材料力学总结

合集下载

(完整版)材料力学重点总结

(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。

2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构件内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3。

材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。

5。

材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构件安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。

2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

3) 截面法:将内力转化成“外力”。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形轴向拉压扭转弯曲外力外力合力作用线沿杆轴线力偶作用在垂直于轴的平面内外力作用线垂直杆轴,或外力偶作用在杆轴平面内力轴力:N规定:拉为“+”压为“-”扭转:T规定:矩矢离开截面为“+”反之为“-”剪力:Q规定:左上右下为“+”弯矩:M规定:左顺右逆为“+”微分关系:qdxdQ;QdxdM应力几何方面变形现象:平面假设:应变规律:dxld常数变形现象:平面假设:应变规律:dxd弯曲正应力弯曲剪应力变形现象:平面假设:应变规律:y应力公式ANPITtWTmaxZIM yZWMmaxbIQSbIQSzzzmaxmax*应力分布应用条件等直杆外力合力作用线沿杆轴线圆轴应力在比例极限内平面弯曲应力在比例极限内应力-应变关系E(单向应力状态)G(纯剪应力状态)强度条件nANumaxmax塑材:su脆材:bumaxmaxtWT弯曲正应力1.ctmax2.ctccmactt max弯曲剪应力bISQzmaxmaxmax轴向拉压扭转弯曲刚度条件max180PGIT注意:单位统一yy maxmax变形EAN dxl d ;EANL LEA —抗拉压刚度ZGIT dx d PGITL GI p —抗扭刚度EIx M x )()(1EIx M y)(''EI —抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩形A=bh 6;1223bh W bhI ZZ实心圆A=42d 16;3234dW dI tP32;6434dW dI ZZ空心圆)1(422DA)1(16)1(324344dW d I tP)1(6444dI Z )1(3243dW Z其它公式(1)'(2))1(2E G剪切(1)强度条件:AQ A —剪切面积(2)挤压条件:bsJbsbsA P A j —挤压面积矩形:A Q23max圆形:A Q 34max环形:AQ 2maxmax均发生在中性轴上二、还有:(1)外力偶矩:)(9549m N n N m N —千瓦;n —转/分(2)薄壁圆管扭转剪应力:tr T 22(3)矩形截面杆扭转剪应力:hb G T hb T32max;三、截面几何性质(1)平行移轴公式:;2A a I I ZCZ abAI I cc Y Z YZ(2)组合截面:1.形心:ni ini ci i cA y A y 11;ni ini cii cA z A z 112.静矩:ci i Zy A S ;cii y z A S 3. 惯性矩:iZ ZI I )(;iy yI I )(四、应力分析:(1)二向应力状态(解析法、图解法)a .解析法:b.应力圆::拉为“+”,压为“-”:使单元体顺时针转动为“+”:从x 轴逆时针转到截面的法线为“+”2sin 2cos 22xyx y x 2cos 2sin 2xyxyxxtg 2222minmax22xy x y xc :适用条件:平衡状态(2)三向应力圆:1m a x;3min ;231maxxyxnD'DAcB(3)广义虎克定律:)(13211E )(1zy xxE )(11322E )(1xz y y E )(12133E)(1yx z z E*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态1.纯剪切应力状态:1,02,32.一种常见的二向应力状态:2231222234r 2243r 五、强度理论破坏形式脆性断裂塑性断裂强度理论第一强度理论(最大拉应力理论)莫尔强度理论第三强度理论(最大剪应力理论)第四强度理论(形状改变比能理论)破坏主要因素单元体内的最大拉应力单元体内的最大剪应力单元体内的改变比能破坏条件b1smaxfsfuu 强度条件131适用条件脆性材料脆性材料塑性材料塑性材料*相当应力:r11r ,313r ,][212132322214r 13x六、材料的力学性质脆性材料<5%塑性材料≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段强度指标bs,塑性指标,Etg拉压扭低碳钢断口垂直轴线剪断s b铸铁拉断断口垂直轴线b剪断拉断断口与轴夹角45o b七.组合变形类型斜弯曲拉(压)弯弯扭弯扭拉(压)简图公式)sincos(yZ IzIyMWMAP][4223r][3224r][4)(223NMr][3)(224NMr强度条件)sincos(maxmaxyZ WWM][WMAP maxmaxmax][圆截面][223ZWTMr][75.0224ZWTMr22)(4)(3tZ WTANWMr][22)(4)(4tZ WTANWMr][中性轴tgIIZytgyZyZyZeiAeIy2*bsαe4545o中性轴ZαMp滑移线与轴线45,剪断只有s,无b八、压杆稳定欧拉公式:2min2)(l EI P cr,22Ecr,应用范围:线弹性范围,cr <p ,>p柔度:iul ;E;ba s,柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓>p ——大柔度杆:22Ecro <<p ——中柔度杆:cr=a-b <0——小柔度杆:cr =s稳定校核:安全系数法:w Icr n P P n ,折减系数法:][AP 提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度;断裂特征:断裂前无显著塑性变形;断口特征:断口成光滑区和粗糙区。

工程力学-材料力学部分总结

工程力学-材料力学部分总结

5. 梁弯曲变形计算
(1)积分法
EIz EIz M dx C
EIz Mdx dx Cx D
(2)叠加法
边界条件确定
约束条件 光滑连续条件
作图规律
无外力段 外

q=0
均布载荷段
q>0
q<0
集中力 集中力偶
P
m
c
c
水平直线
Q Q>0 图Q 特
Q<0
Q
上升直线
下降直线
自左向右, 突变与P同
2
( 3
Q
Q
Q Q1

X
X
X
X
X
c
Q2
Q1-Q2=P
M 上升直线 下降直线 开口向上曲线 开口向下曲线 M 转折
图M
M
M
M
M


X
X
X
X
cX
无变化
Q
X
c
自左向右, 突变与M同
M M1
cX
M2 M1-M2=m
6 静不定问题 (1)静不定问题的求解步骤
判断系统静不定的次数
建立变形协调方程 力与变形间的物理关系
EIz
y My EIz
max
max
M max
Wz
FS max
S
z
Izb
w w max
max
1. 一些基本概念
(1)变形固体的四个基本假设及其作用
(2)应力、应变的概念
应力 正应力σ 切应力τ
应变
线应变ε 切应变γ
(3)内力分析的截面法及其求解步骤
2. 一些基本定理
45

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。

因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。

应力的单位是帕斯卡(Pa),即XXX/平方米。

第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。

应变分为线性应变和非线性应变两种。

线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。

非线性应变则不满足这个比例关系。

2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。

3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。

XXX模量的大小反映了材料的柔软程度和刚度。

杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。

综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。

构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。

截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。

胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。

应力是指在截面m-m上某一点K处的力量。

它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。

其中,σ称为正应力,τ称为切应力。

将应力的比值称为微小面积上的平均应力,用表示。

在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。

杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。

某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。

(完整版)材料力学各章重点内容总结

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

材料力学重点总结要点

材料力学重点总结要点

材料力学重点总结要点1、材料力学的任务:解决安全可靠与经济适用的矛盾。

研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。

2、材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构件内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3、材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力应变:反映杆件的变形程度变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4、物理关系、本构关系虎克定律;剪切虎克定律:适用条件:应力~应变是线性关系:材料比例极限以内。

5、材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E,剪切弹性模量G,泊松比v,塑性材料与脆性材料的比较:变形强度抗冲击应力集中塑性材料流动、断裂变形明显拉压的基本相同较好地承受冲击、振动不敏感脆性无流动、脆断仅适用承压非常敏感6、安全系数、许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构件安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数。

塑性材料脆性材料7、材料力学的研究方法1)所用材料的力学性能:通过实验获得。

2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

3)截面法:将内力转化成“外力”。

运用力学原理分析计算。

8、材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。

1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域具有重要的意义。

以下是对材料力学主要知识点的总结。

一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。

在拉伸或压缩时,杆件的内力称为轴力。

通过截面法可以求出轴力的大小,轴力的正负规定为拉力为正,压力为负。

胡克定律描述了应力与应变之间的线性关系,在弹性范围内,应力与应变成正比,即σ =Eε,其中σ为正应力,ε为线应变,E 为材料的弹性模量。

材料在拉伸和压缩过程中会经历不同的阶段。

低碳钢的拉伸实验是研究材料力学性能的重要手段,其拉伸曲线可分为弹性阶段、屈服阶段、强化阶段和颈缩阶段。

通过拉伸实验可以得到材料的屈服极限、强度极限等重要力学性能指标。

二、剪切与挤压剪切是指在一对大小相等、方向相反、作用线相距很近的横向外力作用下,杆件的横截面发生相对错动的变形形式。

剪切面上的内力称为剪力,其大小可以通过截面法求得。

在工程中,通常还需要考虑连接件的挤压问题。

挤压面上的应力称为挤压应力,其大小与挤压面的面积和外力有关。

三、扭转扭转是指杆件受到一对大小相等、方向相反、作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线发生相对转动的变形形式。

圆轴扭转时,横截面上的内力为扭矩。

扭矩的正负规定为右手螺旋法则,拇指指向截面外为正,指向截面内为负。

根据材料力学的理论,圆轴扭转时横截面上的切应力呈线性分布,最大切应力发生在圆周处。

四、弯曲弯曲是指杆件在垂直于轴线的外力或外力偶作用下,轴线由直线变为曲线的变形形式。

梁在弯曲时,横截面上会产生弯矩和剪力。

弯矩的正负规定为使梁下侧受拉为正,上侧受拉为负;剪力的正负规定为使截面顺时针转动为正,逆时针转动为负。

弯曲正应力和弯曲切应力是弯曲问题中的重要应力。

弯曲正应力沿截面高度呈线性分布,最大正应力发生在截面的上下边缘处。

弯曲切应力在矩形截面梁中,其分布规律较为复杂,但在一些常见的情况下,可以通过公式进行计算。

材料力学总结

材料力学总结

材料力学阶段总结一. 材料力学的一些基本概念1.材料力学的任务:解决安全可靠与经济适用的矛盾。

研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。

2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构件内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。

5. 材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V E G +=12塑性材料与脆性材料的比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构件安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数。

塑性材料 []ssn σσ= s σσ=0脆性材料 []b bn σσ= b σσ=07. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。

2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

材料力学总结

材料力学总结

r
dA
max
Wp
Ip
max
Wt 称作抗扭截面系数,单位为 mm3 或 m3.
扭转强度条件 (Strength Condition)
1. 数学表达式(Mathematical formula) 2.强度条件的应用
max
Tmax [ ] Wp
(Application of strength condition)
内 容 问 题
对 象
构 基
轴向 拉压
件 变 形
弯曲

剪切

拉压 弯

偏心 拉压


弯扭 组合
扭转
斜弯 曲
强 度 计 算
外力 分析 内力 计算 内力 图 应力 计算 强度 计算

同基本 变形
刚度计算 压杆稳定

压杆分类 临界应力计算 临界力计算

稳定计算
结 束
一、轴向拉伸与压缩总 结
一、轴向拉伸与压缩总结
相当应力(Equivalent stress)
把各种强度理论的强度条件写成统一形式
r 称为复杂应力状态的相当应力.
σr [ ]
r1 1
σ r 2 σ1 μ ( σ 2 σ 3 ) σ r 3 σ1 σ 3 1 σr 4 [( σ1 σ 2 )2 (σ 2 σ 3 )2 (σ 3 σ1 )2 ] 2
因此,该轴满足强度要求.
·
例题2 图示等直杆,已知直径d=40mm,a=400mm,材料的剪切弹性 模量G=80GPa,DB=1°. 试求: (1) AD杆的最大切应力; (2)扭转角 CA Me 解:画扭矩图 Tmax= 3Me D C B A 2Me 3Me

材料力学总结

材料力学总结

拉压: 1、应力:NF Aσ=(横截面) 2cos ασσα=,1sin 22ατσα=(斜截面)2、应变:Eσε=(纵向应变)'v εε=-(横向应变)3、伸长量:()()()N N F x dx F ll E x A x EA==⎰(EA 为抗拉压刚度) 4、外力做功:012W Fd F ==⎰ 5、拉伸应变能:220()2()()2lN N F x dx F lV E x A x EAε==⎰ 6、任意截面位移:0()()()()il Ni Ni ii i F x F x dxE x A x =∑⎰(单位荷载法)剪切: 1、 应力:ssF A τ= 扭转:1、 扭力偶矩:260nP M Mπω==(M 方向:右手螺旋) 2、 薄壁扭转:(2)T dA r r dA r r τττπδ=⋅=⋅=⋅⎰⎰壁厚0110r δ≤横截面上的切应力均匀分布,与半径垂直,指向与扭矩的转向一致。

3、 应变:Gτγ=(2(1)EG μ=+G 剪切弹性模量,μ泊松比,E 弹性模量)4、 圆杆扭转:2AAAd d T dA G dA G dA dx dx ρϕϕρτρρρ==⋅⋅=⎰⎰⎰(极惯性矩2p AI dA ρ=⎰) p d T G G dx I ρρϕρτγρ===,max max p p pT TR T I I W ρτ===(p p I W R =抗扭截面系数) 5、 扭转角:p p llT Tld dx GI GI ϕϕ===⎰⎰(p GI 抗扭刚度) 单位长度扭转角'pTlGI ϕϕ==(rad/m )6、 外力做功:012W Td T ϕϕϕ==⎰7、 扭转应变能:220()2()()2lt pp T x dx T lV G x I x GI ==⎰ 8、 任意截面扭转角:0()()()()il i i ii Pi T x T x dxG x I x =∑⎰(单位荷载法)9、 切应力互等定理(shearing stress theorem ):单元体两个相互垂直平面上的切应力同时存在,且大小相等,都指相(或背离)该两平面的交线。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是工程学科中的重要基础学科,它研究材料在外力作用下的力学性能和变形规律。

在工程实践中,对材料力学知识的掌握对于设计和制造具有重要意义的工程结构和材料具有重要的指导作用。

本文将对材料力学的一些重要知识点进行总结,以便于工程技术人员更好地掌握这一学科的核心内容。

1.应力和应变。

在材料力学中,应力和应变是两个最基本的概念。

应力是单位面积上的力,它描述了材料受力情况的强度。

而应变则是材料在受力作用下的形变程度,是长度、面积或体积的变化与原始长度、面积或体积的比值。

应力和应变是描述材料受力行为的重要物理量,对于材料的选取和设计具有重要的指导意义。

2.弹性力学。

弹性力学是研究材料在外力作用下的弹性变形规律的学科。

在弹性力学中,材料在受到外力作用后会发生弹性变形,而当外力消失时,材料会恢复到原始状态。

弹性力学研究材料的弹性模量、泊松比等重要参数,这些参数对于材料的选取和设计具有重要的指导作用。

3.塑性力学。

与弹性力学相对应的是塑性力学,它研究材料在受到外力作用后发生的塑性变形规律。

塑性变形是指材料在受到外力作用后发生的不可逆变形,这种变形会导致材料的形状和尺寸发生永久性的改变。

塑性力学研究材料的屈服强度、抗拉强度等重要参数,这些参数对于材料的加工和成形具有重要的指导作用。

4.断裂力学。

断裂力学是研究材料在受到外力作用下发生断裂的规律的学科。

材料的断裂是由于外力作用超过了其承受能力而导致的,断裂力学研究材料的断裂韧性、断裂强度等重要参数,这些参数对于材料的安全设计和使用具有重要的指导作用。

5.疲劳力学。

疲劳力学是研究材料在受到交变载荷作用下发生疲劳破坏的规律的学科。

在实际工程中,材料往往要经受交变载荷的作用,如果这种载荷作用时间足够长,就会导致材料的疲劳破坏。

疲劳力学研究材料的疲劳寿命、疲劳极限等重要参数,这些参数对于材料的使用寿命和安全具有重要的指导作用。

总之,材料力学是工程学科中的重要基础学科,它研究材料在外力作用下的力学性能和变形规律。

材料力学性能重点总结

材料力学性能重点总结

名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。

2弹性比功:表示金属材料吸收弹性变形功的能力。

3滞弹性:在弹性围快速加载或卸载后,随着时间延长产生附加弹性应变的现象。

4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5塑性:金属材料断裂前发生塑性变形的能力。

常见塑性变形方式:滑移和孪生6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。

7比例极限:应力与应变保持正比关系的应力最高限。

8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈服强度。

9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂过程,在裂纹扩展过程中不断的消耗能量。

韧性断裂的断裂面一般平行于最大切应力并于主应力成45度角。

10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。

断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。

11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。

12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。

13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓“缺口效应“①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。

②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。

8缺口敏感度:有缺口强度的抗拉强度σbm与等截面尺寸光滑试样的抗拉强度σb的比值. NSR=σbn / σs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:强度是材料抵抗外部载荷引起的破坏的程度,通常使用屈服强度、抗拉强度和抗压强度来评价。

强度越高,材料越能承受外部载荷。

2.韧性:韧性是材料在受力时发生塑性变形以及能够吸收能量的能力。

材料具有较高的韧性时,能够在受到巨大应力时仍然保持不破裂。

3.硬度:硬度是材料抵抗表面破坏的能力,也可以理解为材料的抗刮伤能力。

硬度可以衡量材料的耐磨性和耐磨损能力。

4.弹性模量:弹性模量是材料在受力后恢复原状的能力,可以评估材料在受力后的变形程度。

弹性模量越大,材料的刚性越高。

5.延展性:延展性是材料在受力时能够发生塑性变形而不破坏的能力。

延展性高的材料可以更好地适应复杂应力和形状变化。

6.断裂韧性:断裂韧性是材料在受到外部载荷时能够抵抗破坏的能力。

它是强度和韧性的综合指标,可评估材料在极限条件下的断裂性能。

7.蠕变性:蠕变性是材料在长期受力情况下发生的塑性变形。

材料的蠕变性能评估了其在高温和持续应力下的稳定性。

8.疲劳性:疲劳性是材料在受到反复应力循环后发生破坏的能力。

疲劳性能评估了材料在长期使用过程中的可靠性和耐久度。

9.冲击韧性:冲击韧性是材料在受到突然冲击加载时抵抗破坏的能力。

它可以评估材料在极端工作条件下的抗冲击性能。

10.耐腐蚀性:耐腐蚀性是材料抵抗环境介质侵蚀和化学反应的能力。

材料的耐腐蚀性能评估了其在特定环境中的稳定性和使用寿命。

以上是材料力学性能的重点总结,它们通常都与材料的微观结构、成分、加工工艺和使用条件有关。

通过评估和选择材料的力学性能,可以确保材料在各种应用中具有足够的强度、韧性和稳定性。

2024年材料力学性能总结(三篇)

2024年材料力学性能总结(三篇)

2024年材料力学性能总结摘要:材料力学性能是材料科学研究中非常重要的一个方面,它描述了材料在力学作用下的行为和性能。

2024年,随着科学技术的进步和工程需求的不断提高,材料力学性能也将取得许多重要的突破和进展。

本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。

关键词:材料力学性能;2024年;发展总结;应用展望一、引言材料力学性能是材料科学研究中的一个重要方向,它考察材料在外力作用下的响应和变形行为。

材料力学性能的研究不仅对于理论研究有重要意义,也对工程应用具有重要影响。

2024年,随着科学技术的不断进步,材料力学性能也将迎来许多新的挑战和机遇。

本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。

二、材料力学性能的发展总结2024年,预计会有以下几个方面的材料力学性能发展和突破:1.高强度材料的研发随着科技进步和工程需求的不断提高,对于高强度材料的需求将越来越迫切。

2024年,预计会有许多新型的高强度材料得到开发和研究。

这些材料不仅具有优良的力学性能,还具有其他良好的特性,如轻质、高温稳定性等。

这些高强度材料的研发和应用将对于航空航天、汽车和能源等领域具有重要的意义。

2.新型复合材料的研究复合材料是一种具有多种材料组成的材料,它的力学性能往往比单一材料更优越。

2024年,预计会有许多新型的复合材料被研发和应用。

这些新型复合材料具有更好的强度、刚度和韧性,并且可以具备一些其他功能,如导电性、光学性能等。

这些新型复合材料的研究将有助于解决一些工程问题,同时也为制造行业提供更多的选择。

3.纳米材料的应用拓展纳米材料是一种具有纳米尺度结构的材料,具有许多特殊的力学性能。

2024年,预计纳米材料的应用范围将进一步拓展。

纳米材料不仅可以应用于催化剂、传感器等领域,还可以用于制备高强度和高韧性材料。

纳米材料的研究将有助于改进传统材料的性能,并带来许多新的应用领域。

材料力学重点总结

材料力学重点总结

材料力学重点总结材料力学是研究材料在外力作用下的力学性能及其相互关系的学科。

它是工程力学的重要分支之一,对于了解材料的力学特性以及工程结构的设计和优化具有重要意义。

以下是材料力学的重点总结。

一、材料的应力和应变1.应力:指材料内部的内力,由外力作用引起,分为正应力和剪应力。

正应力指垂直于截面的力与截面面积的比值,剪应力指与截面平行的截面积的比值。

2.应变:指材料在外力作用下的变形程度,分为线性弹性应变和非线性塑性应变。

线性弹性应变指应力与应变呈线性关系,非线性塑性应变指应力与应变不呈线性关系。

3.弹性模量:指材料在弹性阶段内应力与应变之间的比值,用于衡量材料的刚度。

二、材料的弹性力学行为1.长度-应力关系:根据胡克定律,应力与应变成正比,比例系数为弹性模量。

2.应力-应变关系:应力与应变呈线性关系,斜率为弹性模量。

当材料处于线性弹性阶段时,可以使用胡克定律进行分析和计算。

3.杨氏模量:指材料在线性弹性阶段内应力与应变沿任意方向之比,衡量材料的各向同性。

三、材料的塑性力学行为1.屈服强度:指材料开始发生塑性变形的临界应力值。

在应力达到屈服强度后,材料开始发生塑性应变。

2.延伸率和断裂应变:延伸率是材料拉伸至破坏前的变形倍数,断裂应变是材料发生破坏时的应变。

3.曲线弹性模量:由于塑性变形引起曲线弹性阶段的模量发生变化,称为曲线弹性模量。

四、材料的断裂力学行为1.断裂韧性:指材料在断裂前吸收的能量。

韧性高的材料能够承受较大的变形和吸能。

2.断裂强度:指材料在断裂前所能承受的最大应力值。

断裂强度高的材料具有较好的抗拉强度。

3.断裂模式:材料断裂具有不同的模式,如拉断、剪断、脱层、断裂面韧裂等。

五、材料的疲劳力学行为1.疲劳强度:指材料在循环载荷下发生疲劳破坏的临界应力水平。

疲劳强度与材料的强度和韧性都有关。

2.疲劳寿命:指材料在特定应力水平下能够循环载荷的次数。

疲劳寿命与材料的疲劳强度和循环载荷有关。

3.疲劳断口特征:材料在发生疲劳破坏时产生的断裂面特征,如河床样貌、斜粒子形貌等。

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学知识点总结

材料力学知识点总结

p
F A
F cos cos A
将应力 pα 分解为两个分量:
沿截面法线方向的正应力 p cos cos2
2.符号的规定 (1)α 角
沿截面切线方向的切应力
p
sin
2
sin2
(2)正应力: 拉伸为正 压缩为负
(3)切应力 对研究对象任一点取矩
三、强度条件 杆内的最大工作应力不超过材料的许用应力
A ,断口处的最小横截面积为 A1 .
l1 l 100%
伸长率
l
A A1 100%
断面收缩率
A
≧5%的材料,称作塑性材料
<5%的材料,称作脆性材料
§2-5 拉压杆的变形计算
*补充*
一、 纵向变形
1. 纵向变形 Δl l1 l
Δl 2. 纵向应变 l
姚小宝
二、横向变形
1. 横向变形 b b1 b
§1-3 力、应力、应变和位移的基本概念
一、 外力
体积力
1. 按作用方式分
表面力
集中力
分布力 静载荷 2. 按随时间变化分
交变载荷 动载荷
冲击载荷 二、 内力
1. 定义: 指由外力作用所引起的、物体内相邻部分之间相互作用力(附加内力)。 2. 内力的求法 —— 截面法 步骤:
① 截开: 在所求内力的截面处,假想地用截面将杆件一分为二. ②代替: 任取一部分,其弃去部分对留下部分的作用,用作用在截 面上相应的内力(力或力偶)代替. ③平衡: 对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面 上的未知内力(此时截开面上的内力对所留部分而言是外力).
§1-2 变形固体的基本假设 一、连续性假设: 物质密实地充满物体所在空间,毫无空隙。 二、均匀性假设: 物体内,各处的力学性质完全相同。 三、各向同性假设: 组成物体的材料沿各方向的力学性质完全相同。 四、小变形假设: 材料力学所研究的构件在载荷作用下的变形与原始尺寸

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:材料的强度是指材料在外力作用下抵抗破坏的能力。

常用于评估材料抗拉强度、抗压强度、抗弯强度等。

强度与材料内部结构关系紧密,常用措施是通过原子间结合力和晶粒结构的稳定性提高强度。

2.韧性:材料的韧性是指承受冲击负载时材料能够发生塑性变形而不发生断裂的能力。

韧性与材料断裂韧度有关,断裂韧度越高,材料的韧性越好。

韧性的提高可以通过增加材料的塑性变形能力来实现,例如降低材料的晶界和相界的应力集中。

3.硬度:材料的硬度是指材料抵抗外部划痕或压痕的能力。

硬度可以用于评价材料的耐磨性和抗划伤性能。

通常,硬度较高的材料具有较好的耐磨性和较高的抗划伤能力。

硬度可以通过提高材料的晶粒尺寸和强化材料的位错密度来改善。

4.塑性:材料的塑性是指材料在受力后能够发生可逆性的非弹性形变的能力。

塑性变形是材料在受力过程中重要的变形方式,可以提高材料的韧性和变形能力。

材料的塑性与材料的熔点、晶粒尺寸和晶粒形态等因素有关。

5.疲劳寿命:材料的疲劳寿命是指材料在循环加载下能够承受的应力循环次数。

疲劳寿命是材料设计和选择的重要指标,特别是在机械和航空领域中。

疲劳寿命与材料中的微观缺陷、动态应力等因素密切相关。

6.脆性:材料的脆性是指材料在受力时容易发生断裂的性质。

脆性材料在受力作用下会发生紧急的破坏,通常不会发生明显的可逆塑性变形。

与韧性材料相比,脆性材料更容易发生断裂。

材料的脆性取决于材料中的缺陷结构和应力分布。

总的来说,材料力学性能是评价材料质量的重要指标。

强度、韧性、硬度、塑性、疲劳寿命和脆性是材料力学性能的关键指标。

合理设计和选择材料可以改善材料力学性能,提高材料的耐久性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学总结材料力学名词解释及填空名词解释1、Stress(应力)the force per unit area , or intensity of the force distributed over a given section, is called stress. σ=F/A2、normal stress(正应力)The internal force is therefore normal to the plane of the section and the corresponding stress is described as the normal stress.3、Shearing stress(剪应力)The internal force is the shear on the plane of the section and the corresponding stress is described as the shearing stress.4、Linear Strain(应变)The normal strainεin a member can be defined as the deformation of the meter of the per unit length.8、effective length (有效长度)is defined as real length multiplied by factor of length9、principle plane(主平面)is the plane in which the shearing stress equals zero, and normal stresses achieve maximum or minimum.Principle stress(主应力)The normal stress which is exerted on the principle plane is called the principle stress.10、Radius of radius of gyration【revolution】(惯性半径)of an area can be calculated by the following formula i=I/AWhere i =the moment of inertia of an areaA=the area of an cross section11、isotropic materials (各向同性材料)are the materials whose elastic constants are independent of direction.12、homogeneous materials (均匀性材料)are the materials whose elastic properties are the same everywhere.13、The strain energy density(应变能密度)The strain energy in the unit volume can be defined as the strain energy density.14、Hooke’s law (胡克定律)may be expressed more fully by saying that1】when the stress increases,the measured strain increases in the same ratio2】when the stress diminishes, the measured strain diminishes in the same ratio3】when the stress is removed, no strain can be measuredFor a small deformation,the stress is directly proportional to the strain.15、Hooke’s law for shearing stress(剪切胡克定律)The relation τ=Gγis known as Hooke’s law for shearing stress. Strain and constant Gis called the modulus of rigidity or shear modulus of material.16、Generalized Hooke’s law(广义胡可定律)17、Poisson ratio (泊松比)is defined as the ratio of lateral contraction (strain) to longitudinal extension (strain) of a bar under terminal tension.18、factor of safety (安全因数)ultimate load over allowable load19、stress-concentration factor k(应力集中因数K)=maximum stress over average stress20、statically indeterminate problem(静不定问题)is the problem in which the reactions and internal forces can not be determined by staticonly , analysis of deformation is needed.21、neutral surface(中性层)is defined as the surface between the top and bottom of a beam in which longitudinal line do not change.22、Neutral axis (中性轴)①The neutral surface intersects a transverse section along a straight line called the neutral axis of the section.②The intersection of the neutral surface with a transverse section is called the neutral axis of the section.23、principle of superposition(叠加原理)for all linear systems (a beam can be modeled as a linear system ),24、the quantity the term λ=μl /i (柔度) is known as the slenderness ratio of the column. Where μl= effective lengthi= the radius of gyration25、The theory of strength(强度理论)The assumption concerning the damage or the losing effect of the material is called the theory of strength.26、buckling (失稳)A stage when the column suddenly becomes sharply curved instead of remaining straight as the load is applied is called buckling.27、The critical force (临界压力)The value of the compressive force which is right on the boundary between the stable balance and the unstable balance is called the critical force.28、The critical stress (临界应力)The corresponding stress of the critical force is described as the critical force.29、Euler’s Formula (欧拉公式)Euler’s Formula can be expressed asFcr=π²EI/le²in which: Fcr denotes the critical loadE denotes the modulusI denotes the minimum moment of inertia of areale denotes the equivalent length30、Assumption for a bar (拉压的平面假设) The hypothesis assumes that the section keeps being a plane after deformation.31、Assumption for torsion (扭转平面假设) When a circular shaft is subjected to a torsion, every cross section remains plane and undamaged.32、Assumption for bending (弯曲平面假设) Under bending, the cross section of the beam remains plane and has a constant curvature. And the new cross section still perpendicular to axis.32、极惯性矩The polar moment of inertia of an area is defined as the polar moment of inertia of an area with respect to a point as the integral Ip=∫ρ²dA33、惯性矩The moment of inertia of an area is defined as the second moment of the area with respect to an axis as the integral I=∫y²dA.34、静矩The static moment of an area is defined as the first moment of an area with respect to an axis as the integral Sz=∫ydA.填空题1 三个材料假设Homogeneousity assumption 、Continuity assumption 、Isotropy assumption2 三个关系Geometric relation 、Physical relation、Equilibrium relation3 限制梁挠度的三个条件Boundary condition 、Constraint condition、Continuity condition4 三种约束方式1)固定端fixed end2)固定铰支座fixed support of pin joint3)可动铰支座roller support of pin joint5 三种梁1)简支梁simply supported beam2)外伸梁overhang beam3)悬臂梁cantilever beam6 For perfect column, the factor of length for conditions both pinned; both fixed; one fixed the other free; one fixed the other pinned are 1、0.5、2、0.7 respectively.7 The four classic strength theories include maximum tensile stress theory、maximum elongated normal strain theory、maximum shearing stress theory and maximum distortional strain energy theory.8 The tensile diagram of low carbon steel consist of four stages: elastic stage 、yielding stage、hardening stage and necking stage.。

相关文档
最新文档