第3讲 平面向量的数量积及应用举例

合集下载

(福建专用)高考数学总复习 第四章第3课时 平面向量的数量积及平面向量的应用举例课时闯关(含解析)

(福建专用)高考数学总复习 第四章第3课时 平面向量的数量积及平面向量的应用举例课时闯关(含解析)

(福建专用)2023年高考数学总复习 第四章第3课时 平面向量的数量积及平面向量的应用举例课时闯关(含解析)一、选择题1.(2023·宁德质检)已知a =(1,-3),b =(4,6),c =(2,3),那么a ·(b·c )等于( )A .(26,-78)B .(-28,-42)C .-52D .-78解析:选A.a ·(b·c )=(1,-3)×(4×2+6×3)=(26,-78).2.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态,已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,那么F 3的大小为( )A .6B .2C .2 5D .27 解析:选D.F 23=F 21+F 22+2F 1·F 2=28,所以|F 3|=27.3.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),那么a ,b 夹角的余弦值等于( ) A.865 B .-865C.1665 D .-1665解析:选 C.b =(2a +b )-2a =(-5,12),易求得|a |=5,|b |=13,那么cos 〈a ,b 〉=4,3·-5,125×13=1665. 4.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,那么三角形ABC 的形状一定是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形解析:选C.由(BC →+BA →)·AC →=|AC →|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,∴AC →·2BA →=0,∴AC →⊥BA →,∴∠A =90°.应选C.5.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ),假设m ⊥n ,且a cos B +b cos A =c sin C ,那么角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3解析:选C.由m ⊥n 可得m·n =0,即3cos A -sin A =0,所以角A =π3,B =2π3-C . 由a cos B +b cos A =c sin C 得sin C =1,所以C =π2,故B =π6. 二、填空题6.假设平面上三点A 、B 、C 满足|AB →|=3,|BC →|=4,|CA →|=5,那么AB →·BC →+BC →·CA →+CA →·AB→的值等于________.解析:由AB →+BC →+CA →=0可得(AB →+BC →+CA →)2=0,∴9+16+25+2(AB →·BC →+BC →·CA →+CA →·AB →)=0,AB →·BC →+BC →·CA →+CA →·AB →=-25.答案:-257.设非零向量a =(x,2x ),b =(-3x,2),且a ,b 的夹角为钝角,那么x 的取值范围________. 解析:∵a ,b 的夹角为钝角,∴a·b =x ·-3x +2x ·2=-3x 2+4x <0,解得x <0或x >43.① 又由a ,b 共线且反向可得x =-13,② 由①②得x 的范围是⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,0∪⎝ ⎛⎭⎪⎫43,+∞. 答案:⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,0∪⎝ ⎛⎭⎪⎫43,+∞ 8.(2023·合肥质检)关于平面向量a ,b ,c ,有以下几个命题:①(a ·b )c -(c ·a )b =0;②|a |-|b |<|a -b |(a 、b 不共线);③(b ·c )a -(c ·a )b 不与c 垂直;④假设非零向量a 和b 满足|a |=|b |=|a -b |,那么a 与a +b 的夹角为60°.其中真命题的序号为________(写出所有真命题的序号).解析:平面向量的数量积不满足结合律,故①假;由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,而三角形的两边之差小于第三边,故②是真命题;因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,所以垂直,故③假;由|a |=|b |=|a -b |,再结合平行四边形法那么可得a 与a +b 的夹角为30°,命题④假. 答案:②三、解答题9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)假设AB →=a ,AC →=b ,求△ABC 的面积.解:(1)由(2a -3b )·(2a +b )=61,得4|a |2-4a·b -3|b |2=61.将|a |=4,|b |=3代入上式,求得a·b =-6.所以cos θ=a·b |a ||b |=-64×3=-12. 又因为0≤θ≤π,所以θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a·b +|b |2=13,所以|a +b |=13.(3)由(1)知,∠BAC =θ=2π3,|AB →|=|a |=4,|AC →|=|b |=3, 所以S △ABC =12|AC →||AB →|si n ∠BAC =3 3. 10.已知点A (2,0),B (0,2),C (cos α,sin α),且0<α<π.(1)假设|OA →+OC →|=7,求OB →与OC →的夹角;(2)假设AC →⊥BC →,求tan α的值.解:(1)因为|OA →+OC →|=7,所以(2+cos α)2+sin 2α=7,所以cos α=12. 又因为α∈(0,π),所以α=∠AOC =π3. 又因为∠AOB =π2,所以OB →与OC →的夹角为π6. (2)AC →=(cos α-2,sin α),BC →=(cos α,sin α-2).因为AC →⊥BC →,所以AC →·BC →=0,所以cos α+sin α=12,① 所以(cos α+sin α)2=14,所以2sin αcos α=-34. 又因为α∈(0,π),所以α∈⎝ ⎛⎭⎪⎫π2,π. 因为(cos α-sin α)2=1-2sin αcos α=74, cos α-sin α<0,所以cos α-sin α=-72.② 由①②得cos α=1-74,sin α=1+74,所以tan α=-4+73.一、选择题1.向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a ×b 是一个向量,它的模|a ×b |=|a |·|b |·sin θ,假设a =(-3,-1),b =(1,3),那么|a ×b |等于( )A. 3 B .2C .2 3D .4解析:选B.∵|a |=|b |=2,a·b =-23,∴cos θ=-232×2=-32. 又θ∈[0,π],∴sin θ=12.∴|a ×b |=2×2×12=2. 2.(2023·泉州调研)在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,那么△ABC 为( ) A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形解析:选D.非零向量BC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,即角A 的平分线垂直于BC ,∴AB =AC ,又cos A =AB →|AB →|·AC →|AC →|=12,∠A =π3,所以△ABC 为等边三角形. 二、填空题3.如图,AB 是半圆O 的直径,C ,D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点.假设OA =6,那么MD →·NC →的值是________.解析:MD →·NC →=(OD →-OM →)·(OC →-ON →)=OD →·OC →-OM →·OC →-OD →·ON →+OM →·ON → =6×6×cos60°-6×2×cos120°-6×2×cos 120°+2×2×cos180°=26. 答案:264.设向量a ,b ,c 满足|a |=|b |=1,a·b =-12,〈a -c ,b -c 〉=60°,那么|c |的最大值等于________.解析:设向量a ,b ,c 的起点为O ,终点分别为A ,B ,C ,由已知得,∠AOB =120°,∠ACB =60°,那么点C 在△AOB 的外接圆上,当OC 经过圆心时,|c |最大,在△AOB 中,求得AB =3,由正弦定理得△AOB 外接圆的直径是3sin120°=2,故|c |的最大值是2.答案:2三、解答题5.已知平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32. (1)证明:a ⊥b ;(2)假设存在不同时为零的实数k 和t ,使x =a +(t 2-3)·b ,y =-ka +tb ,且x ⊥y ,试求函数关系式k =f (t );(3)据(2)的结论,确定函数k =f (t )的单调区间.解:(1)证明:因为a·b =3×12+(-1)×32=0, 所以a ⊥b .(2)因为x ⊥y ,所以x·y =0,所以[a +(t 2-3)b ]·(-ka +tb )=-ka 2+[t -k (t 2-3)]a·b +t (t 2-3)b 2=0.因为|a |=2,|b |=1,a ⊥b ,所以-k ×4+t (t 2-3)=0,即k =14(t 3-3t )(t ≠0). (3)由(2)知f (t )=14(t 3-3t ),故f ′(t )=14(3t 2-3), 令f ′(t )>0得t >1或t <-1,令f ′(t )<0得-1<t <1且t ≠0.所以函数k =f (t )的单调递增区间为(1,+∞)和(-∞,-1),单调递减区间为(-1,0)和(0,1).6.已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4. (1)假设m·n =1,求cos ⎝ ⎛⎭⎪⎫2π3-x 的值; (2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解:(1)∵m·n =1,即3sin x 4cos x 4+cos 2x 4=1, 即32sin x 2+12cos x 2+12=1,∴sin ⎝ ⎛⎭⎪⎫x2+π6=12.∴cos ⎝ ⎛⎭⎪⎫2π3-x =cos ⎝ ⎛⎭⎪⎫x -2π3=-cos ⎝ ⎛⎭⎪⎫x +π3=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=2·⎝ ⎛⎭⎪⎫122-1=-12.(2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C . ∴2sin A cos B -cos B sin C =sin B cos C ,∴2sin A cos B =sin(B +C ),∵A +B +C =π,∴sin (B +C )=sin A ,且sin A ≠0, ∴cos B =12,B =π3,∴0<A <2π3.∴π6<A2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A2+π6<1.又∵f (x )=m·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12.故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.。

平面向量的数量积与平面向量应用举例_图文_图文

平面向量的数量积与平面向量应用举例_图文_图文

三、向量数量积的性质
1.如果e是单位向量,则a·e=e·a. 2.a⊥b⇔ a·b=0 .
|a|2
4.cos θ=
.(θ为a与b的夹角)
5.|a·b| ≤ |a||b|.
四、数量积的运算律
1.交换律:a·b= b·a . 2.分配律:(a+b)·c= a·c+b·c . 3.对λ∈R,λ(a·b)= (λa)·b= a·(λb.) 五、数量积的坐标运算
∴a与c的夹角为90°. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直,∴(a+b)·(ka-b)=0, 即ka2+ka·b-a·b-b2=0. ∴k-1+ka·b-a·b=0. 即k-1+kcos θ-cos θ=0(θ为a与b的夹角). ∴(k-1)(1+cos θ)=0.又a与b不共线, ∴cos θ≠-1.∴k=1. [答案] (1)B (2)1
解析:(1) a=(x-1,1),a-b=(x-1,1)-(-x+1,3)= (2x-2,-2),故a⊥(a-b)⇔2(x-1)2-2=0⇔x=0或2 ,故x=2是a⊥(a-b)的一个充分不必要条件.
答案: (1)B (2)D
平面向量的模 [答案] B
[答案] D
[典例总结]
利用数量积求长度问题是数量积的重要应用,要掌 握此类问题的处理方法:
[巩固练习]
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)
的一个充分不必要条件是
()
A.x=0或2
B.x=2
C.x=1
D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),
向量d如图所示,则
()
A.存在λ>0,使得向量c与向量d垂直 B.存在λ>0,使得向量c与向量d夹角为60° C.存在λ<0,使得向量c与向量d夹角为30° D.存在λ>0,使得向量c与向量d共线

第三节 平面向量的数量积及平面向量应用举例-高考状元之路

第三节 平面向量的数量积及平面向量应用举例-高考状元之路

第三节 平面向量的数量积及平面向量应用举例预习设计 基础备考知识梳理1.平面向量的数量积 若两个 向量a 与b ,它们的夹角为θ,则数量 叫做a 与b 的数量积(或内积),记作规定:零向量与任一向量的数量积为两个非零向量a 与b 垂直的充要条件是 ,两个非零向量a 与b 平行的充要条件是2.平面向量数量积的几何意义数量积a ·b 等于a 的长度∣a ∣与b 在a 方向上的投影 的乘积.3.平面向量数量积的重要性质=⋅=⋅e a a e )1((2)非零向量⇔⊥b a b a ,,(3)当a 与b 同向时,=⋅b a当a 与b 反向时,=⋅b a =⋅a a , =||a=θcos )4(||)5(b a ⋅.|||b a4.平面向量数量积满足的运算律=⋅b a )1( (交换律);=⋅=⋅)())(2(b a b a λλ (A 为实数);=+c b a ).)(3(5.平面向量数量积有关性质的坐标表示设向量),,(),,(2211y x b y x a ==则=⋅b a 由此得到:(1)若),,(y x a =则=2||a ,或=||a(2)设),,(),,(2211y x B y x A 则A ,B 两点间的距离=||AB =||(3)设),,(),,(2211y x b y x a ==则⇔⊥b a典题热身1.下列四个命题中真命题的个数为 ( )①若,0=⋅b a 则;b a ⊥②若,c b b a ⋅=⋅且,0=/b 则⋅=c a);().(C b a c b a ⋅⋅=⋅③.)(222b a b a ⋅=⋅④4.A 2.B 0.c 3.D答案:C2.在△ABC 中,,10,2,3===BC AC AB 则=⋅. ( )23.-A 32.-B 32.c 23.D 答案:D3.已知平面向量b a b a +-=-=λ),2,4(),3,1(与a 垂直,则=λ( )1.-A 1.B2.-c 2.D答案:A4.已知),7,4(),3,2(-==b a 则a 在b 上的投影为( )13.A 513.B 565.c 65.D答案:C5.已知,2)(,6||,1||=-⋅==a b a b a 则向量a 与b 的夹角是( )6π⋅A 4π⋅B 3π⋅c 2π⋅D 答案:C课堂设计 方法备考题型一 平面向量的数量积运算和向量的模【例1】已知向量),2sin ,2(cos ),23sin ,23(cos x x b x x a -==且⋅-∈]4,3[ππx (1)求b a ⋅及|;|b a +(2)若|,|)(b a b a x f +-⋅=求)(x f 的最大值和最小值,题型二 利用向量的数量积求其夹角【例2】已知,21)()(,21,1||=+⋅-=⋅=b a b a b a a 求 (l)a 与b 的夹角;(2)a-b 与a+b 的夹角的余弦值.题型三 利用向量的数量积解决平行与垂直问题【例3】设向量,(cos ),cos 4,(sin ),sin ,cos 4(βββαα===c b a ).sin 4β-(1)若a 与b-2c 垂直,求)tan(βα+的值;(2)求||c b +的最大值;(3)若,16tan tan =βα求证:.//b a题型四 平面向量数量积的应用【例4】已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量),,(b a m =),sin ,(sin A B n = ).2,2(--=a b p(1)若,//n m 求证:△ABC 为等腰三角形;(2)若,p m ⊥边长,2=c 角,3π⋅=C 求△ABC 的面积.技法巧点1.向量数量积性质的应用 向量数量积的性质⇔=⋅⋅=⋅=0,||||cos ,||b a b a b a a a a θ,b a ⊥因此,用平面向量数量积可以解决有关长度、角度、垂直的问题.2.证明直线平行、直线、线段相等等问题的基本方法(1)要证,CD AB =可转化证明22CD =或.||||=(2)要证两线段,//CD AB 只要证存在一实数,0=/λ使等式λ=成立即可.(3)要证两线段,CD AB ⊥只需证.0..= 失误防范1.数量积a ·b 中间的符号“.”不能省略,也不能用“×”来替代.0.2=⋅b a 不能推出0=a ,或.0=b 因为0=⋅b a 时,有可能.b a ⊥)0(.3=/⋅=⋅a c a b a 不能推出.c b =4.一般地,,).()(a c b c b a =/⋅即乘法的结合律不成立.因b a ⋅是一个数量,所以c b a )(⋅表示一个与c 共线的向量,同理右边a c b )(⋅表示一个与a 共线的向量,而a 与c 不一定共线,故一般情况下.)()(a C b c b a ⋅=/⋅5.向量夹角的概念要领会,比如正三角形ABC 中,><,应为,120 而不是.60随堂反馈1.(2011.清远调研)在△ABC 中,已知a ,b ,c 成等比数列,且,43cos ,3==+B c a 则⋅等于 ( ) 23.A 23.-B 3.c 3.-D答案:B2.(2011,台州一模)已知向量a ,b 的夹角为,1||,120=a ,5||=b 则|3|b a -等于( )7.A 6.B 5.C 4.D答案:A3.(2011.湖北高考)若向量),1,1(),2,1(-==b a 则b a +2与b a -的夹角等于( )4.π-A 6π⋅B 4π⋅c 43.πD 答案:C4.(2011.全国卷)设向量a ,b 满足=⋅==b a b a ,1||||,21-则=+|2|b a ( ) 2.A 3.B 5.c 7.D答案:B5.(2011.江苏高考)已知21,e e 是夹角为32π的两个单位向量,⋅+=-=2121,2e ke b e e a 若,0=⋅b a 则实数k 的值为 答案:45 高效作业 技能备考一、选择题1.(2010.安徽高考)若向量),21,21(),0,1(==b a 则下列结论中正确的是( ) ||||.b a A = 22.=⋅b a B b a c -.与b 垂直 b a D //. 答案:C2.(2010.重庆高考)若向量a ,b 满足===⋅||,1||,0b a b a ,2则=-|2|b a ( )0.A 22.B 4.C 8.D答案:B3.(2010.四川高考)设点M 是线段BC 的中点,点A 在直线BC 外,如果BC -=+=162那么||等于 ( ) 8.A 4.B 2.C 1.D答案:C4.(2010.辽宁高考)平面上O ,A ,B 三点不共线,若,a =,b =则△OAB 的面积等于( )222)(|.|.b a b a A ⋅- |222)(|.b a b a B ⋅+⋅222)(||||21.b a b a c ⋅-⋅ 222)(21.b a b a D ⋅+⋅ 答案:C5.(2010.杭州质检)向量.2),1,(),2,1(b a c x b a +===,2b a d -=若,//d c 则实数x 的值等于( )21.A 21.-B 61.c 61.-D 答案:A6.(2011.汕头模拟)如图所示,在△ABC 中,=∠==ABC BC AB ,4,30 AD 是边BC 上的高,则. 的值等于( )0.A 4.B 8.c 4.-D答案:B二、填空题7.(2011.天津高考)已知直线梯形ABCD 中,,//BC AD ,90 =∠ADC ,2=AD P BC ,1=是腰DC 上的动点,则|3|+的最小值为答案:58.(2010.浙江高考)若平面向量),0(,b a a b a =/=/满足=||b ,1且a 与b-a 的夹角为,120则||a 的取值范围是答案:)332,0(9.(2011.浙江高考)若平面向量βα、满足,1||,1||≤=βα且以向量βα、为邻边的平行四边形的面积为,21则βα和的夹角θ的取值范围是 答案:]65,6[ππ三、解答题10.(2010.江苏高考)在平面直角坐标系xOy 中,已知点).1,2(),3,2()2,1(----C rB A(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足,0)(=⋅-t 求t 的值.11.(2011.湖南高考)已知向量).2,1(),sin 2cos ,(sin =-=b a θθθ(1)若a∥b,求θtan 的值;(2)若,00|,|||π<<=b a 求θ的值.12.(2011.江苏高考)已知向量]).0,[)(sin ,(cos πααα-∈=OA 向量),5,0(),1,2(-==n m 且).(n OA m -⊥(1)求向量;(2)若,0,102)cos(πβπβ<<=-求).2cos(βα-。

高中数学_平面向量的数量积与平面向量的应用举例教学设计学情分析教材分析课后反思

高中数学_平面向量的数量积与平面向量的应用举例教学设计学情分析教材分析课后反思

平面向量的数量积与平面向量的应用举例教学目的:①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义;②体会平面向量的数量积与向量投影的关系;③掌握数量积的坐标表达式,会进行平面向量数量积的运算;④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用授课类型:新授课教具:多媒体、实物投影仪教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a⋅b等于a的长度与b在a方向上投影|b|cosθ的乘积.4.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1︒e⋅a = a⋅e =|a|cosθ; 2︒a⊥b⇔a⋅b = 03︒当a与b同向时,a⋅b = |a||b|;当a与b反向时,a⋅b = -|a||b|. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+=所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=四、讲解范例:五、设a = (5, -7),b = (-6, -4),求a ·b 及a 、b 间的夹角θ(精确到1o )例2 已知A (1, 2),B (2, 3),C (-2, 5),试判断△ABC 的形状,并给出证明. 例3 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x . 解:设x = (t , s ),由⎩⎨⎧-=+=-⇒-=⋅=⋅429349s t s t b x a x ⎩⎨⎧-==⇒32s t ∴x = (2, -3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值.解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22. 记a 与b 的夹角为θ,则cosθ=22=⋅⋅b a b a 又∵0≤θ≤π,∴θ=4π 评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x -5, y -2) ∵OB ⊥AB ∴x (x -5) + y (y -2) = 0即:x 2 + y 2 -5x - 2y = 0又∵|OB | = |AB | ∴x 2 + y 2 = (x -5)2 + (y -2)2即:10x + 4y = 29 由⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧==-==⇒⎩⎨⎧=+=--+2723232729410025221122y x y x y x y x y x 或 ∴B 点坐标)23,27(-或)27,23(;AB =)27,23(--或)23,27(- 例6 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当A = 90︒时,AB ⋅AC = 0,∴2×1 +3×k = 0 ∴k =23- 当B = 90︒时,AB ⋅BC = 0,BC =AC -AB = (1-2, k -3) = (-1, k -3) ∴2×(-1) +3×(k -3) = 0 ∴k =311 当C = 90︒时,AC ⋅BC = 0,∴-1 + k (k -3) = 0 ∴k =2133± 六、课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( )A.23 B .57 C.63 D.832.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( ) A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( )A.)54,53(或)53,54( B .)54,53(或)54,53(-- C.)54,53(-或)53,54(- D.)54,53(-或)54,53(- 4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = .6.已知A(1,0),B(3,1),C(2,0),且a=BC,b=CA,则a与b的夹角为 .7、对点练习:(2014重庆高考)已知向量a与向量b的夹角为60°,且a=(-2,-6),1b1=√10,则a. b=_______.8、对点练习:已知A(1,2),B(2,3),C(-2,5),试判断△ABC的形状,并给出证明。

第五章第3讲 平面向量的数量积及应用举例

第五章第3讲 平面向量的数量积及应用举例
栏目 导引
第五章 平面向量
平面向量数量积的运算
[典例引领]
(1)(2018·云南省第一次统一检测)在▱ABCD 中,|A→B|=8,
|A→D|=6,N 为 DC 的中点,B→M=2M→C,则A→M·N→M=( )
A.48
B.36
C.24
D.12
栏目 导引
第五章 平面向量
(2)(2017·高考全国卷Ⅱ)已知△ABC 是边长为 2 的等边三角形,
栏目 导引
第五章 平面向量
2.平面向量的数量积 设两个非零向量 a,b 的夹角为 θ,则_|_a_||b_|_·_co_s__θ_叫做 a
定义 与 b 的数量积,记作 a·b _|_a_|c_o_s_θ___叫做向量 a 在 b 方向上的投影,
投影 _|_b_|c_o_s_θ___叫做向量 b 在 a 方向上的投影
栏目 导引
第五章 平面向量
(教材习题改编)已知|a|=5,|b|=4,a 与 b 的夹角为 120°,
则 a·b 为( )
A.10 3
B.-10 3
C.10D.-ຫໍສະໝຸດ 0解析:选 D.a·b=|a|·|b|cos 120°=5×4×cos 120°=20×-12 =-10.故选 D.
栏目 导引
栏目 导引
第五章 平面向量
(2)因为 2a-3b 与 c 的夹角为钝角,所以(2a-3b)·c<0, 即(2k-3,-6)·(2,1)<0,所以 4k-6-6<0,所以 k<3. 又若(2a-3b)∥c,则 2k-3=-12,即 k=-92. 当 k=-92时,2a-3b=(-12,-6)=-6c,即 2a-3b 与 c 反向. 综上,k 的取值范围为-∞,-92∪-92,3 答案:(1)C (2)-∞,-92∪-92,3

平面向量的数量积及平面向量的应用举例

平面向量的数量积及平面向量的应用举例

3.求向量模的常用方法:利用公式 |a|2=a2,将模的运算转化为向量数量 积的运算.
失误防范
1.零向量:(1)0 与实数 0 的区别,不可 写错:0a=0≠0,a+(-a)=0≠0,a·= 0 0≠0;(2)0 的方向是任意的,并非没有方 向,0 与任何向量平行,我们只定义了非 零向量的垂直关系.
课前热身
1.若向量a,b,c满足a∥b 且a⊥c,则c· (a+2b)=( )
A.4
C.2
B.3
D.0
答案:D
2.已知向量 a,b 满足 a· b=0,|a|=1, |b|=2,则|2a-b|=( A.0 C.4 ) B.2 2 D.8
答案:B
3. (2011· 高考大纲全国卷)已知抛物线 C: y2=4x 的焦点为 F,直线 y=2x-4 与 C 交于 A,B 两点,则 cos∠AFB=( 4 3 A. B. 5 5 3 4 C.- D.- 5 5 )
a· b 2 则 cosθ= = = , |a||b| 2 2 1× 2 π 又 θ∈[0,π],∴θ= . 4 π 即 a 与 b 的夹角为 . 4
1 2
(2)∵(a-b)2=a2-2a· 2 b+b 1 1 1 =1-2× + = , 2 2 2 2 ∴|a-b|= , 2 ∵(a+b)2=a2+2a· 2 b+b 1 1 5 =1+2× + = , 2 2 2
量积等于0说明两向量的夹角为直角,
数量积小于0且两向量不共线时两向量
的夹角是钝角.
考点3 两向量的平行与垂直关系
向量的平行、垂直都是两向量关系中 的特殊情况,判断两向量垂直可以借 助数量积公式.如果已知两向量平行 或垂直可以根据公式列方程(组)求解
例3
已知|a|=4,|b|=8,a与b的夹角

2019届高考数学复习平面向量第三节平面向量的数量积及应用举例夯基提能作业本文

2019届高考数学复习平面向量第三节平面向量的数量积及应用举例夯基提能作业本文

第三节平面向量的数量积及应用举例A组基础题组1.已知向量a,b均为单位向量,若它们的夹角是60°,则|a-3b|=( )A.3B.2C. D.2.(2018云南第一次统一检测)在▱ABCD中,||=8,||=6,N为DC的中点,=2,则·=( )A.48B.36C.24D.123.已知平面向量a,b的夹角为,且|a|=,|b|=2,在△ABC中,=2a+2b,=2a-6b,D为BC的中点,则||等于( )A.2B.4C.6D.84.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记I1=·,I2=·,I3=·,则( )A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I35.设单位向量e1,e2的夹角为,a=e1+2e2,b=2e1-3e2,则b在a方向上的投影为.6.(2017山东,12,5分)已知e1,e2是互相垂直的单位向量.若e1-e2与e1+λe2的夹角为60°,则实数λ的值是.7.(2017河北石家庄质量检测(一))已知与的夹角为90°,||=2,||=1,=λ+μ(λ,μ∈R),且·=0,则的值为.8.在平面直角坐标系xOy中,已知向量m=,n=(sin x,cos x),x∈.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为,求x的值.9.如图,已知O为坐标原点,向量=(3cos x,3sin x),=(3cos x,sin x),=(,0),x∈.(1)求证:(-)⊥;(2)若△ABC是等腰三角形,求x的值.B组提升题组1.若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量a+b与a-b的夹角为( )A. B. C. D.2.在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ-(λ∈R),且·=-4,则λ的值为.3.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.(1)求a与b的夹角θ;(2)求|a+b|;(3)若=a,=b,求△ABC的面积.4.在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(cos(A-B),sin(A-B)),n=(cos B,-sin B),且m·n=-.(1)求sin A的值;(2)若a=4,b=5,求角B的大小及向量在方向上的投影.答案精解精析A组基础题组1.D (a-3b)2=|a|2-6a·b+9|b|2=1-6cos 60°+9=7,∴|a-3b|=,故选D.2.C ·=(+)·(+)=·=-=×82-×62=24,故选C.3.A 因为=(+)=(2a+2b+2a-6b)=2a-2b,所以||2=4(a-b)2=4(a2-2b·a+b2)=4×=4,则||=2.4.C 解法一:因为AB=BC,AB⊥BC,∴∠BCO=45°.过B作BE⊥AC于E,则∠EBC=45°.因为AD<DC,所以D、A在BE所在直线的同侧,从而∠DBC>45°,又∠BCO=45°,∴∠BOC为锐角.从而∠AOB为钝角,所以∠DOC为钝角.故I1<0,I3<0,I2>0.又OA<OC,OB<OD,故可设=-λ1(λ1>1),=-λ2(λ2>1),从而I3=·=λ1λ2·=λ1λ2I1,又λ1λ2>1,I1<0,∴I3<I1<0,∴I3<I1<I2.故选C.解法二:如图,建立直角坐标系,则B(0,0),A(0,2),C(2,0).设D(m,n),由AD=2和CD=3,得从而有n-m=>0,∴n>m.从而∠DBC>45°,又∠BCO=45°,∴∠BOC为锐角.从而∠AOB为钝角.故I1<0,I3<0,I2>0.又OA<OC,OB<OD,故可设=-λ1(λ1>1),=-λ2(λ2>1),从而I3=·=λ1λ2·=λ1λ2I1,又λ1λ2>1,I1<0,I3<0,∴I3<I1,∴I3<I1<I2.故选C.5.答案-解析依题意得e 1·e2=1×1×cos=-,|a|===,a·b=(e1+2e2)·(2e1-3e2)=2-6+e1·e2=-,因此b在a方向上的投影为==-.6.答案解析由题意不妨设e 1=(1,0),e2=(0,1),则e1-e2=(,-1),e1+λe2=(1,λ).根据向量的夹角公式得cos 60°===,所以-λ=,解得λ=.7.答案解析根据题意,建立如图所示的平面直角坐标系,则A(0,0),B(0,2),C(1,0),所以=(0,2),=(1,0),=(1,-2).设M(x,y),则=(x,y),所以·=(x,y)·(1,-2)=x-2y=0,所以x=2y,又=λ+μ,即(x,y)=λ(0,2)+μ(1,0)=(μ,2λ),所以x=μ,y=2λ,所以==.8.解析(1)∵m⊥n,∴m·n=0,故sin x-cos x=0,∴tan x=1.(2)∵m与n的夹角为,∴cos<m,n>===,故sin=.又x∈,∴x-∈,则x-=,即x=,故x的值为.9.解析(1)证明:∵-=(0,2sin x),∴(-)·=0×+2sin x×0=0,∴(-)⊥.(2)△ABC是等腰三角形,则AB=BC,∴(2sin x)2=(3cos x-)2+sin2x,整理得2cos2x-cos x=0,解得cos x=0或cos x=.∵x∈,∴cos x=,x=.B组提升题组1.D 由|a+b|=|a-b|可知a⊥b,设=b,=a,如图,作矩形ABCD,连接AC,BD,可知=a+b,=a-b,设AC与BD的交点为O,结合题意可知OA=OD=AD,∴∠AOD=,∴∠DOC=,又向量a+b与a-b的夹角为与的夹角,故所求夹角为,选D.2.答案解析由=2得=+,所以·=·(λ-)=λ·-+λ-·,又·=3×2×cos 60°=3,=9,=4,所以·=λ-3+λ-2=λ-5=-4,解得λ=.3.解析(1)因为(2a-3b)·(2a+b)=61,所以4|a|2-4a·b-3|b|2=61.又|a|=4,|b|=3,所以64-4a·b-27=61,所以a·b=-6,所以cos θ===-.又0≤θ≤π,所以θ=π.(2)|a+b|2=(a+b)2=|a|2+2a·b+|b|2=42+2×(-6)+32=13.所以|a+b|=.(3)因为与的夹角θ=π,所以∠ABC=π-=.又||=|a|=4,||=|b|=3,所以S△ABC=||||·sin∠ABC=×4×3×=3.4.解析(1)由m·n=-,得cos(A-B)cos B-sin(A-B)sin B=-,所以cos A=-,因为0<A<π,所以sin A===.(2)由正弦定理,得=,则sin B===,因为a>b,所以A>B,且B是△ABC一内角,则B=.由余弦定理得(4)2=52+c2-2×5c×,解得c=1,c=-7(舍去),故向量在方向上的投影为||cos B=ccos B=1×=.。

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。

2020年高考数学专题复习平面向量的数量积及应用举例

2020年高考数学专题复习平面向量的数量积及应用举例

第3讲平面向量的数量积及应用举例1.向量的夹角2.平面向量的数量积3.向量数量积的运算律(1)a·b=b·a;(2)(λa)·b=λ(a·b)=a·(λb);(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×在边长为1的等边△ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a ·b +b ·c +c ·a =( ) A .-32B .0C .32D .3解析:选A.依题意有a ·b +b ·c +c ·a =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32,故选A. 已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°解析:选A.由两向量的夹角公式,可得cos ∠ABC =BA →·BC →|BA →|·|BC →|=12×32+32×121×1=32,则∠ABC =30°.(2019·温州市高考模拟)已知向量a ,b 满足|b |=4,a 在b 方向上的投影是12,则a ·b=________.解析:a 在b 方向上的投影是12,设θ为a 与b 的夹角,则|a |·cos θ=12,a ·b =|a|·|b |·cos θ=2.答案:2(2017·高考浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析:法一:(|a +b |+|a -b |)2=(a +b )2+(a -b )2+2|a +b |·|a -b |=2a 2+2b 2+2|a+b |·|a -b |=10+2|a +b |·|a -b |,而|a +b |·|a -b |≥|(a +b )·(a -b )|=|a 2-b 2|=3,所以(|a +b |+|a -b |)2≥16,即|a +b |+|a -b |≥4,即|a +b |+|a -b |的最小值为4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为2 5.法二:由向量三角不等式得,|a +b |+|a -b |≥|(a +b )-(a -b )|=|2b |=4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为2 5.答案:4 2 5平面向量数量积的运算(1)(2017·高考浙江卷) 如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3(2)(2017·高考全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1【解析】 (1) 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.(2) 如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),所以PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2x 2+2(y -32)2-32,当x =0,y =32时,PA →·(PB →+PC →)取得最小值,为-32,选择B.【答案】 (1)C (2)B在本例(2)的条件下,若D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于________.解析:法一:(通性通法)因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =23,在△ABD 中,AD 2=BD 2+AB2-2BD ·AB ·cos 60°=⎝ ⎛⎭⎪⎫232+22-2×23×2×12=289,即AD =273,同理可得AE =273,在△ADE 中,由余弦定理得cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=289+289-⎝ ⎛⎭⎪⎫2322×273×273=1314,所以AD →·AE →=|AD→|·|AE →|cos ∠DAE =273×273×1314=269.法二:(光速解法)如图,建立平面直角坐标系,由正三角形的性质易得A (0,3),D ⎝ ⎛⎭⎪⎫-13,0,E ⎝ ⎛⎭⎪⎫13,0,所以AD →=⎝ ⎛⎭⎪⎫-13,-3,AE →=⎝ ⎛⎭⎪⎫13,-3,所以AD →·AE →=⎝ ⎛⎭⎪⎫-13,-3·⎝ ⎛⎭⎪⎫13,-3=269.答案:269(1)向量数量积的两种运算方法①当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉. ②当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(2)数量积在平面几何中的应用解决涉及几何图形的向量的数量积运算问题时,常利用解析法,巧妙构造坐标系,利用坐标求解.1.(2019·杭州中学高三月考)若A ,B ,C 三点不共线,|AB →|=2,|CA →|=3|CB →|,则CA →·CB →的取值范围是( )A .⎝ ⎛⎭⎪⎫13,3B .⎝ ⎛⎭⎪⎫-13,3C .⎝ ⎛⎭⎪⎫34,3 D .⎝ ⎛⎭⎪⎫-34,3 解析:选D.设|CB →|=x ,则|CA →|=3|CB →|=3x ,由于A ,B ,C 三点不共线,能构成三角形,如图:由三角形三边的性质得,⎩⎪⎨⎪⎧x +3x >23x +2>x x +2>3x,解得12<x <1,由余弦定理的推论得,cos C =AC 2+BC 2-AB 22AC ·BC =x 2+9x 2-46x 2=10x 2-46x2, 所以CA →·CB →=|CA →||CB →|cos C =3x 2×10x 2-46x2=5x 2-2, 由12<x <1得,-34<5x 2-2<3, 故选D.2.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a ·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:12平面向量的夹角与模(高频考点)平面向量的夹角与模是高考的热点,题型多为选择题、填空题,难度适中,属中档题.主要命题角度有:(1)求两向量的夹角; (2)求向量的模; (3)两向量垂直问题;(4)求参数值或范围.角度一 求两向量的夹角(2019·绍兴一中高三期中)若|a +b |=|a -b |=2|a |,则向量a +b 与a 的夹角为( )A .π6B .π3C .2π3D .5π6【解析】 因为|a +b |=|a -b |=2|a |, 所以|a +b |2=|a -b |2,两边平方 可得a 2+2a ·b +b 2=a 2-2a ·b +b 2, 化简可得a ·b =0,设向量a +b 与a 的夹角为θ,则可得cos θ=(a +b )·a |a +b ||a |=a 2+a ·b|a +b ||a |=|a |22|a |2=12,又θ∈[0,π],故θ=π3. 【答案】 B角度二 求向量的模(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3【解析】 法一:设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A.法二:由b 2-4e ·b +3=0得b 2-4e ·b +3e 2=(b -e )·(b -3e )=0.设b =OB →,e =OE →,3e =OF →,所以b -e =EB →,b -3e =FB →,所以EB →·FB →=0,取EF 的中点为C ,则B 在以C 为圆心,EF 为直径的圆上,如图.设a =OA →,作射线OA ,使得∠AOE =π3,所以|a -b |=|(a -2e )+(2e -b )|≥|a -2e |-|2e -b |=|CA →|-|BC →|≥3-1.故选A.【答案】 A角度三 两向量垂直问题已知|a |=4,|b |=8,a 与b 的夹角是120°.求k 为何值时,(a +2b )⊥(k a -b )?【解】 由已知得,a ·b =4×8×⎝ ⎛⎭⎪⎫-12=-16.因为(a +2b )⊥(k a -b ), 所以(a +2b )·(k a -b )=0,k a 2+(2k -1)a ·b -2b 2=0,即16k -16(2k -1)-2×64=0. 所以k =-7.即k =-7时,a +2b 与k a -b 垂直.角度四 求参数值或范围已知△ABC 是正三角形,若AC →-λAB →与向量AC →的夹角大于90°,则实数λ的取值范围是________.【解析】 因为AC →-λAB →与向量AC →的夹角大于90°,所以(AC →-λAB →)·AC →<0,即|AC →|2-λ|AC →|·|AB →|cos 60°<0,解得λ>2.故填(2,+∞).【答案】 (2,+∞)(1)求平面向量的夹角的方法①定义法:利用向量数量积的定义知,cos θ=a ·b|a ||b |,其中两个向量的夹角θ的范围为[0,π],求解时应求出三个量:a ·b ,|a |,|b |或者找出这三个量之间的关系;②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=;(2)求向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量模的运算转化为数量积运算.②几何法:利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.1.(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.解析:设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.答案:⎣⎢⎡⎦⎥⎤-1,-12 2.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.解析:因为AP →⊥BC →,所以AP →·BC →=0. 又AP →=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0,所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×(-12)-9λ+4=0.解得λ=712.答案:712向量数量积的综合应用(2019·金华十校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m=(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 【解】 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =b sin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA →在BC →方向上的投影为 |BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎪⎫sin A2,cos A 2,n =⎝⎛⎭⎪⎫cos A 2,-cos A 2,且2m ·n +|m |=22,则∠A =________.解析:因为2m ·n =2sin A 2cos A 2-2cos 2 A 2=sin A -(cos A +1)=2sin ⎝⎛⎭⎪⎫A -π4-1,又|m |=1,所以2m ·n +|m |=2sin ⎝⎛⎭⎪⎫A -π4=22,即sin ⎝⎛⎭⎪⎫A -π4=12.因为0<A <π,所以-π4<A -π4<3π4,所以A -π4=π6,即A =5π12.答案:5π122.(2017·高考江苏卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0. 于是tan x =-33. 又x ∈[0,π], 所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.平面向量中的最值范围问题(1)(2019·杭州市高三模拟)在△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A .54B .154C .174D .174(2)(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]【解析】 (1)以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2.设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.(2)|a |+|b |≥max{|a +b |,|a -b |}=4,(|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.【答案】 (1)B (2)B求解向量数量积最值问题的两种思路(1)直接利用数量积公式得出代数式,依据代数式求最值.(2)建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值. 1.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1,若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是__________.解析:由a ·b =1,|a |=1,|b |=2可得两向量的夹角为60°,建立平面直角坐标系,可设a =(1,0),b =(1,3),e =(cos θ,sin θ),则|a ·e |+|b ·e |=|cos θ|+|cosθ+3sin θ|≤|cos θ|+|cos θ|+3|sin θ|=3|sin θ|+2|cos θ|≤7,所以|a ·e |+|b ·e |的最大值为7.答案:72.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45求向量模的常用方法利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之也不成立.易错防范(1)a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . (2)a ·b =a ·c (a ≠0)不能推出b =c ,即消去律不成立. [基础达标]1.已知A ,B ,C 为平面上不共线的三点,若向量AB →=(1,1),n =(1,-1),且n ·AC →=2,则n ·BC →等于( )A .-2B .2C .0D .2或-2解析:选B.n ·BC →=n ·(BA →+AC →)=n ·BA →+n ·AC →=(1,-1)·(-1,-1)+2=0+2=2.2.(2019·温州市十校联合体期初)设正方形ABCD 的边长为1,则|AB →-BC →+AC →|等于( )A .0B . 2C .2D .2 2解析:选C.正方形ABCD 的边长为1,则|AB →-BC →+AC →|2=|DB →+AC →|2=|DB →|2+|AC →|2+2DB →·AC →=12+12+12+12=4,所以|AB →-BC →+AC →|=2,故选C.3.(2019·温州市十校联合体期初)已知平面向量a ,b ,c 满足c =x a +y b (x ,y ∈R ),且a ·c >0,b ·c >0.( )A .若a ·b <0则x >0,y >0B .若a ·b <0则x <0,y <0C .若a ·b >0则x <0,y <0D .若a ·b >0则x >0,y >0解析:选A.由a ·c >0,b ·c >0,若a ·b <0, 可举a =(1,1),b =(-2,1),c =(0,1), 则a ·c =1>0,b ·c =1>0,a ·b =-1<0, 由c =x a +y b ,即有0=x -2y ,1=x +y , 解得x =23,y =13,则可排除B ;若a ·b >0,可举a =(1,0),b =(2,1),c =(1,1),则a ·c =1>0,b ·c =3>0,a ·b =2>0,由c =x a +y b ,即有1=x +2y ,1=y ,解得x =-1,y =1, 则可排除C ,D.故选A.4.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形解析:选C.由(BC →+BA →)·AC →=|AC →|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,所以2AC →·BA →=0,所以AC →⊥AB →.所以∠A =90°,又因为根据条件不能得到|AB →|=|AC →|.故选C.5.已知正方形ABCD 的边长为2,点F 是AB 的中点,点E 是对角线AC 上的动点,则DE →·FC →的最大值为( )A .1B .2C .3D .4解析:选B.以A 为坐标原点,AB →、AD →方向分别为x 轴、y 轴的正方向建立平面直角坐标系(图略),则F (1,0),C (2,2),D (0,2),设E (λ,λ)(0≤λ≤2),则DE →=(λ,λ-2),FC →=(1,2),所以DE →·FC →=3λ-4≤2.所以DE →·FC →的最大值为2.故选B.6.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π3,2π3B .⎣⎢⎡⎦⎥⎤2π3,5π6C .⎣⎢⎡⎭⎪⎫2π3,πD .⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ, 且0<θ<π2.而由题意可得,b 与a -b 的夹角, 即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.7.(2019·温州市十校联合体期初)已知平面向量a 与b 的夹角为120°,且|a |=|b |=4,那么|a -2b |=________.解析:因为平面向量a 与b 的夹角为120°,且|a |=|b |=4,所以a ·b =4·4·cos 120°=-8,所以|a -2b |=(a -2b )2=a 2-4a ·b +4b 2=16-4·(-8)+4·16=112=47.答案:478.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3. a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π39. 如图,在边长为2的正方形ABCD 中,点Q 为边CD 上一个动点,CQ →=λQD →,点P 为线段BQ (含端点)上一个动点.若λ=1,则PA →·PD →的取值范围为________.解析:当λ=1时,Q 为CD 的中点. 设AB →=m ,AD →=n ,BP →=μBQ →(0≤μ≤1).易知BQ →=-12m +n ,AP →=AB →+BP →=m +μ⎝ ⎛⎭⎪⎫-12m +n =⎝ ⎛⎭⎪⎫1-12μm +μn , DP →=AP →-AD →=⎝⎛⎭⎪⎫1-12μm +μn -n =⎝⎛⎭⎪⎫1-12μm +(μ-1)n ,所以PA →·PD →=AP →·DP →=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12μm +μn ·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12μm +(μ-1)n =4⎝ ⎛⎭⎪⎫1-12μ2+4μ(μ-1)=5μ2-8μ+4.根据二次函数性质可知,当μ=45时上式取得最小值45;当μ=0时上式取得最大值4.所以PA →·PD →的取值范围为⎣⎢⎡⎦⎥⎤45,4.答案:⎣⎢⎡⎦⎥⎤45,4 10.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)·(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)11.已知m =⎝ ⎛⎭⎪⎫sin ⎝⎛⎭⎪⎫x -π6,1,n =(cos x ,1).(1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.解:(1)由m ∥n 得,sin ⎝⎛⎭⎪⎫x -π6-cos x =0,展开变形可得,sin x =3cos x , 即tan x = 3.(2)f (x )=m ·n =12sin ⎝⎛⎭⎪⎫2x -π6+34,由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z 得,-π6+k π≤x ≤π3+k π,k ∈Z .又x ∈[0,π],所以当x ∈[0,π]时,f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π.12.(2019·金华市东阳二中高三月考)设O 是△ABC 的三边中垂线的交点,a ,b ,c 分别为角A ,B ,C 对应的边,已知b 2-2b +c 2=0,求BC →·AO →的取值范围.解:因为O 是△ABC 的三边中垂线的交点,故O 是三角形外接圆的圆心, 如图所示,延长AO 交外接圆于点D .因为AD 是⊙O 的直径,所以∠ACD =∠ABD =90°. 所以cos ∠CAD =ACAD ,cos ∠BAD =AB AD. 所以AO →·BC →=12AD →·(AC →-AB →)=12AD →·AC →-12AD →·AB → =12|AD →||AC →|·cos ∠CAD -12|AD →||AB →|· cos ∠BAD =12|AC →|2-12|AB →|2=12b 2-12c 2=12b 2-12(2b -b 2)(因为c 2=2b -b 2) =b 2-b =⎝ ⎛⎭⎪⎫b -122-14.因为c 2=2b -b 2>0,解得0<b <2.令f (b )=⎝ ⎛⎭⎪⎫b -122-14.所以当b =12时,f (b )取得最小值-14.又f (0)=0,f (2)=2. 所以-14≤f (b )<2.即AO →·BC →的取值范围是⎣⎢⎡⎭⎪⎫-14,2.[能力提升]1.(2019·嘉兴市高考模拟)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1),则当max{c ·a ,c ·b }取最小值时,|c |= ( )A .255B .223C .1D .52解析:选A.如图,设OA →=a ,OB →=b ,则a =(1,0),b =(0,2),因为λ,μ≥0,λ+μ=1,所以0≤λ≤1.又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1.所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.3.(2019·瑞安市龙翔高中高三月考)向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈(0,π),①若m ∥n ,则tan x =________;②若m 与n 的夹角为π3,则x =________.解析:m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈(0,π),①由m ∥n ,得22cos x +22sin x =0,即sin ⎝⎛⎭⎪⎫x +π4=0,因为0<x <π,所以π4<x +π4<5π4,则x +π4=π,x =34π.所以tan x =-1.②由m 与n 的夹角为π3,得cos π3=22sin x -22cos x ⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫-222·sin 2x +cos 2x =sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π,所以-π4<x -π4<3π4,则x -π4=π6,x =5π12. 答案:①-1 ②5π124.(2019·宁波市余姚中学高三期中)已知向量OA →,OB →的夹角为60°,|OA →|=2,|OB →|=23,OP →=λOA →+μOB →.若λ+3μ=2,则|OP →|的最小值是________,此时OP →,OA →夹角的大小为________.解析:向量OA →,OB →的夹角为60°,|OA →|=2,|OB →|=23,即有OA →·OB →=|OA →|·|OB →|·cos 60°=2×23×12=23,若λ+3μ=2,可得λ=2-3μ,则|OP →|=|λOA →+μOB →|=λ2OA →2+μ2OB →2+2λμOA →·OB →=4λ2+12μ2+43λμ=4(λ+3μ)2-43λμ =16-43(2-3μ)μ=12⎝ ⎛⎭⎪⎫μ-332+12≥23, 当μ=33,λ=1时,|OP →|的最小值为2 3. 由OP →=OA →+33OB →, 可得OP →·OA →=OA →2+33OA →·OB →=4+33·23=6, 则cos 〈OP →,OA →〉=OP →·OA →|OP →|·|OA →|=623·2=32, 由0°≤〈OP →,OA →〉≤180°,可得〈OP →,OA →〉=30°.答案:2 3 30°5.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,求(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值.解:设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ,则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC ,因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°,设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332, 设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332,所以h =3217, 因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上,所以A 到BC 的距离最大值为4+h =4+3217. 所以S △ABC 的最大值为12×7×⎝⎛⎭⎪⎫4+3217=27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.6. 在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC →|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC →+OD →|的最小值; (2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1),由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC →+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝ ⎛⎭⎪⎫t -222+12, 所以当t =22时,|OC →+OD →|最小,为22. (2)由题意得C (cos θ,sin θ),m =BC →=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4, 因为θ∈⎣⎢⎡⎦⎥⎤0,π2, 所以π4≤2θ+π4≤5π4, 所以当2θ+π4=π2, 即θ=π8时,sin ⎝⎛⎭⎪⎫2θ+π4取得最大值1. 所以m ·n 的最小值为1-2,此时θ=π8.。

平面向量的数量积和叉积的应用举例

平面向量的数量积和叉积的应用举例

平面向量的数量积和叉积的应用举例平面向量是向量的一种特殊形式,它的位移方向限制在二维平面上。

数量积和叉积是平面向量的两个重要运算,它们在数学和物理中有着广泛的应用。

本文将通过举例,介绍平面向量的数量积和叉积在实际问题中的应用。

一、数量积的应用1. 力的分解和合成假设有一物体施加力F,在平面上有两个方向的分量F1和F2,它们的夹角为θ。

我们可以通过数量积的运算来求解F1和F2的数值。

具体的计算公式为:F = F1 + F2 = |F1|cosθ + |F2|cosθ通过这个公式,我们可以将一个力分解为两个力的和,从而更好地理解力的作用机制。

2. 工作和功当一个物体受力并且发生位移时,力做功。

工作是力在位移方向上的数量积。

对于平面向量而言,工作的计算公式为:W = F·s = |F||s|cosθ其中,W表示工作的大小,F表示力的大小,s表示位移的大小,θ表示力和位移之间的夹角。

3. 判断垂直关系两个向量垂直的充要条件是它们的数量积为零。

因此在实际问题中,通过计算向量的数量积可以判断两个向量是否垂直。

例如,我们可以通过数量积来判断一个物体在斜坡上向上滚动时的加速度是否与斜坡垂直。

二、叉积的应用1. 面积计算对于平面上的两个向量a和b,它们的叉积a×b的大小等于这两个向量所围成的平行四边形的面积。

具体的计算公式为:|a×b| = |a||b|sinθ其中,|a×b|表示叉积的大小,|a|和|b|分别表示向量a和b的大小,θ表示这两个向量之间的夹角。

通过叉积的运算,我们可以直接计算出平行四边形的面积,这在几何学和物理学中有着重要的应用。

2. 判断向量的方向叉积不仅可以计算大小,还可以确定向量的方向。

叉积的结果是一个新的向量,它垂直于原来的两个向量,其方向遵循右手定则。

这一性质在物理学中经常被用来确定电流和磁场之间的方向关系,并被应用于电磁学的研究中。

3. 力矩计算力矩是与平面向量的叉积有关的重要概念,表示力对物体的转动效果。

第__3__讲___平面向量的数量积及平面向量应用举例

第__3__讲___平面向量的数量积及平面向量应用举例
第 3 讲 平面向量的数量积及平面向量应用举例
1.理解平面向量数量积的含义及其物理意义. .理解平面向量数量积的含义及其物理意义. 2.了解平面向量的数量积与向量投影的关系. .了解平面向量的数量积与向量投影的关系. 3.掌握数量积的坐标表达式,会进行平面向量数量积的运算. .掌握数量积的坐标表达式,会进行平面向量数量积的运算. 4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向 .能运用数量积表示两个向量的夹角, 量的垂直关系. 量的垂直关系. 5.会用向量方法解决某些简单的平面几何问题. .会用向量方法解决某些简单的平面几何问题. 6.会用向量方法解决简单的力学问题与其他一些实际问题. .会用向量方法解决简单的力学问题与其他一些实际问题.
迁移发散 2.在直角△ABC中,已知=(2,3),=(1,k),求k的值. .在直角△ 的值. 中 已知= , , , 的值
考向三 平面向量的夹角与模的问题
1 1 【例 3】 已知 = 1,a·b= , (a- b)·(a+b)= . 】 已知|a|= , = - + = 2 2 的夹角; 求: (1)a 与 b 的夹角; (2)a-b 与 a+b 的夹角的余弦值. - + 的夹角的余弦值. 1 1 解:(1)∵(a-b)·(a+b)= ,∴|a|2-|b|2= , 2 2 1 2 又∵|a|=1,∴|b|= |a|2- = . 2 2 设 a 与 b 的夹角为 θ, 1 a·b 2 2 则 cos θ= = = , |a||b| 2 2 1· 2 ∵0°≤θ≤180°,∴θ=45°.
解析: = , ,则有2a+ = + + = 解析:设b=(x,y),则有 +b=(8+x,6+y)=(3,18), , 解得b= - 解得 =(-5,12),故cos〈a,b〉= , 〈 , 〉 答案: 答案:C

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

第3讲平面向量的数量积及应用举例最新考纲考向预测1.通过物理中的功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.命题趋势平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问题,平面向量数量积的综合应用仍是高考考查的热点,题型仍是选择题与填空题.核心素养数学运算、逻辑推理1.向量的夹角(1)条件:平移两个非零向量a和b至同一起点,结论:∠AOB=θ(0°≤θ≤180°)叫做a与b的夹角.(2)范围:0°≤θ≤180°.特殊情况:当θ=0°时,a与b共线同向.当θ=180°时,a与b共线反向.当θ=90°时,a与b互相垂直.2.向量的数量积(1)条件:两个向量a与b,夹角θ,结论:数量|a||b|cos_θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos_θ.(2)数量积的几何意义条件:a的长度|a|,b在a方向上的投影|b|cos_θ(或b的长度|b|,a在b方向上的投影|a|cos_θ),结论:数量积a·b等于|a|与|b|cos_θ的乘积(或|b|与|a|cos_θ的乘积).3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=a,b.结论几何表示坐标表示向量的模|a|=a·a |a|=x21+y21夹角余弦cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21x2+y2a⊥b充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21x22+y2常用结论1.求平面向量的模的公式(1)a2=a·a=|a|2或|a|=a·a=a2;(2)|a±b|=(a±b)2=a2±2a·b+b2;(3)若a=(x,y),则|a|=x2+y2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).常见误区1.投影和两向量的数量积都是数量,不是向量.2.向量a在向量b方向上的投影与向量b在向量a方向上的投影不是一个概念,要加以区别.3.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于a·(b·c),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.1.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )·c =a ·(b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33D .3解析:选B.a ·b =|a ||b |cos 135°=-122,所以|b |=-1224×⎝ ⎛⎭⎪⎫-22=6.3.(多选)已知向量a =(1,-2),b =(-2,4),则( ) A .a ∥b B .(a +b )·a =-5 C .b ⊥(a -b )D .2|a |=|b |解析:选ABD.因为1×4=-2×(-2),所以a ∥b ,又a +b =(-1,2),所以(a +b )·a =-5.a -b =(3,-6),b ·(a -b )≠0,所以C 错误,|a |=5,|b |=25,2|a |=|b |,故选ABD.4.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ=________. 解析:cos θ=a·b |a||b|=-632×6=-32,又因为0≤θ≤π,所以θ=5π6. 答案:5π65.已知向量a 与b 的夹角为π3,|a |=|b |=1,且a ⊥(a -λb ),则实数λ=________.解析:由题意,得a ·b =|a ||b |cos π3=12,因为a ⊥(a -λb ),所以a ·(a -λb )=|a |2-λa ·b =1-λ2=0,所以λ=2.答案:2平面向量数量积的运算(1)(2021·内蒙古赤峰二中、呼市二中月考)已知向量a ,b 的夹角为π3,若c =a |a|,d =b |b|,则c ·d =( ) A.14B .12 C.32 D .34(2)(多选)已知△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB→|,下列结论正确的是( ) A.CA→在CB →方向上的投影长为- 3 B.OA →·AB →=OA →·AC →C.CA→在CB →方向上的投影长为 3 D.OB →·AB →=OC →·AC→ 【解析】 (1)c ·d =a |a|·b |b|=|a||b|cos a ,b |a||b|=cos π3=12.故选B.(2)由OA→+AB →+AC →=0得OB →=-AC →=CA →,所以四边形OBAC 为平行四边形.又O 为△ABC 外接圆的圆心,所以|OB→|=|OA →|,又|OA →|=|AB →|,所以△OAB 为正三角形.因为△ABC 的外接圆半径为2,所以四边形OBAC 是边长为2的菱形,所以∠ACB =π6,所以CA →在CB →上的投影为|CA →|cos π6=2×32=3,故C 正确.因为OA →·AB→=OA →·AC →=-2,OB →·AB →=OC →·AC→=2,故B ,D 正确.【答案】 (1)B (2)BCD计算向量数量积的三个角度(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.1.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55 B .-55 C .-255D .-355解析:选D.由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2,所以a ·b =-3,所以向量b 在a 方向上的投影为a·b |a|=-355.故选D.2.(2020·重庆第一中学月考)已知非零向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为120°,且|b |=2|a |,则向量a ,c 的数量积为( )A .0B .-2a 2C .2a 2D .-a 2解析:选A.由非零向量a ,b ,c 满足a +b +c =0,可得c =-(a +b ),所以a ·c =a ·[-(a +b )]=-a 2-a ·b =-a 2-|a |·|b |·cosa ,b.由于a ,b 的夹角为120°,且|b |=2|a |,所以a ·c =-a 2-|a |·|b |cos 120°=-|a |2-2|a |2×⎝ ⎛⎭⎪⎫-12=0.故选A.3.(一题多解)(2020·武昌区高三调研)在等腰直角三角形ABC 中,∠ACB =π2,AC =BC =2,点P 是斜边AB 上一点,且BP =2P A ,那么CP →·CA →+CP →·CB→=( ) A .-4 B .-2 C .2D .4解析:选D.通解:由已知得|CA →|=|CB →|=2,CA →·CB→=0,AP →=13(CB →-CA →),所以CP →·CA →+CP →·CB →=(CA →+AP →)·CA →+(CA →+AP →)·CB →=|CA →|2+AP →·CA →+CA →·CB →+AP →·CB →=|CA →|2+13(CB →-CA →)·(CB→+CA →)=|CA →|2+13|CB →|2-13|CA →|2=22+13×22-13×22=4. 优解:由已知,建立如图所示的平面直角坐标系,则C (0,0),A (2,0),B (0,2),设P (x ,y ).因为BP =2P A ,所以BP →=2P A →,所以(x ,y -2)=2(2-x ,-y ),所以⎩⎪⎨⎪⎧x =43y =23,所以CP →·CA →+CP →·CB →=(43,23)·(2,0)+(43,23)·(0,2)=4.故选D.平面向量数量积的应用角度一 求两平面向量的夹角(1)(2020·高考全国卷Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos〈a ,a +b 〉=( )A .-3135B .-1935 C.1735D .1935(2)(2021·普通高等学校招生全国统一考试模拟)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉=( )A.73 B .23 C.79D .29【解析】 (1)由题意,得a ·(a +b )=a 2+a ·b =25-6=19,|a +b |=a2+2a·b +b2=25-12+36=7,所以cosa ,a +b=a·(a +b )|a||a +b|=195×7=1935,故选D.(2)因为a ,b 是单位向量,所以|a |=|b |=1.又因为a ·b =0,c =7a +2b ,所以|c |=(7a +2b )2=3,a ·c =a ·(7a +2b )=7, 所以cos 〈a ,c 〉=a·c |a||c|=73.因为〈a ,c 〉∈[0,π],所以sin 〈a ,c 〉=23.故选B. 【答案】 (1)D (2)B求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系.(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x1x2+y1y2x21+y 21·x 2+y 2.角度二 求平面向量的模(2020·四川双流中学诊断)如图,在△ABC 中,M 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|MA→|=________.【解析】 因为M 为BC 的中点,所以AM→=12(AB →+AC →),所以|MA→|2=14(AB →+AC →)2 =14(|AB →|2+|AC →|2+2AB →·AC →) =14(1+9+2×1×3cos 60°)=134, 所以|MA→|=132. 【答案】 132求向量的模或其范围的方法(1)定义法:|a |=a2=a·a ,|a ±b |=(a±b )2=a2±2a·b +b2. (2)坐标法:设a =(x ,y ),则|a |=x2+y2.(3)几何法:利用向量加减法的平行四边形法则或三角形法则作出向量,再利用解三角形的相关知识求解.[提醒] (1)求形如m a +n b 的向量的模,可通过平方,转化为数量的运算. (2)用定义法和坐标法求模的范围时,一般把它表示成某个变量的函数,再利用函数的有关知识求解;用几何法求模的范围时,注意数形结合的思想,常用三角不等式进行最值的求解.角度三 两平面向量垂直问题已知向量AB →与AC →的夹角为120°,且|AB→|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为________.【解析】 因为AP →⊥BC →,所以AP →·BC →=0.又AP→=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0, 所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0.解得λ=712.【答案】 712有关平面向量垂直的两类题型根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.1.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |=( ) A .22 B .25 C.17D .15解析:选 C.因为a -b =(3,2),所以|a -b |=5,所以|a -b |2=|a |2-2a ·b +|b |2=5-2a ·b =5,则a ·b =0,所以|a +2b |2=|a |2+4a ·b +4|b |2=17,所以|a +2b |=17.故选C.2.(多选)设a ,b 是两个非零向量,则下列命题为假命题的是( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 解析:选ABD.对于A ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |≠0,a 与b 不垂直,所以A 为假命题;对于B ,由A 解析可知,若a ⊥b ,则|a +b |≠|a |-|b |,所以B 为假命题; 对于C ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |, 得a ·b =-|a ||b |,则cos θ=-1,则a 与b 反向,因此存在实数λ,使得b =λa ,所以C 为真命题. 对于D ,若存在实数λ,使得b =λa ,则a ·b =λ|a |2,-|a ||b |=λ|a |2,由于λ不能等于0, 因此a ·b ≠-|a ||b |,则|a +b |≠|a |-|b |, 所以D 不正确. 故选ABD.3.(一题多解)已知正方形ABCD ,点E 在边BC 上,且满足2BE →=BC →,设向量AE→,BD →的夹角为θ,则cos θ=________. 解析:方法一:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,则|AE →|=5,|BD →|=22,AE →·BD →=⎝ ⎛⎭⎪⎫AB →+12AD →·(AD →-AB →)=12|AD →|2-|AB →|2+12AD →·AB →=12×22-22=-2,所以cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.方法二:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,建立如图所示的平面直角坐标系xAy ,则点A (0,0),B (2,0),D (0,2),E (2,1),所以AE →=(2,1),BD →=(-2,2),所以AE →·BD →=2×(-2)+1×2=-2,故cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.答案:-1010向量数量积的综合应用在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.【解】 (1)由m·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理a sin A =b sin B ,得sin B =bsin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. K在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积.解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而∠C ∈(0,π),所以∠C =π3. (2)由AD→=DB →知,CD →-CA →=CB →-CD →, 所以2CD→=CA →+CB →, 两边平方得4|CD→|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.①又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.②由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23.核心素养系列4 逻辑推理——平面向量与三角形的“四心”三角形的“四心”:设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A . (2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔a OA→+b OB →+c OC →=0. 类型一 平面向量与三角形的“重心”问题已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC→],λ∈R ,则点P 的轨迹一定经过( )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点【解析】 取AB 的中点D ,则2OD→=OA →+OB →, 因为OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], 所以OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,所以P ,C ,D 三点共线,所以点P 的轨迹一定经过△ABC 的重心. 【答案】 C类型二 平面向量与三角形的“内心”问题在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463 C .43D .62【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 【答案】 B类型三 平面向量与三角形的“垂心”问题已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A .重心B .垂心C .外心D .内心【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C ,所以AP →=OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.【答案】 B类型四 平面向量与三角形的“外心”问题已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO→=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎪⎫45,35 B .⎝⎛⎭⎪⎫35,45C.⎝⎛⎭⎪⎫-45,35 D .⎝⎛⎭⎪⎫-35,45【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC→, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→. 由OM →⊥AB →,得⎝⎛⎭⎪⎫12-x AB →2-yAC →·AB→=0,①由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB→=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB2→, 所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①,②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.【答案】 A[A 级 基础练]1.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D .32解析:选A.c =a +k b =(1,2)+k (1,1)=(1+k ,2+k ),因为b ⊥c ,所以b ·c =0,b ·c =(1,1)·(1+k ,2+k )=1+k +2+k =3+2k =0,所以k =-32.2.若向量OF1→=(1,1),OF2→=(-3,-2)分别表示两个力F 1,F 2,则|F 1+F 2|为( )A.10 B .25 C.5D .15解析:选 C.由于F 1+F 2=(1,1)+(-3,-2)=(-2,-1),所以|F 1+F 2|=(-2)2+(-1)2=5.3.(2020·贵阳市第一学期监测考试)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.109 B .259 C.269D .89解析:选A.方法一:因为|AB→+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即∠BAC =90°.所以AE →·AF →=⎣⎢⎡⎦⎥⎤AB →+13(AC →-AB →)·⎣⎢⎡⎦⎥⎤AC →-13(AC →-AB →)=⎝ ⎛⎭⎪⎫23AB→+13AC →·(23AC →+13AB →)=29AB →2+29AC →2=109,故选A.方法二:因为|AB →+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即AB→⊥AC →,以A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (0,1),E (23,23),F (43,13),所以AE →·AF →=(23,23)·(43,13)=89+29=109,故选A.4.(多选)在△ABC 中,下列命题正确的是( ) A.AB→-AC →=BC →B.AB→+BC →+CA →=0 C .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形D .若AC→·AB →>0,则△ABC 为锐角三角形 解析:选BC.由向量的运算法则知AB →-AC →=CB →;AB →+BC →+CA →=0,故A 错,B对;因为(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=0, 所以|AB→|2=|AC →|2,即AB =AC , 所以△ABC 为等腰三角形,故C 对;因为AC →·AB →>0,所以角A 为锐角,但三角形不一定是锐角三角形.故选BC. 5.(2020·安徽示范高中名校月考)已知a ,b ,c 均为单位向量,a 与b 的夹角为60°,则(c +a )·(c -2b )的最大值为( )A.32 B .3 C .2D .3解析:选B.设c 与a -2b 的夹角为θ.因为|a -2b |2=a 2-4a ·b +4b 2=3,所以|a -2b |=3,所以(c +a )·(c -2b )=c 2+c ·(a -2b )-2a ·b =1+|c ||a -2b |cos θ-1=3cos θ,所以(c +a )·(c -2b )的最大值为3,此时cos θ=1.故选B.6.(2020·湖南、河南、江西3月联考)设非零向量a ,b 满足|a |=3|b |,cos a ,b=13,a ·(a -b )=16,则|b |=________. 解析:因为|a |=3|b |,cos a ,b=13,所以a ·(a -b )=9|b |2-|b |2=8|b |2=16,所以|b |=2.答案:27.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:因为|a |=|a +2b |, 所以|a |2=|a |2+4a ·b +4|b |2, 所以a ·b =-|b |2, 令a 与b 的夹角为θ.所以cos θ=a·b |a||b|=-|b|23|b||b|=-13. 答案:-138.(2020·新高考卷改编)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是________. 解析:AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB →方向上的投影,所以结合图形可知,当P 与C 重合时投影最大,当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB→∈(-2,6).答案:(-2,6)9.已知向量a =(2,-1),b =(1,x ). (1)若a ⊥(a +b ),求|b |的值;(2)若a +2b =(4,-7),求向量a 与b 夹角的大小. 解:(1)由题意得a +b =(3,-1+x ). 由a ⊥(a +b ),可得6+1-x =0, 解得x =7,即b =(1,7), 所以|b |=50=52.(2)由题意得,a +2b =(4,2x -1)=(4,-7), 故x =-3,所以b =(1,-3),所以cos 〈a ,b 〉=a·b |a||b|=(2,-1)·(1,-3)5×10=22,因为〈a ,b 〉∈[0,π], 所以a 与b 的夹角是π4.10.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC→=0,求t 的值.解:(1)由题设知,AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=42. 故所求的两条对角线的长分别为42,210.(2)方法一:由题设知,OC→=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11, 所以t =-115.方法二:AB →·OC →=tOC →2,AB →=(3,5),t =AB →·OC →|OC →|2=-115. [B 级 综合练]11.(多选)(2020·山东九校联考)已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE→+OC →=0 C .|OA→+OB →+OC →|=32 D.ED→在BC →方向上的投影为76 解析:选BCD.由题意知E 为AB 的中点,则CE ⊥AB ,以E 为原点,EA ,EC 所在直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO→=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233,因为BO →∥DO →,所以y -233=-13y , 解得y =32,即O 是CE 的中点,则OE→+OC →=0,所以选项B 正确;|OA→+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确; 因为CE ⊥AB ,所以AB →·CE →=0,所以选项A 错误;ED→=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3). 故ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.故选BCD.12.(2020·山东济宁一中月考)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP→=m AC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( )A. 2 B .43 C .3D . 3解析:选 D.令CP→=k CD →(0<k <1),则AP →=AC →+CP →=AC →+k CD →=AC →+k (AD →-AC →)=AC →+k ⎝ ⎛⎭⎪⎫23AB →-AC →=2k 3AB →+(1-k )AC→=m AC →+12AB →,所以1-k =m ,2k 3=12,所以m =14,因为△ABC 的面积为23,所以12|AC →|·|AB →|·32=23,所以|AC →|·|AB→|=8,所以|AP →|=116|AC →|2+14|AB →|2+18|AC →||AB →|=1+116|AC →|2+16|AC →|2≥3,当且仅当|AC→|=4时取“=”,所以|AP →|的最小值为 3.故选D.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2.(1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解:(1)由题设知AB→=(n -8,t ), 因为AB→⊥a ,所以8-n +2t =0. 又因为5|OA →|=|AB →|,所以5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, 所以OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ),因为AC→与a 共线,所以t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k . 因为k >4,所以0<4k <1,所以当sin θ=4k 时,t sin θ取得最大值32k , 由32k =4,得k =8,此时θ=π6,OC →=(4,8), 所以OA →·OC →=(8,0)·(4,8)=32.14.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC→|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC→+OD →|的最小值;(2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1), 由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC→+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝⎛⎭⎪⎫t -222+12(0≤t ≤1),所以当t =22时,|OC→+OD →|有最小值,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC→=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4,因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2θ+π4≤5π4,所以当2θ+π4=π2,即θ=π8时,sin ⎝ ⎛⎭⎪⎫2θ+π4取得最大值1. 所以当θ=π8时,m ·n 取得最小值,为1-2.[C 级 创新练]15.在Rt △ABC 中,∠C 是直角,CA =4,CB =3,△ABC 的内切圆与CA ,CB分别切于点D ,E ,点P 是图中阴影区域内的一点(不包含边界).若CP →=xCD →+yCE →,则x +y 的值可以是( )A .1B .2C .4D .8解析:选 B.设△ABC 内切圆的圆心为O ,半径为r ,连接OD ,OE ,则OD ⊥AC ,OE ⊥BC ,所以3-r +4-r =5,解得r =1,故CD =CE =1,连接DE ,则当x +y =1时,P 在线段DE 上,但线段DE 均不在阴影区域内,排除A ;在AC 上取点M ,在CB 上取点N ,使得CM =2CD ,CN =2CE ,连接MN ,所以CP→=x 2CM →+y2CN→,则当点P 在线段MN 上时,x 2+y 2=1,故x +y =2.同理,当x +y =4或x +y =8时,点P 不在△ABC 内部,排除C ,D ,故选B.16.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin a ,b,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是________.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin a ,b,(λa )⊗b =|λa |·|b |sina ,b,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin a ,b=0,故a ⊗b =0恒成立,④a =λb ,且λ>0,则a+b=(1+λ)b,(a+b)⊗c=|1+λ||b|·|c|sin b,c,(a⊗c)+(b⊗c)=|λb|·|c|sin b,c+|b|·|c|sin b,c=|1+λ||b|·|c|sin b,c,故(a+b)⊗c=(a⊗c)+(b⊗c)恒成立.答案:①③④。

平面向量的数量积与应用

平面向量的数量积与应用

平面向量的数量积与应用平面向量的数量积是向量运算中的一种重要概念,可以帮助我们理解和解决许多与向量相关的问题。

本文将介绍平面向量的数量积的定义和性质,并探讨其在几何和物理中的应用。

1. 数量积的定义平面向量的数量积又称为点积或内积,用符号"·"表示。

对于平面上任意两个向量A和B,其数量积的定义如下:A·B = |A||B|cosθ其中,|A|和|B|分别表示向量A和B的模长,θ为A与B之间的夹角。

2. 数量积的性质(1)交换律:A·B = B·A(2)分配律:(A + B)·C = A·C + B·C(3)常数乘法:(kA)·B = k(A·B),其中k为实数(4)数量积与向量的垂直关系:A·B = 0 当且仅当A与B垂直3. 应用一:向量的夹角与正交投影通过数量积的定义,我们可以得到向量A与B之间的夹角公式:cosθ = A·B / (|A||B|)这个公式在几何中的应用非常广泛,其中一个重要的应用就是求解向量的正交投影。

给定向量A和B,向量B在A上的正交投影向量的长度可以利用数量积公式求得:projA(B) = (B·A / |A|^2) * AprojA(B)表示向量B在A上的正交投影向量。

4. 应用二:向量的工作与功率在物理学中,向量的数量积有许多重要应用,其中之一是描述力的方向与物体位移方向的关系。

当力F作用于物体上时,通过点积可以得到该力对物体作用的工作W:W = F·d其中,d表示物体位移的向量。

如果力与位移方向相同,则工作为正值;如果力与位移方向相反,则工作为负值;如果力与位移方向垂直,则工作为零。

同时,功率P也可以利用数量积表示:P = F·v其中,v表示物体的速度向量。

5. 应用三:向量的投影与图形的面积利用数量积,我们还可以求解平面上某个凸多边形的面积。

平面向量的数量积的应用判断垂直和平行关系

平面向量的数量积的应用判断垂直和平行关系

平面向量的数量积的应用判断垂直和平行关系平面向量的数量积的应用:判断垂直和平行关系平面向量的数量积是向量运算中的一种重要形式,也被广泛应用于几何和物理学中的各种问题。

其中,判断向量之间的垂直和平行关系是数量积的一个重要应用之一。

本文将详细介绍平面向量的数量积以及如何应用数量积来判断向量之间的垂直和平行关系。

一、平面向量的数量积平面向量的数量积,也被称为点积或内积,是向量运算中的一种运算方式。

对于两个向量A和B,其数量积的定义如下:A·B = |A||B|cosθ其中,|A|和|B|分别表示向量A和B的模,θ表示向量A和B之间的夹角。

二、垂直和平行关系的判断通过平面向量的数量积,我们可以判断两个向量之间的垂直和平行关系。

具体判断方法如下:1. 垂直关系的判断当两个向量A和B的数量积等于0时,即A·B=0,我们可以判断它们是垂直的。

这是因为当两个向量垂直时,它们的夹角θ为90度,而cos90度等于0。

2. 平行关系的判断当两个向量A和B的夹角θ等于0度或180度时,即cosθ=1或cosθ=-1,我们可以判断它们是平行的。

这是因为当两个向量平行时,它们的夹角θ为0度或180度,而cos0度等于1,cos180度等于-1。

通过上述判断方法,我们可以判断平面上任意两个向量之间的垂直和平行关系。

三、应用举例下面通过几个具体的应用案例,来进一步说明平面向量的数量积在判断垂直和平行关系中的应用。

1. 判断垂直关系假设有向量A(3,2)和向量B(-2,3),我们可以计算它们的数量积:A·B = 3*(-2) + 2*3 = 0由于数量积等于0,我们可以得出结论:向量A和向量B是垂直的。

2. 判断平行关系假设有向量C(4,6)和向量D(8,12),我们可以计算它们的夹角θ:cosθ = (4*8 + 6*12) / (√(4²+6²) * √(8²+12²)) ≈ 1由于夹角θ等于0度,即cosθ等于1,我们可以得出结论:向量C和向量D是平行的。

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用简介:平面向量是解决平面几何问题的重要工具之一。

其数量积和向量积是平面向量运算中常用的两种运算方式。

本文将探讨平面向量的数量积和向量积在几何问题中的应用。

一、平面向量的数量积平面向量的数量积,又称为点积或内积,表示两个向量之间的夹角关系。

其计算公式为:A ·B = |A| × |B| × cosθ其中,A和B为两个平面向量,|A|和|B|分别表示A和B的模长,θ表示A和B的夹角。

应用一:空间点的投影平面向量的数量积可以应用于求空间点在某个向量上的投影。

设空间点P(x, y, z)在向量A(a, b, c)上的投影为点Q,利用数量积的定义可以得到:PQ = OP · u其中,OP表示向量OP的数量积,u表示向量A的单位向量。

应用二:判断向量正交与共线根据平面向量的数量积,我们可以判断两个向量是否正交或共线。

若两个向量的数量积为0,则它们垂直或正交;若两个向量的数量积等于它们的模长乘积,则它们共线。

应用三:求角的余弦值在解决几何问题时,常常需要求夹角的余弦值。

利用平面向量的数量积可以得到两个向量夹角的余弦值。

根据数量积的定义,可以求出两个向量的模长并代入计算公式中,进而得到夹角的余弦值。

二、平面向量的向量积平面向量的向量积,又称为叉积或外积,表示两个向量之间的叉乘关系。

其计算公式为:A ×B = |A| × |B| × sinθ × n其中,A和B为两个平面向量,|A|和|B|分别表示A和B的模长,θ表示A和B的夹角,n为法向量,其方向满足右手法则。

应用一:求平行四边形面积利用平面向量的向量积,可以求解平行四边形的面积。

设平行四边形的两条边向量分别为A和B,根据向量积的定义可以得到平行四边形的面积为:S = |A × B|应用二:判断三角形形状平面向量的向量积可以用于判断三角形的形状。

第三节 平面向量的数量积及平面向量的应用举例

第三节  平面向量的数量积及平面向量的应用举例

1. 已知向量a =(1,2),b =(2,-3). 若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =……( ) A. (79,73) B. (-73,79) C. (73,79) D. (-79,-73) 2. 若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为………………( )A. 30°B. 60°C. 120°D. 150°3. 已知下列命题中:(1)若k ∈R ,且k b =0,则k=0或b =0 ; (2)若a ·b =0,则a =0 或b =0 ;(3)若不平行的两个非零向量a ,b ,满足|a |=|b |,则(a +b )·(a -b )=0;(4)若a 与b 平行,则a ·b =|a |·|b |.其中真命题的个数是………………………………………………………………………………( )A. 0B. 1C. 2D. 34. 定义运算|a ⊗b |=|a |·|b |·sin θ,其中θ是向量a , b 的夹角,若|x |=2,|y |=5,x ·y =-6,则|x ⊗y |=…………………………………………………………………………( )A. 8B. -8C. 8或-8D. 65. 已知向量a =(1,1), b =(2,n),若|a +b |=a ·b ,则n 为………………………………( )A. -3B. -1C. 1D. 36. 已知a =(2,1)与b =(1,2),要使|a +t b |最小,则实数t 的值为___________.7.已知平面向量α ,β ,|α |=1,| β |=2, α ⊥(α -2β ),则|2α +β |的值是___________.8. 已知i 、j 为互相垂直的单位向量, a =i -2j j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是___________.9. 已知a ,b ,c 是单位向量,且a ·b =0,求(a -c )·(b -c )的最小值.11. 在平面直角坐标系xOy 中,已知点A(-1,-2)、B(2,3)、C(-2,-1).(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB -t OC )·OC <t 2-5,求t 的取值范围.。

2024届新高考一轮复习北师大版 第5章 第3节 平面向量的数量积及平面向量应用举例 课件(64张)

2024届新高考一轮复习北师大版 第5章 第3节 平面向量的数量积及平面向量应用举例 课件(64张)

B.-1
C.-6
D.-18
D
由题意知 cos
〈a,b〉=sin
17π 3
=sin
6π-π3
=-sin
π 3


3 2
,所以 a·b=|a||b|cos 〈a,b〉=1×2
3
×-
3
2
=-3,b·(2a-b)
=2a·b-b2=-18.故选 D.
返回导航
3.在 Rt△ABC 中,∠ABC=60°,∠BAC=90°,则向量B→A 在向量
返回导航
[常用结论] 1.平面向量数量积运算的常用公式 ①(a+b)·(a-b)=a2-b2;②(a±b)2=a2±2a·b+b2; ③a2+b2=0⇒a=b=0. 2.有关向量夹角的两个结论 ①两个向量 a 与 b 的夹角为锐角,则有 a·b>0,反之不成立(因为夹角 为 0 时不成立).
返回导航
规定 零向量与任一向量的数量积为 0
返回导航
(2)当 0°≤〈a,b〉<90°时,a·b>0;当〈a,b〉=90°时,a·b=0; 当 90°<〈a,b〉≤180°时,a·b<0;当〈a,b〉=0°时,a·b=|a||b|;当 〈a,b〉=180°时,a·b=-|a||b|.
返回导航
(3)投影向量
大一轮复习讲义 数学(BSD)
第五章 平面向量、复数 第三节 平面向量的数量积及平面向量应用举例
内 夯实·主干知识 容 探究·核心考点 索 引 课时精练
返回导航
【考试要求】 1.理解平面向量数量积的含义及其物理意义.2.了解平 面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平 面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判 断两个平面向量的垂直关系.5.会用向量方法解决某其他一些实际问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2A→B·A→D,则A→D·A→C=________.
第五章 平面向量
第3讲 平面向量的数量积及应用举例
数学
第五章 平面向量
1
01
基础知识 自主回顾
02
核心考点 深度剖析
03
方法素养 助学培优
04
高效演练 分层突破
上一页
返回导航
下一页
第五章 平面向量
2
上一页
返回导航
下一页
第五章 平面向量
3
一、知识梳理 1.向量的夹角 (1)定义:已知两个非零向量 a 和 b,作O→A=a,O→B=b,则___∠__A_O__B_就是向量 a 与 b 的 夹角. (2)范围:设 θ 是向量 a 与 b 的夹角,则 0°≤θ≤180°. (3)共线与垂直:若 θ=0°,则 a 与 b__同__向_____;若 θ=180°,则 a 与 b_反__向______;若 θ=90°,则 a 与 b__垂__直_____.
_a_·_b_=__0___
cos θ=
x1x2+y1y2
___x21_+_y_12__x_22+__y22________
___x_1_x_2_+__y_1y_2_=__0_____
上一页
返回导航
下一页
第五章 平面向量
7
常用结论 1.两个向量 a,b 的夹角为锐角⇔a·b>0 且 a,b 不共线; 两个向量 a,b 的夹角为钝角⇔a·b<0 且 a,b 不共线. 2.平面向量数量积运算的常用公式 (1)(a+b)·(a-b)=a2-b2. (2)(a+b)2=a2+2a·b+b2. (3)(a-b)2=a2-2a·b+b2.
解析:A→B=(2,1),C→D=(5,5),由定义知,A→B在C→D方向上的投影为A→|BC→·DC→|D=5152=3 2
2 .
答案:3 2 2
上一页
返回导航
下一页
第五章 平面向量
15
3.设向量 a=(-1,2),b=(m,1),如果向量 a+2b 与 2a-b 平行,那么 a 与 b 的数量 积等于________.
上一页
返回导航
下一页
第五章 平面向量
11
一、思考辨析 判断正误(正确的打“√”,错误的打“×”) (1)两个向量的夹角的范围是0,π2. (2)向量在另一个向量方向上的投影为数量,而不是向量. (3)若 a·b>0,则 a 和 b 的夹角为锐角;若 a·b<0,则 a 和 b 的夹角为钝角. (4)a·b=a·c(a≠0),则 b=c.
解析:a+2b=(-1+2m,4),2a-b=(-2-m,3),由题意得 3(-1+2m)-4(-2-m) =0,则 m=-12,所以 a·b=-1×-12+2×1=52. 答案:52
上一页
返回导航
下一页
第五章 平面向量
16
平面向量数量积的运算(师生共研) (一题多解)如图,在梯形 ABCD 中,AB∥CD,CD=2,∠BAD=π4,若A→B·A→C=
上一页
返回导航
下一页
第五章 平面向量
10
3.(必修 4P106 练习 T3 改编)已知|a|=5,|b|=4,a 与 b 的夹角 θ=120°,则向量 b 在 向量 a 方向上的投影为________.
解析:由数量积的定义知,b 在 a 方向上的投影为|b|cos θ=4×cos 120°=-2. 答案:-2
上一页
返回导航
下一页
第五章 平面向量
8
二、习题改编
1.(必修 4P108A 组 T6 改编)已知 a·b=-12 2,|a|=4,a 和 b 的夹角为 135°,则|b|

()
A.12
B.6
C.3 3
D.3
解析:选 B.a·b=|a||b|cos 135°=-12
2,所以|b|=
-12
4×-
22=6.
上一页
返回导航
下一页
第五章 平面向量
4
2.平面向量的数量积
定义
设两个非零向量 a,b 的夹角为 θ,则_|a_|_|b_|_·c_o_s_θ_叫做 a 与 b 的 数量积,记作 a·b
投影
__|a_|c_o_s__θ__叫做向量 a 在 b 方向上的投影, __|b_|c_o_s__θ__叫做向量 b 在 a 方向上的投影
( ×) ( √) ( ×) ( ×)
上一页
返回导航
下一页
第五章 平面向量
12
二、易错纠偏 常见误区 (1)没有找准向量的夹角致误; (2)不理解向量的数量积的几何意义致误; (3)向量的数量积的有关性质应用不熟练致误.
上一页
返回导航
下一页
第五章 平面向量
13
1.已知△ABC 的三边长均为 1,且A→B=c,B→C=a,C→A=b,则 a·b+b·c+a·c=________.
几何意义
数量积 a·b 等于 a 的长度|a|与 b 在 a 的方向上的投影_|_b_|c_o_s_θ___ 的乘积
上一页
返回导航
下一页
第五章 平面向量
5
3.向量数量积的运算律 (1)a·b=___b_·_a____. (2)(λa)·b=λ(a·b)=__a_·(_λ_b_) ___. (3)(a+b)·c=__a_·c_+__b_·c__.
解析:因为 a,b = b,c = a,c =120°,|a|=|b|=|c|=1,所以 a·b=b·c=a·c
=1×1×cos 120°=-12,所以 a·b+b·c+a·c=-32. 答案:-32
上一页
返回导航
下一页
第五章 平面向量
14
2.已知点 A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量A→B在C→D方向上的投影 为________.
2
上一页
返回导航
下一页
第五章 平面向量
9
2.(必修 4P105 例 4 改编)已知向量 a=(2,1),b=(-1,k),a·(2a-b)=0,则 k=________. 解析:因为 2a-b=(4,2)-(-1,k)=(5,2-k),由 a·(2a-b)=0,得(2,1)·(5,2-k) =0, 所以 10+2-k=0,解得 k=12. 答案:12
上一页
返回导航
下的有关结论
已知非零向量 a=(x1,y1),b=(x2,y2),a 与 b 的夹角为 θ.
结论
几何表示
坐标表示

|a|=_a_·_a______
|a|=__x21_+__y_21 ___
夹角 a⊥b 的充
要条件
a·b cos θ=____|_a_||_b_| _____________
相关文档
最新文档