离心泵基础知识(正式版)
离心泵基础知识
(三)、离心泵的分类
离心泵的种类很多,分类方法常见的有以下几种方式 : 1、按叶轮吸入方式分:(1)单吸式离心泵;如图所示
(2)双吸式离心泵;如图所示
2、按叶轮数目分:
(1)单级离心泵 泵中只有一个叶轮,单级离 心泵是一种应用广泛的泵。由于液体在泵内只 有一次增能,所以扬程较低。 (2)多级离心泵 具有两个或两个以上叶轮的 离心泵称为多级离心泵。级数越多压力越高。 图所示为一台分段式离心水泵,这种泵的叶轮 一般为单吸式。
叶轮 结构图
2.泵轴
离心泵的泵轴的主要作用是传递动力,支承叶轮保持在 工作位置正常运转。它一端通过联轴器与电动机轴相连, 另一端支承着叶轮作旋转运动,轴上装有轴承、轴向密 封等零部件。 泵轴属阶梯轴类零件,一般情况下为一整体。但在防 腐泵中,由于不锈钢的价格较高,有时采用组合件。接 触介质的部分用不锈钢,安装轴承及联轴器的部分用优 质碳素结构钢,不锈钢与碳钢之间可以采用承插连接或 过盈配合连接。由于泵轴用于传递动力,且高速旋转, 在输送清水等无腐蚀性介质的泵中,一般用45#钢制造, 并且进行调质处理。在输送盐溶液等弱腐蚀性介质的泵 中,泵轴材料用40Cr,且调质处理。在防腐蚀泵中,即 输送酸、碱等强腐蚀性介质的泵中,泵轴材质一般为 1Crl8Ni9或1Crl8Ni9Ti等不锈钢。
(一)、离心泵转子
转子是指离心泵的转动 部分, 它包括叶轮、泵轴、轴 套、轴承等零件;如图 所示。
1、叶轮
叶轮是离心泵的做功零件,依靠它高速旋转对液体做功而 实现液体的输送,是离心泵重要零件一。 按结构形式,叶轮可分为以下三种。 (1)闭式叶轮叶轮的两侧均有盖板,盖板间有4—6个叶片, 如图1—10 (a)所示。闭式叶轮效率较高,应用最广,适用 于输送不含固体颗粒及纤维的清洁液体。闭式叶轮有单吸 和双吸两种类型。双吸叶轮如图1—11所示,适用于大流 量泵,其抗汽蚀性能较好。如图1—10 (b)。这种叶轮结构 简单,制造容易,但效率低,适用输送含较多固体悬浮物 或带纤维体。 (3)半开式叶轮这种叶轮只有后盖板,如图1—10 (c)所示。 它适用于输送易于沉淀或含固体悬浮物的液体,其效率介 于开式和闭式叶轮之间。
离心泵的基础知识(定义,原理,分类)
一、离心泵的概述离心泵引就是根据离心力原理设计的,高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的。
离心泵有好多种,从使用上可以分为民用与工业用泵;从输送介质上可以分为清水泵、杂质泵、耐腐蚀泵等。
二.离心泵的工作原理驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。
液体从叶轮获得能量,•使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。
在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。
离心泵的工作原理是:离心泵之所以能把水送出去是由于离心力的作用。
水泵在工作前,泵体和进水管必须罐满水形成真空状态,当叶轮快速转动时,叶片促使水快速旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。
水源的水在大气压力(或水压)的作用下通过管网压到了进水管内。
这样循环不已,就可以实现连续抽水。
在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则泵体将不能完成吸液,造成泵体发热,震动,不出水,产生“空转”,对水泵造成损坏(简称“气缚”)造成设备事故。
离心泵的种类很多,分类方法常见的有以下几种方式1按叶轮吸入方式分:单吸式离心泵双吸式离心泵。
2按叶轮数目分:单级离心泵多级离心泵。
3按叶轮结构分:敞开式叶轮离心泵半开式叶轮离心泵封闭式叶轮离心泵。
4按工作压力分:低压离心泵中压离心泵高压离心泵边立式离心泵。
叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动。
泵壳中央有一液体吸入4与吸入管5连接。
液体经底阀6和吸入管进入泵内。
泵壳上的液体排出口8与排出管9连接。
在离心泵启动前,泵壳内灌满被输送的液体;启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。
在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。
离心泵的基础知识
泵 – 什么是泵?
泵是一种主要用于将流体或气体从一个地方
输送到另一个地方的机器或者设备.
离心泵 - 工作原理
离心力
泵壳
叶轮
压力&流量
机械运动 (旋转)
电能 电机
如何选择一台合适的泵
物料? 流量? 扬程? 其他相关信息,例如真空 下应用,带腐蚀性物料等?!
- 物料信息
- 黏度 - 密度 - 温度 - 物料的流动性 - 饱和蒸汽压 - 固体含量 - 腐蚀性能 - 是否含有硬质颗粒
- 设备工况
- 流量 - 扬程
理解泵头(扬程)和压力之间的相同和 不同点
•泵的主要功能就是产生压力
•压力是可以由Pa 或者 bar来表示的 (1 Pa = 1 N/m²)
•但是, 同一个离心泵并不是一定产生同样的压力. 压力 的大小取决于很多不同的因素, 例如其中一个就是物料 的密度.
•无论物料的密度如何,离心泵产生一个同样的“静压头“, 通常称为泵头,泵头一般通过 mLC 表示 „meter liquid collumn“
单机封, 碳化硅vs碳化硅, 氟橡胶或者乙 丙橡胶带FDA证书 单机封, 碳化硅vs不锈钢, 丁晴橡胶 单机封, 碳化硅vs碳化硅, 氟橡胶 冲洗机封,碳化硅vs碳化硅,氟橡胶 冲洗机封,碳化硅vs碳化硅,氟橡胶 单机封,碳化硅vs碳化硅,氟橡胶 双机封,碳石墨vs不锈钢,丁晴橡胶/,碳 石墨vs不锈钢,丁晴橡胶
离心泵的基本知识
离心泵的基本知识一、离心泵的基本构造是由六部分组成的离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。
1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。
叶轮上的内外表面要求光滑,以减少水流的摩擦损失。
2、泵体也称泵壳,它是水泵的主体。
起到支撑固定作用,并与安装轴承的托架相连接。
3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。
4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。
滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。
太多油要沿泵轴渗出并且漂*,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!5、密封环又称减漏环。
叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。
为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。
6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。
填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。
始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。
所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。
二、离心泵的过流部件离心泵的过流部件有:吸入室,叶轮,压出室三个部分。
叶轮室是泵的核心,也是流部件的核心。
泵通过叶轮对液体的作功,使其能量增加。
离心泵基础知识
离心泵基础知识一、泵的概念通常把提升液体、输送液体和使液体增加压力的机器统称为泵.二、泵的分类根椐泵作用原理,泵可分为以下三大类:(一)容积泵利用工作室容积周期性变化来输送液体,如活塞泵、柱塞泵、隔膜泵、齿轮泵、滑板泵、螺杆泵等.(二)叶片泵利用叶片和液体相互作用来输送液体,如离心泵、混流泵、轴流泵、旋涡泵等.(三)其它类型泵包括只改变液体位能的泵,如水车等;利用流体能量来输送液体的泵,如射流泵、水锤、酸蛋等.在以上泵中,离心泵使用最广泛也是数量最多.三、离心泵(一)离心泵使用条件及优缺点比较.使用条件:流量在5~20000M3/h、扬程在8~2800米的范围内使用离心泵比较合适.离心泵的优点:转速高、体积小、重量轻、效率高、流量大、结构简单、性能平稳、容易操作和维修等.离心泵缺点:启动前需灌泵排气,输送粘度高介质时效率下降严重.离心泵使用范围:最大极限:η=0.45ηw,建议使用极限为η=0.7ηw(ηw 为离心泵在输送常温清水时的效率)(二)离心泵主要零部件1、叶轮:叶轮是将原动机的能量传递给液体的零件,液体经叶轮后能量增加.叶轮由前盖板、后盖板、叶片和轮毂组成.叶轮分开式叶轮、半开式叶轮、开式叶轮三种.2、吸入室:吸入室的作用是使液体以最小的损失均匀进入叶轮.,吸入室主要分三种结构型式:锥形吸入室、圆环形吸入室和半螺旋形吸入室.3、压出室:压出室的作用是以最小的损失,将从叶轮中流出的液体收集起来,均匀地引至泵的吐出口或次级叶轮,在过程中还将一部份动能转变为压力能.压出室主要有以下几种结构型式:螺旋形蜗室、环形压出室、径向导叶、流道式导叶和扭曲叶片式导叶等.4、密封环:密封环的作用,为减少高压区液体向低压区流动.5、轴封机构:轴封作用:减少有压力的液体向外流出和防止空气进入泵内.结构型式有骨架橡胶密封、填料密封、机械密封和浮动环密封.6、轴向力平衡机构:作用:平衡泵在运行中轴向力。
单级泵主要用平衡孔或平衡管;多级泵一般用平衡鼓或平衡盘.平衡盘机构平衡鼓机构6.1平衡鼓一般与机封共用,平衡盘一般与填料密封共用.7、易损件:泵轴、轴套、轴承、中段、轴承体、托架、支架、联轴器等.(三)离心泵主要结构型式1、按轴位置可分为为卧式和立式.2、按压出室型式、吸入方式和叶轮级数又可分为如下几种基本型式:3.1单吸单级泵:一般流量:5.5~300M3/h,扬程:8~150M.3.2两级悬臂泵:一般流量:5~100M3/h,扬程:70~240M.3.3双吸单级泵: 一般流量:120~20000M3/h,扬程:10~110M.3.4分段式多级泵:一般流量:5~720M3/h,扬程:100~650M.高压分段式出口压力可达280公斤/cm2左右.一般用途:一般高压泵、超高压锅炉给水泵、热油泵等.3.5涡壳式多级泵:一般流量:450~1500M3/h,扬程:100~500M.出口压力最高可达180公斤/cm2左右.优点:不需要平衡装置.缺点:体积大、铸造和加工技术要求高.主要用途:用于流量较大的扬程较高的城市给水、矿山排水、输油管线3.6深井泵:一般流量:8~900M3/h,扬程:10~150M.3.7潜水电泵3.8作业面潜水泵等3.9、屏蔽泵3.10、自吸泵3.11、立式泵3.12、水轮泵四、离心泵的的基础知识1、流量:是指单位时间内排出液体的数量,有重量流量(G)与体积流量(Q)两种表示方法.2、扬程:单位重量液体通过泵后获得的能量.又叫总扬程或全扬程.扬程的近似算法H=104(P2-P1)/γP2-泵的出口压力(Kg/CM2);P1-泵的入口压力(Kg/CM2);γ-液体比重(Kg/M3)3、转速:指泵轴每分钟的转数.4、功率:离心泵的功率是指泵的轴功率(N);有效功率(Ne)轴功率与有效功率的关系Ne=G*N5离心泵能量损失:5.1机械损失:指轴封、轴承、及叶轮圆盘摩擦损失所消耗的功率轴封、轴承损失功率=(0.01~0.03)N圆盘摩擦损失在转速为30r.p.m时接近30%(在机械损失中圆盘损失最大) 叶轮外径越大, 圆盘摩擦损失越大;转速越高, 圆盘摩擦损失越小;泵叶轮盖板泵体内壁的表面粗糙直光洁,圆盘摩擦损失越小;采用涂漆或抛光可以减少圆盘摩擦损失.5.2容积损失:由高压区流向低压区的液体,虽然在流经叶轮时获得了能量,但未被有效利用,而是在泵体内循环流动,因克服间隙阻力又消耗掉了,这种能量损失称为容积损失。
离心泵基本知识
轴和轴承:泵轴一端固定叶轮,一端装联轴 器。轴承有滚动轴承和滑动轴承。
轴封:一般有机械密封和填料密封。
泵的联轴器:作用是传递功率,补偿泵与电 机的相对位移,缓和冲击,改变轴系的自振 频率;
爪型弹性联轴器:体积小,重量轻,结构简 单,最大许用扭矩850N.M,最大轴径50mm; 弹性柱销联轴器:结构简单,传动扭矩大, 最大许用扭矩8316N.M,最大轴径200mm ; 齿轮联轴器:需要润滑,需要定期维护;
根据介质温度可 采用密封箱体保 温结构
根据介质温度 情况轴承支架 分无冷、风冷 及水冷结构
根据介质含固量可 选择开式叶轮结构
可配各种 机械密封
重工位轴系设计
悬臂式离心泵OH2
(OH3)立式管道泵
(OH3/OH4/OH5)立式管道泵
(BB1)双吸中开泵剖面图
轴向剖分壳体, 无须拆卸进出口 管路即可维修
(VS2)液下泵剖面图
滚动轴承可脂 润滑或油润滑
护管结构,滑 动轴承外冲洗
可配填料密封 或机械密封
螺纹接轴,安全可 靠,可反转设计
双吸式叶轮,结合双 流道蜗壳设计,对称 结构,运转平稳
滑动轴承, 介质本身自 冲洗
混流式叶轮,加 空间导叶式壳体 ,适合大流量低 扬程工况
(VS4)液下泵剖面图
V型环密封或填料 密封+脂润滑滚动 轴承+联轴器
察细致,熟悉结构,一般能正确判断。
对于采用平衡盘的多级离心泵, 在安装密封时,必须将转子推向 入口端,使平衡盘工作面接触, 才能校核密封压缩量是否合适.
4、离心泵的日常检查内容
安装完后试泵前检查内容 泵运行中检查内容 泵备用时检查内容 泵检修后试车时检查内容
离心泵重要基础知识点
离心泵重要基础知识点离心泵是一种常见的流体机械设备,广泛应用于工业生产和农业灌溉等领域。
作为一个大学教授,我来为大家介绍离心泵的一些重要基础知识点。
1. 工作原理:离心泵依靠离心力将液体从低压区域抽离,并通过转动叶轮提高压力和流速。
液体通过进口流道进入泵体,然后被离心力推向叶轮,并在高速旋转下被抛出,最后通过出口流道排出。
2. 组成部分:离心泵主要由泵体、叶轮、轴、轴承等部分组成。
泵体通常采用铸铁、不锈钢等材料制成,以确保其耐腐蚀性和结构的稳定性。
叶轮是离心泵的核心部件,其形状和数量对泵的性能影响很大。
轴和轴承则用于支撑叶轮的转动。
3. 性能参数:离心泵的性能参数对于选择和设计泵的工作条件至关重要。
常见的性能参数包括流量、扬程、功率、效率等。
流量是指单位时间内通过泵的液体体积,扬程是液体在泵中提升的高度,功率则表示泵传递给液体的能量,而效率则反映了转化能量的效果。
4. 泵的特点:离心泵具有结构简单、使用方便、流量范围广、运行稳定等特点。
由于其流体力学性能好,使其在工业领域得到了广泛应用。
但离心泵也存在一些局限性,例如对固体颗粒的适应性较差,易受到气体、液体变化和泵进口阻力的影响。
5. 应用领域:离心泵广泛应用于工业生产中的供水、给排水、冷却循环、化工流程和石油化工等领域。
同时,在农业领域,离心泵也被用于灌溉系统中,为农田提供水源。
以上就是离心泵的一些重要基础知识点。
作为一个大学教授,我希望通过这些简要介绍,能够帮助大家对离心泵有一定的了解,并对其应用领域有更清晰的认识。
离心泵基础知识完整版
编号:TQC/K674离心泵基础知识完整版Through strengthening management, improving production conditions and working environment and increasing all-round monitoring and other measures, in order to prevent casualties and achieve the best production state for safe production and civilized construction.【适用安全技术/生产体系/提升效率/企业管理等场景】编写:________________________审核:________________________时间:________________________部门:________________________离心泵基础知识完整版下载说明:本安全管理资料适合用于通过加强过程管理,不断改善生产条件和作业环境和增加全方位监控等措施,以期达到预防伤亡事故,并实现最佳的生产状态用以安全生产、文明施工等。
可直接应用日常文档制作,也可以根据实际需要对其进行修改。
一.离心泵的工作原理驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。
液体从叶轮获得能量,•使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。
在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,•在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。
二、离心泵的结构及主要零部件一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。
1.泵体:即泵的壳体,包括吸入室和压液室。
离心泵基础知识
离心泵离心泵结构简单,操作容易,流量易于调节,且能适用于多种特殊性质物料,因此在工业生产中普遍被采用。
一离心泵的主要部件和工作原理1.离心泵的主要部件(1)叶轮:叶轮是离心泵的核心部件,由4-8片的叶片组成,构成了数目相同的液体通道。
按有无盖板分为开式、闭式和半开式(其作用见教材)。
(2)泵壳:泵体的外壳,它包围叶轮,在叶轮四周开成一个截面积逐渐扩大的蜗牛壳形通道。
此外,泵壳还设有与叶轮所在平面垂直的入口和切线出口。
(3)泵轴:位于叶轮中心且与叶轮所在平面垂直的一根轴。
它由电机带动旋转,以带动叶轮旋转。
2.离心泵的工作原理(1)叶轮被泵轴带动旋转,对位于叶片间的流体做功,流体受离心力的作用,由叶轮中心被抛向外围。
当流体到达叶轮外周时,流速非常高。
(2)泵壳汇集从各叶片间被抛出的液体,这些液体在壳内顺着蜗壳形通道逐渐扩大的方向流动,使流体的动能转化为静压能,减小能量损失。
所以泵壳的作用不仅在于汇集液体,它更是一个能量转换装置。
(3)液体吸上原理:依靠叶轮高速旋转,迫使叶轮中心的液体以很高的速度被抛开,从而在叶轮中心形成低压,低位槽中的液体因此被源源不断地吸上。
气缚现象:如果离心泵在启动前壳内充满的是气体,则启动后叶轮中心气体被抛时不能在该处形成足够大的真空度,这样槽内液体便不能被吸上。
这一现象称为气缚。
(通过第一章的一个例题加以类比说明)。
为防止气缚现象的发生,离心泵启动前要用外来的液体将泵壳内空间灌满。
这一步操作称为灌泵。
为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵。
(4)叶轮外周安装导轮,使泵内液体能量转换效率高。
导轮是位于叶轮外周的固定的带叶片的环。
这此叶片的弯曲方向与叶轮叶片的弯曲方向相反,其弯曲角度正好与液体从叶轮流出的方向相适应,引导液体在泵壳通道内平稳地改变方向,使能量损耗最小,动压能转换为静压能的效率高。
离心泵基础知识(DOC)
图2-1 离心泵活页轮2-2 离心泵离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特殊性质物料,因此离心泵是化工厂中最常用的液体输送机械。
近年来,离心泵正向着大型化、高转速的方向发展。
2.2.1 离心泵的主要部件和工作原理一、离心泵的主要部件1.叶轮 叶轮是离心泵的关键部件,它是由若干弯曲的叶片组成。
叶轮的作用是将原动机的机械能直接传给液体,提高液体的动能和静压能。
根据叶轮上叶片的几何形式,可将叶片分为后弯、径向和前弯叶片三种,由于后弯叶片可获得较多的静压能,所以被广泛采用。
叶轮按其机械结构可分为闭式、半闭式和开式(即敞式)三种,如图2-1所示。
在叶片的两侧带有前后盖板的叶轮称为闭式叶轮(c 图);在吸入口侧无盖板的叶轮称为半闭式叶轮(b 图);在叶片两侧无前后盖板,仅由叶片和轮毂组成的叶轮称为开式叶轮(a 图)。
由于闭式叶轮宜用于输送清洁的液体,泵的效率较高,一般离心泵多采用闭式叶轮。
叶轮可按吸液方式不同,分为单吸式和双吸式两种。
单吸式叶轮结构简单,双吸式从叶轮两侧对称地吸入液体(见教材图2-3)。
双吸式叶轮不仅具有较大的吸液能力,而且可以基本上消除轴向推力。
2.泵壳泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道(见图2-2)。
泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能。
若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮(见教材图2-4中3)。
由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失。
注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失。
3.轴封装置离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封。
离心泵的基本知识
泵的分类方法有以下三种:一按工作原理分类1.容积式泵依靠泵内工作室容积大小作周期性地变化来输送液体的泵;2.叶片式泵依靠泵内高速旋转的叶轮把能量传给液体,从而输送液体的泵;3.其它类型泵依靠一种流体液、气或汽的静压能或动能来输送液体的泵;此类泵又称流体动力作用泵;采用这种分类方法时,根据泵的结构又可分为以下几种;二按泵产生的压力扬程分类1.高压泵总扬程在600m以上;2.中压泵总扬程为200~600ml3.低压泵总扬程低于200m;三按泵用处分类第2节离心泵的工作原理及分类一.离心泵的基本构成离心泵的主要部件有:叶轮、转轴、吸入室、泵壳、轴封箱和密封环等,如图2-1所示;有些离心泵还装有导轮、诱导轮、平衡盘等;离心泵的过流部件是吸入室、叶轮和蜗壳;其作用简述如下:1吸入室吸入室位于叶轮进口前,其作用是把液体从吸入管引入叶轮,要求液体吸入室的流动损失要小,并使液体流入叶轮时速度分布均匀;2叶轮叶轮是离心泵的重要部件,液体就是从叶轮中得到能量的;对叶轮的要求损失最小的情况下,使单位重量的液体获得较高的能量;3蜗壳蜗壳位于叶轮出口之后,其功用是把从叶轮内流出来的液体收集起来,并按一定要求送入下级叶轮或送入排出管;由于液体在流出叶轮时速度很高,为了减少后面的管路损失,液体在送入排出管以前,必须将其速度降低,把速度能转变成静压能,这个任务也要求蜗壳等转能装置来完成,而且要求蜗壳在完成上述两项任务时流动损失最小;二.离心泵的工图2—1 离心泵基本构件作原1一转轴2一轴封箱3一扩压管4一叶轮5一吸入室6一密封理离心泵是由原动机电动机或汽轮机带动叶轮高速旋转,使液体由于离心力的作用而获得能量的液体输送设备,故名离心泵;当原动机带动叶轮高速旋转时,充满在泵体内的液体,在离心力的作用下,从叶轮中心被抛向叶轮的外缘;在此过程中,液体获得了能量,提高了静压强,同时由于流速增大,动能也增加了;液体离开叶轮进入泵壳,由于流道逐渐加宽、液体的速度逐渐降低,便将其中部分动能转变为静压能,这样又进一步提高液体的静压强,于是液体以较高的压强进入排出管路; 当泵内液体在高速旋转下产生离心现象而趋向叶轮外缘时,在叶轮中心形成低压区,这样造成贮槽液面与叶轮中心处的压强差;在这个压强差的作用下,液体便沿着吸入管连续不断地进入叶轮中心,以补充被排出的液体;这样,只要叶轮的转动不停,液体就会连续不断地被吸入和压出,从而达到输送的目的;离心泵的叶轮是按输送液体设计的,对气体不能施加足够的离心力,假如泵内存在空气,由于空气的重度远小于液体,产生的离心力亦小,此时叶轮中心只能造成很小的负压,形不成所需的压强差,液体便不能进入到叶轮中心,泵也就排不出液体,这种现象称为“气缚";所以,离心泵没有自吸能力,启动前必须要灌泵; 二、离心泵的型号.1.水泵输送介质为水;常用的三种水泵型号的表示方法如下:14BA—12型水泵型号的意义:4—进口管直径,单位为英寸;BA—表示该泵的结构特点是悬臂式,即水泵是从泵座上伸悬出来的;12—该泵的比转数的1/10,即该泵的比转数为l20;DFjY160-120×10150AYⅡ150B第3节离心泵参数在石油化工生产中,离心泵是使用最广泛的液体输送机械;其特点是结构简单、流量均匀、可用耐腐蚀材料制造,且易于调节和自控;因此,离心泵在石油化工生产中占有特殊的地位,估计约占生产用泵的80~90%;一、离心泵各参数的定义按国家标准化文件,离心泵各参数定义如下:1.流量和额定流量流量是指单位时间内泵所抽送液体的数量;通常以体积计,以Q表示,单位为m/h, 3m3/s,L/s;也可以质量计,以G表示,单位为t/h,t/s,kg/s;额定流量则指泵在最佳效率时的流量;即泵铭牌上所标注的数量;换算关系:G=rQ式中r-一液体的重度,㎏/m3.2.扬程和额定扬程扬程是指单位质量液体通过泵时所增加的能量,以H表示;其单位是m,通常以米液柱mH20表示;额定扬程是指在最佳效率时的扬程,即泵铭牌上所标注的数量;叶轮直径越大、叶轮数目越多、旋转速度越快,则扬程越高;泵铭牌上标出的扬程是指输送水的扬程,如输送油品或化工产品则应按粘度不同来换算;而且并非标出40米,就能送到40米高,必须减去吸入高度如吸入罐液面比泵中心高,则应加上此段高度,还必须减去从吸入端至排出端整个管路、伐门、弯头等的压力损失折合成米液柱;如一台水泵吸井水,铭牌标出扬程40米,泵中心至井水面高3米,阻力损失2米,则泵只能送到35米高;还应指出,泵吸水高度不能达到和超过10.33米,因吸入高度到10.33米时泵入口达到绝对真空;在未达到绝对真空前已汽化了,而且吸入管路还有一定的阻力损失,因此一般离心泵吸入高度不足7米;单级泵所产生的扬程可由下式粗算:H=u2/2g22式中u2-叶轮出口圆周速度,m/s. g-重力加速度,9.8 m/s.u2=πnD2 /60式中n一叶轮转速,r/min. π一圆周率,3.1415. D2—叶轮外径,m/s.2当n=2950 rpm时,H=1200 D2 ;如是多级泵,总扬程由各单个叶轮所产生的扬程相加;4.功率是指驱动机给泵的能量,通称轴功率,以kW表示;N轴=rQH/102 kW 式中r-液体的重度,kg/L; Q—流量,L/s; H—扬程,m;5.净正吸入压头多以NPSH表示或汽蚀余量,以⊿h表示;其含义是指为了保证泵不发生汽蚀,在泵内叶轮吸入口处,单位质量液体所必需具有的超过汽化压力后还富余的能量;单位是m;其中又分NPSHr和NPSHa;1NPSHr是指必需的净正吸入压头,其含义如上所述,其数量大小值和泵叶轮优劣有关,优秀的泵,其NPSHr值较小o2NPSHa是指泵吸入管路所能够提供的、保证泵不发生汽蚀、在叶轮吸入口处,单位质量液体所具有的超过汽化压力后还有的富余能量;它的数值大小与吸入管路优劣有关, 与泵本身无关;当NPSHa数值大时,表示吸入管路设计合理,其值愈大愈好,要强调的是上述都是指泵在输送液体为水且又在常温时;当输送液体为烃时,其汽化压力和烃的化学结构有关,要进行必要的修正;当非常温时,就是输水也要进行饱和蒸汽压的修正;在高原地区因大气压低,也要进行必要的修正;6.比转数表示离心泵性能和几何结构的一个综合性参数,用nS表示;离心泵的比转数可按下式计算:ns=SS3/4几何结构相似,性能相似的泵,比转数相同;一般来说,离心泵的比转数小,表示泵的扬程大而流量小;比转数大,表示泵的扬程小而流量大;各种离心泵的比转致范围为20~500,炼油装置用泵大都是低、中比转数泵,其中低比转数泵占绝大多数,比转数的范围为50~1OO;7.转速每分钟主轴旋转数;以n表示,单位:转/分钟r/min or rpm第4节机泵的使用与维护一、泵的运转与操作一运转前的检查离心泵在安装后,试运转前应进行全面检查,这是因为泵的事故在装置生产运转初期发生的最多,安装质量直接影响泵的运转情况;试运转前检查内容:首先检查螺栓螺帽有否松动,泵与管路的配置,是否有不合理的地方;其次检查泵吸入高度和条件是否在说明的规定范围以内,特别要注意吸入管路上是否有空气漏入或液体泄出的地方;最后还要检查转子的旋转方向与驱动机旋转方向是否一致;二操作准备l.盘车:用手轻轻正向转动机泵2~3圈,并确认轴承和旋转部分都能顺利转动不受阻碍; 2;核对吸入条件泵的吸入条件,是叶轮吸入口保持一定的压力,如果低于这个压力时将无法输液,所以要检查吸入高度和条件是否在规定的条件之内;3.调整填料或机械密封装置,向冷却水夹套和密封装置中的冷却封液系统分别通水、通液,确认流道畅通;4.加注润滑油、脂向油箱和润滑部位注选定的合格润滑油、脂,达适当的油面高度、脂量;5.灌泵启动前,要使泵内灌满液体,必须绝对避免空转;这是因为离心动、静密封减漏间隙小,液体不易通过,因此只要空转几秒钟就会引起密封衬环烧损、咬死,导致事故;灌泵时要把空气、液化气、蒸汽全部放出,通常打开吸液阀和放空阀或泵壳的放气孔及管路中的仪表接头,但是对带压吸入的泵或高位泵其灌注方法不同,高位泵必须增设喷射器,真空泵需增加底阀和灌液箱等预灌装置;至于自吸式泵就不需要这些设备;6.高温和低温泵的预热及预冷高温用泵和低温用泵均须在起动前进行完预热或预冷使之接近正常运转温度,其理由为:高温泵的操作温度与未预热温度相差很大,若不预热就起动,则会引起转子变形、轴弯曲、结合部分松动或密封部分强制摩擦而导致磨损;低温液化烃用泵,若不在规定的运转温度操作,则输液在较暖的泵壳会蒸发,使气体聚在泵壳内有造成干摩擦的危险;三运转操作l.起动泵起动方法的须序随其型式和用途的不同有所差异,所以要按照泵厂的使用说明书进行起动;现以电动机带动的离心泵为例叙述其一般启动方法;1 打开入口阀、关闭出口阀,打开放空阀进行灌泵,放空阀见液后关闭;2 打开轴承冷却水阀和压力表阀;3 填料箱若带有水夹套,,则打开其冷却管的给水阀门;4 若带有封液装置,则打开封液阀门;5 高温用泵在未达到运转温度前应打开预热阀门,预热完毕时则关闭预热阀;6 若带有防止过热的装置,则打开自循环系统的阀门;7 启动电动机;运转2分钟正常后缓慢开出口阀,大流量泵运转中出口阀关闭不得大于3分钟;严禁用入口阀调节流量;8 达到额定转数,出口压力表读数达额定值后,逐渐打开出口阀,并调节流量适中;9 检查填料箱处的泄漏情况,为了保证填料能得到充分润滑,可利用调节压盖和封液阀的方法来保持适当泄漏量;10 泵流量提高后,如已不可能出现过热即关闭循环的阀门;轴流泵和容积泵,在封闭运转时会使轴功率剧增,因此不允许在出口阀关闭的情况下启动;2.停车泵的停车方法,也要按其型式和用途来定,一般由电动机驱动的离心泵停车顺序如下:1 打开自循环系统的阀门;2 关闭出口阀;3 停止电动机;4 若保持泵的运转温度,则打开预热阀门;5 关闭轴承和填料箱的冷却水阀;6 必要时关闭入口阀,打开气阀或放气孔和底部导淋排凝阀,将泵内液体全部放掉;轴流泵等应将上述2和3两项顺序倒过来进行,多数都是先停止电动机,再关闭出口阀;3.泵的切换在用泵和备用泵的切换顺序为:启动备用泵达到转数时起经检查并确认无异常现象,就可停止主用泵;应注意主用泵在并联运转时,不能很快停止,否则主用泵易产生水击现象,而且若排出侧止逆阀动作不灵时,液体会向停用泵到流,造成排出管路压力下降流量减少;因此, 为了防止上述现象,就应缓慢地关闭主用泵排出阀,待备用泵已在正常运转点上稳定运转后再停止主用泵;二、泵的日常维护操作者应该记住,保护泵及其所属设备是自己的职责,应当经常检查影响泵运转的各种因素,泵的使用期限可以由于操作者粗心大意而大大缩短;为使泵能正常连续运转,延长其使用寿命,应做好日常检查与维护保养,使之成为一项制度;一机泵运行检查的用具l.听诊器:用于检查轴承、变速器、连接件运动声音是否正常;2.点温计:用于检查轴承等磨擦部位的温度;3.振动仪:用于检查运行中的各部分的振幅大小;4.吸油管:用于抽取润滑油样,检查润滑油质量,含杂质、水份、乳化变质等程度;二日常检查中,除充分运用控制、测试仪表外,还要充分发挥人的主观能动性,采用“摸、听、闻、看、问”;“摸”就是摸摸有无过热、振动等;“听”就是听听转动部分的声音,有无异常声响,如水击声、摩擦声、撞击声、涡流声、折断声等;“闻”就是利用嗅觉,闻闻有无异常味道;“看”就是看一看各部仪表指示压力、流量、温度、电流、电压是否正常,泵的各部件有否变形、变色、变样,以及有无泄漏、有无堵塞等等;“问”就是问上班情况,以便及时做出正确判断、处理;表7-2为日常检查项目;三、运转中泵的故障现象及原因石油化工用离心泵的故障大致有:腐蚀、密损、振动与噪音、性能、轴封、轴承等故障;这些故障都是互相联系、互相影响、互为因果的;例如,叶轮的腐蚀和磨损会造成性能故障和机械故障;泵的汽蚀也会造成叶轮的冲蚀侵蚀;又如轴封的损坏会造成泵的性能故障和机械故障,因此不能截然分开;一腐蚀故障所谓腐蚀就是泵的材料与输送介质或周围的介质作用生成化合物而丧失其原来的性质,造成泵的故障或零件部件的损环;腐蚀的原因一方面是泵所用金属材料不适合或金属成分和组织不均匀等引起的,另一方面是局部腐蚀如点腐蚀、晶间腐蚀侵蚀等,腐蚀的结果会造成泵流量、压力都降低,甚至引起泵振动和噪音;二磨损故障在炼油厂和化工厂中,用来输送含有固体颗粒的浆液时,当然会使泵发生与固体颗粒的磨损;这种磨损往往会随着所含固体颗粒的硬度、浓度和流速等的增加而变剧,而小颗粒的磨损比大颗粒的磨损历害;对石油化工厂离心泵来说,叶轮、轴封和轴套会发生磨损;磨损后泵的流量和扬程会减少,性能下降;同时转子的磨损不均匀又会使转子不平衡,发生泵的振动;因此,除了采用耐磨材料外,还应对轴封采用冲洗措施以免杂质侵入,并对泵采取冲洗措施,以免流道堵塞;此外,对于易损件,在磨损量达到使用极限时应予更换,确保机泵正常运转;三振动和噪音石油化工用泵中,虽然不会象大型高速机器那样容易发生振动,但是产生振动的原因却是多方面的,而且不容易判别;振动往往伴随有噪音,为此必须了解可能产生振动和噪音的原因,以便采取措施来消除振动和噪音;产生振动的原因主要有两个方面:1.水力振动:当离心泵发生汽蚀时,汽蚀发生到相当严重就伴随有振动和噪音,此时振动频率很高,可达600~25000次/秒;这种振动的外部现象与吸入空气时类似;不仅是振动的噪音,汽蚀也会使泵的性能下降;当离心泵在小流量不稳定区工作时,流量波动产生机械振动,其频率低10~O.1次/秒;当液体流速突然急剧变化时,压力也会发生急剧变化,形成水力冲击;通常在泵运转时突然停泵如临时停电或流量突然变化时,会产生水击,特别是在反压或排出高度较大的系统中容易产生水击,水击便可引起泵的振动;泵内液体流动不均匀使液压不平衡,产生径向力蜗壳泵或轴向力透平泵不平衡也会引起振动;如蜗壳圆周上液压不等,液体流过泵舌使压力发生周期性波动,形成水力振动,在其频率与泵固有频率相同时发生共振;2.机械振动引起机械振动的原因很多,可归纳为以下几类:转子不平衡引起的振动,由于泵的口环损坏、叶轮腐蚀或局部堵塞、轴弯曲等而引起转子不平衡的振动;临界转速引起的振动,泵的工作转速与转子固有频率相同,即等于临界转速时引起共振; 转子与固定部分磨擦引起的振动,转子的零件和固定部分发生摩擦,会产生反方向的振动,使振荡频率与临界转速相同也会引起共振;油膜振荡油膜振动或油抖动,在高速旋转式机械上,由于轴瓦部分的油压作用使泵回旋,引起与临界转速相同的振荡频率,发生共振振动;一般发生在轻载高速的转子中,当使工作转速在临界转速的两倍左右时,很可能产生这种振动;找中心不正引起的振动,泵找中心不彻底,基础刚度不够或基础下沉使中心变动,由于温度变形使泵体伸长而引起错动,,由于配管别劲或管线热膨胀加力使中心变坳,泵体与转子伸长值有差形成转子弯曲,叶轮加工质量不好或由于轴承磨损引起中心变动.地脚螺栓松或灌浆时不牢引起的振动;驱动机引起的振动,由于电动机或汽轮机发生振动而对泵产生影响,发生振动;四性能故障.离心泵性能故障的原因是多方面的,造成离心泵抽空的原因如下:1.漏气:由于吸入管漏气,轴封漏气封液管堵塞或封液环错位使封液进不去,封液中断或填料未压紧,或窜入冲洗水等;泵内积存空气,吸入管有气囊,吸入管端浸深不够或露出液面等原因造成泵抽空;未灌泵或灌不满,由于吸入阀未打开灌泵吸入罐液面高于泵中心线~灌注头下或由于泵和吸入管气体未排尽,底阀失灵或损坏,吸入系统严重漏损等原因造成抽空;汽蚀,由于吸上高度过高或灌注高度不够吸入罐液面过低,吸入液体温度升高或吸入压力降低使泵入口压力达到液体在输送温度下的饱和蒸汽压,吸入管路底阀、滤网、吸入阀、吸入管堵塞或失灵,叶轮入口堵塞,吸入管太细过长使吸入管阻力增大,吸侧塔、容器或大气压力降低,液体粘度大于设计值等原因发生汽蚀而形成抽空;机械原因,由于泵轴断,叶轮松脱,叶轮反转,叶轮腐蚀或损坏等原因造成泵抽空; 装置事故或动作失灵,由于工艺装置操作上的某些原因造成泵抽空,根据工艺装置和泵用途的不同,抽空的原因也有所不同;2.排空泵处于空转状态,排出管无液体排出,造成排空的原因有:泵排出阀未打开或失灵,排出阀堵塞,排出管路系统堵塞排出管、泵后面的换热器或加热炉结焦与堵塞,单向阀失灵;多级泵叶轮,过渡流道或中间级堵塞,泵的叶轮装错或转向反或转速过低会造成排空;3.减量,泵的流量减小;此时泵的特性变化不大于输送系统特性变化阻力变大或静扬程变大,造成减量的原因大致是:排出阀未全打开,单向阀失灵,泵后系统堵塞,或系统排出扬程增大反压增高液体粘度大于规定值;4.减压减量,泵的流量和扬程均减小,此时泵的特性或输送系统特性变化,或两者均变化,造成减压、减量的原因是:叶轮问题:叶轮装反或反转,叶轮部分堵塞,部分腐蚀或损坏;转子问题:转子轴向位移或转子与泵体等固定部分密封间隙增大如口环、平衡盘、衬套等磨损;吸入管路问题:吸入管漏气,未灌泵或有空气积存,吸入管浸深不够或液面上有旋涡潜入空气;液体问题:液体粘度大于规定值或是液体中含气量多; 其它问题:泵转速不够,泵体内级间紧固件不合适或损坏; 5.超载主要驱动机超载功率超过额定值,超载在试运、启动和运转几个阶段的原因有所不同,前者是出现设计和安装上的问题,后两者是出在操作和维护上的问题;试动超载:为了避免水运时由于水的重度较油品大而引起驱动机超载,通常规定在小流量下水运试车,一般又规定流量不得小于额定流量的20~30%视泵结构和材料而定,以免发生汽蚀抽空或抱轴;杂物堵塞而抱轴;轴弯曲等;此外,还可能出现电动机或汽轮机本身的故障引起超载;启动超载:往往由于排出阀未关,启动泵使启动负荷大于额定值而跳闸停车,此外还可能由于未仔细盘车检查而引起驱动机超载,这方面原因可能是填料过紧或杂物卡堵,轴承润滑剂发生烧瓦、封油管堵塞引起填料烧坏而抱轴;平衡盘与平衡座粘合;泵内零件锈蚀;配管管系作用力过大,使泵体变形而发生抱轴;另外,还有可能由于液体粘度或重度大于规定值或是泵的总扬程太高,转向相反或转速过高,泵预热不均匀引起抱轴;中心未找正、轴弯曲、轴向串动,空运时间长形成报轴等而引起超载;运转超载:往往由于润滑油太少或太多,润滑油含水量大,润滑油变质或所加润滑油不合适等使轴承烧坏发生抱轴,引起驱动机超载;此外,大都是由于操作条件的变化或机械故障引起驱动机超载;如系统压力升高,大流量下操作,叶轮堵塞、轴弯曲、轴承损坏使转子中心下沉引起抱轴;填料压的过紧,被输送的液体重度大于规定值或是液体凝固等引起泵在运转中超载;五轴封故障l.机械密封常见故障及原因;机械密封常见的故障是漏损,而漏损则有周期性漏损和经常漏损以及突然性漏损,其原因各有不同:周期性漏损:泵转子轴向窜动,动环来不及补偿位移或操作不稳,密封箱内压力经常变动或转子周期性振动;经常性漏损:这种漏损的原因很多,如动、静环密封面变形或损伤,密封面比压力太小,密封圈的密封性不好,静环或动环的密封面与轴垂直度误差过大,密封副不能补偿调整,防转销部顶住防转槽,转子振动,使用密封圈弹簧的方向不对,弹簧偏心,弹簧力受到阻碍失去作用,轴套表面在密封圈弹簧的方向不对,弹簧偏心,弹簧力受到阻碍失作用,轴套表面在密封圈处有轴向沟槽、凹坑或是轴套表面有积垢等而引起经常性漏损;突然性漏损:突然漏损是由于泵强烈抽空使密封烧坏,弹簧折断,防转销被切断,静坏被防转销挤裂或本身碎裂;动、静坏表面损伤等原因造成的;停用后启动发生漏损主要是由于摩擦副密封面处结焦或产生水垢或弹簧力失去作用; 摩擦表面磨损过大,这是造成机械漏损常见的原因;而造成磨损的原因则是多方面的如弹簧及比压过大,密封面表面硬度不够或不均,材料匹配不好;密封副内夹入杂物或介质不干净,硬环碎裂切割软的表面;2、软填料密封常见故障及原因造成密封漏损原因有中心找正、轴弯曲或轴瓦磨损;转子不平衡、填料与轴套磨损;第9 / 13页底环间隙大,填料被挤入缝隙而磨坏;填料尺寸不合或少装填料等;或者是由于使用填料的材质与用途不符或制造质量不好,轴套磨损历害;泵振动很大,径向跳动量太大;填料箱冷却水或封油停止等都可能使填料损坏;六轴承故障轴承故障往往是表现为先热后烧坏或损坏;造成轴承故障的原因也是多方面的;有轴承本身原因,轴承的润滑与冷却条件和工作条件不良等;l、轴承本身造成的故障。
离心泵基础知识
1、离心泵的工作原理:电动机带动叶轮高速旋转,使液体产生离心力,由于离心力的作用,液体被甩入侧流道排出泵外,或进入下一级叶轮,从而使叶轮进口处压力降低,与作用在吸入液体的压力形成压差,压差作用在液体吸入泵内,由于离心泵不停的旋转,液体就源源不断的被吸入或排出。
2、润滑油(脂)的作用:润滑冷却作用、冲洗作用、密封作用、减振作用、保护作用、卸荷作用。
3、润滑油使用前要经过哪三级过滤:第一级:润滑油原装桶与固定桶之间;第二级:固定油桶与油壶之间;第三级:油壶与加油点之间。
4、设备润滑的“五定”:定点:按规定点加油;定时:按规定时间给润滑部位加油,并定期换油;定量:按消耗定量加油;定质:根据不同的机型选择不同的润滑油,并保持油品质量合格;定人:每一个加油部位必须有专人负责。
5、机泵润滑油中含水有何危害:水分可使润滑油粘度降低,减弱油膜的强度,降低润滑效果。
水低于0℃要结冰,严重地影响润滑油的低温流动性。
水分能加速润滑油的氧化和促进低分子有机酸对金属的腐蚀。
水分会增加润滑油的泡沫性,使润滑油易于产生泡沫。
水分会使金属部件生锈。
6、机泵维护保养内容有哪些:认真执行岗位责任制及设备维护保养等规章制度。
设备润滑做到“五定”、“三级过滤”,润滑器具完整、清洁。
维护工具、安全设施、消防器材等齐全完好,置放齐整。
7、常见轴封泄漏的标准:填料密封:轻质油小于20滴/分重质油小于10滴/分。
机械密封:轻质油小于10滴/分重质油小于5滴/分。
8、离心泵盘不动车时为何不能启动:离心泵盘不动车,说明泵的内部产生了故障,这故障可能是叶轮被什么卡住或是泵轴弯曲过度,或是泵的动、静部分锈死,或是泵内压力过高。
如果泵盘不动车而强行启动,强大的电机力量带动泵轴强行动转,会造成内部机件损坏,如泵轴断裂、扭曲、叶轮破碎、电机线圈烧毁、也可能使电机跳闸,启动失败。
9、封油的作用是什么:冷却密封零件;润滑摩擦付;防止抽空破坏。
备用泵为什么要定期盘车10、定期盘车的作用有三个:防止泵内生垢卡住;防止泵轴变形;盘车还可以把润滑油带到各润滑点,防止轴生锈,轴承得到了润滑有利于在紧急状态下马上开车。
离心泵基础知识
离心泵
2024/1/4
15
(3)采用平衡叶片:采用平衡叶片的方法是在叶轮后盖板的背面设有若 干径向叶片。当叶轮旋转时,它可以推动液体旋转,使叶轮背面靠叶轮 中心部分的液体压力下降,其下降程度与叶片的尺寸及叶片与泵壳的间 隙大小有关。其优点是:减小轴向力,减少轴封的负荷;防止悬浮的固 体颗粒进入轴封。但对于易于与空气混合而燃烧爆炸的液体,不宜采用 此法。
加氢设备
2024/1/4
2
一、按离心泵的结构分类 (一)按叶轮进液方式:单吸式(液体从一侧进入叶轮)和 双吸式(液体从叶轮两侧吸入,吸入性能较好,多见于大流
量的离心泵)。
加氢设备
2
2024/1/4
3
(二)按叶轮数目:单级泵(只有一个叶轮)和多级泵(有 两个以上的叶轮,级数越多,扬程越高)。
加氢设备
有无前后盖板,其结构可分为闭式、半开式及开式叶轮三种。 1、闭式叶轮一般由前后盖板、叶片和轮毂组成,由于其效率高,
得到广泛应用,适用于输送不含颗粒杂质的清洁液体。 2、半开式叶轮没有前盖板,只有后盖板、叶片和轮毂,常用于输
送易于沉淀或含有固体颗粒的液体。 3、开式叶轮没有前后盖板,只有叶片和轮毂,各叶片用筋条连接
离心泵
2024/1/4
7
离心泵工作时,最为担心的是 泵入口有气体。因为气体的密度小, 旋转时产生的离心力就很小, 叶轮中不能产生必要的真空, 也就无法将密度较大的液体吸入泵中。 因此在开泵前必须使泵 和吸入系统充满液体, 而且在工作中,吸入系统不能漏气, 这是离心泵正常工作必须具备的条件。
离心泵
2024/1/4
温度 水的饱和蒸气压(Pa)
-10
260
0
610
10
离心泵知识培训
02
对轴承、密封等关键部 位进行定期润滑和更换,
延长使用寿命。
04
04 离心泵故障排除与修复
常见故障现象及原因分析
泵不吸水 原因:灌注引水不够、泵内空气无法排出、吸水管漏气、前衬板与叶轮间隙大等。
常见故障现象及原因分析
泵不排水
原因:流道叶轮部分堵塞、叶轮装反或严重损坏、转速太低、底阀或滤网堵塞等。
04
转速
离心泵叶轮的旋转速度,直接影响泵 的流量和扬程。
02 离心泵选型与安装
选型依据及注意事项
01
02
03
04
流量和扬程
根据实际需求选择合适的流量 和扬程,避免过大或过小造成
的能源浪费或设备损坏。
介质性质
考虑介质的腐蚀性、粘度、密 度等性质,选择适合的泵材质
和结构。
工作温度和压力
确保泵能够在规定的工作温度 和压力范围内正常运行。
检查泵体、电机及连接部 分是否紧固,有无松动或 损坏。
检查密封装置是否完好, 有无泄漏现象。
检查轴承润滑情况,确保 油位正常,油质清洁。
检查进出口阀门是否开启, 管道是否畅通。
正常运行操作要点
01
02
03
04
启动离心泵前,确保泵 内充满液体,避免空转。
启动后观察电流、压力、 流量等参数是否正常, 监听有无异常声响。
性能优化途径探讨
优化设计
通过改进叶轮、导叶等过 流部件的设计,提高泵的 水力效率。
选用高效电机
采用高效电机,降低泵的 驱动功率,提高整体效率。
控制系统优化
采用先进的控制系统,实 现泵的变速调节和智能控 制,以适应不同工况需求。
结构改造提高效率
离心泵基础知识
2 泵的装配
★ 组装规定 ——轴向间隙:
转子总串动量设计为6~8mm,而实际上各泵有1~2mm的差别, 总串动量在<4mm时有必要再检查。 ——推力轴承的间隙 如果产品是配置的双面推力块轴承时,出厂的间隙值为0.30.35mm。 ——滑动轴承的间隙 间隙值用压铅方法测定时,设计规定值0.12~0.16mm,当超过 0.25mm时应更换轴瓦。 ——动平衡要求 不平衡力矩按G2.5级计算 ,并进行动平衡试验。
3 泵机组应定期检修 当泵连续不间断运行8000小时或间断运行(经常开机和关机)6000 小时后,应进行拆卸检查,以确定过流部件的疲劳损坏状况并 及时修复或更换。为确保泵的精度和可靠性,泵的大修应在制 造厂或具备该泵大修能力的专业厂进行。 4 泵机组的操作与检查注意事项 ☆ 日常维护检查 ☆ 定期检查部位
回 油 口
冷 却 器
差 压 控 制 器 供 油 温 度 (铂 热 电 阻)
3- 压 力 表 、、
供 油 口
供 油 温 度 计
液 位 控 制 器
压 力 变 送 器
空 气 过 滤 器 安 全 阀
油 泵 电 机 排 污 阀″
加 热 器
油 泵 压 力滤 前 压 力滤 后 压 力
四 自平衡多级离心泵的装配与拆卸
5 自平衡多级离心泵壳体结构 △ SD型自平衡多级离心泵
△ ZD型自平衡节段式多级离心泵
△ ZDP型自平衡多级离心泵
三 稀油润滑系统
1 润滑系统组成 2 仪表组成 3 控制逻辑原理及设备的功能
△ 润滑油系统
呼 吸 器
工 作 中 溢 油 量 约 2 压 力 0~0.4 溢 流
外 形 尺 寸 273× 1100有 效 容 积 0.055 油
离心泵基础知识
图2-1 离心泵活页轮2-2 离心泵离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特殊性质物料,因此离心泵是化工厂中最常用的液体输送机械;近年来,离心泵正向着大型化、高转速的方向发展;2.2.1 离心泵的主要部件和工作原理一、离心泵的主要部件1.叶轮叶轮是离心泵的关键部件,它是由若干弯曲的叶片组成;叶轮的作用是将原动机的机械能直接传给液体,提高液体的动能和静压能;根据叶轮上叶片的几何形式,可将叶片分为后弯、径向和前弯叶片三种,由于后弯叶片可获得较多的静压能,所以被广泛采用;叶轮按其机械结构可分为闭式、半闭式和开式即敞式三种,如图2-1所示;在叶片的两侧带有前后盖板的叶轮称为闭式叶轮c 图;在吸入口侧无盖板的叶轮称为半闭式叶轮b 图;在叶片两侧无前后盖板,仅由叶片和轮毂组成的叶轮称为开式叶轮a 图;由于闭式叶轮宜用于输送清洁的液体,泵的效率较高,一般离心泵多采用闭式叶轮;叶轮可按吸液方式不同,分为单吸式和双吸式两种;单吸式叶轮结构简单,双吸式从叶轮两侧对称地吸入液体见教材图2-3;双吸式叶轮不仅具有较大的吸液能力,而且可以基本上消除轴向推力;2.泵壳泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道见图2-2;泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能;若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮见教材图2-4中3;由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失;注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失;3.轴封装置离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封;轴封的作用是防止高压液体从泵壳内沿间隙漏出,或外界空气漏入泵内;轴封装置保证离心泵正常、高效运转,常用的轴封装置有填料密封和机械密封两种;二、离心泵的工作原理装置简图如附图;1.排液过程离心泵一般由电动机驱动;它在启动前需先向泵壳内灌满被输送的液体称为灌泵,启动后,泵轴带动叶轮及叶片间的液体高速旋转,在惯性离心力的作用下,液体从叶轮中心被抛向外周,提高了动能和静压能;进而泵壳后,由于流道逐渐扩大,液体的流速减小,使部分动能转换为静压能,最终以较高的压强从排出口进入排出管路;2.吸液过程当泵内液体从叶轮中心被抛向外周时,叶轮中心形成了低压区;由于贮槽液面上方的压强大于泵吸入口处的压强,在该压强差的作用下,液体便经吸入管路被连续地吸入泵内;3.气缚现象当启动离心泵时,若泵内未能灌满液体而存在大量气体,则由于空气的密度远小于液体的密度,叶轮旋转产生的惯性离心力很小,因而叶轮中心处不能形成吸入液体所需的真空度,这种虽启动离心泵,但不能输送液体的现象称为气缚;因此,离心泵是一种没有自吸能力的液体输送机械;若泵的吸入口位于贮槽液面的上方,在吸入管路应安装单向底阀和滤网;单向底阀可防止启动前灌入的液体从泵内漏出,滤网可阻挡液体中的固体杂质被吸入而堵塞泵壳和管路;若泵的位置低于槽内液面,则启动时就无需灌泵;2.2.2 离心泵的主要性能参数和特性曲线一、离心泵的主要性能参数离心泵的性能参数是用以描述一台离心泵的一组物理量1. 叶轮转速n :1000~3000rpm ;2900rpm 最常见;2. 流量Q :以体积流量来表示的泵的输液能力,与叶轮结构、尺寸和转速有关;泵总是安装在管路中,故流量还与管路特性有关;3. 压头扬程H :泵向单位重量流体提供的机械能;与流量、叶轮结构、尺寸和转速有关;扬程并不代表升举高度;一般实际压头由实验测定;4. 功率:1有效功率e N :指液体从叶轮获得的能量——g HQ N e ρ=;此处Q 的单位为m 3/s2轴功率N :指泵轴所需的功率;当泵直接由电机驱动时,它就是电机传给泵轴的功率;5. 效率η:由于以下三方面的原因,由电机传给泵的能量不可能100%地传给液体,因此离心泵都有一个效率的问题,它反映了泵对外加能量的利用程度:N N e /=η①容积损失;②水力损失;③机械损失;二、离心泵的特性曲线从前面的讨论可以看出,对一台特定的离心泵,在转速固定的情况下,其压头、轴功率和效率都与其流量有一一对应的关系,其中以压头与流量之间的关系最为重要;这些关系的图形称为离心泵的特性曲线;由于它们之间的关系难以用理论公式表达,目前一般都通过实验来测定;包括H ~Q 曲线、N ~Q 曲线和η~Q曲线;图2-3 某种型号离心泵的特性曲线离心泵的特性曲线一般由离心泵的生产厂家提供,标绘于泵的样本或产品说明书中,其测定条件一般是20℃清水,转速也固定;典型的离心泵性能曲线如图2-3所示;1.讨论1 从H ~Q 特性曲线中可以看出,随着流量的增加,泵的压头是下降的,即流量越大,泵向单位重量流体提供的机械能越小;但是,这一规律对流量很小的情况可能不适用;2 轴功率随着流量的增加而上升,流量为零时轴功率最小,所以大流量输送一定对应着大的配套电机;另外,这一规律还提示我们,离心泵应在关闭出口阀的情况下启动,这样可以使电机的启动电流最小,以保护电机;3 泵的效率先随着流量的增加而上升,达到一最大值后便下降;但流量为零时,效率也为零;根据生产任务选泵时,应使泵在最高效率点附近工作,其范围内的效率一般不低于最高效率点的92%;4 离心泵的铭牌上标有一组性能参数,它们都是与最高效率点对应的性能参数,称为最佳工况参数;三、离心泵特性的影响因素1.液体的性质:1 液体的密度:离心泵的压头和流量均与液体的密度无关,有效功率和轴功率随密度的增加而增加,这是因为离心力及其所做的功与密度成正比,但效率又与密度无关;2 液体的粘度:若粘度大于常温下清水的粘度,则泵的流量、压头、效率都下降,但轴功率上升;所以,当被输送流体的粘度有较大变化时,泵的特性曲线也要发生变化;2.转速离心泵的转速发生变化时,其流量、压头、轴功率和效率都要发生变化,泵的特性曲线也将发生变化;若离心泵的转速变化不大小于20%,则可以假设:①转速改变前后液体离开叶轮处的出口速度三角形相似;②转速改变前后离心泵的效率不变;从而可导出以下关系:1212n n Q Q =, 21212⎪⎪⎭⎫ ⎝⎛=n n H H , 31212⎪⎪⎭⎫ ⎝⎛=n n N N 比例定律 2-23.叶轮外径当泵的转速一定时,压头、流量与叶轮的外径有关;对于某同一型号的离心泵,若对其叶轮的外径进行“切割”,而其他尺寸不变,在叶轮外径的减小变化不超过5%时,离心泵的性能可进行近似换算;此时可以假设:1 叶轮外径变化前后,叶轮出口速度三角形相似;2 叶轮外径变化前后,离心泵的效率不变;3叶轮外径变化前后,叶轮出口截面积基本不变;从而可以导出以下关系:22''D D Q Q =, 22'2'⎪⎪⎭⎫ ⎝⎛=D D H H , 322''⎪⎪⎭⎫ ⎝⎛=D D N N 切割定律 2-3 与比例定律同样,要注意公式使用的条件;例2-1:以20o C 的水为介质,在泵的转速为2900r/min 时,测定某台离心泵性能时,某次实验的数据如下:流量12m 3/h,泵出口处压强表的读数为,泵入口处真空表读数为,轴功率为;若压强表和真空表两测压口间垂直距离为,且泵的吸入管路和排出管路直径相同;测定装置如附图;求:这次实验中泵的压头和效率;解:1泵的压头以真空表和压强表所在的截面为41-1'和2-2',列出以单位重量为衡算基准的伯努利方程,即其中,2121,4.0u u m z z ==-,p 1=×104Pa 表压, p 2=×105Pa 表压因测压口之间距离较短,流动阻力可忽略,即H f1-2≈0;故泵的压头为:H =m 87.4081.91000107.2107.34.045=⨯⨯+⨯+2泵的效率581.010003.2360081.910001287.40=⨯⨯⨯⨯⨯==N g HQ ρη,即%;分析说明:在本实验中,若改变出口阀的开度,测出不同流量下的若干组有关数据,可按上述方法计算出相应的H 及η值,并将H-Q 、N-Q 、η-Q 关系标绘在坐标纸上,即可得到该泵在n =2900r/min 下的特性曲线;2.2.3 离心泵的工作点和流量调节一、管路特性曲线前面介绍的离心泵特性曲线,表示一定转速下泵的压头、功率、效率与流量的关系;在特定管路中运行的离心泵,其实际工作的压头和流量不仅取决于离心泵本身的特性,而且还与管路特性有关;即在泵送液体的过程中,泵和管路是互相联系和制约的;因此在讨论泵的工作情况前,应先了解管路特性;管路特性曲线表示液体通过特定管路系统时,所需的压头与流量的关系;如图所示的送液系统,若液体贮槽与受液槽的液面均维持恒定,输送管路的直径均一,在图2-4中1-1'和2-2'间列伯努利方程式,则可求得液体流过管路系统所需的压头即要求离心泵提供的压头,即:f e Hg p z H +∆+∆=ρ 2-4 该管路输送系统的压头损失可表示为:因 24d Q u e π=故 2-5式中 Q e -管路中液体流量,m 3/s ;d -管路直径,m ;L -管路长度,m ;λ-摩擦系数,无因次;式中L e 和ζ分别表示局部阻力的当量长度和阻力系数;对特定的管路系统,上式中等式右边各物理量中,除了λ和Q e 外,其它各物理量为定值;且)(e Q f =λ, 则)('e f Q f H = 2-6将上式代入,可得:)('e e Q f g p z H +∆+∆=ρ,即为管路特性方程; 2-7对特定的管路,且在一定条件下操作,则z 和g pρ∆均为定值,并令:K g p z =∆+∆ρ 2-8 若液体在管路中的流动已进入阻力平方区,则此时λ与Q e 无关,并令:B dd L L ge =∑+∑+⋅))(8(452ζλπ 2-9则可得特定管路的特性方程:2e e BQ K H += 2-10它表示在特定管路中输送液体时,在管内流动处于高度湍流状态下,管路所需的压头H e 随液体流量Q e 的平方而变;将此关系方程标绘在相应的坐标图上,即可得到H e -Q e 曲线;这条曲线称为管路特性曲线;此线的形状由管路布置和操作条件来确定,与离心泵性能无关;二、离心泵的工作点将泵的H ~Q 曲线与管路的e H ~Q e 曲线绘在同一坐标系中,两曲线的交点称为泵的工作点M;如图2-4所示;图2-4 管路特性曲线和泵的工作点1.说明 1 泵的工作点由泵的特性和管路的特性共同决定,可通过联立求解泵的特性方程和管路的特性方程得到;2 安装在管路中的泵,其输液量即为管路的流量;在该流量下泵提供的扬程也就是管路所需要的外加压头;因此,泵的工作点对应的泵压头和流量既是泵提供的,也是管路需要的;3 工作点对应的各性能参数N H Q ,,,η反映了一台泵的实际工作状态;三、离心泵的流量调节由于生产任务的变化,管路需要的流量有时是需要改变的,这实际上就是要改变泵的工作点;由于泵的工作点由管路特性和泵的特性共同决定,因此改变泵的特性和管路特性均能改变工作点,从而达到调节流量的目的;1.改变出口阀的开度——改变管路特性出口阀开度与管路局部阻力当量长度有关,后者与管路的特性有关;所以改变出口阀的开度实际上是改变管路的特性;图2-5 改变阀门开度时工作点变化关小出口阀,e l ∑增大,曲线变陡,工作点由M 变为M 1,流量下降,泵所提供的压头上升;相反,开大出口阀开度,e l ∑减小,曲线变缓,工作点由M 变为M 2,流量上升,泵所提供的压头下降;如图2-5所示;采用阀门调节流量快速简便,且流量可连续变化,适合化工连续生产的要求,因此应用很广泛;其缺点是当关小阀门时,管路阻力增加,消耗部分额外的能量,实际上是人为增加管路阻力来适应泵的特性;且在调节幅度较大时,往往使离心泵不在高效区下工作,不是很经济;2.改变叶轮转速——改变泵的特性如图2-6所示,12n n n <<,转速增加,流量和压头均能增加;这种调节流量的方法合理、经济,但曾被认为是操作不方便,并且不能实现连续调节;但随着的现代工业技术的发展,无级变速设备在工业中的应用克服了上述缺点;是该种调节方法能够使泵在高效区工作,这对大型泵的节能尤为重要;图2-6 改变泵转速时工作点变化3.车削叶轮直径这种调节方法实施起来不方便,且调节范围也不大;叶轮直径减小不当还可能降低泵的效率,因此生产上很少采用;在生产中单台离心泵不能满足输送任务要求时,可采用离心泵并联或串联操作;例2-2 确定泵是否满足输送要求;将浓度为95%的硝酸自常压贮槽输送至常压设备中去,要求输送量为36m 3/h,液体的升扬高度为7m;输送管路由内径为80mm 的钢化玻璃管构成,总长为160m 包括所有局部阻力的当量长度;输送条件下管路特性曲线方程为:206058.07e e Q H +=Q e 单位为L/s;现采用某种型号的耐酸泵,其性能列于下表中;问:(1) 1 该泵是否合用(2) 2 实际的输送量、压头、效率及功率消耗各为多少QL/s0 3 6 9 12 15 Hm19 12 % 0 17 30 42 46 44 已知:酸液在输送温度下粘度为10-3Pas ;密度为1545kg/m 3;摩擦系数可取为; 解:1对于本题,管路所需要压头通过在贮槽液面1-1’和常压设备液面2-2’之间列柏努利方程求得:式中0)(0,7,0212121≈=====u ,u p p m z z 表压 管内流速:s m d Qu /99.1080.0*785.0*360036422===π 管路压头损失:m g u d l l H e f 06.681.9*299.108.0160015.0222=⨯=∑+=λ管路所需要的压头:()mH z z H f e 06.1306.6712=+=+-= 以L/s 计的管路所需流量:s L Q /1036001000*36== 由附表可以看出,该泵在流量为12 L/s 时所提供的压头即达到了,当流量为管路所需要的10 L/s,它所提供的压头将会更高于管路所需要的;因此我们说该泵对于该输送任务是可用的;另一个值得关注的问题是该泵是否在高效区工作;由附表可以看出,该泵的最高效率为46%;流量为10 L/s 时该泵的效率大约为43%,为最高效率的%,因此我们说该泵是在高效区工作的;2实际的输送量、功率消耗和效率取决于泵的工作点,而工作点由管路特性和泵的特性共同决定;题给管路的特性曲线方程为:206058.07Qe H e += 其中流量单位为L/s据此可以计算出各流量下管路所需要的压头,如下表所示:QL/s0 3 6 9 12 15 Hm 7可以作出管路的特性曲线和泵的特性曲线,如图所示;两曲线的交点为工作点,其对应的压头为;流量为s ;效率;轴功率可计算如下:分析说明:1判断一台泵是否合用,关键是要计算出与要求的输送量对应的管路所需压头,然后将此输送量与压头和泵能提供的流量与压头进行比较,即可得出结论;另一个判断依据是泵是否在高效区工作,即实际效率不低于最高效率的92%2泵的实际工作状况由管路的特性和泵的特性共同决定,此即工作点的概念;它所对应的流量如本题的s 不一定是原本所需要的如本题的10L/s;此时,还需要调整管路的特性以适用其原始需求;思考题:1、是不是所有情况下离心泵启动前都要灌泵2、离心泵结构中有哪些是转能部件3、离心泵铭牌标牌上标出的性能参数是指该泵的最大值吗4、离心泵的扬程和升扬高度有什么不同2.2.4 离心泵的气蚀现象与安装高度离心泵在管路系统中安装高度是否合适,将直接影响离心泵的性能、运行及使用寿命,因此在管路计算中应正确确定泵的安装高度;一、离心泵的气蚀现象由离心泵工作原理可知,在离心泵叶轮中心附近形成低压,这一压强的高低与泵的吸上高度密切相关;1.泵的吸上高度是指贮槽液面与离心泵吸入口之间的垂直距离;当贮槽上方压强一定时,若泵吸入口的压强越低,则吸上高度就越高,但是泵吸入口的低压是有限制的;当在泵的流通一般在叶轮入口附近中液体的静压强等于或低于该液体在工作温度下的饱和蒸汽压pV时,液体将部分气化,产生气泡;含气泡的液体进入高压区后,气泡就急剧凝结或破裂;因气泡的消失而产生了局部真空,周围的液体就以极高的速度流向原气泡中心,瞬间产生了极大的局部冲击压力,造成对叶轮和泵壳的冲击,使材料受到破坏;2.气蚀现象:通常把泵内气泡的形成和破裂而使叶轮材料受到损坏的过程,称为气蚀现象;离心泵在汽蚀状态下工作:1泵体振动并发出噪音;2压头、流量效率大幅度下降,严重时不能输送液体;3时间长久,在水锤冲击和液体中微量溶解氧对金属化学腐蚀的双重作用下,叶片表面出现斑痕和裂缝,甚至呈海绵状逐渐脱落;离心泵在正常运行时,必须避免发生气蚀现象;为此,叶轮入口附近处液体的绝对压强必须高于该液体在工作温度下的饱和蒸汽压;这就要求离心泵有适宜的安装高度;通常由离心泵的抗气蚀性能又称吸上性能来确定其安装高度;二、离心泵的抗气蚀性能一般采用两种指标来表示离心泵的抗气蚀性能又称吸上性能1.离心泵的允许吸上真空度允许吸上真空度是指为避免发生气蚀现象,离心泵入口处可允许达到的最高真空度即最低的绝对压强;其值通过实验测定;由于实验中不易测出叶轮入口附近处的最低压强的位置,因此以测定泵入口处的压强代替;如图所示,假设大气压强为pa ,泵的入口处的液体静压强为p1,则允许吸上真空度的定义为:g p p s H a ρ1'-=2-11式中 s H '-离心泵的允许吸上真空度,m 液柱;p a -当地大气压,若贮槽为密封槽,则应为槽内液面上方的压强,Pa ;p 1-泵入口处的静压强,Pa ;ρ-液体的密度,Kg/m 3;图2-7 离心泵的吸液示意图注意:离心泵的允许吸上真空度s H '值越大,表示该泵在一定操作条件下抗气蚀性能越好;s H '值大小与泵的结构、流量、被输送液体的性质及当地大气压等因素有关,通常由泵的制造工厂实验测定;实验值列在泵的样本或说明书的性能表上;应注意,该实验是在大气压为10mHgH 2O ×104Pa 下,以20o C 清水为介质进行的;因此若输送其它液体,或操作条件与上述的实验条件不同时,应按下式进行换算:ρ1000)]24.01081.9()10(['3⋅-⨯--+=v a s s p H H H 2-12式中 s H '-操作条件下,输送液体时允许吸上真空度,m 液柱;s H -实验条件下,输送清水时的允许吸上真空度,m 水柱;H a -当地大气压,mH 2O ;p v -操作温度下液体的饱和蒸气压,Pa ;ρ-操作温度下液体的密度,Kg/m 3;10-实验条件下的大气压强,mH 2O ;-实验条件下水的饱和蒸气压,mH 2O ;1000-实验条件下水的密度,Kg/m 3不同海拔高度的大气压强见教材表2-1应予指出,由允许吸上真空度定义可知,它不仅具有压强的意义,此时单位为m 液柱,又具有静压头的概念,因此一般泵性能表中把它的单位写成m,两者数值上是相等的;允许吸上真空度也是泵的性能之一,一些离心泵的特性曲线图中也画出H s -Q 曲线;应注意在确定离心泵安装高度时应按泵最大流量下的H s 值来进行计算;2.离心泵的气蚀余量为防止气蚀现象的发生,在离心泵的入口处液体的静压头和动压头之和必须大于操作温度下的液体饱和蒸汽压头某一数值,此数值即定义为离心泵的气蚀余量Δh,其定义为 h g p g u g p v ∆+=+ρρ2211 或g u g p p h v 2211+-=∆ρ m 2-13 式中: p v -在操作温度下液体的饱和蒸气压,Pa;目前在国产泵样本的性能表中,离心油泵中的气蚀余量用符号Δh 表示,离心水泵的气蚀余量用NPSH 表示,本节中为简化均用Δh 表示;而允许吸上真空度即将被停止使用; 而临界汽蚀余量K f K v c H g u g u g p p h -+=+-=∆1,221min 122ρ m 2-14当流量一定且流体流动进入阻力平方区时,气蚀余量Δh 仅与泵的结构及尺寸有关,它是泵的抗气蚀性能参数;离心泵的Δh c 由泵制造厂实验测定,其值随流量增大而增大;为确保离心泵的正常操作,将所测得的临界汽蚀余量Δh c 加上一定的安全量后,称为必需气蚀余量Δh r ,并且列入泵产品样本性能表中;离心水泵用NPSHr 表示,离心油泵用Δh r 表示;在一些离心泵的特性曲线图上,也绘出Δh r -Q 曲线;也应注意在确定离心泵安装高度时应取可能出现的最大流量为计算依据;三、离心泵的允许安装高度由离心泵的吸液示意图2-7,列出伯努力方程式,可求得离心泵的允许安装高度H g : 10,2112----=f a g H g u g p p H ρ m 2-15若已知离心泵的必需气蚀余量Δh r ,则有:10,--∆--=f r v a g H h g p p H ρ 2-16若已知离心泵的允许吸上真空度,则有:10,212'---=f s g H g u H H 2-17四、讨论1.从前面的讨论中容易使人获得这样一种认识,即汽蚀是由于安装高度太高引起的,事实上汽蚀现象的产生可以有以下三方面的原因:①离心泵的安装高度太高;②被输送流体的温度太高,液体蒸气压过高;③吸入管路的阻力或压头损失太高;允许安装高度这一物理量正是综合了以上三个因素对汽蚀的贡献;由此,我们又可以有这样一个推论:一个原先操作正常的泵也可能由于操作条件的变化而产生汽蚀,如被输送物料的温度升高,或吸入管线部分堵塞;2.有时,计算出的允许安装高度为负值,这说明该泵应该安装在液体贮槽液面以下;3.允许安装高度H g 的大小与泵的流量有关;由其计算公式可以看出,流量越大,计算出的H g 越小;因此用可能使用的最大流量来计算H g 是最保险的;4.安装泵时,为保险计,实际安装高度比允许安装高度还要小至1米;如考虑到操作中被输送液体的温度可能会升高;或由于贮槽液面降低而引起的实际安装高度的升高;5.当液体的操作温度较高或其沸点较低时,应注意尽量减小吸入管路的压头损失如可以选用较大的吸入管径,减少管件和阀门,缩短管长等;或将离心泵安装在贮槽液面以下,使液体利用位差自动流入泵体内;2.2.5 离心泵的选用、安装与操作一、 离心泵的类型:1.清水泵:适用于输送清水或物性与水相近、无腐蚀性且杂质较少的液体;结构简单,操作容易;IS 型、B 型、D 型、sh 型2.耐腐蚀泵:用于输送具有腐蚀性的液体,接触液体的部件用耐腐蚀的材料制成,要求密封可靠;F 型3.油泵:输送石油产品的泵,要求有良好的密封性和冷却系统;Y 型4.杂质泵:输送含固体颗粒的液体、稠厚的浆液,叶轮流道宽,叶片数少;P 型单吸泵;双吸泵;单级泵;多级泵;二、离心泵的选用1.根据被输送液体的性质和操作条件确定泵的类型;2.确定输送系统的流量和所需压头;流量由生产任务来定,所需压头由管路的特性方程来定;3.根据所需流量和压头确定泵的型号1查性能表或特性曲线,要求流量和压头与管路所需相适应;2若生产中流量有变动,以最大流量为准来查找,压头也应以最大流量对应值查找;3若H和Q与所需要不符,则应在邻近型号中找H和Q都稍大一点的;4若几个型号都满足,应选一个在操作条件下效率最高的5为保险,所选泵可以稍大;但若太大,工作点离最高效率点太远,则能量利用程度低;泵的类型和型号选出后,应列出该泵的性能参数;4.核算泵的轴功率;若输送液体的密度大于水的密度时,则要核算泵的轴功率,重新配置电动机;三、离心泵的安装与操作1.安装:1 安装高度不能太高,应小于允许安装高度;2 尽量设法减小吸入管路的阻力,以减少发生汽蚀的可能性;主要考虑:吸入管路应短而直;吸入管路的直径可以稍大;吸入管路减少不必要的管件和阀门,调节阀应装于出口管路;2.操作:1 启动前应灌泵,并排气;2 应在出口阀关闭的情况下启动泵,使启动功率最小,以保护电动机;3 停泵前先关闭出口阀,以免损坏叶轮;4 泵运转中应定时检查、维修等,特别要经常检查轴封的泄漏情况和发热与否;经常检查轴承是否过热,注意润滑;例2-3:用IS80-65-125型离心泵从常压贮槽中将温度为50o C的清水输送到他。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文件编号:TP-AR-L4331In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编订:_______________审核:_______________单位:_______________离心泵基础知识(正式版)离心泵基础知识(正式版)使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
一.离心泵的工作原理驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。
液体从叶轮获得能量,•使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。
在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,•在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。
二、离心泵的结构及主要零部件一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。
1.泵体:即泵的壳体,包括吸入室和压液室。
①吸入室:它的作用是使液体均匀地流进叶轮。
②压液室:它的作用是收集液体,并把它送入下级叶轮或导向排出管,与此同时降低液体的速度,使动能进一步变成压力能。
•压液室有蜗壳和导叶两种形式。
2.叶轮:它是离心泵内传递能量给液体的唯一元件,叶轮用键固定于轴上,随轴由原动机带动旋转,通过叶片把原动机的能量传给液体。
叶轮分类:①按照液体流入分类:单吸叶轮(在叶轮的一侧有一个入口)和双吸叶轮(液体从叶轮的两侧对称地流到叶轮流道中)。
②按照液体相对于旋转轴线的流动方向分类:径流式叶轮、轴流式叶轮和混流式叶轮。
③按照叶轮的结构形式分类:闭式叶轮、开式叶轮和半开式叶轮。
3.轴:是传递机械能的重要零件,•原动机的扭矩通过它传给叶轮。
泵轴是泵转子的主要零件,轴上装有叶轮、轴套、平衡盘等零件。
泵轴靠两端轴承支承,在泵中作高速回转,因而泵轴要承载能力大、耐磨、耐腐蚀。
泵轴的材料一般选用碳素钢或合金钢并经调质处理。
4.密封环:是安装在转动的叶轮和静止的泵壳(中段和导叶的组合件)之间的密封装置。
其作用是通过控制二者之间间隙的方法,增加泵内高低压腔之间液体流动的阻力,减少泄漏。
5.轴套轴套是用来保护泵轴的,使之不受腐蚀和磨损。
必要时,轴套可以更换。
6.轴封泵轴和前后端盖间的填料函装置简称为轴封,主要防止泵中的液体泄漏和空气进入泵中,以达到密封和防止进气引起泵气蚀的目的。
轴封的形式:即带有骨架的橡胶密封、填料密封和机械密封。
7.轴向力的平衡装置.三.离心泵的主要工作参数1.流量:即泵在单位时间内排出的液体量,通常用体积单位表示,符号Q,单位有m3/h,m3/s,l/s等,2.扬程:输送单位重量的液体从泵入口处(泵进口法兰)到泵出口处(泵出口法兰),其能量的增值,用H表示,单位为kgf.m/kgf。
3.转速:泵的转速是泵每分钟旋转的次数,用N来表示。
电机转速•N一般在2900转/分左右。
4.汽蚀余量:离心泵的汽蚀余量是表示泵的性能的主要参数,•用符号Δhr表示,单位为米液柱。
5.功率与效率:泵的输入功率为轴功率N,也就是电动机的输出功率。
泵的输出功率为有效功率Ne。
四、泵内能量损失泵从原动机获得的机械能,只有一部分转换为液体的能量,而另一部分则由于泵内消耗而损失。
泵内所有损失可分为以下几项:1•水力损失由液体在泵内的冲击、涡流和表面摩擦造成的。
冲击和涡流损失是由于液流改变方向所产生的。
液体流经所接触的流道总会出现表面摩擦,由此而产生的能量损失主要取决于流道的长短、大小、形状、表面粗糙度,以及液体的流速和特性。
2•容积损失容积损失是已经得到能量的液体有一部分在泵内窜流和向外漏失的结果。
泵的容积效率容一般为0.93~0.98。
改善密封环及密封结构,可降低漏失量,提高容积效率。
3•机械损失机械损失指叶轮盖板侧面与泵壳内液体间的摩擦损失,即圆盘损失,以及泵轴在盘根、轴承及平衡装置等机械部件运动时的摩擦损失,一般以前者为主。
五、泵的变速--比例定律1.离心泵的变速:一台离心泵,当它的转速改变时,其额定流量、扬程和轴功率都将按一定比例关系发生改变。
目前,•采用变频调速电机来实现离心泵的变速,是一条新的重要的节能途径。
2.比例定律的表达式:Q1/Q2=n1/n2H1/H2=(n1/n2)2N1/N2=(n1/n2)3式中,Q、H、N表示泵的额定流量、扬程和轴功率下标1,2分别表示不同的转速n表示转速六、离心泵叶轮的切割1.切割的目的:一台离心泵,在一定的转速下仅有一条性能曲线,•为扩大泵的工作范围,常采用切割叶轮外径的方法,使其工作范围由一条线变成一个面。
当切割量较少时,可以认为切割前后叶片的出口安置角和通流面积基本不变,泵效率近似相等。
2.切割定律的表达式:Q'/Q=D2'/D2H'/H=(D2'/D2)2N'/N=(D2'/D2)3式中,Q、H、N表示泵的额定流量、扬程和轴功率角标'表示叶轮切割后的对应参数D2表示叶轮的外直径七、离心泵的比转数比转数是由相似定律导出的综合性参数,它是工况的函数,对一台泵来说,不同的工况就有不同的比转数,为了便于对不同类型泵的性能与结构进行比较,应用最佳工况(最高效率点)的比转数来代表这台泵。
在选泵时,可根据工作需要的Q、H和结合电机的转速,计算出ns数,大致确定泵的类型。
当ns30时,则采用离心泵、混流泵、轴流泵等。
八、离心泵的汽蚀与吸入特性1.汽蚀现象根据离心泵的工作原理可知,液流是在吸入罐压力•Pa和叶轮入口最低压力Pk间形成的压差(Pa-Pk)作用下流入叶轮的,•则叶轮入口处压力Pk越低,吸入能力就越大。
但若Pk降低到某极限值(目前多以液体在输送温度下的饱和蒸汽压力Pt为液体汽化压力的临界值)时,就会出现汽蚀现象。
2.汽蚀会引起的严重后果:(1)产生振动和噪音。
(2)对泵的工作性能有影响:当汽蚀发展到一定程度时,•汽泡大量产生,会堵塞流道,使泵的流量、扬程、效率等均明显下降。
(3)对流道的材质会有破坏:主要是在叶片入口附近金属的疲劳剥蚀。
3.离心泵的吸入特性:1•泵发生汽蚀的基本条件是:叶片入口处的最低液流压力Pk≤该温度下液体的饱和蒸汽压Pt。
2•有效汽蚀余量:液体流自吸液罐,经吸入管路到达泵吸入口后•,所富余的高出汽化压力的那部分能头。
用Δha表示。
3•泵的必须汽蚀余量:液流从泵入口到叶轮内最低压力点K处的全部能量损失,用Δhr表示。
4•Δhr与Δha的区别和联系:Δha>Δhr泵不汽蚀Δha=Δhr泵开始汽蚀Δha<Δhr泵严重汽蚀5•对于一台泵,为了保证其安全运行而不发生汽蚀,对于泵的必须汽蚀余量还应加一个安全裕量,一般取0.5米液柱。
于是,泵的允许汽蚀余量为:[Δhr]=Δhr+0.5。
6•泵的允许几何安装高度表达式为:[Hg1]=(Pa-Pt)/r-hA~S-[Δhr]。
Pa──吸入罐压力Pt──液体在输送温度下的饱和蒸汽压力r──液体重度hA~S──吸入管内流动损失[Δhr]──允许气蚀余量7•提高离心泵抗汽蚀性能的方法有:A.改进机泵结构,降低Δhr,属机泵设计问题。
B.提高装置内的有效汽蚀余量.最主要最常用的方法是采用灌注头吸入装置.此外,尽量减少吸入管路阻力损失,降低液体的饱和蒸汽压,即在设计吸入管路时尽可能选用管径大些,长度短些,弯头和阀门少些,输送液体的温度尽可能低些等措施,都可提高装置的有效气蚀余量。
•8.轴向力的平衡装置①轴向力的产生原因a.叶轮前后两侧因流体压力分布情况不同(轮盖侧压力低,•轮盘压力高)引起的轴向力A1,其方向为自叶轮背侧指向叶轮入口。
b.流体流入和流出叶轮的方向和速度不同而产生的动反力A2,其方向与A1相反,所以总轴向力A=A1-A2,方向一般与A1相同(一般A2较小)。
②轴向力的平衡a.采用双吸式叶轮:叶轮两侧对称,流体从两端吸入,轴向力自动抵消而达到平衡。
b.开平衡孔或装平衡管:A:在叶轮轮盘上相对于吸入口处开几个平衡孔。
B:为避免开平衡孔后,因主流受扰动而增加水力损失,•可设平衡管代替平衡孔,即采用一小管引入口压力至轮盘背侧。
c:采用平衡叶片:在叶轮盘背面铸几条径向筋片,•筋片带动叶轮背面间隙内的流体加速旋转,增大离心力,•从而使叶轮背面压力显著降低。
d:利用止推轴承承受轴向力。
一般小型的单吸泵中止推轴承可以承受全部的轴向力,防止泵轴窜动。
③多级离心泵轴向力的平衡:a.同单级离心泵方法相同b.对称布置叶轮c.采用平衡鼓,部分平衡轴向力d.采用自动平衡盘,全部自动平衡轴向力。
此处输入对应的公司或组织名字Enter The Corresponding Company Or Organization Name Here。