大学物理第10章 习题

合集下载

大学物理第10章课后习题

大学物理第10章课后习题
-3
(3) nm 2.45 1025 5.311026 1.30 kgm
3
( 4 ) 因 为 气 体 分 子 可 视 为 立 方 模 型 : nl 1 , 因 此 分 子 间 的 平 均 距 离 l 为
1 l ( )1 3 3.44 10 9 m n
(5)平均速率 v 为 v
(2) 质子的方均根速率为
v2
3kT 3 8.31 108 1.57 106 ms-1 m 1.67 1027
10.12(1)在一个具有活塞的容器中盛有一定量的气体。如果压缩气体并对它加热, 使它的温度从 27℃升到 177℃、体积减少一半,求气体压强变化多少?(2)这时气体分子 的平均动能变化多少?分子的方均根速率变化多少? 解 (1)由理想气体状态方程 p nkT 可得压缩前后分别满足
: 7 因 为 p氖:p氦 1
且 p氖 p氦 2.4mmHg ,
所 以 p氖 0.3 mmHg ,
p氦 2..01 105 0.3 p 760 n氖 氖 9.63 1021 m-3 23 kT 1.38 10 300
N v0 2 v0
v0
2N 3
2 v0
av (3)平均速率 v vf (v ) v dv v0 0 0
所以
v0
avdv
11 2 2 av0 , 又因为 a 6 3v0
v
11 v0 9
10.8 求速率在 2v p 到 2.01v p 之间的气体分子数占总数的百分之几?
n氦 p氦 kT 6.74 10 22 m-3
3
10.4 一热气球的容积为 2200m ,气球本身和负截质量共 725kg,若其外部空气温度为 20℃,要想使气球上升,其内部空气最低要加热到多少度? 解 由理想气体状态方程 PV

大学物理标准答案第10章

大学物理标准答案第10章

第十章 静电场中的导体与电介质10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A )升高 (B )降低(C )不会发生变化 (D )无法确定分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地题 10-2 图分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0==(B )dεqV d εq E 020π4,π4== (C )0,0==V E (D )RεqV d εq E 020π4,π4==题 10-3 图分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( )(A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A ).10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.题 10-6 图分析与解根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力.()20π4rεq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.10-7一真空二极管,其主要构件是一个半径R 1=5.0×10-4m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 10-7 图分析 (1)由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2)计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力. 解 (1)电子到达阳极时,势能的减少量为J 108.4Δ17ep -⨯-=-=eV E由于电子的初始速度为零,故J 108.4ΔΔ17ep ek ek -⨯-=-==E E E因此电子到达阳极的速率为1-7ek s m 1003.122⋅⨯===meVm E v (2)两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力r e e E F N)1037.414-⨯=-=(这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.10-8一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0.求此系统的电势和电场的分布. 分析若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E rr E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时,()01=r E R 1<r <R 2时,()202π4rεqr E =r >R 2时,()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布:在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2)2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-9地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解由于地球半径R 1=6.37×106m ;电离层半径R 2=1.00×105m +R 1=6.47×106m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R R εC10-10两线输电线,其导线半径为3.26mm ,两线中心相距0.50m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,-++=E E E再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为)11(π20xd x E --=ελ 电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ 上式积分得RR d ελU -=ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据F 1052.512-⨯=C题 10-10 图10-11电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0mm 2,两金属片之间的距离是0.600mm .如果电路能检测出的电容变化量是0.250pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-12一片二氧化钛晶片,其面积为1.0cm 2,厚度为0.10mm .把平行平板电容器的两极板紧贴在晶片两侧.(1)求电容器的电容;(2)当在电容器的两极间加上12V 电压时,极板上的电荷为多少?此时自由电荷和极化电荷的面密度各为多少?(3)求电容器内的电场强度. 解 (1)查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dSεεC r (2)电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQσ晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr (3)晶片内的电场强度为1-5m V 102.1⋅⨯==dUE 10-13如图所示,半径R =0.10m 的导体球带有电荷Q =1.0×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10m ,另一层介质为空气,充满其余空间.求:(1)离球心为r =5cm 、15cm 、25cm 处的D 和E ;(2)离球心为r =5cm 、15cm 、25cm 处的V ;(3)极化电荷面密度σ′.题 10-13 图分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理⎰∑=⋅0d qS D 可得D (r ).再由r εε0/D E =可得E (r ).介质内电势的分布,可由电势和电场强度的积分关系⎰∞⋅=rV l E d 求得,或者由电势叠加原理求得.极化电荷分布在均匀介质的表面,其极化电荷面密度n P ='σ.解 (1)取半径为r 的同心球面为高斯面,由高斯定理得r <R 0π421=⋅r D01=D ;01=ER <r <R +d Q r D =⋅22π422π4r QD =;202π4r εεQ E r= r >R +d Q r D =⋅23π423π4r QD =;203π4r Q E ε= 将不同的r 值代入上述关系式,可得r =5cm 、15cm 和25cm 时的电位移和电场强度的大小,其方向均沿径向朝外.r 1=5cm ,该点在导体球内,则01=r D ;01=r Er 2=15cm ,该点在介质层内,εr=5.0,则2822m C 105.3π42--⋅⨯==r QD r 12220m V 100.8π42-⋅⨯==r εεQ E r r r 3=25cm ,该点在空气层内,空气中ε≈ε0,则2823m C 103.1π43--⋅⨯==r QD r ; 13220m V 104.1π43-⋅⨯==r Q E r ε (2)取无穷远处电势为零,由电势与电场强度的积分关系得 r 3=25cm ,V 360π4d 0r 331==⋅=⎰∞rεQV r E r 2=15cm ,()()V480π4π4π4d d 0020r3222=+++-=⋅+⋅=⎰⎰+∞+d R Qd R Q r Q V r r dR d R εεεεεrE r E r 1=5cm ,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E(3)均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-=()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n -=-=()282m C 104.6π41--⋅⨯-=-=-='R εQ εP σr r n介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号. 10-14人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2×10-9m ,两表面所带面电荷密度为±5.2×10-3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1)细胞壁内的电场强度;(2)细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. (2)细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-15如图(a )所示,有两块相距为0.50的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K内,金属盒上、下两壁与A 、B 分别相距0.25mm ,金属板面积为30mm ×40mm .求(1)被屏蔽后电容器的电容变为原来的几倍;(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?题 10-15 图分析薄金属板A 、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A 、B 间的电容. 解 (1)由等效电路图可知13232123C C C C C C C C ++⋅=+=由于电容器可以视作平板电容器,且32122d d d ==,故1322C C C ==,因此A 、B 间的总电容12C C =(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于2C (或者3C )极板短接,其电容为零,则总电容13C C =10-16在A 点和B 点之间有5个电容器,其连接如图所示.(1)求A 、B 两点之间的等效电容;(2)若A 、B 之间的电势差为12V ,求U A C 、U CD 和U D B .题 10-16 图解 (1)由电容器的串、并联,有μF 1221=+=C C C ACμF 843=+=C C C CD51111C C C C CD AC AB ++= 求得等效电容C AB =4μF .(2)由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U 10-17如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1)充足电后;(2)然后平行插入一块面积相同、厚度为δ(δ<d )、相对电容率为εr的电介质板;(3)将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变. 解 (1)空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2)插入电介质后,电容器的电容C 1为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011 空气中电场强度()δd εδU εS εQ E r r -+==011 (3)插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度02='E 空气中电场强度δd UE -=2无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.10-18为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr的电介质),通常在生产流水线上设置如图所示的传感装置,其中A ,B 为平板电容器的导体极板,d 0为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?题 10-18 图分析导体极板A 、B 和待测物体构成一有介质的平板电容器,关于电容C 与材料的厚度的关系,可参见题10-17的分析. 解由分析可知,该装置的电容为()d d d SC r r -+=00εεε则介质的厚度为()()C εSεεd εεC εS εεC d εd r r r r r r r 1110000---=--=如果待测材料是金属导体,其等效电容为dd SεC -=00导体材料的厚度CSεd d 00=-= 实时地测量A 、B 间的电容量C ,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.10-19有一电容为0.50μF 的平行平板电容器,两极板间被厚度为0.01mm 的聚四氟乙烯薄膜所隔开,(1)求该电容器的额定电压;(2)求电容器存贮的最大能量.分析通过查表可知聚四氟乙烯的击穿电场强度E b =1.9×107V /m ,电容器中的电场强度E ≤E b ,由此可以求得电容器的最大电势差和电容器存贮的最大能量. 解 (1)电容器两极板间的电势差V 190b max ==d E U(2)电容器存贮的最大能量J 1003.92132max e -⨯=CU W10-20半径为0.10cm 的长直导线,外面套有内半径为1.0cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1)导线表面最大电荷面密度;(2)沿轴线单位长度的最大电场能量.分析如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE ==查表可以得知空气的击穿电场强度E b =3.0×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1)导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2)由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210m π2R r R rR r E <<==ελ0=E (其他)222102m 0m 2121rE R E w b εε==沿轴线单位长度的最大电场能量r rER r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε14122210m m J 1076.5lnπ--⋅⨯==R R E R W b ε 10-21一空气平板电容器,空气层厚1.5cm ,两极间电压为40k V ,该电容器会被击穿吗?现将一厚度为0.30cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10MV· m -1.则此时电容器会被击穿吗?分析在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题10-17可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40k V 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿. 解未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=b E ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6-26可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E >,空气层被击穿,击穿后40k V 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '>,故玻璃也将相继被击穿,电容器完全被击穿.10-22某介质的相对电容率 2.8r ε=,击穿电场强度为611810V m -⨯⋅,如果用它来作平板电容器的电介质,要制作电容为0.047 μF ,而耐压为4.0 k V 的电容器,它的极板面积至少要多大.解介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0k V ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047μF 的平板电容器,其极板面积210m 42.0==εεCdS 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 10-23一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极板间距拉开到2d .求:(1)电容器能量的改变;(2)此过程中外力所作的功,并讨论此过程中的功能转换关系.分析在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功. 解 (1)极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为20220221S εQ E εw e == 在外力作用下极板间距从d 被拉开到2d ,电场占有空间的体积,也由V 增加到2V ,此时电场能量增加SεdQ V w W e e 022ΔΔ== (2)两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为SεdQ QEd 02e 2ΔA ==⋅-=r F 外力克服静电引力所作的功等于静电场能量的增加.。

大学物理第十章波动学习题答案

大学物理第十章波动学习题答案

第十章 波动学习题10-1 有一平面简谐波0.02cos20030x y t π⎛⎫=- ⎪⎝⎭,x ,y 的单位为m ,t 的单位为s 。

(1)求其振幅、频率、波速和波长;(2)求x=0.1m 处质点的初相位。

解:(1)A=0.02m ,v=ω/2π=200π/2π=100s -1,u=30m/s ,λ=u/v=0.3m(2)02000.1200230303x πππφ⨯=-=-=- 10-2 一横波沿绳子传播时的波动方程为()0.05cos 104y t x ππ=-,x ,y 的单位为m ,t 的单位为s 。

(1)求其振幅、频率、波长和波速;(2)求绳子上各质点振动的最大速度和最大加速度;(3)求x=0.2m 处的质点在t=1s 时的相位,它是原点处质点在哪一时刻的相位?(4)分别画出t=1s ,1.25s ,1.5s 时的波形曲线。

解:(1)A=0.05m ,v=ω/2π=10π/2π=5s -1,λ=0.5m ,u=λv=2.5m/s(2)m A ω=v ,2m a A ω= (3)1041040.29.2t x φπππππ=-=-⨯= 10-3 一平面简谐波()x πt y π2-10sin 05.0=,x ,y 的单位为m ,t 的单位为s 。

(1)求其频率、周期、波长和波速;(2)说明x =0时方程的意义,并作图表示。

解:(1)v=ω/2π=10π/2π=5s -1,T=1/v=0.2s ,λ=1m ,u=λv=5m/s(2)0.05sin10y πt = 原点处质点的振动方程10-4 波源作简谐运动,振动方程为()m cos240100.43πt y -⨯=,它所形成的波形以30m·s -1的速度沿一直线传播。

(1)求波的周期及波长;(2)写出波动方程。

解:(1)T=2π/ω=2π/240π=1/120s ,λ=uT=30/120=0.25m(2)()34.010cos240m 30x y πt -⎛⎫=⨯- ⎪⎝⎭10-5 如图所示,一平面简谐波在介质中以速度u=20m/s 沿x 轴负方向传播,已知a 点的振动方程为y a =3cos4πt ,t 的单位为s ,y 的单位为m 。

大学物理第10章练习答案

大学物理第10章练习答案

第十章 机械振动与电磁振荡计算题1. 解:(1)设cos()()x A t m ωϕ=+由图2可知,A =0.10m ,x 0=A /2=0.05m ,v 0>0 所以3ϕπ=-t =1s 时,x 1=0,故56πω=所以质点振动的运动方程为50.10cos()()63x t m =-ππ(2)P 点的相位为零 (3)由5063P t ππϕ=-=得t =0.4s2. 解:已知A =24cm ,T =4.0s ,故ω=π/2 t =0时,x 0=A =24cm ,v 0=0,故0ϕ= 所以振动方程为0.24cos()()2x t m π=(1)0.50.17t x m == (2)2220.50.50.419/t t d x a m s dt ====-,故30.50.5 4.1910t t F ma N -====-⨯指向平衡位置。

(3)由振动方程得0.12=0.24cos t 2π,即1cos t 22π=,23t =±ππ,因为此时v <0,相位取正值,所以t =0.67s 。

(4)dx v dt ==-0.24sin(t )22ππ⨯,将t =0.67s 代入得 0.326/v m s =- 2415.31102k E mv J -==⨯2224111.781022P E kx m x J -===⨯ω47.0910k p E E E J -=+=⨯*3. 证明:小球平衡时有00p S mg pS +-=图2小球偏离x 时,设容器内气体状态为(p 1,V 1),有2012d xp S mg p S m dt +-=,则212p S p S d x dt m-= 由于气体过程是绝热过程,有111()pV p V xS pV γγγ=-=,则1()(1)V x S p p p V x S V-==--γγ小球作微小位移时xS 远小于V ,则上式可写为1(1)xS p p Vγ=+ 所以,小球的运动方程为2222d x pS x x dt mVγω=-=-此式表示小球作简谐振动,振动周期为22T πω==所以比热容比为222224()mV mVp TS pS T ππγ==三. 计算题1.解:由阻尼振动周期2T '=='πω得阻尼因子为3/rad s ===δ 阻力系数为235.3/m kg s ==γδ 阻力为0.353N f v ==γ 2. 解:阻尼振动的振幅为0t A A e -=δ1t 10A A e -δ=,1t 01A e A δ=将t =0,A 0=0.03m 和t 1=10s ,A 1=0.01m 代入上式解得01111ln ln 310A t A ==δ 则振幅减为A 2=0.003m 所需时间为0221ln21A t s A ==δ3. 解:由题意知弹簧的劲度系数为3731010 1.2510/0.810m g k N m x -'⨯===⨯⨯则车厢的固有频率为015/rad s ω== 当火车以速率v 匀速行驶时,受撞击的角频率为22lυωπνπ==当ω0=ω时车厢将发生共振,此时速率即为危险速率,则030/108/2lm s km h υωπ=== 解决火车提速问题的措施之一是采用长轨无缝铁轨。

《大学物理》第十章气体动理论习题参考答案

《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。

3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。

7、1:1;2:1;10:3。

8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。

已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。

质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。

大学物理第十章课后习题答案

大学物理第十章课后习题答案

10.1 解:O O B B B B 出圆弧进++=0其中两直线电流在O 点产生的磁感应强度为0,1/4圆电流在O 点产生的磁感应强度方向垂直纸面向里,大小为R IRIB B O 841200μμ=⨯==圆弧。

10.2解:d b c a B B B B B +++=中心如图a I a I B B a πμπμ0022/22224)45cos 22===︒(中心过中心平行于ad (如图竖直向上)。

10.3 解:1PI B方向垂直纸面向里,大小为d I πμ2102PI B方向纸面向右,大小为d I πμ220 21PI PI P B B B +=T I I d d I d I B B B PI PI P 52221022021022102.72)2()2(21-⨯=+=+=+=πμπμπμ方向在过P 垂直于1I 的平面内与2PI B 夹α角︒===--7.33)32()(1121tna B B tna PI PI α10.4解:两线圈在P 点产生的磁感应强度方向都在两圆心的连线上指向小圆(向左)}])([])([{22322122223221211021x b R R I x b R R I B B B PR PR P -++++=+=μ10.5 解:a bc d2I P 2PIra Idy r dya I rdI B d πμπμπμ422200===20044cos r a Iydyr y r a Idy dB dB x πμπμα=== 20044sin r a Ixdyr x r a Idy dB dB y πμπμα===由对称性可知⎰==0x Px dB Bx a a I x a x a a I x y x a Ix y x dy a Ix y x a Ixdy r a Ixdy dB B aaa aa a aa y Py 101101022022020tan 2)tan (tan 4]tan 144)(44--------=--==+=+===⎰⎰⎰⎰πμπμπμπμπμπμ10.6解:对于无限大平面载流导体板,即上题结果中a x <<,2π=x a arctgi u a I u B 00214==∴(i 为电流密度)(1) 在两面之间1i 产生的磁感强度大小为10121i u B =,方向垂直纸面向里。

大学物理教程第10章习题答案

大学物理教程第10章习题答案

思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。

10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。

为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。

10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。

入射光强度增加一倍时,饱和电流增加一倍。

(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。

10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。

10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。

10.6 完成下列核衰变方程。

(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。

如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。

大学物理第十章课后习题答案

大学物理第十章课后习题答案
自治区精品课程—大学物理学
题库
第十章 静电场中的导体和电介质
一、 填空 1. 根据物质的导电性,可将物质分为 、 和 。 2. 从 物质 的 电结 构 来看 , 金属 导 体具 有 带负 电 的 和 带正 电 的 。 3. 导 体处 于静 电平 衡时 ,导 体内 部各 点 的场 强为 , 这称 为导 体的 条件。静电平衡下的导体是 ,导体的表面是 。 4. 导体处于静电平衡状态时,导体内处处 (填“有”或“无” )净余电荷, 电荷只能分布在导体的 上。 5. 对于孤立导体而言,表面上 的分布与表面曲率有关,表面曲率越大, 电荷面密度越 ,反之越 。 6. 空腔导体内部电场不受腔外电场的影响,接地导体空腔外部的电场不受腔内 电荷的影响,这种隔离作用称为 。 7. 孤立导体的 是指使导体升高单位电势所需的电荷,反映了导体 的性质。 8. 根据分子中正、 负电荷中心的分布, 可将电介质分为 分子和 分 子。将两类电介质放入电场中将分别发生 极化和 极化。 二、 简答 1. 2. 3. 4. 5. 6. 简述导体静电平衡的条件及特点。 简述静电屏蔽。 简述处于静电平衡的空腔导体,空腔内场强处处为零。 简述孤立导体的电容的计算公式及物理意义。 分别推导两个电容器串联和并联后的总电容的计算公式。 电介质的极化现象和导体的静电感应现象两者有什么区别?
并联: q = q1 + q2 , U = U1 = U 2 , C =
q q1 q2 = + = C1 + C2 。 U U U
6. 答:导体静电感应时会在导体表面出现感应电荷,电解质极化时在介质表面 出现极化电荷,是两种不同的电荷,静电平衡时导体内部场强为零,电解质极化 时内部场强不为零。 三、 计算 1. 证明:如图所示,设四个面上的电荷面密度分别为 σ 1 、 σ 2 、 σ 3 、 � σ 4 ,在 A 板内取一点 P1 ,设 en 是向右的单位法向矢量, 四个无限大

大学物理第10单元课后习题答案.docx

大学物理第10单元课后习题答案.docx

习题1010.1选择题(1)对于安培环路定理的理解,正确的是:(A)若环流等于零,则在回路L上必定是H处处为零;(B)若环流等于零,则在回路L上必定不包围电流;(O若环流等于零,则在回路L所包围传导电流的代数和为零;(D)回路L上各点的H仅与回路L包围的电流有关。

[答案:C](2)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度B ()(A)内外部磁感应强度B都与r成正比;(B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。

[答案:B](3)质量为m电量为q的粒子,以速率v与均匀磁场B成0角射入磁场,轨迹为一螺旋线,若要增大螺距则要()(A)增加磁场B; (B)减少磁场B; (C)增加0角;(D)减少速率V。

[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T的磁场中从0=0的位置转到180度(0为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A) 0.24J;(B) 2.4J; (C) 0.14J; (D) 14J。

[答案:A]10.2填空题(1)边长为a的正方形导线回路载有电流为I,则其中心处的磁感应强度______ =[答案:2臥I ,方向垂直正方形平面]na(2)计算有限长的直线电流产生的磁场—用毕奥——萨伐尔定律,而—用安培环路定理求得(填能或不能)。

[答案:能,不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 ____ o电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 ____ o[答案:零,零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以_电流时,管内的磁力线分布相同,管内的磁感线分布将 ____ =[答案:相同,不相同]10.3在同一磁感应线上,各点万的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度鸟的方向?解:在同一磁感应线上,各点鸟的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度万的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为直的方向.dl题10.3图10.4(1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度鸟的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解:(1)不可能变化,即磁场一定是均匀的.如图作闭合回路abed可证明B{=B2£ B-dl =B l da-B2bc = /J0^I = 0B x =(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线, 但鸟方向相反,即B^B2.10.5用安培环路定理能否求有限长一段载流直导线周围的磁场?答:不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.10.6在载流长螺线管的情况下,我们导出其内部B = ^o nl,外面B=0,所以在载流螺线管外面环绕一周(见题10.6图)的环路积分牡民卜応=0但从安培环路定理来看,环路L中有电流I穿过,环路积分应为牡万外-df = //0/这是为什么?解:我们导出B 内=jU o nl,B^ =0有一个假设的前提,即每匝电流均垂直于螺线管轴线.这 时图中环路厶上就一定没有电流通过,即也是与(鸟外-dr=<(o-dr=o 是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实 际上以上假设并不真实存在,所以使得穿过厶的电流为/,因此实际螺线管若是无限长时, 只是鸟外的轴向分量为零,而垂直于轴的圆周方向分量B[= 必,r 为管外一点到螺线管轴 17VT题10.6图10.7如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它 发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存 在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定 那个区域存在着磁场,因为仅有电场也可以使电子偏转.10.8已知磁感应强度B = 2.0Wb/m 2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试 求:(1)通过图中abed 面的磁通量;(2)通过图中b 妣面的磁通量;(3)通过图中*/^面的磁 通量.解:如题10.8图所示.⑴通过a0cd 面积,的磁通是($面法线沿 x 轴正向)0)! =5-5] =2.0x0.3x0.4 = 0.24 Wb⑵通过befc 面积S 2的磁通量 0)2 = B • 52 = 0⑶通过a 创面积S3的磁通量(S3面法线沿x 、z 轴的正向)啓=用恳3 = 2x0.3x0.5xcos& = 2x0.3x0.5x? = 0.24 Wb10.9如题10-9图所示,AB. CD 为长直导线,RC 为圆心在O点的一段圆弧形I题10. 8图导线,其半径为若通以电流Z,求0点的磁感应强度.解:如题10-9图所示,O 点磁场由AB 、BC 、CD 三部分电流产生.其中AB 产生:& = 0CD 产生:场=上上,方向垂直向里 2 12RBC 段产生磁场 由B = ^-(sin^2- sin^J 得: 4mB 3 = ^^(sin 90° - sin 60° ) = ^-(1-—),方向丄向里 .R 2nR 2 •••恥+ B 严盟(1—子+汀方向丄向里.10.10在真空中,有两根互相平行的无限长直导线厶和厶2,相距0.ini,通有方向相反的电 流,/1=20A,/2=10A,如题10.10图所示.A, 3两点与导线在同一平面内.这两点与导线L 2的距离均为5.0cm •试求A, B 两点处的磁感应强度,以及磁感应强度为零的点的位置. Zi=20A0.1mL'i 丄—Z 2=10A 题10.10图解:如题10.10图所示,&方向垂直纸面向里2 茨崔丽+化g ^-2.(0Z0.05)+^0j^h33X1°-5T10.11如题10-11图所示,两根导线沿半径方向引向铁环上的A, B 两点,并在很⑵设片=0在厶2外侧距离厶2为厂处,则:解得r - 0.1 m1 n 题10-9图 2^(r + 0.1)2 岔远处与电源相连.已知圆环的粗细均匀,求环中心0的磁感应强度.解:如题10-11图所示,圆心O 点磁场由直电流Aoo 和Boo 及两段圆弧上电流人 与厶所产生,但A8和Boo 在O 点产生的磁场为零。

大学物理 第10章 练习答案

大学物理  第10章 练习答案
2、已知月球上的重力加速度是地球的1/6,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T,将该单摆拿到月球上去,其振动周期应为。
3、一质点作简谐振动,在同一周期内相继通过相距为11cm的A,B两点,历时2秒,速度大小与方向均相同,再经过2秒,从另一方向以相同速率反向通过B点。该振动的振幅为,周期为。
(1)t=0.5s时,物体所在位置;
(2)t=0.5s时,物体所受.力的大小与方向;
(3)由起始位置运动到x=12cm处所需的最少时间;
(4)在x=12cm处,物体的速度、动能以及系统的势能和总能量。
3、如右图所示,绝热容器上端有一截面积为S的玻璃管,管内
放有一质量为m的光滑小球作为活塞。容器内储有体积为V、
练习三
一、选择题
1、下列关于LC振荡电路中说法不正确的是()
(A)电路中电流和电容器上的电量的变化也是一种简谐振动
(B)电容器放电完毕时,电路中的电流达到最大值
(C)电场能和磁场能相互转化,但总的电磁能量保持不变
(D)电容器充电时,由于线圈的自感作用,电流只能逐渐增大
2、LC振荡电路中电荷和电流的变化,下列描述不正确的是()
(A)强阻尼
(B)欠阻尼
(C)过阻尼
(D)临界阻尼
4、受迫振动的振幅依赖于()
(A)振子的性质
(B)振子的初始状态
(C)阻尼的大小
(D)驱动力的特征
二、填空题
1、实际上,真实的振动系统总会受到阻力作用而作振幅不断减小的阻尼振动,这是因为阻尼的存在使系统的能量逐渐减少,能量损失的原因通常有两种:和。
2、在灵敏电流计等精密仪表中,为使人们能较快地和较准确地进行读数测量,常使电流计的偏转系统工作在状态下。

大学物理第10章 习题

大学物理第10章  习题

r1
第十章 波动
16
物理学
第五版
第十章 习题
17 如图所示, 0 处有一运动方程为 x y A cos t 的平面波波源,产生的波沿x轴正、 负方向传播MN为波密介质的反射面,距波源 3λ / 4.求:(1)波源所发射的波沿波源O左右 传播的波动方程;(2)在MN处反射波的波动 方程;(3)在O~MN区域内形成的驻波方程, 以及波节和波腹的位置;(4)区域内合成波 M 的波动方程.
3 kg m ,求(1)该波的能流密度;(2)
1min内垂直通过4.0×10-4m2的总能量.
第十章 波动
13
物理学
第五版
第十章 习题
14 如图所示,两相干波源分别在P,Q 两点,它们发出频率为ν ,波长为 λ ,初 相相同的两列相干波,设PQ=3λ / 2 , R 为PQ连线上的一点.求:(1)自P、Q发 出的两列波在R处的相位差;(2)两波 在R处干涉时的合振幅.
3 一横波在沿绳子传播时的波动方程 为 y 0.20 cos 2.50t x) 式中y和x的单位 , ( 为 m , t的单位为s.(1) 求波的振幅、波速、 频率及波长;(2)求绳上的质点振动时的最 大速度;(3)分别画出t 1s 和 t 2s 时的波 形,并指出波峰和波谷.画出 x 1.0m 处质点的 振动曲线并讨论其与波形图的不同.
第十章 习题
5 已知一波动方程为 y 0.05 sin( 10t 2 x) 式中y的单位为 m ,t的单位为s. (1)求波长、频 率、波速和周期; (2)说明 x 0 时方程的意义, 并 作图表示.
第十章 波动
5
物理学
第五版
第十章 习题
6 有一平面简谐波在空间传播. 已知在波 线上某点B的运动规律为y A cos(t ) ,就 图(a)(b)(c)给出的三种坐标取法,分 别列出波动方程.并用这三个方程来描述与B相 距为b 的P点的运动规律.

大学物理教程第10章习题答案

大学物理教程第10章习题答案

思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。

10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。

为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。

10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。

入射光强度增加一倍时,饱和电流增加一倍。

(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。

10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。

10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。

10.6 完成下列核衰变方程。

(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。

如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。

大学物理A 练习题 第10章《气体分子运动论》

大学物理A 练习题 第10章《气体分子运动论》

《第10章 气体分子运动论》一 选择题1. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2)、(4). (B) (1)、(2)、(3). (C) (2)、(3)、(4). (D) (1)、(3)、(4).[ ]2. 温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.[ ]3. 若f (v )表示分子速率的分布函数,则对下列四式叙述:(1) f (v )d v 表示在v →v +d v 区间内的分子数. (2) ⎰21d )(v v v v f 表示在v 1→v 2速率区间内的分子数.(3)⎰∞0d )(v v v f 表示在整个速率范围内分子速率的总和.(4) ⎰∞d )(v v v v f 表示在v 0→∞速率区间内分子的平均速率.上述对四式物理意义的叙述(A) 正确的是(1). (B) 正确的是(2).(C) 正确的是(3). (D) 正确的是(4). (E) 都不正确.[ ]4. 设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O pv 和()2Hp v 分别表示氧气和氢气的最概然速率,则(A) 图中a表示氧气分子的速率分布曲线;.4)/()(22H O =p p v v (B) 图中a表示氧气分子的速率分布曲线;.4/1)/()(22H O =p p v v (C) 图中b表示氧气分子的速率分布曲线;.4/1)/()(22H O =p p v v (D) 图中b表示氧气分子的速率分布曲线;.4)/()(22H O =p p v v [ ](v )5. 气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大一倍. (B) Z 和λ都减为原来的一半. (C) Z 增大一倍而λ减为原来的一半. (D) Z 减为原来的一半而λ增大一倍.[ ]二 填空题1. 有一瓶质量为M 的氢气(视作刚性双原子分子的理想气体),温度为T ,则氢分子的平均平动动能为____________,氢分子的平均动能为______________,该瓶氢气的内能为_________________.2. 一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密度为0.24 kg/m 3,则可确定此种气体是________气;并可求出此气体分子热运动的最概然速率为_____________m/s .(普适气体常量R = 8.31 J ·mol -1·K -1)3. 设气体分子服从麦克斯韦速率分布律,v 代表平均速率,v p 代表最概然速率,那么,速率在v p 到v 范围内的分子数占分子总数的百分率随气体的温度升高而__________(增加、降低或保持不变).4. 分子的平均动能公式ikT 21=ε (i 是分子的自由度)的适用条件是___________________ ______________________.室温下1 mol 双原子分子理想气体的压强为p ,体积为V ,则此气体分子的平均动能为_________________.5. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则(1) 速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为_________; (2) 速率v > 100 m ·s -1的分子数的表达式为__________.三计算题1. 一超声波源发射超声波的功率为10 W.假设它工作10 s,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R=8.31 J·mol-1·K-1 )2. 质量m=6.2 ×10-17 g的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速率为1.4 cm·s-1.假设粒子速率服从麦克斯韦速率分布,求阿伏伽德罗常数.(普适气体常量R=8.31 J·mol-1·K-1 )3. 许多星球的温度达到108 K.在这温度下原子已经不存在了,而氢核(质子)是存在的.若把氢核视为理想气体,求:(1) 氢核的方均根速率是多少?(2) 氢核的平均平动动能是多少电子伏特?(普适气体常量R=8.31 J·mol-1·K-1,1 eV=1.6×10-19J,玻尔兹曼常量k=1.38×10-23 J·K-1 )4. 由N 个分子组成的气体,其分子速率分布如图所示. (1) 试用N 与0v 表示a 的值.(2) 试求速率在1.50v ~2.00v 之间的分子数目. (3) 试求分子的平均速率.5. 一显像管内的空气压强约为1.0×10-5 mmHg ,设空气分子的有效直径d = 3.0×10-10 m ,试求27℃时显像管中单位体积的空气分子的数目、平均自由程和平均碰撞频率. (空气的摩尔质量28.9×10-3 kg/mol, 玻尔兹曼常量k = 1.38×10-23 J ·K -1 760 mmHg = 1.013×105 Pa )00四研讨题1. 比较在推导理想气体压强公式、内能公式、平均碰撞频率公式时所使用的理想气体分子模型有何不同?2. 速率分布分布函数假设气体分子速率分布在0~∞范围内,也就是说存在大于光速c的分子。

大学物理学 孙厚谦 第10章 习题

大学物理学 孙厚谦 第10章 习题
(2)循环效率。
P /atm P2 C
A B
O
V1
习题 10-9 图
V 2 V /(103 m3 )
查看答案 10-9
10-10 如图所示,使 1mol 理想气体氧气进行 A→B→C→A 的循环,已知 A→B 为等温过程,C→A 为绝 热过程, (设 T1
300K ,V1 0.41103 m3 , V2 4.1103 m3 ),求(1)循环过程中所作的净
-3 3 -3 3
10-15 一个卡诺循环,当高温热源的温度为 107
0
C ,低温热源的温度为 270 C ,对外作的净功是
8000J,今维持低温热源的温度不变,提高高温热源的温度,使其对外作的净功增为 10000J,若两个卡 诺循环都工作在相同的二绝热线之间。求(1)第二个循环吸收的热量;(2)第二个循环的热效率;(3)第二 个循环的高温热源温度。 查看答案 10-15
E 0
Q W RTA ln
VB V p2V2 ln B VA VA
5 3
44.8 1.013 10 44.8 10 ln 22.4
返回 10-4
3.15 103 J
(2)整个过程
E 0
Q W WAC WCB WCB p2 (V2 V1 )
查看答案 10-3
23
10-4 如图所示,1mol 氧气(1)由状态 A 等温地变化到状态 B;(2)由状态 A 等体地变化到状态 C,再由 状态 C 等压地变到状态 B;试分别计算以上两种情况下,氧气的内能增量,对外做的功和吸收的热量。 (已知 V1
22.4 103 m3 , V2 44.8103 m3 , p2 1atm)

大学物理习题答案第十章

大学物理习题答案第十章

[习题解答]10-1如果导线中的电流强度为8.2 A,问在15 s内有多少电子通过导线的横截面?解设在t秒内通过导线横截面的电子数为N,则电流可以表示为,所以.10-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。

当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。

在一个氢气放电管中,如果在3 s内有2.8⨯1018 个电子和1.0⨯1018 个质子通过放电管的横截面,求管中电流的流向和这段时间内电流的平均值。

解放电管中的电流是由电子和质子共同提供的,所以.电流的流向与质子运动的方向相同。

10-3 两段横截面不同的同种导体串联在一起,如图10-7所示,两端施加的电势差为U。

问:(1)通过两导体的电流是否相同?(2)两导体内的电流密度是否相同?(3)两导体内的电场强度是否相同?(4)如果两导体的长度相同,两导体的电阻之比等于什么?(5)如果两导体横截面积之比为1: 9,求以上四个问题中各量的比例关系,以及两导体有相同电阻时的长度之比。

解(1)通过两导体的电流相同,。

(2)两导体的电流密度不相同,因为,又因为,所以.这表示截面积较小的导体电流密度较大。

(3)根据电导率的定义,在两种导体内的电场强度之比为.上面已经得到,故有.这表示截面积较小的导体中电场强度较大。

图10-7(4)根据公式,可以得到,这表示,两导体的电阻与它们的横截面积成反比。

(5)已知,容易得到其他各量的比例关系,,,.若,则两导体的长度之比为.10-4两个同心金属球壳的半径分别为a和b(>a),其间充满电导率为σ的材料。

已知σ是随电场而变化的,且可以表示为σ = kE,其中k为常量。

现在两球壳之间维持电压U,求两球壳间的电流。

解在两球壳之间作一半径为r的同心球面,若通过该球面的电流为I,则.又因为,所以.于是两球壳之间的电势差为.从上式解出电流I,得.10-5一个电阻接在电势差为180 V电路的两点之间,发出的热功率为250W。

大学物理题库-第10章 波动习题

大学物理题库-第10章 波动习题

第十章 波动一 选择题(15)1、如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点o 的振动方程为)cos(0ϕω+=t A y ,则B 点的振动方程为[ ](A ))cos(0ϕω+-=u lt A y (B ))(cos ult A y +=ω(C )])(cos[0ϕω+-=u l t Ay (D )])(cos[0ϕω++=ult A y2、一沿x 轴负方向传播的平面简谐波在2=t s 时的波形曲线如图所示,则原点o 的振动方程为[ ] (A ))2cos(50.0ππ+=t y (B ))22cos(50.0ππ-=t y(C ))22cos(50.0ππ+=t y (D ))24cos(50.0+=t y3、如图所示为一简谐波在0=t 时刻的波形图,波速200=u s m ,则图中o 点的振动加速度的表达式为[ ](A ))2cos(4.02πππ-=t a (SI)(B ))23cos(4.02πππ-=t a (SI)(C ))2cos(4.02πππ--=t a (SI) (D ))22cos(4.02πππ+-=t a (SI) 4、沿x 轴正向传播的平面简谐波,周期为T ,波源的振幅是10.m ,当0=t 时坐标原点处质点的位移为10.m ,则在T t 45=时该波的波形为图中的[ ])5、在弦线上有一简谐波,其表达式为]3)2002.0(2cos[100.221ππ+-⨯=-x t y (SI),为了在此弦线上形成驻波,并且在0=x 处为一波节,此弦线上还应有一简谐波,其表达式为[ ](A )]3)2002.0(2cos[100.222ππ++⨯=-x t y (B )]32)2002.0(2cos[100.222ππ++⨯=-x t y(C )]34)2002.0(2cos[100.222ππ++⨯=-x t y(D )]3)2002.0(2cos[100.222ππ-+⨯=-x t y6、如图所示,一平面简谐波沿x 轴正方向传播,已知P 点的振动方程为)cos(0ϕω+=t A y ,则波动方程为[ ] (A )])(cos[0ϕω+--=ul x t A y(B )])(cos[0ϕω+-=u xt A y(C ))(cos u x t A y -=ω (D )])(cos[0ϕω+-+=ulx t A y7、一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中[ ](A )它的动能转换成势能; (B )它的势能转换成动能; (C )它从相邻的一段质元获得能量,其能量逐渐增大; (D )它的动能、势能同时减小。

大学物理 第10章练习答案

大学物理 第10章练习答案

第十章 稳 恒 磁 场10-1 两根无限长直导线相互垂直地放置在两正交平面内,分别通有电流I 1=2A ,I 2=3A ,如图所示。

求点M 1和M 2处的磁感应强度。

图中AM 1=AM 2=lcm ,AB=2cm.。

解:无限长电流的磁感应强度为dIB πμ=20,两无限长 电流在点M 1和M 2处的磁感应强度相互垂直,合磁感 应强度为)3(10232221201I I I B M +⨯πμ=-T 551047.414102--⨯+⨯= )(1022221202I I I B M +⨯πμ=-T 551021.794102--⨯+⨯= 10-2一无限长的载流导线中部被弯成圆弧形,圆弧半径R=3cm ,导线中的电流I=2A , 如图所示,求圆弧中心O 点的磁感应强度。

解:两半无限长电流在O 点产生的磁感应强度 方向相同,叠加为•πμ⨯=方向 4201RIB O 3/4圆电流在O 点产生的磁感应强度为⊗μ⨯=方向 24302RI B O O 点的合磁感应强度为⊗⨯=⨯⨯⨯⨯⨯π=πμ=+=-方向 T 101.80.43 10322104 ) 1- 43( 25-27-021R I B B B O O O 10-3图中三棱柱面高h =1.0m ,底面各边长分别为ab=0.6m ,bc=0.4m ,ac=0.3m ,沿ad 边有直长导线,导线申通有电流I=4A 。

求通过cbef 面的磁通量。

解:通过cbef 面的磁通量应与通过gbje 面的磁通量相当 ag=ac=0.3m ,有 hdx x 2I d 6.03.00⎰⎰πμ=⋅φSS B =0.30.6ln20πμ=Ih Wb 1054.5n2 21104 7--7⨯=π⨯⨯π=l10-4两根平行直长导线载有电流I 1=I 2=20A 。

试求(1)两导线所在平面内与两导线等距的一点A 处的磁感应强度;(2)通过图中矩形面积的磁通量。

图中r 1=r 3=10cm ,r 2=20cm ,l =25cm 。

大学物理第十章

大学物理第十章

练习十八 阻尼 受迫 共振 波动方程一.选择题1.有一悬挂的弹簧振子,振子是一个条形磁铁,当振子上下振动时,条形磁铁穿过一个闭合圆线圈A(如图18.1所示), 则此振子作(A) 等幅振动. (B) 阻尼振动. (C) 强迫振动.(D) 增幅振动.2.频率为100Hz,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距(A) 2m . (A) 2.19m . (B) 0.5 m .(D) 28.6 m .3.一圆频率为ω 的简谐波沿x 轴的正方向传播, t =0时刻的波形如图18.2所示. 则t =0时刻, x 轴上各质点的振动速度v 与坐标x 的关系图应为图18.3中哪一图?4. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若波速为u ,则此波的波动方程为(A) y=A cos{ω [t -(x 0-x )/u ]+ ϕ0} . (B) y=A cos{ω [t -(x -x 0)/u ]+ ϕ0} . (C) y=A cos{ω t -[(x 0-x )/u ]+ ϕ0} .(D) y=A cos{ω t +[(x 0-x )/u ]+ ϕ0} .5. 如图18.4所示为一平面简谐波在t = 0时刻的波形图,该波的波速u =200m/s ,则P 处质点的振动曲线为图18.5中哪一图所画出的曲线?< < k 图18.1v (m/s)O1 x (m)ωA(A)·(D)(C)图18.3二.填空题1.一列余弦横波以速度u 沿x 轴正方向传播, t 时刻波形曲线如图18.6所示,试分别指出图中A 、B 、C 各质点在该时刻的运动方向:A ;B ; C .2.已知一平面简谐波沿x 轴正向传播,振动周期T =0.5s, 波长λ=10m,振幅A =0.1 m . 当t =0时波源振动的位移恰好为正的最大值. 若波源处为原点, 则沿波传播方向距离波源为λ/2处的振动方程为y = ; 当t=T /2时, x=λ/4处质点的振动速度为 .3.一简谐波的频率为5×104Hz, 波速为1.5×103m/s,在传播路径上相距5×10-3m 的两点之间的振动相位差为 .三.计算题1.图18.7所示一平面简谐波在t =0时刻的波形图,求 (1) 该波的波动方程 ;(2) P 处质点的振动方程 .2.某质点作简谐振动,周期为2s, 振幅为0.06m, 开始计时(t =0)时, 质点恰好处在负向最大位移处, 求(1) 该质点的振动方程;(2) 此振动以速度u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动方程 ; (3) 该波的波长.练习十九 波的能量 波的干涉一.选择题1.一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如图19.1. 则x =0处的振动方程为(A) y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) .(D)(C)(A)(B)图18.5图18.6-图18.7ux (m)y (10-2m)· · · · · ·· 0 51015 20 25 -2图19.1图19.3(C) y =2×10-2cos(πt /2+π/2) ( S I ) . (D) y =2×10- 2cos(πt -3π/2) ( S I ) .2.一列机械横波在t 时刻的波形曲线如图19.2所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ′, b , d, f . (B) a , c , e , g . (C) o ′, d . (D) b , f .3.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零, 势能最大. (B) 动能为零, 势能为零. (C) 动能最大, 势能最大. (D) 动能最大, 势能为零.4.如图19.3所示为一平面简谐机械波在t 时刻的波形曲线. 若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小. (D) 各点的波的能量密度都不随时间变化.5. 如图19.4所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是:(A) 0 . (B) π . (C) π /2 . (D) 3π/2 . 二.填空题1.一列平面简谐波沿x 轴正方向无衰减地传播, 波的振幅为2×10-3m, 周期为0.01s, 波速为400 m/s, 当t =0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为 .2.一个点波源位于O 点, 以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2. 在两个球面上分别取相等的面积∆S 1和∆S 2 ,则通过它们的平均能流之比21 P P = .3.如图19.5所示,在平面波传播方向上有一障碍物AB,根据yx 波速u时刻t 的波形 · · ·· · · ··oo ′ a bc def g 图19.2P1 2图19.4A B图19.5惠更斯原理,定性地绘出波绕过障碍物传播的情况. 三.计算题1.如图19.6所示,三个同频率,振动方向相同(垂直纸面)的简谐波,在传播过程中在O 点相遇,若三个简谐波各自单独在S 1、S 2和S 3的振动方程分别为y 1=A cos(ω t +π/2)y 2=A cos ω ty 3=2A cos(ωt -π/2)且S 2O=4λ ,S 1O=S 3O=5λ(λ为波长),求O 点的合成振动方程(设传播过程中各波振幅不变).2.如图19.7,两列相干波在P 点相遇,一列波在B 点引起的振动是 y 10=3×10 –3cos2πt ( SI )另一列波在C 点引起在振动是y 20=3×10 –3cos(2πt +π/2) ( SI )BP =0.45m , CP =0.30m, 两波的传播速度 u=0.20m/s, 不考虑传播中振幅的减小,求P 点合振动的振动方程.练习二十 驻波 声波 多普勒效应一.选择题1.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A) λ/4 .(B) λ/2 . (C) 3λ/4 .(D) λ .2.某时刻驻波波形曲线如图20.1所示,则a 、b 两点的相位差是(A) π. (B) π/2. (C) 5π /4. (D) 0.3.沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ) y 2=A cos2π (νt + x /λ)叠加后形成的驻波中,波节的位置坐标为(A) x =±k λ . (B) x =±k λ/2 . (C) x =±(2k +1)λ/2 . (D) x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….S3 图19.6图19.7图21.14.如果在长为L 、两端固定的弦线上形成驻波,则此驻波的基频波的波长为 (A) L /2 . (A) L . (B) 3L /2 . (D) 2L .5.一机车汽笛频率为750 Hz , 机车以时速90公里远离静止的观察者,观察者听到声音的频率是(设空气中声速为340m/s) :(A) 810 Hz . (A) 699 Hz . (B) 805 Hz . (D) 695 Hz . 二.填空题1.设平面简谐波沿x 轴传播时在x = 0 处发生反射,反射波的表达式为y 2=A cos[2π (νt -x /λ) +π /2] .已知反射点为一自由端,则由入射波和反射波形成驻波波节的位置坐标为 .2.设沿弦线传播的一入射波的表达式是y 1=A cos[2π (νt -x /λ) +ϕ]在x =L 处(B 点)发生反射,反射点为固定端(如图20.2), 设波在传播和反射过程中振幅不变,则弦线上形成的驻波表达式为 y = .3.相对于空气为静止的声源振动频率为νs ,接收器R 以速率v R 远离声源,设声波在空气中传播速度为u , 那么接收器收到的声波频率νR = . 三.计算题1.在绳上传播的入射波方程为 y 1=A cos (ω t +2π x /λ).入射波在x =0处的绳端反射, 反射端为自由端,设反射波不衰减,求驻波方程.2.设入射波的方程式为 y 1=A cos2π (x /λ+t /T ) .在x =0处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的方程式; (2)合成的驻波方程式; (3)波腹和波节的位置 .练习二十一 振动和波习题课一.选择题1.图21.1中三条曲线分别表示简谐振动中的位移x ,速度v,加速度a ,下面哪个说法是正确的?(A) 曲线3, 1, 2分别表示x , v , a 曲线. (B) 曲线2, 1, 3分别表示x , v , a 曲线.图20.2(C) 曲线1, 3, 2分别表示x , v , a 曲线. (D) 曲线2, 3, 1分别表示x , v , a 曲线. (E) 曲线1, 2, 3分别表示x , v , a 曲线.2.用余弦函数描述一简谐振子的振动,若其速度-时间(v -t )关系曲线如图21.2所示,则振动的初相位为(A) π / 6 . (B) π / 3. (C) π / 2. (D) 2π / 3. (A) 5π / 6 .3.一质点作简谐振动,周期为T , 质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为(A) T / 4 . (B) T /12 . (C) T / 6 . (D) T / 8 .4.一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中 (A) 它的势能转换成动能. (B) 它的动能转换成势能.(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加. (D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.5.在弦上有一简谐波,其表达式是y 1=2.0×10-2cos[2π ( t / 0.02-x / 20) +π / 3] ( SI )为了在此弦线上形成驻波, 并且在x =0处为一波节,此弦线上还应有一简谐波, 其表达式为:(A) y 2=2.0×10-2cos[2π ( t / 0.02 + x / 20) +π / 3] ( SI ) (B) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20) +2π / 3] ( SI ) (C) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20) +4π / 3] ( SI ) (D) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20)-π / 3] ( SI )二.填空题1.在静止的升降机中,长度为l 在单摆的振动周期为T 0 ,当升降机以加速度a =g /2竖直下降时,摆的振动周期T = .2. .如图21.3所示,一平面简谐波沿O x 轴负方向传播,波长为λ, 若P 处质点的振动方程是图21.3y P =A cos(2πνt +π /2) .则该波的波动方程是 .P 处质点 时刻的振动状态与O 处质点t 1 时刻的振动状态相同.3一平面简谐波沿O x 轴传播,波动方程为y =A cos[2π (νt -x /λ) +ϕ]则: x 1=L 处介质质点振动初相位是 ;与x 1处质点振动状态相同的其它质点的位置是 ;与x 1处质点速度大小相同,但方向相反的其它各介质质点的位置是 . 三.证明题1. 如图21.4所示,在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处,然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动,试证:(1) 此物体作简谐振动.(2) 此简谐振动的周期 T =2πg R . 四.计算题1.在实验室中做驻波实验时,使一根长3m 张紧的弦线的一端沿垂直长度方向以60H Z 的频率作简谐振动,弦线的质量为60×10-3kg , 如果在这根弦线上产生有四个波腹很强的驻波,必须对这根弦线施加多大的张力?练习十八 阻尼 受迫 共振 波动方程一.选择题B C D C A二.填空题1. 向下,向上; 向上.2. 0.1cos(4πt -π) (SI); -1.26m/s.3. π/3.三.计算题1.(1)原点处质点在t =0时刻y 0=A cos ϕ0=0 v 0=-A ωsin ϕ0>0所以 ϕ0=-π/2. 而 T=λ/v=0.40/0.08=5(s) 故该波的波动方程为y=0.04cos[2π( t/5-x/0.4)-π/2] (SI)(2) P 处质点的振动方程y P =0.04cos[2π( t/5-0.2/0.4)-π/2]图21.4= 0.04cos(0.4π t -3π/2) (SI)2.(1)取该质点为坐标原点O. t =0时刻y 0=A cos ϕ0=-A v 0=-A ωsin ϕ0=0得ϕ0=π. 所以振动方程为y O =0.06cos(2π t/2+π)=0.06cos(π t +π) (SI)(2) 波动方程为y =0.06cos[π(t -x/u )+π]=0.06cos[π(t -x/2)+π] (SI)(3) λ=uT =4(m)练习十九 波的能量 波的干涉一.选择题A B C B B二.填空题1. y =2×10-3cos(200πt -πx/2-π/2).2. R 22/R 12.3.三.计算题1. y 1=A cos[ω(t -l 1/u )+π/2]= A cos[2π(t/T -l 1/λ)+π/2]= A cos[2π(t/T -5λ/λ)+π/2] = A cos(ω t +π/2)同理 y 2=A cos ω ty 3=2A cos(ωt -π/2) 利用旋转矢量图和矢量加法的多边形法(如图),则可知合振动振幅及初位相为A ,-π/4.故合振动方程为y =2A cos(ωt -π/4)2. 两列相干波在P 点引起的振动分别是 y 1=3×10-3cos[2π(t -l 1/u )]=3×10-3cos(2πt -9π/2) =3×10-3cos(2πt -π/2)y 2=3×10-3cos[2π(t -l 2/u ) +π/2]=3×10-3cos(2πt -3π+π/2)= 3×10-3cos(2πt -π/2)所以合振动方程为y = y 1+ y 2= 6×10-3cos(2πt -π/2) (SI)练习二十 驻波 多普勒效应A 1A 2A 3 Ay O -π/4 ⎭一.选择题B C D D B二.填空题1. x=(k+1/2)(λ/2), k=0,1,2,3,….2.2A cos(2πx/λ±π/2-2πL/λ)·cos(2πνt±π/2+ϕ-2πL/λ) .3. νs(u-v R)/u.三.计算题1. 入射波在x =0处引起的振动为y10=A cos (ω t+2π 0/λ)= A cosω t因反射端为自由端,所以反射波波源的振动y20= A cosω t反射波方程为y2=A cos (ω t-2πx/λ)驻波方程为y= y1+ y2= A cos (ω t+2πx/λ)+ A cos (ω t-2πx/λ)=2A cos 2πx/λcosω t2.(1) 入射波在x =0处引起的振动为y10=A cos2π(0/λ+ t/T)= A cos2πt/T因反射端为固定端,所以反射波波源的振动为y20= A cos(2πt/T-π) 反射波方程为y2=A cos[2π(t/T- x/λ)-π]= A cos[2π(x/λ- t/T)+π](2)合成的驻波方程式y=y1+y2=A cos[2π(x/λ+t/T)]+A cos[2π(x/λ-t/T)+π]=2A cos(2πx/λ+π/2)cos(2πt/T-π/2)(3)对于波腹,有2πx/λ+π/2=nπ故波腹位置为x= (n-1/2)λ/2 (n=1,2,3,…)对于波节,有2πx/λ+π/2=nπ+π/2故波节位置为x= n λ/2 (n=1,2,3,…)练习二十一振动和波习题课一.选择题 E A B C C二.填空题1. 2T0.2. -2πL/λ+ϕ·; L±kλ(k=1,2,3,…);L±(k+1/2)λ(k=1,2,3,…).3. y=A cos{2π[νt+( x+L) /λ]+π/2}t1+L/(λν)+ k/ν(k=0,±1,±2,±3,…){或t1+L/(λν)}三.计算题1.设绳张力为T ,线密度为μ,则波速为u=()m Tl l m T T ==μ=λνT=λ2ν2m/l因弦线上产生有四个波腹很强的驻波,所以l=4·λ/2=2λ λ=l/2 T=λ2ν2m/l=l ν2m/4=162N四.证明题1.(1) 设小球向右摆动为角坐标θ正向.摆动过程中小球受重力和弧形轨道的支持力. 重力的切向分力使小球获得切向加速度.当小球向右摆动θ角时, 重力的切向分力与θ相反,有-mg sin θ=ma t =mR d 2θ/d t 2当作小幅度运动时,sin θ ≈θ, 有d 2θ/d t 2+(g/R ) θ=0故小球作间谐振动 θ=θA cos(R g t +ϕ) (2)周期为 T=2π/ω=2π /R g =2πg RⅣ 课堂例题一.选择题1. 一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为2m 的物体,则系统振动周期T 2等于(A) 2 T 1 (B) T 1(C) T 12/ (D) T 1 /2 (E) T 1 /42. 一简谐振动曲线如图所示.则振动周期是 (A) 2.62 s . (B) 2.40 s .(C) 2.20 s . (D) 2.00 s .3. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A))3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234c o s (2π+π=t x .(D))3234c o s (2π-π=t x .--(E) )4134cos(2π-π=t x4.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m . (B) 波长为3 m . (C) a 、b 两点间相位差为2π . (D) 波速为9 m/s .5. 两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前2π,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) 2π. (C) π. (D) 23π.6. 在波长为λ 的驻波中,两个相邻波腹之间的距离为 (A) λ /4. (B) λ /2. (C) 3λ /4. (D) λ . 二.填空题1.质量为m 物体和一个轻弹簧组成弹簧振子,其固有振动周期为T. 当它作振幅为A 自由简谐振动时,其振动能量E = ____________.2.两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位差φ1 - φ2为____________.3.一物体同时参与同一直线上的两个简谐振动:)314c o s (05.01π+π=t x (SI) , )324c o s (03.02π-π=t x (SI)合成振动的振幅为__________________m .4.一平面简谐波沿x 轴正方向传播,波速u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________; 频率ν = ____________.5.设沿弦线传播的一入射波的表达式为S 1S 2Pλ/4)-y (m )]2c o s [1λωxt A y π-=,在处(B 点)发生反射,反射点为自由端(如图).设波在传播和反射过程中振幅不变,则弦上形成的驻波的表达式是y = ______________________________.6.一列火车以20 m/s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在机车前和机车后所听到的声音频率分别为____________和__________(设空气中声速为340 m/s ).三.计算题1.图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 (1) 坐标原点处介质质点的振动方程; (2) 该波的波动表达式.2.图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.3.一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.(m ) -4.如图,一角频率为ω,振幅为A的平面简谐波沿x轴正方向传播,设在t = 0时该波在原点O处引起的振动使媒质元由平衡位置向y轴的负方向运动.M是垂直于x轴的波密媒质反射面.已知OO'= 7 λ /4,PO'= λ /4(λ为该波波长);设反射波不衰减,求:(1) 入射波与反射波的表达式;;(2)P点的振动方程.附Ⅴ振动和波习题课课堂例题解答一.选择题 DBCCCB 二.填空题1、 222/2T mA π2、 10 、π-213、 0.024、 0.8 m 0.2 m 125 Hz5、 )2cos()22cos(2λωλλLt LxA π-π-π6、 637.5 Hz 、 566.7 Hz三.计算题1、解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时 刻,O 处质点φcos 0A =, φωs i n 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为 )24c o s (2/ππ-=νA A所以244πππ-=-ν, ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI) (2) 波速u = 20 /2 m/s = 10 m/s波长λ = u /ν = 160 m 波动表达式]21)16016(2c o s [π-+π=xt A y (SI)2、解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 2π-=φ 又==u T /λ 5 s 故波动表达式为]2)4.05(2cos[04.0π--π=x t y (SI)(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=t y P )234.0c o s (04.0π-π=t (SI)3、解:(1) x = λ /4处)22cos(1ππ-=t A y ν , ))22cos(22ππ+=t A y ν ∵y 1,y 2反相∴合振动振幅 A A A A s =-=2,且合振动的初相φ 和y 2的初相一样为2π. 合振动方程 )22cos(ππ+=t A y ν(2)x = λ /4处质点的速度)2cos(2)2 2sin(2/d d v ππππππ+=+-==t A t A t y νννν4、解:设O 处振动方程为)cos(0φω+=t A y当t = 0时, y 0 = 0,v 0 < 0,∴ 2π=φ ∴ )2cos(0π+=t A y ω 故入射波表达式为)22c o s (λωx t A y ππ-+=在O ′处入射波引起的振动方程为 )c o s ()4722c o s (1πππ-=⋅-+=t A t A y ωλλω由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴ )cos(1π+π-='t A y ωt A ωcos = 反射波表达式)](2cos[x O O t A y -'π-='λω)]47(2cos[x t A -π-=λλω ]22cos[π+π+=x t A λω合成波为 y y y '+=]22cos[]22cos[π+π++π+π-=x t A x t A λωλω)2cos(2cos2π+π=t x A ωλ将P 点坐标 λλλ234147=-=x 代入得P 点的振动方程)2cos(2π+-=t A y ω。

大学物理 第十章 波动部分习题

大学物理 第十章 波动部分习题

第十章 波动一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。

振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。

2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u x ω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。

ux ω表示x 处的质点比原点处的质点所落后的相位。

4、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。

简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。

5. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。

6. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。

驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有的相位差。

7 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络面就是该时刻的波振面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 波动
18
物理学
第五版
第十章 习题
19 一警车以25m·-1的速度在静止的空 s 气中行驶,假设车上警笛的频率为800Hz. 求: (1)静止站在路边的人听到警车驶近和离 去时的警笛声波频率; (2)如果警车追赶一辆速度为15m·-1的客 s 车,则客车上人听到的警笛声波频率是多 少?(设空气中声速为u=330m·-1 ) s
y
A O -A
u
x
第十章 波动
2
物理学
第五版
第十章 习题
3 一横波在沿绳子传播时的波动方程 为 y 0.20 cos 2.50t x) 式中y和x的单位 , ( 为 m , t的单位为s.(1) 求波的振幅、波速、 频率及波长;(2)求绳上的质点振动时的最 大速度;(3)分别画出t 1s 和 t 2s 时的波 形,并指出波峰和波谷.画出 x 1.0m 处质点的 振动曲线并讨论其与波形图的不同.
8
物理学
第五版
第十章 习题
9 一平面简谐波,波长为12m,沿x轴负向 传播.图示为 x 1.0m处质点的振动曲线,求 此波的波动方程.
y/m 0.4 0.2
O
5.0
t/s
第十章 波动
9
物理学
第五版
第十章 习题
10 图中(I)是 t 0 时的波形图, (II)是 t 0.1s 时的波形图. 已知T>0.1s, 写出波动方程表达式.
3 kg m ,求(1)该波的能流密度;(2)
1min内垂直通过4.0×10-4m2的总能量.
第十章 波动
13
物理学
第五版
第十章 习题
14 如图所示,两相干波源分别在P,Q 两点,它们发出频率为ν ,波长为 λ ,初 相相同的两列相干波,设PQ=3λ / 2 , R 为PQ连线上的一点.求:(1)自P、Q发 出的两列波在R处的相位差;(2)两波 在R处干涉时的合振幅.
r1
第十章 波动
16
物理学
第五版
第十章 习题
17 如图所示, 0 处有一运动方程为 x y A cos t 的平面波波源,产生的波沿x轴正、 负方向传播MN为波密介质的反射面,距波源 3λ / 4.求:(1)波源所发射的波沿波源O左右 传播的波动方程;(2)在MN处反射波的波动 方程;(3)在O~MN区域内形成的驻波方程, 以及波节和波腹的位置;(4)区域内合成波 M 的波动方程.
O
3λ 4
第十章 波动
x
17
N
物理学
第五版
第十章 习题
18 一弦上的驻波方程式为 y 0.03 cos ( .6x) 550 t ) ,式中y的单位为 m ,t的单位 1 cos( 为s.(1)若将次驻波看成是由传播方向相反、
振动及波速均相同的两列相干波叠加而成的, 求它们的振幅及波速;(2)求相邻波节之间的 距离;(3)求 t 3.0 10 3 s 时位于 x 0.625 m 处 质点的振动速度.
第十章 波动
19
物理学
第五版
第十章 习题
20 一次军事演习中,有两艘潜艇在水 中相向而行,甲的速度为50.0km·-1,乙的 h 速度为70.0km·-1,如图所示.甲潜艇发出一 h 个1.0×103Hz的声音信号,设声波在水中的 传播速度为5.47×103km·-1,试求:(1)乙 h 潜艇接收到的信号频率;(2)甲潜艇接收 到的从乙潜艇反射回来的信号频率.
第十章 习题
5 已知一波动方程为 y 0.05 sin( 10t 2 x) 式中y的单位为 m ,t的单位为s. (1)求波长、频 率、波速和周期; (2)说明 x 0 时方程的意义, 并 作图表示.
第十章 波动
5
物理学
第五版
第十章 习题
6 有一平面简谐波在空间传播. 已知在波 线上某点B的运动规律为y A cos(t ) ,就 图(a)(b)(c)给出的三种坐标取法,分 别列出波动方程.并用这三个方程来描述与B相 距为b 的P点的运动规律.
物理学
第五版
第十章 习题
16 图示是干涉型消声器结构的原理图,利 用这一结构可以消除噪声.当发动机排气噪声声 波经管道到达A点时,分成两路而在点B 相遇, 声波因干涉而相消. 如果要消除频率为300Hz的 发动机排气噪声,求图中弯道与直管长度差r r2 r1 至少应为多少?(设声波速度为340m·-1) s
物理学
第五版
第十章 习题
1 图(a)表示 t 0 时的简谐波的波形图,波 沿x轴正方向传播,图(b)为一质点的振动曲线. 则图(a)中所表示的 x 0 处质点振动的初 相位与 图(b)所表示的振动的初相位分别为( )
(A)均为零
(D) 与
y
(B)
均为 2
2

u
2
y
x
(C) 均为 2 与 (E) 2 2
第十章 波动
3
物理学
第五版
第十章 习题
4 波源作简谐运动,其运动方程 为 y 4.0 103 cos 240t ,式中y的单位为 m ,t的单位为s. 它所形成的波以 30 m s 1 的速度沿一直线传播.(1) 求波的周期、 及波长;(2) 写出波动方程.
第十章 波动
4
物理学
第五版
y/m
0.10 0.05
P
10.0m
x/m
O
-0.10
第十章 波动
7
物理学
第五版
第十章 习题
8 如图所示为一平面简谐波在 t 0 时刻 的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.
y/m
u 0.08m s 1
O -0.04
0.20
0.40
0.60 x / m
第十章 波动
y
u
u
y
y
u
B O
b
P (a)
x
P
b
B O
x
B O l
b
P
x
(b)
第十章 波动
(c)
6
物理学
第五版
第十章 习题
7 图示为平面简谐波在t 0 时的波形图,设此 简谐波的频率为250Hz ,且此时图中点P的运动 方向向上. 求(1)该波的波动方程;(2)在距原点为 7.5m处质点的运动方程与 t 0 该点的振动速度.
第十章 波动
11
物理学
第五版
第十章 习题
12 为了保持波源的振动不变,需要消 耗4.0W的功率.若波源发出的是球面波(设 介质不吸收波的能量).求距离波源5.0m和 10.0m处的能流密度.
第十章 波动
12
物理学
第五版
第十章 习题
13 有一波在介质中传播,其波速 u 1.0 10 3 m s 1,振幅 A 1.0 10 4 m,频率 ν 1.0 10 3 Hz .若介质的密度为 ρ 8.0 10 2
y/m 0.10
I
II
u
O -0.10
0.20
0.40
0.60 x / m
第十章 波动
10
物理学
第五版
第十章 习题
11 平面简谐波的波动方程为
y 0.08 cos( 4t 2x),式中y的单位为m, t的单位为s.求:(1) t 2.1s 时波源及距波 源0.10m两处的相位; (2)离波源0.80m及 0.30m说明两处的相位.
O
(a)
O
(b)
第十章 波动
t
1
物理学
第五版
第十章 习题
2 一平面简谐波沿x 轴负方向传播,角频 T 率为 ω ,波速为u .设 t 时刻的波形如图 4 所示,则该波的表达式为( )
x x (A)y A cos[ω(t ) ] (B) y A cos[ω(t u) 2 ] u x x (C)y A cos[ω(t ) ] (D)y A cos[ω(t ) ] u 2 u
) 甲 50.0km·-1 h
第十章 波动
)
)
)
)
)
)
乙 70.0km·-1 h
20
λ
P
3 λ 2
QHale Waihona Puke R第十章 波动14
物理学
第五版
第十章 习题
15 两相干波波源位于同一介质中的A、 B两点,如图所示,其振幅相等、频率皆为 100Hz,B比的相位超前 .若A、B相距 30.0m,波速为400m·-1, 试求A、B连线上因 s 干涉而静止的各点的位置.
A 30m
B
x
第十章 波动
15
相关文档
最新文档