答案材料科学基础11
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、形变强化
形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。
机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。
规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。
方法:冷变形(挤压、滚压、喷丸等)。
形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。
2、固溶强化
随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。
固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大;②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。
方法:合金化,即加入合金元素。
3、第二相强化
钢中第二相的形态主要有三种,即网状、片状和粒状。
①网状特别是沿晶界析出的连续网状Fe3C,降低的钢机械性能,塑性、韧性急剧下降,强度也随之下降;
②第二相为片状分布时,片层间距越小,强度越高,塑性、韧性也越好。符合σs=σ
0+KS0-1/2的规律,S0 片层间距。
③第二相为粒状分布时,颗粒越细小,分布越均匀,合金的强度越高,符合Gb的规律,λ粒子之间的平均距离。第二相的数量越多,对塑性的危害越大;
④片状与粒状相比,片状强度高,塑性、韧性差;
⑤沿晶界析出时,不论什么形态都降低晶界强度,使钢的机械性能下降。
第二相无论是片状还是粒状都阻止位错的移动。
方法:合金化,即加入合金元素,通过热处理或变形改变第二相的形态及分布。
4、细晶强化
细晶强化:随晶粒尺寸的减小,材料的强度硬度升高,塑性、韧性也得到改善的现象称为细晶强化。细化晶粒不但可以提高强度又可改善钢的塑性和韧性,是一种较好的强
化材料的方法。
机理:晶粒越细小,位错塞集群中位错个数(n)越小,根据0n,应力集中越小,所以材料的强度越高。
细晶强化的强化规律:晶界越多,晶粒越细,根据霍尔-配奇关系式σs=σ0+Kd-1/2晶粒的平均直(d)越小,材料的屈服强度(σs)越高。
细化晶粒的方法:结晶过程中可以通过增加过冷度,变质处理,振动及搅拌的方法增加形核率细化晶粒。对于冷变形的金属可以通过控制变形度、退火温度来细化晶粒。可以通过正火、退火的热处理方法细化晶粒;在钢中加入强碳化物物形成元素。
2.简述绝缘体导体半导体能带结构有什么不同?
答:量子力学计算表明,晶体中若有N个原子,由于各原子间的相互作用,对应于原来孤立原子的每一个能级,在晶体中就变成了N条靠得很近的能级,称为能带。
对于金属、绝缘体和半导体来说,因其导电性不同,所以其能带结构也不相同。在绝缘体结构中0K时“价带”已被全部占据,导带是全空的,因而价带中的电子于无法进行电荷运输,因为价带中没有空能级。导带中虽有空能级但无电子,因而也不可能进行电荷运输;半导体的电子能带结构与绝缘体相仿,但其禁带宽比绝缘体小得多.例如Si为1.1eV,而金刚石为5eV。这一较小的禁带宽度使价带中的电子能较容易地在热或光的作用下激发到高能带即导带中而起导电作用;金属的能带结构又不同,能带或是重叠,或是半填满。固而在一个能带内总是既有电子又有空能态,电子在电场作用下便能自曲地运动,从而导致很高的导电性。
简述固态相变与液固相变在形核,长大规律方面有何
特点
从热力学角度来说,固态相变与液固相变相比,一些规律是相同的,其共同点是:相变驱动力都是新旧两相之间的自由能差;相变都包含形核与长大两个基本的过程。而二者在相变特点上的区别在于固态相变的母相为固体,其具有确定形状、有较高切变强度、内部原子按点阵规律排列,并且不同程度地存在着成分不均匀的结构缺陷。相变以晶体为母相,必然与液固相变相比存在一系列新的特征。具体表现在以下几方面:(1) 相变驱动力来源于两相自由能之差,差值越大,越有利于转变的进行。
界面能增加
相变阻力大额外弹性应变能:比体积差扩散困难(新、旧相化学成分不同时)
固态相变与固液相变相比,相变阻力更大是因为多出了一项应变能和扩散更难进行。
(2) 新相晶核与母相之间存在一定的晶体学位向关系;新相的某一晶面和晶向分别与母相的某一晶面、晶向平行。
(3) 惯习现象:新相沿特定的晶向在母相特定晶面上形成( 沿应变能最小的方向和界面能最低的界面 )。通过降低界面能和应变能而减小相变阻力是惯习现象出现的原因。
(4) 母相晶体缺陷促进相变:固态金属中存在各种晶体缺陷,如位错、空位、晶界和亚晶界等。母相中存在缺陷,由于缺陷周围有晶格畸变,自由能较高,在此处形成同样大小的晶核比其他区域获得更大的驱动力,新相晶核往往优先在这些缺陷处形成。母相晶粒越细小,晶界越多,晶内缺陷越多,形核率越高,转变速度越快。
(5) 易出现过渡相:过渡相是一种亚稳定相,其成分和结构介于新相和母相之间。因为固态相比阻力大,原子扩散困难,尤其是当转变温度较低,新、旧相成分相差较远时,难以形成稳定相。过渡相是为了克服相变阻力而形成的一种协调性的中间转变产物。通常是现在母相中形成与母相成分接近的过渡相,然后在一定条件下由过渡相逐渐转变为自由能最低的稳定相。
3-21Al2O3在MgO中形成有限固溶体,在低共熔温度1995℃时.约有18wt%Al2O3溶入MgO 中,假设MgO单位晶胞尺寸变化可忽略不计。试预计下列情况的密度变化。1)Al3+为填隙离子;2)Al3+为置换离子。
解:(a)Al3+为填隙离子:
缺陷反应为:(1)
固溶式分子式:
(b)Al3+为置换离子:
缺陷反应为:(2)
固溶式分子式:(3)
取100g试样为基准:(为摩尔数)
(m为摩尔数)
∴MgO中固溶18%wt的Al2O3后的分子式为:
2.035MgO·0.176Al2O3或
(4)式各项除以2.563得
由(5)式得x=0.137代入(2)(3)式,
对(a)有