⎭⎪⎝⎭,令[]123,,Qηηη=,则1TQ Q-=,由A是实对称矩阵必可相似对角化,得T3Q AQ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦.。
四校连赛(五四制)2019-2020学年八年级下学期期末考试数学试题
四校连赛(五四制)2019-2020学年八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·天津期末) 如果有意义,那么()A . a≥﹣2B . a≤2C . a≥2D . a≤﹣22. (2分)一个寻宝游戏的寻宝通道如图1所示,四边形ABCD为矩形,且AB>AD>AB,为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A . O→D→C→BB . A→B→CC . D→O→C→BD . B→C→O→A3. (2分) (2019八上·辽阳月考) 下列条件中,不能判断一个三角形为直角三角形的是A . 三个角的比是1:2:3B . 三条边满足关系C . 三条边的比是2:3:4D . 三个角满足关系4. (2分)(2017·邹城模拟) 在平面直角坐标系中,直线y=﹣x+2与反比例函数y= 的图象有唯一公共点,若直线y=﹣x+b与反比例函数y= 的图象有2个公共点,则b的取值范围是()A . b>2B . ﹣2<b<2C . b>2或b<﹣2D . b<﹣25. (2分) (2019八上·榆林期末) 为展示榆林美食、弘扬陕北饮食文化,某地举办了豆腐宴烹饪大赛据了解,榆林豆腐是陕西榆林经典的传统小吃,国家地理标志产品,若对此次烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价评价的满分均为100分,三个方面的重要性之比依次为7:2:某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是A . 90分B . 87分C . 89分D . 86分6. (2分)在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A、B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM的延长线与x轴交于点N(n,0),如图3,当m=时,n的值为()A .B .C .D .7. (2分)(2017·曹县模拟) )如图,在正方形ABCD中,AB=4cm,动点M从A出发,以1cm/s的速度沿折线AB﹣BC运动,同时动点N从A出发,以2cm/s的速度沿折线AD﹣DC﹣CB运动,M,N第一次相遇时同时停止运动.设△AMN的面积为y,运动时间为x,则下列图象中能大致反映y与x的函数关系的是()A .B .C .D .8. (2分)(2017·青海) 如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A .B . 2C . 2D . 89. (2分) (2016九上·门头沟期末) 如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A .B .C .D .10. (2分) (2017八下·蒙阴期中) 平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B ( 2,﹣1 ),C(﹣m,﹣n),则点D的坐标是()A . (﹣2,1 )B . (﹣2,﹣1 )C . (﹣1,﹣2 )D . (﹣1,2 )二、填空题 (共8题;共8分)11. (1分)若一次函数y=kx﹣(2k+1)是正比例函数,则k的值为________12. (1分) (2016九上·阳新期中) 如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为________13. (1分) (2020八上·昌平期末) 数字2018、 2019 、2020 、2021 、2022的方差是________;14. (1分)(2017·蒙自模拟) 若关于x的一元二次方程x2+4x﹣k=0有实数根,则k的最小值为________.15. (1分)如图,直线l⊥x轴于点P,且与反比例函数y1= (x>0)及y2= (x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2=________.16. (1分) (2017八上·金牛期末) 如图,直线y=﹣x+m与y=nx+5n(n≠0)的交点横坐标为﹣3,则关于的不等式﹣x+m>nx+5n>0的整数解是________.17. (1分)(2017·新吴模拟) 如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y 轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是________.18. (1分)如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由________个圆组成.三、解答题。
2019年高三第四次模拟考试数学试题含解析
2019年高三第四次模拟考试数学试题含解析一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.函数的最小正周期为 .【知识点】三角函数的周期性及其求法. 【答案解析】解析 :解:函数的最小正周期为. 【思路点拨】根据的周期等于,求得结果.2.已知复数满足(为虚数单位),则的模为 . 【知识点】复数相等的充要条件.【答案解析】解析 :解:∵复数满足(为虚数单位),∴()()211223i i i z i i i -++=+=+=--,∴,故答案为:.【思路点拨】先解出复数的式子,再利用两个复数代数形式的乘除法,虚数单位的幂运算性质,进行运算.【典型总结】本题考查复数的模的定义,两个复数代数形式的乘除法,虚数单位的幂运算性质,两个复数相除,分子和分母同时除以分母的共轭复数. 3.抛物线的准线方程是 . 【知识点】抛物线的简单性质.【答案解析】解析 :解:由题得,所以:所以,故准线方程为:.故答案为. 【思路点拨】先把其转化为标准形式,求出即可得到其准线方程. 4.集合{3,2},{,},{2},aA B a b AB A B ====若则 .【知识点】集合的交集与并集.【答案解析】解析 :解:因为,所以,,则. 所以,故答案为.【思路点拨】由已知可确定两个集合中必有2这个元素,所以由可确定,然后就可以确定的值.5.根据如图所示的伪代码,当输入的值为3时,最后输出的S 的值 为 ▲ .【知识点】根据伪代码求输出结果.【答案解析】21解析 :解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知:该程序的作用是累加,当不满足条件i ≤3时推出循环. 此时S=3+6+12=21,故输出的S 值为21.故答案为:21.【思路点拨】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加,当不满足条件i ≤3时推出循环,得到S 的值即可.6.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为 .()()()()()()222222141817181818181820182118⎡⎤-+-+-+-+-+-+⎣⎦ 7.某单位从甲、乙、丙、丁4名应聘者中招聘2人,如果这4名应聘者被录用的机会均等,则甲、乙两人中至少有1人被录用的概率是 . 【知识点】古典概型及其计算公式的应用.【答案解析】解析 :解:某单位从甲、乙、丙、丁4名应聘者中招聘2人,∵这4名应聘者被录用的机会均等,∴A ,B 两人都不被录用的概率为, ∴A ,B 两人中至少有1人被录用的概率. 故答案为:.【思路点拨】先利用排列组织知识求出甲、乙两人都不被录用的概率,再用间接法求出甲、乙两人中至少有1人被录用的概率.8.已知点P (x ,y ) 满足条件3),(02,,0+=⎪⎩⎪⎨⎧≤++≤≥x z k k y x x y x 若为常数y 的最大值为8,则 . 【知识点】简单线性规划.【答案解析】-6解析 :解:画出可行域第5题将变形为,画出直线平移至点时,纵截距最大,最大,联立方程得33k xk y, 代入− +3×(−)=8,∴. 故答案为.【思路点拨】画出可行域,将目标函数变形,画出相应的直线,将其平移,数学结合当直线移至点时,纵截距最大,最大.9.在平行四边形ABCD 中, AD = 1, , E 为CD 的中点.若, 则AB 的长为 . 【知识点】向量的运算法则;数量积运算法;一元二次方程的解法. 【答案解析】解析 :解:∵1,,2AC AB AD BEBC CE ADAB ∴221111222AC BEAB AD ADAB ADAD AB AB , ∴,>0,解得=.故答案为:.【思路点拨】利用向量的运算法则和数量积运算法则即可得出. 10.已知正四面体的棱长为,则它的外接球的表面积的值为 .【知识点】球内接多面体.【答案解析】解析 :解:正四面体扩展为正方体,它们的外接球是同一个球, 正方体的对角线长就是球的直径,正方体的棱长为:1;对角线长为:, ∴棱长为的正四面体的外接球半径为. 所以外接球的表面积为,故答案为.【思路点拨】正四面体扩展为正方体,它们的外接球是同一个球,正方体的对角线长就是球的直径,求出直径即可求出外接球半径,可求外接球的表面积. 11.已知函数是定义在上的奇函数,当时,则不等式的解集是__________. 【知识点】函数奇偶性的性质.【答案解析】解析 :解:当x >0时,与题意不符, 当时,又∵是定义在上的奇函数,∴1221x x f x f x f x f x ,,,1121<222x x ,<,不等式的解集是.故答案【思路点拨】是指定义在R 上的函12.如图,在平面直角坐标系x O y 中,点A 为椭圆E :的左顶点,B 、C 在椭圆E 上,若四边形OABC 为平行四边形,且∠OAB =30°,则椭圆E 的离心率等于 . 33b 解得为:.33,求13.已知实数满足,则的最大值为 . 【知识点】基本不等式的应用. 【答案解析】4解析 :解:∵, ∴41322x y xy x y ,则 解得:∴的最大值为4,故答案为:4【思路点拨】先对等式进行变形化简,然后利用进行求出的范围,即可求出所求. 14.数列满足()112,2n n n a a pa n +==+∈*N ,其中为常数.若实数使得数列为等差数列或等比数列,数列的前项和为,则满足的值为的最小正整数n s n 2014> . 【知识点】数列的判定;等比数列的前n 项和.【答案解析】10解析 :解:21232a 2a 22a a 4224p p p p ,,①若数列为等差数列,则得由△=12-4=-3<0知方程无实根,故不存在实数,(3分)②若数列为等比数列得22222224p p p ()(),解得=1 则,由累加法得:2n1nn1a a 22222解得,显然,当n=1时也适合,故.故存在实数=1,使得数列为等比数列,其通项公式为, 故121222201412n n nS ,解得,则满足的值为的最小正整数n s n 2014 10,故答案为10. 【思路点拨】21232a 2a 22a a 4224p p p p ,,进行分类考虑:①若数列为等差数列,则得由△=12-4=-3<0知方程无实根,故不存在实数,(3分)②若数列为等比数列得22222224p p p ()(),解得=1则其通项公式为,再由故,解得,可得结论.二、解答题:(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤) 15.(本题满分14分)如图所示⑵若,,弦函数.【答案解析】⑴ ⑵解析 :解:⑴由三角函数的定义知 ∴.又由三角函数线知,为第一象限角,,24116177tan 224173177. (2) ,∵,ABCFE D∴. ∵sinsin cos cos sin ==.又∵,∴=.【思路点拨】(Ⅰ)直接根据三角函数的定义,求出,然后再求; (Ⅱ)由,求出的正弦值,根据,求出.16. (本题满分14分)如图, ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB =4a ,BC = CF =2a , P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积.【知识点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【答案解析】(1)见解析(2)a 3 解析 :解:(1)因为ABCD 为矩形,AB =2BC , P 为AB 的中点,所以三角形PBC 为等腰直角三角形,∠BPC =45°. …………………………2分 同理可证∠APD =45°.所以∠DPC =90°,即PC ⊥PD . …………………………3分 又DE ⊥平面ABCD ,PC 在平面ABCD 内,所以PC ⊥DE. ………………………4分 因为DE ∩PD =D ,所以PC ⊥PDE . …………………………5分 又因为PC 在平面PCF 内,所以平面PCF ⊥平面PDE . …………………………7分 (2)因为CF ⊥平面ABCD ,DE ⊥平面ABCD , 所以DE ∥CF .又DC ⊥CF ,所以S △CEF =DC •CF =×4a ×2a =4a 2. 在平面ABCD 内,过P 作PQ ⊥CD 于Q ,则 PQ ∥BC ,PQ=BC=2a . 因为BC ⊥CD ,BC ⊥CF ,所以BC ⊥平面CEF ,即PQ ⊥平面CEF , 亦即P 到平面CEF 的距离为PQ=2a V PCEF =V P −CEF =PQ •S △CEF =•4a 2•2a =a 3.(注:本题亦可利用V P −CEF =V B −CEF =V E −BCF =V D −BCF =DC •BC •CF =a 3求得) 【思路点拨】(1)证明平面PCF 内的直线PC ,垂直平面PDE 内的两条相交直线DE ,PD ,就证明了平面PCF ⊥平面PDE ;(2)说明P 到平面PCEF 的距离为PQ=2a ,求出S △CEF =DC •CF 的面积,然后求四面体PCEF 的体积.17.(本题满分14分)已知直线(14)(23)(312)0()k x k y k k R +---+=∈所经过的定点恰B好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8. (1)求椭圆的标准方程;(2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.【知识点】直线与圆锥曲线的综合问题;恒过定点的直线;椭圆的标准方程. 【答案解析】(1)(2)解析 :解:解: (1)由(14)(23)(312)0()k x k y k k R +---+=∈, 得(23)(4312)0x y k x y --++-=,则由, 解得F (3,0)…………… 2分设椭圆的方程为, 则22238c a c a b c =⎧⎪+=⎨⎪=+⎩,解得543a b c =⎧⎪=⎨⎪=⎩所以椭圆的方程为.…………… 6分(2)因为点在椭圆上运动,所以,…………… 8分 从而圆心到直线的距离.所以直线与圆恒相交, …………… 10分 又直线被圆截得的弦长为L ===分由于,所以,则,即直线被圆截得的弦长的取值范围是…………… 14分【思路点拨】(1)可将直线(14)(23)(312)0()k x k y k k R +---+=∈改写为(23)(4312)0x y k x y --++-=由于k ∈R 故即F (3,0)然后再根据题中条件即可求出椭圆C 的标准方程.(2)要证明当点在椭圆C 上运动时,直线l 与圆O 恒相交只需证明圆心到直线的距离.而要求直线l 被圆O 所截得的弦长的取值范围,可利用圆中的弦长公式求出弦长的表达式,再结合参数的取值范围即可得解. 18.(本题满分16分)如图,直角三角形ABC 中,∠B =,AB =1,BC =.点M ,N 分别在边AB 和AC 上(M 点和B 点不重合),将△AMN 沿MN 翻折,△AMN 变为△MN ,使顶点落 在边BC 上(点和B 点不重合).设∠AMN =.(1) 用表示线段的长度,并写出的取值范围;(2) 求线段长度的最小值.【知识点】解三角形的实际应用. 【答案解析】(1) , (2) 解析 :解:解:(1)设,则.…………2分 在Rt △MB 中,,…………4分∴2111cos22sin MA x ===-θθ.…………5分 ∵点M 在线段AB 上,M 点和B 点不重合,点和B 点不重合,∴…7分 (2) 在△AMN 中,由∠AMN=θ,可得∠ANM= ,∴根据正弦定理得:2sinsin3ANMA ,∴122sin sin3AN令2132sin sin2sinsin cos 322t ,459060230150<<,<<,当且仅当时,有最大值,则θ=60°时,AN 有最小值为,即线段长度的最小值为.【思路点拨】(1)设,则,在Rt △MBA'中,利用三角函数可求;(2)求线段A'N 长度的最小值,即求线段AN 长度的最小值,再利用三角恒等变换化简,从而求最值.19.设函数(),.(1) 若函数图象上的点到直线距离的最小值为,求的值;(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围; (3) 对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在 “分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.【知识点】导数在最大值、最小值问题中的应用;根的存在性及根的个数判断. 【答案解析】(1)(2)(3) 解析 :解:(1)因为,所以,令 得:,此时,…………2分 则点到直线的距离为,即=4分(2)解法一 不等式(x-1)2>f (x )的解集中的整数恰有3个, 等价于(1-a 2)x 2-2x+1>0恰有三个整数解,故1-a 2<0,令h (x )=(1-a 2)x 2-2x+1,由h (0)=1>0且h (1)=-a 2<0(a >0), 所以函数h (x )=(1-a 2)x 2-2x+1的一个零点在区间(0,1),则另一个零点一定在区间(-3,-2),这是因为此时不等式解集中有-2,-2,0恰好三个整数解,故h (-2)>0,h (-3)≤0,解之得. 解法二不等式(x-1)2>f (x )的解集中的整数恰有3个,等价于(1-a 2) x 2-2x+1>0 恰有三个整数解,故 1-a 2<0,即 a >1, ∴(1-a 2) x 2-2x+1=[((1-a )x-1][(1+a )x-1]>0, 所以 ,又因为 0<<1, 所以 −3≤<−2,解之得.(3)设21()()()ln 2F x f x g x x e x =-=-,则2'(()e x e x x F x x x x x -+=-==.所以当时,;当时,.因此时,取得最小值,则与的图象在处有公共点. …………12分 设与存在 “分界线”,方程为, 由,对x ∈R 恒成立, 则在x ∈R 恒成立.所以成立,因此 k=.…(10分) 下面证明恒成立. 设,则.所以当 时,G ′(x )>0;当 x > 时,G ′(x )<0. 因此 x= 时,G (x )取得最大值0,则成立. 故所求“分界线”方程为:.【思路点拨】(1)利用点到直线的距离公式解决即可(2)关于由不等式解集整数的个数,然后求未知量取值范围的题目,可利用恒等变换,把它转化为求函数零点的问题,即可求解;(3)设F (x )=f (x )−g (x )=x 2−elnx ,利用导数知识判断单调性,求出时,F (x ) 取得最小值0.设f (x )与g (x )存在“分界线”,方程为,由,对x ∈R 恒成立,求得k=.再利用导数证明成立,从而得到所求“分界线”方程. 20.(本小题满分16分)设等比数列的首项为,公比为(为正整数),且满足是与的等差中项;数列满足().(1)求数列的通项公式;(2)试确定的值,使得数列为等差数列;(3)当为等差数列时,对每个正整数,在与之间插入个2,得到一个新数列. 设是数列 的前项和,试求满足的所有正整数.【知识点】等比数列的通项公式;数列的应用. 【答案解析】(1)(2) (3) 满足题意的正整数仅有.解析 :解:(1)………………………………………………………4分 (2)023)(22=++-n n b n b t n 得2322--=n tnn b n ,所以,212,416,42321t b t b t b -=-=-=则由,得……………………………………………………7分 当时,,由,所以数列为等差数列………9分(3)因为,可得不合题意,合题意…………11分当时,若后添入的数,则一定不符合题意,从而必是数列 中的一项,则(2+2+…………+2)+(…………)=即………………………………………………………………13分 记则k k f k212)2(ln 2)('--=,1+2+2+…………+2=,所以当时,=1+2+2+…………+2+1>1+2,又.3)(,0)(')递增,在(故∞+>k f k f则由都不合题意无解,即在知3),3[0)(06)3([≥+∞=>=m k f f …………15分 综上可知,满足题意的正整数仅有.…………………………………………16分25130 622A 截37186 9142 酂31381 7A95 窕F 21112 5278 剸433444 82A4 芤21558 5436 吶25939 6553 敓27809 6CA1 没x}30765 782D 砭q。
全国四省八校教研联盟2019届高三第一次联考数学(理)试题(扫描版) 扫描版答案
因涉及考试内容,请老师妥善保管,避免泄漏
四省八校 2019 届高三第一次联考卷·数 学(理)
参考答案
一、选择题
题号 答案 1 2 3 4 5 6 7 8 9 10
A
A
B
B
C
C
B
C
1. 考 点 : 几 何 基 本 运 算 。 由
CR B=x | -2 x 1,故选 B。
a3+4a5 3a5=10 得 a3+a5=10 得 a4 5 ,故选 C。
4.考点:对图表数据的认识,选 D。显然对业务收入量 2 月对 1 月减少。4 月对 3 月减少整体 不具备高速增加之说。 简易逻辑, 对充分性、 必要性的理解, 显然选 A, 当 m⊥n 时 n 在平面 可得平面 外。 5.考点: 6.考点:排列与组合。根据题意组队形成只有 2、4 型和 3、3 型。2、4 型又只能一男一女和二 男二女,此时有 C3C3 种搭配。3,3 型又只能为二男一女和一男二女,此时有 C3 C3 种搭配。故最终 有 C3C3 C3 C3 A2 36 种派遣方式,故选 A 7.考点:简单几何体和三视图。 根据三视图画出直观图为(放在长方体中更直观) 三棱锥 D-ABC 为所求几何体,
3 4 6
1 2 3 3
1 2 3 3
220 。 729
2 r 6 2 r r 4 14. 解 析 : x 的 展 开 式 的 通 项 公 式 为 , Tr 1 C6 2 x ,故 x 的系数为: x
1 2 132 。 2 C62 2 ( 1) C6 2 1
ˆ 107.41 a
(3)
103 1.14 ,中度焦虑,需进行心里疏导。……………………………………12 分 89.74
第二届(2017)全国高校密码数学挑战赛赛题一
第二届(2017)全国高校密码数学挑战赛赛题一第二届(2017)全国高校密码数学挑战赛赛题一一、赛题名称:布尔函数方程的求解问题二、赛题描述:2.1基本概念:布尔函数是密码学中重要的研究对象,Walsh 谱是研究布尔函数密码学性质的重要工具.设F 2={0,1},按模2加运算"⊕"和乘运算"·"构成一个域.设k ≥1,记F k 2={(a 0,···,a k −1)|a i ∈F 2,0≤i ≤k −1}为F 2上的k 维线性空间,称映射f :F k 2→F 2是k 元布尔函数.F k 2中向量与集合{0,1,···,2k −1}的元素存在自然的一一对应,c =(c 0,···,c k −1)→∑︀k−1i =0c i 2i .在此对应下,可以把k 元布尔函数f 的函数值列成一个2k 维的列向量,记为f (F k 2)△=⎛⎜⎜⎜⎜⎜⎜⎝f (0)f (1)...f (2k −1)⎞⎟⎟⎟⎟⎟⎟⎠∈F 2k 2,称为函数f 的真值表向量.对F k 2中的任一向量c ,k 元布尔函数f (x )在c 点的Walsh 谱值定义为w f (c )=12k ∑︁x ∈F k 2(−1)f (x )⊕c ·x ,1/2第二届(2017)全国高校密码数学挑战赛赛题一其中x=(x0,x1,···,x k−1)∈F k2,c·x=⊕k−1i=0c i x i是c与x的内积.2.2问题描述:设k,n是正整数,m=2k,给定F2上的m×n阶列满秩矩阵A,m维向量b,及k维向量α,β,γ,δ,且α⊕β⊕γ⊕δ=0,其中0为k维向量.设f是未知的k元布尔函数,x是F n2中的未知向量,满足下述方程组⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩Ax⊕f(F k2)=b,w f(α)=w f(β)=18,w f(γ)=w f(δ)=−18.令参数k=12,m=4096,n=90,对给定的A,b,α,β,γ,δ(见附件),求解x和f:2.3评分标准:(1)给出求解原理(在给定参数规模下的非穷举方式求解思路,问题转化模型,可解性原理,解的唯一性等问题);(2)设计求解方案(给出算法及实现方案,分析复杂度及可行性,算法优化比较等);(3)解出答案;(4)讨论一般参数(k,m=2k,n)条件下方程组解的唯一性问题。
新资料版2019高考密码猜题卷4-数学理
新资料版2019高考密码猜题卷4-数学理本卷须知1、本试题分为第一卷和第二卷两部分,总分值150分,考试时间为120分钟、2、答第一卷前务必将自己的姓名、考号、考试科目涂写在答题卡上、考试结束,试题和答题卡一并收回、3、第一卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号〔ABCD 〕涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案、第一卷〔选择题,共60分〕参考公式:球的表面积公式:S =4πR2,其中R 是球的半径、假如事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:Pn 〔k 〕=C kn pk 〔1-p 〕n-k 〔k =0,1,2,…,n 〕、 假如事件A 、B 互斥,那么P 〔A+B 〕=P 〔A 〕+P 〔B 〕、假如事件A 、B 相互独立,那么P 〔AB 〕=P 〔A 〕·P 〔B 〕、【一】选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的、1、设集合{}{}2|log(3),|540A x y x B x x x ==-=-+<,那么A B = 〔〕A 、∅B 、()3,4C 、()2,1-D 、()4.+∞ 2、假设复数z 与2(2)8z i +-基本上纯虚数,那么2z z +所对应的点在〔〕 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限3、一个空间几何体的三视图如下,那么那个空间几何体的体积是〔〕 A 、423π+ B 、823π+ C 、413π+ D 、108π+4、流程图如右图所示,该程序运行后,为使输出的b 值为16,那么循环体的判断框内①处应填的是 〔〕A 、2B 、3C 、4D 、165、,a b 是夹角为120的单位向量,那么向量a b λ+与2a b -垂直的充要条件是实数λ的值为〔〕 A 、54 B 、52 C 、34 D 、326、设32:()21p f x x x mx =+++在()-∞+∞,内单调递增,函数2:()43q g x x x m =-+不存在零点那么p 是q 的 〔〕A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件7、设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时, ()ln f x x x =-,那么有〔〕A 、132()()()323f f f <<B 、231()()()323f f f <<C 、213()()()332f f f <<D 、321()()()233f f f << 8、函数()sin()(,0)4f x x x πωω=+∈>R 的最小正周期为π,为了得到函数()cos()4g x x πω=+的图象,只要将()y f x =的图象 〔〕 A 、向左平移8π个单位长度 B 、向右平移8π个单位长度 C 、向左平移4π个单位长度 D 、向右平移4π个单位长度 9、在椭圆22221(0)x y a b a b+=>>中,12,F F 分别是其左右焦点,假设122PF PF =,那么该椭圆离心率的取值范围是 〔〕A 、1,13⎛⎫ ⎪⎝⎭B 、1,13⎡⎫⎪⎢⎣⎭C 、10,3⎛⎫ ⎪⎝⎭D 、10,3⎛⎤ ⎥⎝⎦10、假设不等式组0220x y x y y x y a-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,,,表示的平面区域是一个四边形,那么a 的取值范围是〔〕 A 、43a ≥ B 、01a <≤ C 、413a << D 、01a <≤或43a ≥ 11、设函数()()ln f x g x x x =++,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,那么曲线()y f x =在点(1,(1))f 处的切线方程为〔〕 A 、4y x = B 、48y x =- C 、22y x =+ D 、112y x =-+ 12、市内某公共汽车站有10个候车位〔成一排〕,现有4名乘客随便坐在某个座位上候车,那么恰好有5个连续空座位的候车方式的种数是 〔〕A 、240B 、480C 、600D 、720第二卷〔非选择题共90分〕【二】填空题:本大题共4小题,每题4分,共16分,将答案填在题中的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四届(2019)全国高校密码数学挑战赛
赛题一
一、赛题名称:椭圆曲线离散对数问题(ECDLP )
二、赛题描述:
2.1 符号说明
设F �表示具有p 个元素的有限域,其中p >3 是一个素数。
F �上的椭圆曲线E 是一个点集合E /F �=�(x ,y )�y �=x �+ax +b ,a ,b ,x ,y ∈F ��∪{∞},其中∞表示无穷远点,4a �+27b �≠0 mod p 。
2.2基础知识
设P =(x �,y �),Q =(x �,y �)∈E /F �, 在E 上定义“+”运算P +Q =R , R =(x �,y �)∈E /F �是过P,Q 的直线与曲线的另一交点关于x 轴的对称点(当P =Q 时,R 是P 点的切线与曲线的另一交点关于x 轴的对称点)
上述计算可用公式表示如下:
1)当P ≠Q 时(Addition),R =(x �,y �)=(�������������−x �−x �,�����
�������(x �−x �)−y �);
2)当P=Q时(Doubling),R=(x�,y�)=(�������
����
�
−2x�,�������
���
�(x�−
x�)−y�);
此外,对任意P=(x�,y�)∈E /F�,定义:
3)P+∞=∞+P=P;
4)(x�,y�)+(x�,−y�)=∞,这里(x�,−y�)∈E /F�记为−P.特别的,−∞=∞.
可验证E /F�关于上述定义的“+”运算构成一个交换群,记为E (F�).
设P∈E (F�),记[k]P=P+P+⋯+P (k times),则[k]P∈E (F�),该运算
称为椭圆曲线标量乘法运算。
设 r 为最小的正整数使得[r]P=∞,r 称为是 P 的阶(order)。
令,可验证关于“+”运算
〈P〉={∞,P,[2]P,…,[r−1]P}〈P〉
构成E (F�)的一个 r 阶子群。
2.3问题描述
椭圆曲线离散对数问题(ECDLP):给定椭圆曲线E / F�:y�=x�+ax+b,P∈E(F�),r≔order(P),R∈〈P〉,计算1≤k≤r使得R=[k]P.(该问题可形式化地记为k=log�R)
具体参数请见附件:ECDLP数据文件.txt。
2.4成绩评判
(1). 本赛题共分3类挑战(1-8小题为第一类,9-16小题为第二类,17-22
小题为第三类,题目参数请见(五)),在同类挑战中,以选手做出的参数最长的题目得分为该类挑战得分,同类挑战中多做题目不多得分;
(2).第一类挑战中,第1-8小题分值分别为22,26,30,34,38,42,46,
50;第二类挑战中,第9-16小题分值分别为28,34,40,46,52,58,64,70;第三类挑战中,第17-22小题分值分别为30,40,50,60,70,80;
(3). 分数相同的选手依照难度最高的挑战求解时间来排序,求解用时越少
者排名越靠前;
(4). 针对每类挑战,给出计算平台和计算结果,并简述求解原理、步骤和
实现效率(包括计算需要的时间和空间等),引用前人方法的必须在报告中给出明确引用,否则报告内容作废;
(5). 利用特殊算法求解或求解算法中有创新内容的,酌情加分。
三、密码学背景及相关问题的研究进展
20世纪八十年代中期,Koblitz和Miller各自独立提出将有限域上椭圆曲线用于建立公钥密码系统(ECC),其安全性基于椭圆曲线上有理点加法群离散对数问题(ECDLP)的难解性[1]。
目前一般椭圆曲线上的离散对数问题还没有有效的计算方法,而这也是现代密码学中最具挑战性的问题之一。
ECDLP 可简要描述为:已知G为曲线上的加法子群且G的群阶为大素数r,P为G 的生成元。
随机选取G中元素R,计算正整数k使得R=[k]P,或者表示为k=log�R。
目前计算该问题的方法主要包括通用算法和特殊算法:
通用算法:Pollard's rho 算法,Pollard's kangaroo算法,以及小步-大步法等均可用于求解一般有限群上的离散对数问题。
目前在一般情况下,计算ECDLP也只有通用算法奏效,其时间复杂度为O(√r)。
2009年Bailey 等人针对Certicom公司提出的ECC挑战利用Pollard's Rho 算法计算ECC2K-130上的ECDLP [2],目前相关计算仍在进行。
特殊算法:在一些特殊曲线上,可以将ECDLP转化到其他群上的离散对数问题弱化其难解性,已有研究主要包括:
(1)将ECDLP约化到有限域上的离散对数问题(DLP)。
如SSSA攻击[3]将异常椭圆曲线(有理点群阶等于有限域大小)上的ECDLP约化到有限域加法群的DLP,MOV攻击[4] 则利用椭圆曲线上的双线性映射将定义在有限域F�上的
乘法群上的离散对数问题,此方法在嵌入次数k较小ECDLP归约到有限域F
��
时有效。
(2)利用Weil下降等技术将椭圆曲线上的有理点群转化为另一类几何对象(如超椭圆曲线上Jacobian或高维Abel 簇),将ECDLP复杂性减弱(目前高亏格HECDLP存在比通用算法更有效的算法)。
四、参考文献
[1]Hankerson D., Menezes A.J.,V anstone S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)
[2]Bailey D., Batina L., Bernstein D.J., Birkner P., Bos J.W., et al .: Breaking
ECC2K-130. Cryptology ePrint Archive, Report 2009/541 (2009)
[3]Smart N.P.: The discrete logarithm problem on elliptic curves of trace one. J.
Cryptol. 12, 193-196 (1999)
[4]Menezes A.J., Okamoto T., V anstone S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inf. Theory. 39(5), 1639-1646 (1993)。