云南省昆明市第一中学2021届高三高中新课标第一次摸底测试数学(理)答案
云南省昆明市第一中学2025届高三下学期联合考试数学试题含解析
云南省昆明市第一中学2025届高三下学期联合考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列判断错误的是( )A .若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,则()20.22P ξ≤-=B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件C .若随机变量ξ服从二项分布: 14,4B ξ⎛⎫⎪⎝⎭, 则()1E ξ= D .am bm >是a b >的充分不必要条件2.在ABC ∆中,,A B C ∠∠∠所对的边分别是,,a b c ,若3,4,120a b C ︒==∠=,则c =( )A .37B .13C D 3.设双曲线221x y a b+=的一条渐近线为2y x =-,且一个焦点与抛物线24x y =的焦点相同,则此双曲线的方程为( ) A .225514x y -= B .225514y x -= C .225514y x -= D .225514x y -= 4.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为1、2、3元).甲、乙租车费用为1元的概率分别是0.5、0.2,甲、乙租车费用为2元的概率分别是0.2、0.4,则甲、乙两人所扣租车费用相同的概率为( ) A .0.18B .0.3C .0.24D .0.365.已知A ,B 是函数()2,0ln ,0x x a x f x x x a x ⎧++≤=⎨->⎩图像上不同的两点,若曲线()y f x =在点A ,B 处的切线重合,则实数a 的最小值是( ) A .1-B .12-C .12D .16.关于函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,有下述三个结论:①函数()f x 的一个周期为2π;②函数()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增; ③函数()f x 的值域为[4,42]. 其中所有正确结论的编号是( ) A .①②B .②C .②③D .③7.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .8.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( ) A .12E E ξξ<,12D D ξξ< B .12E E ξξ=,12D D ξξ> C .12E E ξξ=,12D D ξξ<D .12E E ξξ>,12D D ξξ>9.已知:|1|2p x +> ,:q x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .1a ≤B .3a ≤-C .1a ≥-D .1a ≥10.设全集U =R ,集合{}02A x x =<≤,{}1B x x =<,则集合A B =( )A .()2,+∞B .[)2,+∞C .(],2-∞D .(],1-∞11.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<< B .{|e}A B x x =< C .{|0e}A B x x =<<D .{|1e}AB x x =-<<12.设1F ,2F 是双曲线()2222:10,0x yC a b a b-=>>的左,右焦点,O 是坐标原点,过点2F 作C 的一条渐近线的垂线,垂足为P .若16PF =,则C 的离心率为( )A .2B .3C .2D .3二、填空题:本题共4小题,每小题5分,共20分。
2021年8月26日云南省昆明市第一中学2022届高三高中新课标第一次摸底测试文科数学答案解析
1
绝密★启用前
云南省昆明市第一中学
2022届高三毕业班高中新课标第一次摸底测试
数学(文)试题参考答案解析
考试时间:2021年8月26日
一、选择题
2. 解析:根据此频率分布直方图,成绩在[]80,100内的人数为0.25010⨯=人,A
对;
这50名学生中成绩在[)40,60内的频率为0.20.080.28+=, B 对; 这50名学生成绩的中位数()60,70∈ ,C 错;
450.08550.2650.32750.2850.12950.0868.2x =⨯+⨯+⨯+⨯+⨯+⨯=,D 对 ,选 C.
3. 解析:由题意(1+i)z =5⋅,555
z i 1+i 22
=
=-,选A . 4. 解析:ln3lne 1a =>= ,1ln3ln π<< , 选A.
5. 解析:由题意,点P 到点(0,1)F 的距离等于它到直线1y =-的距离,则点P 的轨
迹是以F 为焦点,1y =-为准线的抛物线,则点P 的轨迹方程为24x y =,选B . 6. 解析:由已知得:6000
30500360
⨯
=密位,500密位写成500-,选C . 7. 解析:将三视图还原可得下图,挖去多面体为四棱锥,其体积,选D.。
2021届云南省昆明一中高三高中新课标第一次摸底测试数学(文)试题
A. B.14C.12D. 16
5.我国目前部分普通高中学生在高一升高二时面临着选文理科的问题,某学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图
根据这两幅图中的信息,下列统计结论正确的是
A.样本中的男生数量多于女生数量
(1)求曲线C2的普通方程和直线l的参数方程;
(2)求 的值.
23. [选修4 -5:不等式选讲](10分)
已知函数 .
(1)当a= 1时,求不等式f(x)≥2的解集;
(2)若f(x)的图象与x轴围成的三角形的面积大于6,求实数a的取值范围。
昆明市第一中学2021届摸底考试
参考答案(文科数学)
一、选择题
A.40B.30C.20D.10
7.阅读右面的程序框图,则输出的S =
A.15
B.4
C.31
D.5
8.已知圆C: 与x轴,y轴的正半轴分别交于A,B两点,则弦长
A. B.5C. D.
9.函数 的值域为
A.(-∞,-2]B.[2,+∞)C.(-∞,-2] [2,+∞)D.[-2,2]
10.在三棱锥S-ABC中,平面SAB⊥平面ABC,∆ABC是边长为3的等边三角形,∆SAB是以AB为斜边的直角三角形,则该三棱锥外接球的表面积为
A.32πB.16π .C.24πD.12π
11.已知函数 的最小正周期是π,把它图象向右平移
个单位后得到的图象所对应的函数为奇函数.现有下列结论:
①函数f(x)的图象关于直线x= 其对称.②函数f(x)的图象关于点( ,0)对称
③函数f(x)在区间 上单调递减④函数f(x)在 上有3个零点
2021届云南省昆明市第一中学高三高中新课标第一次摸底测试数学(理)试题(解析版)
2021届云南省昆明市第一中学高三高中新课标第一次摸底测试数学(理)试题一、单选题1.复数z 满足122z i ⋅=+,则复数z 在复平面内对应的点的坐标为( ) A .(1,0) B .(0,1)C .(1-,0)D .(0, 1-)【答案】D【解析】求出左边复数的模,利用除法运算化简复数z ,可得复数z 的坐标,从而可得答案. 【详解】因为122z i ⋅=+1==, 所以1iz i ==-,所以复数z 在复平面内对应的点的坐标为()0,1-, 故选:D . 【点睛】本题主要考查复数的模与复数的除法运算,考查了复数的坐标表示,属于基础题.2.已知集合A ={}221x x y +=,集合B = {y y =,则A B =( )A .[0,1]B .[- 1,1]C .[-1,0)D .[- 1,0]【答案】A【解析】先根据圆的范围和值域的求法,化简两个集合,再利用集合的交集运算求解. 【详解】因为集合{}[]2211,1A x x y =+==-,集合{[)0,B y y ===+∞,所以[]0,1AB =,故选:A . 【点睛】本题主要考查结合的基本运算以及值域的求法和圆的范围,属于基础题.3.抛物线22(0)y px p =>的焦点到双曲线221x y -=的渐近线的距离为22,则p =( ) A .4 B .3C .2D .1【答案】C【解析】因为抛物线的焦点为(,0)2p,双曲线的渐近线为0x y ±=利用点到直线的距离公式,即可得解. 【详解】因为抛物线的焦点为(,0)2p, 双曲线的渐近线为0x y ±=,所以抛物线的焦点到双曲线的渐近线的距离为2222211p d ==+, 又因为0p >,所以2p =, 故选:C . 【点睛】本题考查了抛物线基本量的计算,考查双曲线的渐近线和距离公式,属于基础题. 4.我国目前部分普通高中学生在高一升高二时面临着选文理科的问题,某学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图根据这两幅图中的信息,下列统计结论正确的是( ) A .样本中的男生数量多于女生数量B .样本中有理科意愿的学生数量少于有文科意愿的学生数量C .对理科有意愿的男生人数多于对文科有意愿的男生人数D .对文科有意愿的女生人数多于对理科有意愿的女生人数【答案】C【解析】由等高条形图的特点和性质进行判断, 【详解】由等高堆积条形图1可知,不管是文科还是理科,女生占比均高于男生,故样本中的女生数量多于男生数量,A 错误;从图2可以看出男生和女生中选择理科的人数均高于选择文科的人数, 故选:C . 【点睛】本题主要考查了独立性检验中利用等高条形图判断两个变量之间的差异,属于基础题. 5.数学与文学有许多奇妙的联系,如诗中有回文诗“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343 ,12521等.两位数的回文数有11 ,22 ,3,……,99共9个,则在三位数的回文数中偶数的个数是( ) A .40 B .30C .20D .10【答案】A【解析】根据回文数定义,确定首位,再确定中间数,最后根据分步乘法计数原理得结果. 【详解】由题意,若三位数的回文数是偶数,则末(首)位可能为2,4,6,8.如果末(首)位为2,中间一位数有10种可能,同理可得,如果末(首)位为4或6或8, 中间一位数均有10种可能,所以有41040⨯=个, 故选:A 【点睛】本题考查分步计数原理实际应用,考查基本分析求解能力,属基础题. 6.函数4()3ln f x x x x=+-的单调递减区间是( ) A .(1,4)- B .(0,1)C .(4,)+∞D .(0,4)【答案】D【解析】求导,2243(1)(4)()1x x f x x x x +-=--=',由()0f x <'即可得解. 【详解】函数的定义域是(0,)+∞,2243(1)(4)()1x x f x x x x +-=--=',令()0f x <',解得04x <<, 故函数4()3ln f x x x x=+-在(0,4)上单调递减, 选:D . 【点睛】本题考查了利用导数求函数单调性,考查了导数的基本能应用,属于基础题. 7.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .163πB .643πC .169πD .649π【答案】C【解析】由三视图可知,该几何体是圆锥的一部分,结合图中所给数据,即可得解. 【详解】由三视图可知,该几何体是圆锥的一部分,观察到正视图中1和2的分界线可知俯视图是圆心角为120︒的扇形,故该几何体的体积为21116π24π339V =⨯⨯⨯=, 故选:C . 【点睛】本题考查了三视图,考查了锥体体积的计算公式,属于基础题.8.已知圆C : 22420x y x y +--=与x 轴,y 轴的正半轴分别交于A ,B 两点,则弦长AB =( )A .B .5C .D .【答案】A【解析】分别令0x =和0y =,从而求出A ,B 两点的坐标,由两点的距离公式可求出弦长. 【详解】令0y =,解得4x =或0;令0x =,解得2y =或0.所以(4,0)A ,(0,2)B ,所以AB =故选:A 【点睛】本题考查了两点的距离公式,属于基础题.本题的关键是求出A ,B 两点的坐标. 9.将多项式26576510a x a x a x a x a +++++分解因式得25(2)(1)x x -+,则5a =( ) A .16 B .14C .6-D .10-【答案】C【解析】将()51x +展开,观察345,x x x , 的系数,对应()22x -的展开相乘,相加得到答案. 【详解】解析:由题意,()()()()255221441x x x x x -+=-++,52232551a x x C x =⋅⋅14541x C x -⋅⋅055546C x x +⨯=-,所以56a =-,故选:C. 【点睛】本题考查了二项式定理,考查计算能力,属于基础题.10.在三棱锥S -ABC 中,平面SAB ⊥平面ABC ,△ABC 是边长为3的等边三角形,△SAB 是以AB 为斜边的直角三角形,则该三棱锥外接球的表面积为( ) A .32π B .16π .C .24πD .12π【答案】D【解析】先根据题意确定三棱锥外接球的球心为△ABC 外接圆圆心,再根据正弦定理求得求半径,最后根据球表面积公式得结果. 【详解】由题意,△SAB 是以AB 斜边的直角三角形,以三角形SAB 所在平面截球所得的小圆面圆心在AB 中点,又因为平面SAB ⊥平面ABC ,所以平面ABC 截球所得平面即为大圆.因为△ABC 是边长为3的正三角形,其外接圆半径33R =⨯=锥外接球的半径R =,其表面积24π12πS R ==, 故选:D 【点睛】本题考查三棱锥外接球表面积,考查空间想象能力,属基础题.11.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期是π,把它图象向右平移3π个单位后得到的图象所对应的函数为奇函数.现有下列结论: ①函数()f x 的图象关于直线12x π=-对称.;②函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称;③函数()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上单调递减;④函数()f x 在3,32ππ⎡⎤⎢⎥⎣⎦上有3个零点.正确的结论是( ) A .①②③ B .①②④C .②③D .②【答案】A【解析】利用函数()y f x =的最小正周期以及平移后的函数的奇偶性求出ω、ϕ的值,可求得函数()y f x =的解析式,利用正弦型函数的对称性可判断①②的正误;利用正弦型函数的单调性可判断③的正误;当3,32x ππ⎡⎤∈⎢⎥⎣⎦时,解方程()0f x =可判断④的正误. 【详解】因为函数()y f x =的最小正周期为π,则22πωπ==,则()()sin 2f x x ϕ=+, 将函数()y f x =的图象向右平移3π个单位后得到函数2sin 2sin 233y x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由于函数2sin 23y x πϕ⎛⎫=+- ⎪⎝⎭为奇函数,则()23k k Z πϕπ-=∈,可得2,3k k Z πϕπ=+∈. 22ππϕ-<<,1k ∴=-,则3πϕ=-,()sin 23f x x π⎛⎫∴=-⎪⎝⎭. 对于命题①,()min sin 2sin 1121232f f x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯--=-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,①正确; 对于命题②,sin 2sin 00663f πππ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,②正确;对于命题③,当212x ππ-≤≤-时,42332x πππ-≤-≤-, 所以,函数()y f x =在区间,212ππ⎡⎤--⎢⎥⎣⎦上单调递减,③正确; 对于命题④,当3,32x ππ⎡⎤∈⎢⎥⎣⎦时,82333x πππ≤-≤,由()0f x =可得23x ππ-=或223x ππ-=,解得23x π=或76x π=,④错误. 故选:A. 【点睛】本题考查正弦型函数的对称性、单调性与零点个数的判断,同时也考查了利用正弦型函数的周期和图象变换求函数解析式,考查计算能力,属于中等题.12.已知定义在R .上的偶函数f (x ), 对任意x ∈R ,都有f (2-x ) =f (x +2),且当[2,0]x ∈-时()21xf x -=-.若在a > 1时,关于x 的方程()()log 20a f x x -+=恰有三个不同的实数根,则实数a 的取值范围是( ) A .(1,2) B .(232,2)C .23(,2)-∞(2, +∞) D .(2,+∞)【答案】B【解析】由函数的奇偶性和周期性作()f x 的图象,将方程的根的问题转化为两函数图象交点的问题,从而得log (22)3log (62)3a a +<⎧⎨+>⎩,进而可求出实数a 的取值范围.【详解】依题意函数()f x 的图象关于y 轴及直线2x =对称,所以()f x 的周期为4, 作出[]2,0x ∈-时()f x 的图象,由()f x 的奇偶性和周期性作出()f x 的图象, 关于x 的方程()log (2)0a f x x -+=恰有三个不同的实数根, 可转化为函数()f x 与log (2)a y x =+的图象有三个不同的交点,由数形结合可知log (22)3log (62)3a a +<⎧⎨+>⎩,解得2322a <<,故选:B .【点睛】本题考查了数形结合的思想,考查了函数的奇偶性和周期性,考查了函数的零点与方程的根,考查了对数不等式的求解,属于中档题.画出函数的图象是本题的关键.二、填空题13.若x , y 满足约束条件33040x y x y x y +-≥⎧⎪≤⎨⎪+-≤⎩,则z =2x +y 的最大值是__________. 【答案】6【解析】画出不等式组对应的可行域,平移动直线20x y z +-=可得z 的最大值. 【详解】不等式组对应的可行域如图所示: 由40x y x y +-=⎧⎨=⎩可得22x y =⎧⎨=⎩,故()2,2A .平移动直线2z x y =+至()2,2A 处时,z 取得最大值,且最大值为2226⨯+=. 故答案为: 6.【点睛】本题考查线性规划,注意利用它来求最值时,应挖掘目标函数的几何意义,本题属于基础题.14.已知(2,3),(1,3)a b =-=,则a 在b 方向上的投影为_________. 【答案】12【解析】利用数量积的几何意义可求投影的值. 【详解】a 在b 方向上的投影是()2221331213a bb⋅-⨯+⨯==+.故答案为:12. 【点睛】本题考查数量积的几何意义,考查学生对概念的理解与掌握,本题属于基础题. 15.已知抛物线C :24y x =的焦点为F ,直线l :210x -=与C 交于P 、Q (P 在x 轴上方)两点,若PF FQ λ=,则实数λ的值为_______ 【答案】526+【解析】先求出(526,23)P +、(526,223)Q --、(1,0)F ,再求出(426,2223)PF =---和(426,2223)FQ =-,最后建立方程求λ即可.【详解】解:由题意联立方程组24210y x x y ⎧=⎪⎨--=⎪⎩,解得5262223x y ⎧=+⎪⎨=+⎪⎩或5262223x y ⎧=-⎪⎨=-⎪⎩因为P 在x 轴上方,所以(526,2223)P ++、(526,2223)Q --, 因为抛物线C 的方程为24y x =,所以(1,0)F ,所以(426,2223)PF =----,(426,2223)FQ =--因为PF FQ λ=,所以(426,2223)(426,2223)λ----=--, 解得:22235262223λ--==+-,故答案为:526+ 【点睛】本题考查直线与抛物线的位置关系、抛物线的几何性质、利用共线向量求参数,是中档题16.如图,正方体ABCD –A 1B 1C 1D 1的棱长为1 ,线段AC 1上有两个动点E 、F ,且EF 3=3,给出下列四个结论:①CE ⊥BD②三棱锥E - BCF 的体积为定值③∆BEF 在底面ABCD 内的正投影是面积为定值的三角形 ④在平面ABCD 内存在无数条与平面DEA 1平行的直线 其中,正确的结论是____________ 【答案】①②③④【解析】根据棱柱的结构特征和线面关系逐项排除即可. 【详解】因为BD ⊥平面1ACC ,所以BD CE ⊥,故①对;因为点C 到直线EF 的距离是定值,点B 到平面CEF 的距离也是定值,所以三棱锥B CEF -的体积为定值,故②对;线段EF 在底面ABCD 上的正投影是线段GH ,所以△BEF 在底面ABCD 内的正投影是△BGH .又因为线段EF 的长是定值,所以线段GH 是定值,从而△BGH 的面积是定值,故③对;设平面ABCD 与平面1DEA 的交线为l ,则在平面ABCD 内与直线l 平行的直线有无数条,故④对. 所以正确结论是①②③④.故答案为:①②③④ 【点睛】本题主要考查命题的真假判断,解题时要认真审题,要熟练掌握棱柱的结构特征,线与面之间的关系.三、解答题17.已知数列{}n a 的前n 项和为n S ,且2()n n S a n n N *=-∈.(1)求123,,a a a 的值,猜想数列{}n a 的通项公式并加以证明; (2)求13523()n a a a a n N *+++++∈.【答案】(1)11a =,23a =,37a =;猜想数列{}n a 的通项公式21nn a =-;证明见解析;(2)252383n n +--. 【解析】(1)由1=(2)n n n a S S n --≥可猜测{}n a ,然后再利用等比数列定义证明; (2)利用等比数列求和即可. 【详解】(1)由1121S a =-得:11a =,因为11(2)(2(1))n n n n S S a n a n ---=----(2)n ≥, 所以121n n a a -=+(2)n ≥,所以2121=3a a =+,3221=7a a =+;由此猜想数列{}n a 的通项公式21nn a =-;证明:因为121n n a a -=+(2)n ≥,所以112(1)n n a a -+=+, 所以1121n n a a -+=+(2)n ≥,所以{}1n a +是以2为首项,2为公比的等比数列,所以12nn a +=,即:21n n a =-.(用数学归纳法证明也可) (2)由(1)得21nn a =-,所以()32313523222(2)n n a a a a n +++++⋅⋅⋅+=++⋅⋅⋅+-+22(14)(2)14n n +-=-+-252383n n +--=. 【点睛】本题考查了用1=(2)n n n a S S n --≥递推式求通项公式,等比数列求和公式. 18.如图,在六面体ABCDEF 中,AB //CD ,AB ⊥AD ,且112AB AD CD ===,四边形ADEF 是正方形,平面ADEF ⊥平面ABCD .(1)证明:平面BCE ⊥平面BDE ;(2)若∆BCE 中,∠BEC =30°,求二面角C BE F --的余弦值. 【答案】(1)证明见解析;(2)3. 【解析】(1)先证明BC BD ⊥和BC ED ⊥,再结合BD ED D =,证明BC ⊥平面BDE ,最后证明平面BCE ⊥平面BDE 即可;(2)先建立空间直角坐标系,再求平面BEF 的一个法向量和平面BCE 的一个法向量,最后求二面角C BE F --的余弦值. 【详解】解:(1)证明:因为//AB CD ,AB AD ⊥,且112AB AD CD ===,所以2BD BC ==2CD =,则在BCD 中:222CD BD BC =+,所以BC BD ⊥ 又平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,四边形ADEF 是正方形,ED AD ⊥,ED ⊂平面ABCD ,可得ED ⊥平面ABCD ,BC ⊂平面ABCD ,则BC ED ⊥,BD ,ED ⊂平面BDE ,BD ED D =,故BC ⊥平面BDE ,BC ⊂平面BCE ,所以,平面BCE ⊥平面BDE .(2)由(1)知ED DA ⊥、ED DC ⊥、DA DC ⊥,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,DE 为z 轴建立空间直角坐标系,如图.可得(1,1,0)B 、(0,2,0)C 、(0,0,1)E 、(1,0,1)F , 故(1,1,1)EB =-,(1,0,0)EF =,(0,2,1)EC =-, 设(,,)m x y z =为平面BEF 的一个法向量,则00m EB m EF ⎧⋅=⎨⋅=⎩,得(0,1,1)m =,同理可得平面BCE 的一个法向量为(1,1,2)n =,01+11+123cos ,=226m n m n m n⋅⨯⨯⨯<>==⨯⋅ 二面角C BE F --的是钝二面角, 所以二面角C BE F --的余弦值为32-.【点睛】本题考查利用线面垂直证明面面垂直、利用空间向量求面面所成的角,是中档题. 19.计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为45,34,23,在实际操作考试中“合格”的概率依次为12,23,56,所有考试是否合格相互之间没有影响. (1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率. 【答案】(1)丙;(2)1130【解析】(1)分别计算三者获得合格证书的概率,比较大小即可(2)根据互斥事件的和,列出三人考试后恰有两人获得合格证书事件,由概率公式计算即可求解. 【详解】(1)设“甲获得合格证书”为事件A ,“乙获得合格证书”为事件B ,“丙获得合格证书”为事件C ,则412()525P A =⨯=,321()432P B =⨯=,255()369P C =⨯=. 因为()()()P C P B P A >>,所以丙获得合格证书的可能性最大. (2)设“三人考试后恰有两人获得合格证书”为事件D ,则21421531511()()()()52952952930P D P ABC P ABC P ABC =++=⨯⨯+⨯⨯+⨯⨯=.【点睛】本题主要考查了相互独立事件,互斥事件,及其概率公式的应用,属于中档题. 20.已知点Q 是圆M :22(1)16x y ++=上一动点(M 为圆心),点N 的坐标为(1,0),线段QN 的垂直平分线交线段QM 于点C ,动点C 的轨迹为曲线E . (1)求曲线E 的轨迹方程;(2)直线l 过点P (4,0)交曲线E 于点A ,B ,点B 关于x 的对称点为D ,证明:直线AD 恒过定点.【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)根据中垂线性质得CQ CN =,即得4CM CN +=,最后根据椭圆定义求方程;(2)先设直线AD 的方程y kx m =+,并与椭圆方程联立,再根据A ,B ,P 共线,结合韦达定理求得m k =-,即得定点. 【详解】解:(1)因为线段QN 的中垂线交线段QM 于点C ,则CQ CN =, 所以42CM CN CM CQ QM MN +=+==>=, 由椭圆定义知:动点C 的轨迹为以原点为中心的椭圆, 其中:24a =,22c =,又222=3b a c =-,所以曲线E 的轨迹方程为22143x y +=.(2)设()11,D x y ,()22,A x y ,则()11,B x y -,由题意知直线AD 的斜率必存在, 设直线AD 的方程为:y kx m =+,由22+143y kx m x y =⎧⎪⎨+=⎪⎩,,消y 得:()()222438430k mk m x x +++-=,故()()()2222221222122641643303408434343m k k m k m mk x x k m x x k ⎧∆=-+->⇒+->⎪⎪⎪+=-⎨+⎪-⎪⋅=⎪+⎩因为A ,B ,P 共线,其中()224,PA x y =-,()114,PB x y =-- 所以()()()212144x y y x --=-,整理得()()12122480kx x m k x x m +-+-=, 则()()22224388044343k m mk m k m k k ⋅--⋅+-=++-,解得m k =-,此时2330k∆=+>则直线AD 的方程为:()1y k x =-, 所以直线AD 恒过定点()1,0 【点睛】本题考查椭圆标准方程、椭圆定义、直线过定点,考查综合分析求解能力,属中档题. 21.已知函数()1()x f x e ax a R =+-∈ (1)判断函数f (x )的单调性;(2)若()ln(1)g x x =+当(0,)x ∈+∞时,不等式(())()f g x f x <恒成立,求实数a 的取值范围.【答案】(1)当0a ≥时,()f x 在(),-∞+∞上单调递增;当0a <时,()f x 在,ln()a 上单调递减;在ln(),a 上单调递增;(2)[)1,-+∞.【解析】(1)先对()f x 求导,再分0a ≥和0a <两种情况进行讨论,利用()0f x '>和()0f x '<判断函数f (x )的单调性;(2)将当(0,)x ∈+∞时,不等式(())()f g x f x <恒成立,转化为()g x x <和()g x x >,下面先证明0()g x x (0x >),分左右两部分,证明再结合(1)的单调区间实数a 的取值范围. 【详解】解:(1)因为函数()1()x f x e ax a R =+-∈,所以()f x 的定义域为(),-∞+∞,()e x f x a ,当0a ≥时,()0f x '>,()f x 在(),-∞+∞上单调递增; 当0a <时,令()0f x '=,得ln()x a =-,所以()f x 在,ln()a 上单调递减;在ln(),a 上单调递增.综上所述,当0a ≥时,()f x 在(),-∞+∞上单调递增;当0a <时,()f x 在,ln()a 上单调递减;在ln(),a 上单调递增.(2)当()0,x ∈+∞时,11x +>,所以()ln(1)0g x x . 设()ln(1)h x x x =-+(0)x >,则1()111xh x x x '=-=++, 当0x >时,()0h x '>,()h x 在()0,∞+上单调递增, 所以()(0)0h x h >=,所以ln(1)x x >+, 故0()g x x .由(1)可知,当0a ≥时,()f x 在(),-∞+∞上单调递增,所以(())()f g x f x <成立; 当10a -≤<时,ln()0a ,且()f x 在ln(),a 上单调递增,所以(())()f g x f x <成立;当1a <-时,()f x 在0,ln()a 上单调递减; 则有(())()f g x f x >,不合题意.综上所述,实数a 的取值范围为[)1,-+∞. 【点睛】本题考查利用函数的单调性解不等式、导数的运算、利用导数判断函数的单调性、导函数研究不等式恒成立问题并求参数范围,是中档题.22.已知平面直角坐标系xOy 中,曲线221:1C x y +=经过伸缩变换2x x y y =''⎧⎨=⎩得到曲线C 2,直线l 过点P (-1,0)C 2交于A ,B 两点. (1)求曲线C 2的普通方程和直线l 的参数方程; (2)求PA PB ⋅的值.【答案】(1)1,21.2x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数);2214x y +=;(2)127. 【解析】(1)由变换规则可得12x x y y ⎧=⎪⎨⎪='⎩',代入曲线1C 可得C 2的普通方程,由已知条件即可写出直线的参数方程.(2) 设A ,B 所对应参数分别为1t ,2t ,将l 的参数方程代入曲线2C ,结合韦达定理和参数的几何意义即可求出PA PB ⋅的值. 【详解】(1)由2,x x y y ''=⎧⎨=⎩得12x x y y ⎧=⎪⎨⎪='⎩',代入曲线1C 得:()2212x y '⎛⎫'+= ⎪⎝⎭,所以曲线2C 的普通方程为2214x y +=.因为直线l 过点(1,0)P -所以l的参数方程为1,1.2x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(2)设A ,B 所对应参数分别为1t ,2t ,将l 的参数方程代入曲线2C 得:27120t --=,则(247120∆=+⨯⨯>,且12127t t =-,所以,1212127PA PB t t t t ⋅=⋅==. 【点睛】本题考查了伸缩变换,考查了直线的参数方程,考查了参数的几何意义. 23.已知函数()22,0f x x x a a =+-->. (1)当a = 1时,求不等式f (x )≥2的解集;(2)若f (x )的图象与x 轴围成的三角形的面积大于6,求实数a 的取值范围. 【答案】(1)2,23⎡⎤⎢⎥⎣⎦;(2)()1,+∞.【解析】(1)代入1a =,通过讨论去掉绝对值号,从而求出解集.(2)讨论x 的取值范围,去掉函数的绝对值号,从而可得图象与x 轴所围成的三角形三个顶点的坐标,进而可求出面积表达式,由题意可写出关于a 的不等式,从而可求出实数a 的取值范围. 【详解】解:(1)1a =时,由不等式()2f x ≥可得:()2212f x x x =+--≥,可化为:22222x x x <-⎧⎨--+-≥⎩ 或212222x x x -≤≤⎧⎨++-≥⎩ 或12222x x x >⎧⎨+-+≥⎩,解得:x ∈∅ 或 213x ≤≤ 或 12x <≤,即:223x ≤≤,则不等式的解集为2,23⎡⎤⎢⎥⎣⎦.(2)因为22,2,()322,2,22,,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩所以()f x 的图象与x 轴所围成的三角形,三个顶点分别为22,03a A -⎛⎫⎪⎝⎭,(),2B a a +,()22,0C a +, 由题意,()()122222623a a a -⎡⎤+-+>⎢⎥⎣⎦,整理得:2450a a +->, 因为0a >,所以解得:1a >,所以,实数a 的取值范围为()1,+∞. 【点睛】本题考查利用零点分段法求解绝对值不等式,同时也考查了利用绝对值函数与坐标轴围成的三角形面积求参数,考查数形结合思想的应用,属于中等题.。
云南省昆明市2021届新高考数学一模试卷含解析
云南省昆明市2021届新高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,上顶点为点A ,延长2AF 交椭圆Г于点B ,若1ABF V 为等腰三角形,则椭圆Г的离心率e =A .13BC .12D 【答案】B 【解析】 【分析】 【详解】设2||BF t =,则12||BF a t =-,||AB a t =+,因为1||AF a =,所以1||||AB AF >.若11||||AF BF =,则2a a t =-,所以a t =, 所以11||||||2A A a BF B F =+=,不符合题意,所以1||||BF AB =,则2a t a t -=+, 所以2a t =,所以1||||3BF AB t ==,1||2AF t =,设12BAF θ∠=,则sin e θ=,在1ABF V 中,易得1cos23θ=,所以2112sin 3θ-=,解得sin 3θ=(负值舍去),所以椭圆Г的离心率3e =.故选B . 2.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( ) A .20 B .50C .40D .60【答案】B 【解析】 【分析】利用某一层样本数等于某一层的总体个数乘以抽样比计算即可. 【详解】由题意,30=150015001000n⨯+,解得50n =.故选:B. 【点睛】本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.3.已知函数2log (1),1()3,1x x x f x x -->⎧=⎨≤⎩,则[](2)f f -=( )A .1B .2C .3D .4【答案】C 【解析】 【分析】结合分段函数的解析式,先求出(2)f -,进而可求出[](2)f f -. 【详解】由题意可得2(2)39f -==,则[]2(9)log (913(2))f f f =-==-.故选:C. 【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.4.已知函数()ln f x x =,若2()()3F x f x kx =-有2个零点,则实数k 的取值范围为( ) A .21,06e ⎛⎫-⎪⎝⎭B .1,06e ⎛⎫-⎪⎝⎭C .10,6e ⎛⎫ ⎪⎝⎭D .210,6e ⎛⎫ ⎪⎝⎭【答案】C 【解析】 【分析】令2()()30F x f x kx =-=,可得2ln 3x k x =,要使得()0F x =有两个实数解,即y k =和2ln ()3xg x x =有两个交点,结合已知,即可求得答案. 【详解】令2()()30F x f x kx =-=, 可得2ln 3xk x =, 要使得()0F x =有两个实数解,即y k =和2ln ()3xg x x=有两个交点, Q 312ln ()3xg x x -'=, 令12ln 0x -=,可得x =∴当x ∈时,()0g x '>,函数()g x 在上单调递增;当(e,)x ∈+∞时,()0g x '<,函数()g x 在(,)e +∞上单调递减.∴当e x =时,max 1()6eg x =, ∴若直线y k =和2ln ()3x g x x =有两个交点,则10,6e k ⎛⎫∈ ⎪⎝⎭. ∴实数k 的取值范围是10,6e ⎛⎫⎪⎝⎭.故选:C. 【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.5.在ABC ∆中,E ,F 分别为AB ,AC 的中点,P 为EF 上的任一点,实数x ,y 满足0PA xPB yPC ++=r u u u v u u u v u u u v ,设ABC ∆、PBC ∆、PCA ∆、PAB ∆的面积分别为S 、1S 、2S 、3S ,记i iSSλ=(1,2,3i =),则23λλ⋅取到最大值时,2x y +的值为( ) A .-1 B .1C .32-D .32【答案】D 【解析】 【分析】根据三角形中位线的性质,可得P 到BC 的距离等于△ABC 的BC 边上高的一半,从而得到12312S S S S ==+,由此结合基本不等式求最值,得到当23λλ⋅取到最大值时,P 为EF 的中点,再由平行四边形法则得出11022PA PB PC ++=u u u r u u u r u u u r r ,根据平面向量基本定理可求得12x y ==,从而可求得结果.【详解】 如图所示:因为EF 是△ABC 的中位线,所以P 到BC 的距离等于△ABC 的BC 边上高的一半, 所以12312S S S S ==+,由此可得22232322322()1216S SS S SSS S S Sλλ+=⨯=≤=,当且仅当23S S=时,即P为EF的中点时,等号成立,所以0PE PF+=u u u r u u u r r,由平行四边形法则可得2PA PB PE+=u u u r u u u r u u u r,2PA PC PF+=u u u r u u u r u u u r,将以上两式相加可得22()0PA PB PC PE PF++=+=u u u r u u u r u u u r u u u r u u u r r,所以1122PA PB PC++=u u u r u u u r u u u r r,又已知0PA xPB yPC++=u u u r u u u r u u u r r,根据平面向量基本定理可得12x y==,从而132122x y+=+=.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.6.某几何体的三视图如图所示,则该几何体的最长棱的长为()A.5B.4C.2D.22【答案】D【解析】【分析】先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:2AD = ,3,2,CE SD ==所以2SC DC ==, 所以222222,22SA SDADSB SCBC=+==+=所以该几何体的最长棱的长为22 故选:D 【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.7.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =,所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.8.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( )A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦U C .179,42⎡⎤⎢⎥⎣⎦ D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 【答案】C 【解析】 【分析】将函数()f x 解析式化简,并求得()f x ',根据当[]11,3x ∈时()0f x >′可得()1f x 的值域;由函数()2g x x m =-++在[]21,3x ∈上单调递减可得()2g x 的值域,结合存在性成立问题满足的集合关系,即可求得m 的取值范围. 【详解】依题意()()222113311x x x x x f x x x ++++++==++ 121x x =+++, 则()()2111f x x '=-+,当[]1,3x ∈时,()0f x >′,故函数()f x 在[]1,3上单调递增, 当[]11,3x ∈时,()1721,24f x ⎡⎤∈⎢⎥⎣⎦; 而函数()2g x x m =-++在[]1,3上单调递减, 故()[]21,1g x m m ∈-+, 则只需[]721,1,124m m ⎡⎤⊆-+⎢⎥⎣⎦, 故7122114m m ⎧-≤⎪⎪⎨⎪+≥⎪⎩,解得17942m ≤≤, 故实数m 的取值范围为179,42⎡⎤⎢⎥⎣⎦.本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题. 9.设a R ∈,0b >,则“32a b >”是“3log a b >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据对数的运算分别从充分性和必要性去证明即可. 【详解】若32a b >, 0b >,则3log 2a b >,可得3log a b >; 若3log a b >,可得3a b >,无法得到32a b >, 所以“32a b >”是“3log a b >”的充分而不必要条件. 所以本题答案为A. 【点睛】本题考查充要条件的定义,判断充要条件的方法是:① 若p q ⇒为真命题且q p ⇒为假命题,则命题p 是命题q 的充分不必要条件; ② 若p q ⇒为假命题且q p ⇒为真命题,则命题p 是命题q 的必要不充分条件; ③ 若p q ⇒为真命题且q p ⇒为真命题,则命题p 是命题q 的充要条件;④ 若p q ⇒为假命题且q p ⇒为假命题,则命题p 是命题q 的即不充分也不必要条件. ⑤ 判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.10.已知数列{}n a 是公差为()d d ≠0的等差数列,且136,,a a a 成等比数列,则1a d=( ) A .4 B .3 C .2 D .1【答案】A 【解析】 【分析】根据等差数列和等比数列公式直接计算得到答案. 【详解】由136,,a a a 成等比数列得2316a a a =⋅,即()()211125a d a a d +=+,已知0d ≠,解得14a d=.本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力. 11.函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( ) A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π) 【答案】D 【解析】 【分析】由函数的周期求得2w =,再由平移后的函数图像关于直线2x π=对称,得到223ππϕ⨯+-2k ππ=+,由此求得满足条件的ϕ的值,即可求得答案. 【详解】分析:由函数的周期求得ω2=,再由平移后的函数图像关于直线πx 2=对称,得到πππ2φk π232⨯+-=+,由此求得满足条件的φ的值,即可求得答案. 详解:因为函数()()f x sin ωx φ=+的最小正周期是π,所以2ππω=,解得ω2=,所以()()f x sin 2x φ=+, 将该函数的图像向右平移π6个单位后,得到图像所对应的函数解析式为ππy sin 2x φsin 2x φ63⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由此函数图像关于直线πx 2=对称,得: πππ2φk π232⨯+-=+,即πφk π,k Z 6=-∈,取k 0=,得πφ6=-,满足πφ2<,所以函数()f x 的解析式为()πf x sin 2x 6⎛⎫=- ⎪⎝⎭,故选D. 【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到sin(2)3y x πϕ=+-,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.12.设复数z =213ii-+,则|z|=( )A .13B .3C .12D .2【答案】D 【解析】 【分析】先用复数的除法运算将复数z 化简,然后用模长公式求z 模长. 【详解】 解:z =213i i -+=(2)(13)(13)(13)i i i i --+-=1710i --=﹣110﹣710i ,则|z|2. 故选:D. 【点睛】本题考查复数的基本概念和基本运算,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
新课标云南省昆明市第一中学2021届高三数学第一次摸底测试试题文【含答案】
8. 解析:令 y 0 , x 4 ; x 0 , y 2 .所以 A(4, 0) , B(0, 2) ,所以
AB 4 02 0 22 2 5
,选 A.
y ln x 1 2 ln x 1 2
9. 解析:解析:当 x 1 时,
y
loga
(x
2)
的图象有三个不同的交点,由数形结合可知
log
a
loga
(2 (6
2) 2)
3 3
,解得
2
23 a 2 ,选 B.
y 3
y=f(x)
y=loga(x+2)
-6 -4 -2 O -1
2
4
6
8x
二、填空题
13. 解析:如图所示 z 2x y 在 A2, 2处取得最大值,且 z 2 2 2 6 .
D.(0, - 1)
3.抛物线 y2 4x 的焦点到双曲线 x2 y2 1的渐近线的距离为
1
A.
2
2
B.
2
3
C.
D.2
2
4.已知 an 是公差为
1 2
的等差数列,
Sn 为数列an的前 n 项和,若 a2 , a4 , a8 成等比数列,
则 S7 =
19
A.
4
B.14
C.12
D. 16
5.我国目前部分普通高中学生在高一升高二时面临着选文理科的问题,某学校抽取了部分男、
R 3 3 3
即为大圆.因为△ ABC 是边长为 3 的正三角形,其外接圆半径
3
,故该
三棱锥外接球的半径 R 3 ,其表面积 S 4πR2 12π ,选 D.
2021届云南省昆明市一中高三上学期第三次双基检测数学(理)试卷参考答案
第1页(共8页)昆明一中2021届高三联考第三期数学参考答案及解析(理科数学)命题、审题组教师杨昆华凹婷波彭力刘皖明李文清王在方毛孝宗王佳文李露陈泳序崔锦一、选择题题号123456789101112答案CCABCDBDABDA1.解析:因为()22()i i i m m m z m m m --==--为纯虚数,所以200m m m ⎧-=⎪⎨≠⎪⎩,解得1m =,选C.2.解析:因为{}{}ln 10e B x x x x =<=<<,所以{}1,2M A B == ,它的真子集有{}1,{}2,∅,共有3个,选C.3.解析:因为()2cos()()()1x f x f x x --==-+,所以()f x 为偶函数,排除B ,D ;又因为()01f =,排除C ,选A .4.解析:由a b += 平方可得222cos12013a a b b+=,代入3a =,可得4b = ,选B.5.解析:设AC b =,AB c =,BC a =,由1tan 2A =AC b =,25a =,a =,选 C.6.解析:因为点C 在双曲线221169x y -=的右支上,所以8CA CB -=;又因为10AB=,所以由正弦定理得sinsin 84sin 105CB CA A B C AB ---===-,选D .7.解析:因为7S =++++=时输出,此时8i =,结合选项,选B.8.解析:根据“石头”胜“剪刀”、“剪刀”胜“布”,“布”又胜过“石头”,可得每局比赛中小华胜小明、小华与小明和局和小华输给小明的概率都为13,小华获胜有两种情况:第一种前两局小华连胜,概率为213(,第二种前两局中小华一局胜另一局不胜,第三局小华胜,概率为12121433327C ,所以小华获胜的概率是14792727+=,选D .9.解析:设BC 中点为E ,因为BE =,所以3AE =,所以2AD =;在△SAD 中,又因为4SA =,所以60SAE ∠=︒,选A.10.解析:由题意可知πππππ()sin sin sin 22222f x g x x x xωωωωω⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2021届云南省昆明市一中高三上学期第三次双基检测数学(理)试卷。
云南省昆明市第一中学2021届高三高中新课标第一次摸底测试数学(理)答案
证明:因为 an 2an1 1 (n 2) ,所以 an 1 2(an1 1) ,
昆明市第一中学 2021 届摸底考试 参考答案(理科数学)
一、选择题
题号 1
2
3
4
5
6
7
8
9
10 11 12
答案 B
A
C
C
A
D
C
C
C
D
A
B
1.
解析:因为 1 3 i 22
1 2 2
3 2
2
1 ,所以 z
1 i ,所以复数 z 在复平面内对应的点的 i
坐标为 0, 1 ,选 B.
π 12
,故③正确;对于④,函数在此区间
上的零点只有 2π , 7π 两个,故错误,综上所述正确结论的编号为①②③,选 A. 36
12. 解析:依题意函数 f (x) 的图象关于 y 轴及直线 x 2 对称,所以 f (x) 的周期为 4 ,作出 x 2,0
时 f (x) 的 图 象 , 由 f (x) 的 奇 偶 性 和 周 期 性 作 出 f (x) 的 图 象 , 关 于 x 的 方 程
1,x
π
,
3
32
12 2
12
故①正确;令
2x
π 3
kπ(
k
Z
),解得
x
π 6
kπ 2
(
k
Z
),
f
(x)
的对称中心为
π 6
kπ 2
,0
(
k
Z
),②正确;又由
3π 2
2kπ
2x
π 3
π 2
2kπ
(
云南省昆明市第一中学2020-2021学年高一上学期期中考试数学试题 Word版含答案
昆一中2020—2021学年度上学期期中考试高一数学一、选择题:(在每小题给出的四个选项中,选出符合题目要求的一项.) 1.已知A ={-1,0,1},B ={x|x 2<1},则A∩B 等于( ) A .{-1,0,1} B .∅ C .{0} D .{0,1} 2.不等式x 2-3x +2≤0的解集是( )A .{x|x >2或<1}B .{x|x≥2或x≤1}C .{x|1≤x≤2}D .D .{x|1<x <2} 3.下列各组集合中,满足E =F 的是( )A .E =,F ={1.414}B .E ={(2,1)},F ={(1,2)}C .E ={x|y =x 2},F ={y|y =x 2}D .E ={2,1},F ={1,2} 4.设x ∈R ,则“x≤2”是“|x -1|≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.不等式111x ≥-的解集为( ) A .(-∞,1)∪[2,+∞) B .(-∞,0]∪(1,+∞) C .(1,2] D .[2,+∞) 6.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如图示,那么水瓶的形状可以是下图中的( )A .B .C .D .7.已知A ={x|x =2k +1,k ∈Z },{|}2xB x =∈Z ,C =Z ,下列关系判断正确的是( )A .C =A ∪B B .C =A∩B C .A =C ∪BD .A =C∩B8.已知一元二次不等式ax 2+bx +c≤0的解集为[1,2],则cx 2+bx +a≤0的解集为( )A .1[,1]2B .[1,2]C .[-2,-1]D .1[1,]2--9.已知集合A ={x|a≤x <3),B =[1,+∞),若A 是B 的子集,则实数a 取值范围为( ) A .[0,3) B .[1,3) C .[0,+∞) D .[1,+∞)10.已知集合A ={x|x≥0},集合B ={x|x >1},则以下真命题的个数是( )①0x ∃∈A ,0x ∉B ;②0x ∃∈B ,0x ∉A ;③x ∀∈A ,x ∈B ;④x ∀∈B ,x ∈A . A .4 B .3 C .2 D .111.已知集合A ={1,a ,b},B ={a 2,a ,ab},若A =B ,则a 2021+b 2020=( ) A .-1 B .0 C .1 D .2 12.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( )A .0B .12C .1D .2 二、填空题:13.设命题p :1x ∀≥,x 2-4x +3≥0,则命题p 的否定形式为:________. 14.若集合A ={0,1,2},则集合A 的真子集个数为________.15.已知m ∈R ,x 1,x 2是方程x 2-2mx +m =0的两个不等实根,则12121x x x x ++的最小值为________.16.若集合A 具有以下两条性质,则称集合A 为一个“好集合”.(1)0∈A 且1∈A ; (2)若x ,y ∈A ,则x -y ∈A ;且当x≠0时,有1A x∈.给出以下命题:①集合P ={-2,-1,0,1,2}是“好集合”; ②Z 是“好集合”; ③Q 是“好集合”; ④R 是“好集合”;⑤设集合A 是“好集合”,若x ,y ∈A ,则x +y ∈A ; 其中真命题的序号是________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.设集合A ={x|x 2+2x -3<0},集合B ={x||x +a|<1}. (1)若a =3,求A ∪B ;(2)设命题p :x ∈A ,命题q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围.18.已知正数a ,b 满足a +3b =4.(1)求ab 的最大值,且写出取得最大值时a ,b 的值;(2)求13a b+的最小值,且写出取得最小值时a ,b 的值. 19.关于x 的不等式ax 2-(a +2)x +2<0. (1)当a =-1时,求不等式的解集; (2)当a >0时,求不等式的解集.20.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是20,025,,100,2530,.t t t p t t t +<<∈⎧=⎨-+≤≤∈⎩N N该商品的日销售量Q (件)与时间t (天)的函数关系是Q =-t +40(0<t≤30,t ∈N ),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天. 21.已知二次函数f (x )=ax 2+bx +2a -1的对称轴为x =-1.(1)设x 1,x 2为方程f (x )=0的两个实数根,且1232x x =,求f (x )的表达式; (2)若f (x )≥0对任意,x ∈[-3,0]恒成立,求实数a 的取值范围. 22.设函数()f x =,b >0的定义域为A ,值域为B . (1)若a =-1,b =2,c =8,求A 和B ;(2)若A =B ,求满足条件的实数a 构成的集合.昆明第一中学2020-2021学年度上学期期中考试高一数学参考答案13.01x ∃≥,20430x x -+< 14.7 15. 16.③④⑤ 17.解:(1)解不等式x 2+2x -3<0,得-3<x <1,即A =(-3,1).当a =3时,由|x +3|<1,解得-4<x <-2,即集合 B =(-4,-2),所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1), 所以13,11a a --≥-⎧⎨-+<⎩或13,1 1.a a -->-⎧⎨-+≤⎩解得0≤a≤2,即实数a 的取值范围是0≤a≤2.18.解:(1)由基本不等式可知:43a a =+≥,43ab ≤, 当且仅当a =3b ,即a =2,23b =时,ab 的取得最大值43.(2)13(3)131535()(1033)()444242a b b a b a a b a b a b a b ++=+=++=++≥+= 当且仅当b a a b =,即a =b =1时,13a b+的取得最小值4. 19.解(1)当a =-1时,此不等式为-x 2-x +2<0,可化为x 2+x -2>0, 化简得(x +2)(x -1)>0,解得即{x|x <-2或x >1} (2)不等式ax 2-(a +2)x +2<0,化为(ax -2)(x -1)<0,当a >0时,不等式化为2()(1)0x x a --<,若21a<,即a >2,解不等式得21x a <<;若21a =,即a =2,解不等式得x ∈∅;若21a>,即0<a <2,解不等式得21x a <<;综上所述:当0<a <2时,不等式的解集为2{|1}x x a <<;当a =2时,不等式的解集为∅当a >2时,不等式的解集为2{|1}x x a<<. 20.解:设日销售金额为y (元),则y =p·Q .∴2220800,025,,1404000,2530,.t t t t y t t t t ⎧-++<<∈⎪=⎨-+≤≤∈⎪⎩N N22(10)900,025,,(70)900,2530,.t t t t t t ⎧--+<<∈⎪=⎨--≤≤∈⎪⎩N N 当0<t <25,t ∈N ,t =10时,y max =900(元); 当25≤t≤30,t ∈N ,t =25时,y max =1125(元). 由1125>900,知y max =1125(元),且第25天,日销售额最大.21.解:(1)因为12b x a =-=-,所以b =2a ,由根与系数的关系可得122132a x x a -==, 解得:a =2,则b =4,则f (x )=2x 2+4x +3;(2)因为f (x )=ax 2+2ax +2a -1的对称轴为x =-1,若a >0,y =f (x )开口向上,则f (x )在[-3,0]的最小值在x =-1处取得, 则f (-1)=a -1≥0,解得a≥1;若a <0,y =f (x )开口向下,又因为|-3-(-1)|>|0-(-1)|, 则f (x )在[-3,0]的最小值在x =-3处取得,则f (-3)=5a -1≥0,解得15a ≥(舍);综上所述,a ∈[1,+∞).22.解:(1)()f x 因为(x +2)(4-x )≥0,所以A =[-2,4],因为()f x 又0≤9-(x -1)2≤9,所以B =[0,3];(2)当a =0时,()f x =[,)cA b-=+∞,B =[0,+∞),又A =B ,故c =0满足题意;当a≠0时,设二次函数g (x )=ax 2+bx +c 的判别式为Δ, 当Δ≥0时,设方程g (x )=0的两实数根为x 1,x 2(x 1≤x 2) 假设a >0,当Δ≥0时,则A ={x|x≤x 1或x≥x 2},B =[0,+∞),则A≠B ,矛盾;当Δ<0时,则A =R ,)B =∞,则A≠B ,矛盾; 当a <0时,假设Δ<0,则A =∅,B =∅,虽有A =B ,但不符合函数的定义,舍去;当Δ≥0,则A ={x|x 1≤x≤x 2},B =,要使A =B ,则x 1=0,且2x =即c =0,又g (x 2)=0得2b x a -==2224b b a a-=,解得a =-4; 综上,满足条件的实数a 构成的集合为{-4,0}.。
2021届云南省昆明一中高三第一次摸底测试数学(文)试题Word版含答案
2021届云南省昆明一中高三第一次摸底测试数学(文)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1{0}3x A xx +=≤-,集合{04}B x x =<<,则A B =( ) A .(0,3) B .(0,3] C .(,4)-∞ D .(,4]-∞2.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( )A .变量x 和y 是正相关,变量u 和v 是正相关B .变量x 和y 是正相关,变量u 和v 是负相关C .变量x 和y 是负相关,变量u 和v 是负相关D .变量x 和y 是负相关,变量u 和v 是正相关3.已知复数21a ii--为纯虚数(其中i 是虚数单位),则a 的值为( ) A .2 B .-2 C .12 D .12-4.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14 B .12 C .8π D .4π5.已知双曲线C 的中心为原点,点2,0)F 是双曲线C 的一个焦点,点F 到渐近线的距离为1,则C 的方程为( )A .221x y -= B .2212yx -= C. 22123x y -= D .22133x y -=6.用一个平面去截正方体,则截面不可能是( )A .等边三角形B .直角三角形 C. 正方形 D .正六边形7.若,x y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数2z x y =+的最小值为( )A .2B .1 C. -2 D .-18. 执行如图所示的程序框图,若输出n 的值为9,则判断框中可填入( )A .45?S ≥B .36?S ≥ C. 45?S > D .55?S ≥ 9.若函数()f x x =,则函数12()log y f x x =-的零点个数是( )A .5个B .4个 C. 3个 D .2个 10. 已知函数()sin()sin()62f x x x ππωω=+++(0ω>),且()03f π=,当ω取最小值时,以下命题中假命题是( )A .函数()f x 的图象关于直线12x π=对称B .6x π=-是函数()f x 的一个零点C. 函数()f x 的图象可由()32g x x =的图象向左平移3π个单位得到D .函数()f x 在[0,]12π上是增函数11.在ABC ∆中,060B =,AC =AC 边上的高为2,则ABC ∆的内切圆半径r =( )A ..1)-1- D .1)12.设O 为坐标原点,P 是以F 为焦点的抛物线22y px =(0p >)上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A B .23.1 第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(6,)a k =,向量(3,1)b =-,a b -与b 共线,则k = . 14.函数2()ln f x x x =+在(1,1)处的切线方程为 . 15.已知3sin()45πα-=,(,)42ππα∈,则tan α= .16.四面体A BCD -中,10AB CD ==,AC BD ==AD BC ==,则四面体A BCD -外接球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在等差数列{}n a 中,公差0d ≠,前5项和515S =,且137,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)求282631k a a a a -++++(*k N ∈)的值.18. 如图,在直三棱柱111ABC A B C -中,090BAC ∠=,2AB AC ==,点,M N 分别为111,AC AB 的中点.(1)证明://MN 平面11BB C C ;(2)若CM MN ⊥,求三棱锥M NAC -的体积..19. 某市为了解本市2万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,现从某校随机抽取了50名学生,将所得成绩整理后,发现其成绩全部介于[40,100]之间,将其成绩按如下分成六组,得到频数分布表成绩 [40,50)[50,60)[60,70)[70,80)[80,90)[90,100]人数410161064(1)在答题卡上作出这些数据的频率分布直方图;(2)估算该校50名学生成绩的平均值x 和中位数(同一组中的数据用该组区间的中点值作代表); (3)以该校50名学生成绩的频率作为概率,试估计该市分数在[80,100]的人数.20. 已知中心在原点O ,焦点在x 轴上的椭圆E 过点(0,1)C 2.(1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于,A B 两点,若OAB ∆的面积为23,求直线l 的方程. 21. 已知函数()xf x e =,2()2a g x x x =--,(其中a R ∈,e 为自然对数的底数, 2.71828e =……). (1)令'()()h x f x =,求()h x 的单调区间;(2)已知()f x 在0x =处取得极小值,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程极坐标系中,O 为极点,半径为2的圆C 的圆心坐标为(2,)6π.(1)求圆C 的极坐标方程;(2)设直角坐标系的原点与极点O 重合,x 轴非负关轴与极轴重合,直线l的参数方程为128x t y ⎧=⎪⎪⎨⎪=-⎪⎩(t为参数),由直线l 上的点向圆C 引切线,求线线长的最小值. 23.选修4-5:不等式选讲 已知函数()23f x x x =--+. (1)求不等式()3f x ≤的解集;(2)若不等式2()6f x a a <-解集非空,求实数a 的取值范围.2021届云南省昆明一中高三第一次摸底测试数学(文)试题参考答案一、选择题题号 1 2 3 4 5 6 78 9 10 11 12 答案ADBCABBADCBA1. 解析:集合[)1,3A -=,()0,4B =,所以()0,3A B =,选A.2. 解析:由正相关和负相关的定义知道,D 正确,选D.3. 解析:因为2(2)(2)12a i a a ii -++-=-,所以2a =-,选B. 4. 解析:设正方形边长为2,则圆半径为1.此时正方形面积为224⨯=.图中黑色部分面积为2π.则此点取自黑色部分的概率为248ππ=,选C.5. 解析:设C 的方程为:22221x y a b-=,由已知1b =,2c =,所以1a =,所以C 的方程为221x y -=,选A .6. 解析:因为用一个平面去截正方体,若截面为三角形,则截面三角形只能是锐角三角形,选B .7. 解析:如图,目标函数z 在点(1,0)A 处取得最小值,且1z =,选B.8. 解析:模拟执行如图所示的程序框图知,该程序的功能是计算12945S =+++=,选A.9. 解析:如图:函数()f x 与函数12()log g x x =,有2个交点,所以选D.10. 解析:()33cos 323f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由()03f π=得()33k k ππωπ+=∈Z ,即31k ω=-,由0ω>知ω的最小值是2,当ω取得最小值时,()323f x x π⎛⎫=+ ⎪⎝⎭.由2121232f ππππ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭可得出:函数()f x 的图象关于直线12x π=对称,A 为真;由20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦可得出:6x π=-是函数()f x 的一个零点,B 为真;将函数()2g x x =的图象向左平移6π个单位得到()23f x x π⎛⎫+ ⎪⎝⎭的图象,所以C 为假;由复合函数单调性可得()f x 在0,12π⎡⎤⎢⎥⎣⎦上是增函数,所以D 为真,选C.11. 解析:由11sin 222ABC S AB BC B =⋅⋅=⨯得16AB BC ⋅=,又由余弦定理22222cos ()3AC AB BC AB BC B AB BC AB BC =+-⋅⋅=+-⋅,解得AB BC +=,从而ABC 的周长为.由1()2ABCSr AB BC CA =++得21)ABC S r AB BC CA ∆===-++,选B. 12. 解析:由题意可得,02p F ⎛⎫⎪⎝⎭,设200,2y P y p ⎛⎫⎪⎝⎭,当00y <,0OM K <;当00y >,0OM K >.要求OM K 的最大值,可设00y >,则()2001112,3333633y y p OM OF FM OF FP OF OP OF OP OF p ⎛⎫=+=+=+-=+=+⎪⎝⎭,可得020013263OM y K y p y p p y p ==≤=++2202y p =时取得等号,选A.二、填空题13. 解析:因为(3,1)a b k -=+,且()//a b b -,所以3(1)3k +=-,所以2k =-. 14. 解析:因为1()2f x x x'=+,所以切线的斜率3=k ,所以切线方程为320--=x y . 15. 解析:由,42ππα⎛⎫∈ ⎪⎝⎭得0,44ππα⎛⎫-∈ ⎪⎝⎭,所以4cos 45πα⎛⎫-== ⎪⎝⎭,所以cos cos cos cos sin sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=---= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,sin α==,所以sin tan 7cos ααα==. 16. 解析:由题意可采用割补法,考虑到四面体A BCD -的四个面为全等的三角形,所以可在其每个面补上一个以10,为三边的三角形作为底面,分别以x ,y ,z 为侧棱长且两两垂直的三棱锥,从而可得到一个长、宽、高分别为x ,y ,z 的长方体,并且22100x y +=,22136x z +=,22164y z +=.设球半径为R ,则有()22222200R x y z =++=,所以24200R =,得球的表面积为200π.三、解答题17. 解:(Ⅰ):据题意有()()1211154515226a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩, 解得13234a d ⎧=⎪⎪⎨⎪=⎪⎩ , 所以数列{}n a 的通项公式为()133144n a a n d n =+-=+;(Ⅱ)由(Ⅰ)得:()31333313444n n n a -=-+=⨯, 所以 2826a a a +++……31k a -+ (12333334=+++……)3k + ()()31339314138kk -=⨯=--. 另解:设()31333313444n n n n b a -==-+=⨯,则()13n nb n b *+=∈N , 所以数列{}n b 是首项为94,公比为3的等比数列, 所以数列{}n b 的前k 项和()()9139431138k k k T -==--.18. 解:(Ⅰ)证明:连接1A B,1BC ,点M,N 分别为11A C ,1AB的中点,所以MN 为△11A BC 的一条中位线,1//MN BCMN ⊄平面11BB C C ,1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .(Ⅱ)设点D ,E 分别为AB ,1AA 的中点,a AA =1,则122+=a CM ,48441222+=++=a a MN ,42054222+=+=a a CN ,由CM MN ⊥,得222CN MN CM =+,解得2=a ,又⊥NE 平面C C AA 11,1=NE ,M NAC V -==-AMC N V =⋅∆NE S AMC 31=⨯⨯⨯⨯122213132.所以三棱锥M NAC -的体积为32.19. 解:(Ⅰ)(Ⅱ)450.08550.2650.32750.2850.12950.0868.2x =⨯+⨯+⨯+⨯+⨯+⨯=; 由已知可设中位数为60x +,则0.080.20.0320.5x ++=;所以 6.875x =,所求中位数为66.875x =. (Ⅲ)该市分数在[]80,100的人数6420000400050+⨯=,故所求人数为4000人.20. 解:(Ⅰ)设椭圆E 的方程为:22221x y a b+= (0)a b >>,由已知:2221b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩得:22a =,21b =,所以,椭圆E 的方程为:2212x y +=.(Ⅱ)由已知直线l 过左焦点(1,0)F -. 当直线l 与x轴垂直时,(1,A -,(B -,此时AB =,则112OAB S ∆==当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+ 由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k +++-= 所以2122412k x x k +=-+,21222212k x x k -=+,而12121122OAB S OF y y y y ∆=⋅-=-, 由已知23OAB S ∆=得1243y y -=,12y y -==, 所以222224416(12)129k k k k +=++,则4220k k +-=,所以1k =±, 所以直线l 的方程为:10x y -+=或10x y ++=.21. 解: (Ⅰ) 因为()e 1x f x ax '=--,所以()e x h x a '=-,当0a ≤时,()0h x '>,()h x 的单调递增区间为(),-∞+∞,当0a >时,由()e 0x h x a '=-=,得ln x a =,(,ln )x a ∈-∞时,()0h x '<,(ln ,)x a ∈+∞时,()0h x '>,所以()h x 的减区间为(,ln )a -∞ ,增区间为(ln ,)a +∞ 综上可得,当0a ≤时,()h x 在),(+∞-∞上单调递增当0a >时,()h x 的增区间为(ln ,)a +∞,减区间为(,ln )a -∞. (Ⅱ)由题意得()e 1x f x ax '=--,(0)0f '=, (1)当0a ≤时,()f x '在),(+∞-∞上单调递增, 所以当0x <时,()(0)0f x f ''<=, 当0x >时,()(0)0f x f ''>=,所以()f x 在0x =处取得极小值,符合题意.(2)当01a <<时,ln 0a <, 由(Ⅰ)知()f x '在(ln ,)a +∞单调递增, 所以当(ln ,0)x a ∈时,()(0)0f x f ''<=,当(0,)x ∈+∞时,()(0)0f x f ''>=, 所以()f x 在0x =处取得极小值,符合题意.(3)当1a =时,由(Ⅰ)知()f x '在区间(,ln )a -∞单调递减,()f x '在区间(ln ,)a +∞单调递增, 所以()f x '在ln x a =处取得最小值,即()(ln )(0)0f x f a f '''≥==, 所以函数()f x 在R 上单调递增, 所以()f x 在0x =处无极值,不符合题意.(4)当1a >时,ln 0a >,由(Ⅰ)知()f x '的减区间为(,ln )a -∞,所以当(,0)x ∈-∞时,()(0)0f x f ''>=,当(0,ln )x a ∈时,()(0)0f x f ''<=, 所以()f x 在0x =处取得极大值,不符合题意, 综上可知,实数a 的取值范围为(,1)-∞.第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 22. 解:(Ⅰ)设(,)M ρθ是圆上任意一点,如图,连接OC ,并延长与圆C 交于点A , 当点M 异于O ,A 时,连接OM 、MA , 直角△MOA 中,cos OM OA MOA =⋅∠,即4cos 4cos()66ππρθθ=-=-,当点M 与O ,A 重合时,也满足上式,所求圆C 的极坐标方程为4cos()6πρθ=-.(Ⅱ)直线l 的普通方程为380x y --=,圆心(3,1)C 到直线l 的距离为d ,331832d r ⨯--==>,所以直线l 与圆C 相离,故切线长的最小值为22325-=.23. 解:(Ⅰ)由()233f x x x =--+≤可化为:3233x x x <-⎧⎨-+++≤⎩或32233x x x -≤≤⎧⎨-+--≤⎩或2233x x x >⎧⎨---≤⎩解得:x ∈∅或22x -≤≤或2x >,所以,不等式解集为[)2,-+∞. (Ⅱ)因为()23(2)(3)5f x x x x x =--+≤--+= 所以5()5f x -≤≤,即()f x 的最小值为5-,要不等式2()6f x a a <-解集非空,需2min ()6f x a a <-, 从而2650a a -+>,解得1a <或5a >, 所以a 的取值范围为()(),15,-∞+∞.昆明一中全国联考第一期参考答案参考答案(文科数学)命题、审题组教师 杨昆华 李文清 孙思应 梁云虹 王在方 卢碧如 凹婷波 吕文芬 陈泳序一、选择题24. 解析:集合[)1,3A -=,()0,4B =,所以()0,3A B =,选A.25. 解析:由正相关和负相关的定义知道,D 正确,选D. 26. 解析:因为2(2)(2)12a i a a ii -++-=-,所以2a =-,选B. 27. 解析:设正方形边长为2,则圆半径为1.此时正方形面积为224⨯=.图中黑色部分面积为2π.则此点取自黑色部分的概率为248ππ=,选C.28. 解析:设C 的方程为:22221x ya b-=,由已知1b =,c =1a =,所以C 的方程为221x y -=,选A .29. 解析:因为用一个平面去截正方体,若截面为三角形,则截面三角形只能是锐角三角形,选B .30. 解析:如图,目标函数z 在点(1,0)A 处取得最小值,且1z =,选B. 31. 解析:模拟执行如图所示的程序框图知,该程序的功能是计算12945S =+++=,选A.32. 解析:如图:函数()f x 与函数12()log g x x =,有2个交点,所以选D. 33. 解析:()3cos 23f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由()03f π=得()33k k ππωπ+=∈Z ,即31k ω=-,由0ω>知ω的最小值是2,当ω取得最小值时,()23f x x π⎛⎫=+ ⎪⎝⎭.由2121232f ππππ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭可得出:函数()f x 的图象关于直线12x π=对称,A 为真;由20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦可得出:6x π=-是函数()f x 的一个零点,B 为真;将函数()2g x x =的图象向左平移6π个单位得到()23f x x π⎛⎫+ ⎪⎝⎭的图象,所以C 为假;由复合函数单调性可得()f x 在0,12π⎡⎤⎢⎥⎣⎦上是增函数,所以D 为真,选C.34. 解析:由11sin 222ABC S AB BC B =⋅⋅=⨯得16AB BC ⋅=,又由余弦定理22222cos ()3AC AB BC AB BC B AB BC AB BC =+-⋅⋅=+-⋅,解得AB BC +=,从而ABC 的周长为.由1()2ABCSr AB BC CA =++得21)ABC S r AB BC CA ∆===-++,选B. 35. 解析:由题意可得,02p F ⎛⎫⎪⎝⎭,设200,2y P y p ⎛⎫⎪⎝⎭,当00y <,0OM K <;当00y >,0OM K >.要求OM K 的最大值,可设00y >,则()2001112,3333633y y p OM OF FM OF FP OF OP OF OP OF p ⎛⎫=+=+=+-=+=+⎪⎝⎭,可得020013263OM y K y p y p p y p ==≤=++2202y p =时取得等号,选A.二、填空题36. 解析:因为(3,1)a b k -=+,且()//a b b -,所以3(1)3k +=-,所以2k =-. 37. 解析:因为1()2f x x x'=+,所以切线的斜率3=k ,所以切线方程为320--=x y . 38. 解析:由,42ππα⎛⎫∈ ⎪⎝⎭得0,44ππα⎛⎫-∈ ⎪⎝⎭,所以4cos 45πα⎛⎫-== ⎪⎝⎭,所以cos cos cos cos sin sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=---= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,sin α==,所以sin tan 7cos ααα==. 39. 解析:由题意可采用割补法,考虑到四面体A BCD -的四个面为全等的三角形,所以可在其每个面补上一个以10,为三边的三角形作为底面,分别以x ,y ,z 为侧棱长且两两垂直的三棱锥,从而可得到一个长、宽、高分别为x ,y ,z 的长方体,并且22100x y +=,22136x z +=,22164y z +=.设球半径为R ,则有()22222200R x y z =++=,所以24200R =,得球的表面积为200π.三、解答题40. 解:(Ⅰ):据题意有()()1211154515226a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩, 解得13234a d ⎧=⎪⎪⎨⎪=⎪⎩ , ………4分 所以数列{}n a 的通项公式为()133144n a a n d n =+-=+; ………6分(Ⅱ)由(Ⅰ)得:()31333313444n n n a -=-+=⨯, 所以 2826a a a +++……31k a -+ (12333334=+++……)3k + ………9分 ()()31339314138kk -=⨯=--. ………12分 另解:设()31333313444n n n n b a -==-+=⨯,则()13n nb n b *+=∈N , 所以数列{}n b 是首项为94,公比为3的等比数列, ………9分 所以数列{}n b 的前k 项和()()9139431138k k k T -==--. ………12分41. 解:(Ⅰ)证明:连接1A B ,1BC ,点M ,N 分别为11A C ,1AB的中点,所以MN 为△11A BC 的一条中位线,1//MN BCMN ⊄平面11BB C C ,1BC ⊂平面11BB C C ,所以//MN 平面11BB C C . ………6分 (Ⅱ)设点D ,E 分别为AB ,1AA 的中点,a AA =1,则122+=a CM ,48441222+=++=a a MN ,42054222+=+=a a CN ,由CM MN ⊥,得222CN MN CM =+,解得2=a ,又⊥NE 平面C C AA 11,1=NE ,M NAC V -==-AMC N V =⋅∆NE S AMC 31=⨯⨯⨯⨯122213132.所以三棱锥M NAC -的体积为32. ………12分42. 解:(Ⅰ)………3分(Ⅱ)450.08550.2650.32750.2850.12950.0868.2x =⨯+⨯+⨯+⨯+⨯+⨯=; ………6分 由已知可设中位数为60x +,则0.080.20.0320.5x ++=;所以 6.875x =,所求中位数为66.875x =. ………9分 (Ⅲ)该市分数在[]80,100的人数6420000400050+⨯=,故所求人数为4000人. ………12分43. 解:(Ⅰ)设椭圆E 的方程为:22221x y a b+= (0)a b >>,由已知:22212b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩得:22a =,21b =,所以,椭圆E 的方程为:2212x y +=. ………4分(Ⅱ)由已知直线l 过左焦点(1,0)F -. 当直线l 与x 轴垂直时,2(1,A -,2()B -,此时2AB =, 则12212OAB S ∆== ………5分 当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k +++-= 所以2122412k x x k +=-+,21222212k x x k -=+, ………8分而12121122OAB S OF y y y y ∆=⋅-=-, 由已知23OAB S ∆=得1243y y -=,12y y -==, 所以222224416(12)129k k k k +=++,则4220k k +-=,所以1k =±, 所以直线l 的方程为:10x y -+=或10x y ++=. ………12分44. 解: (Ⅰ) 因为()e 1x f x ax '=--,所以()e x h x a '=-,当0a ≤时,()0h x '>,()h x 的单调递增区间为(),-∞+∞, 当0a >时,由()e 0x h x a '=-=,得ln x a =,(,ln )x a ∈-∞时,()0h x '<,(ln ,)x a ∈+∞时,()0h x '>,所以()h x 的减区间为(,ln )a -∞ ,增区间为(ln ,)a +∞ 综上可得,当0a ≤时,()h x 在),(+∞-∞上单调递增当0a >时,()h x 的增区间为(ln ,)a +∞,减区间为(,ln )a -∞. ………5分 (Ⅱ)由题意得()e 1x f x ax '=--,(0)0f '=, (1)当0a ≤时,()f x '在),(+∞-∞上单调递增, 所以当0x <时,()(0)0f x f ''<=, 当0x >时,()(0)0f x f ''>=,所以()f x 在0x =处取得极小值,符合题意.(2)当01a <<时,ln 0a <, 由(Ⅰ)知()f x '在(ln ,)a +∞单调递增, 所以当(ln ,0)x a ∈时,()(0)0f x f ''<=,当(0,)x ∈+∞时,()(0)0f x f ''>=, 所以()f x 在0x =处取得极小值,符合题意.(3)当1a =时,由(Ⅰ)知()f x '在区间(,ln )a -∞单调递减,()f x '在区间(ln ,)a +∞单调递增, 所以()f x '在ln x a =处取得最小值,即()(ln )(0)0f x f a f '''≥==, 所以函数()f x 在R 上单调递增, 所以()f x 在0x =处无极值,不符合题意.(4)当1a >时,ln 0a >,由(Ⅰ)知()f x '的减区间为(,ln )a -∞,所以当(,0)x ∈-∞时,()(0)0f x f ''>=,当(0,ln )x a ∈时,()(0)0f x f ''<=, 所以()f x 在0x =处取得极大值,不符合题意, 综上可知,实数a 的取值范围为(,1)-∞. ………12分第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 45. 解:(Ⅰ)设(,)M ρθ是圆上任意一点,如图,连接OC ,并延长与圆C 交于点A , 当点M 异于O ,A 时,连接OM 、MA , 直角△MOA 中,cos OM OA MOA =⋅∠, 即4cos 4cos()66ππρθθ=-=-,当点M 与O ,A 重合时,也满足上式,所求圆C 的极坐标方程为4cos()6πρθ=-. ………5分(Ⅱ)直线l 的普通方程为380x y --=,圆心(3,1)C 到直线l 的距离为d ,331832d r ⨯--==>,所以直线l 与圆C 相离,故切线长的最小值为22325-=. ………10分46. 解:(Ⅰ)由()233f x x x =--+≤可化为:3233x x x <-⎧⎨-+++≤⎩或32233x x x -≤≤⎧⎨-+--≤⎩或2233x x x >⎧⎨---≤⎩解得:x ∈∅或22x -≤≤或2x >,所以,不等式解集为[)2,-+∞. ………5分(Ⅱ)因为()23(2)(3)5f x x x x x =--+≤--+= 所以5()5f x -≤≤,即()f x 的最小值为5-,要不等式2()6f x a a <-解集非空,需2min ()6f x a a <-, 从而2650a a -+>,解得1a <或5a >, 所以a 的取值范围为()(),15,-∞+∞. ………10分。
2020年12月29日云南省昆明一中2021届高三高中新课标第四次一轮复习检测数学(理)试题
1 绝密★启用前
云南省昆明市第一中学
2021届高三毕业班高中新课标第四次一轮复习检测
数学(理)试题
[考试时间:2020年12月29日15:00-17:00]
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知复数z 与2(1)2z i +-都是纯虚数,则2|
|1z =+ A.1
.B C.2
D
2.已知集合A={x||x|<2},B={x|-x+1≤2},则
A.A ∪B={x|x ≥-2}
B.A ∪B=R
C.A ∩B={x|-2<x ≤-1}
D.A ∩B={x|-1≤x<2} 3.设等比数列{}n a 的前n 项和为,n S 若244,16,S S ==则6S =
A.52
B.75
C.60
D.70
4.函数3()ln f x x x =-
的零点所在的区间是 A.(1,2) B.(2,e) C.(e ,3) D.(3,+∞)
5.某小区为了调查本小区业主对物业服务满意度的真实情况,对本小区业主进行了调查,调查中问了两个问题:①你的手机尾号是不是奇数?②你是否满意物业的服务?调查者设计了一个随机化的装置,其中装有大小、形状、质量和数量完全相同的白球和红球,每个被调查者从装置中随机摸球,摸到白球的业主回答第一个问题,摸到红球的业主回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不做。由于问题的答案只有“是”和“否”,而且回答的是哪个问题别人并不知道,因此被调查者可以毫无顾虑地给出符合实际情况的答案。已知该小区800名业主参加了调查,且有470名业主回答了“是”,由此估计本小区业主对物业服务满意的百分比大约为。
云南省昆明市第一中学教育集团2022届高二升高三诊断性考试(期末考试)数学(理)试题(解析版)
绝密★启用前云南省昆明市第一中学教育集团2020-2021学年2022届高二升高三诊断性考试(期末考试)数学(理)试题(解析版)一、选择题(共12小题,每小题5分,共60分).1.已知集合A={0,1,2},集合B={x|x﹣1≥0},则A∩B的真子集个数为()A.1B.2C.3D.4解:因为集合A={0,1,2},集合B={x|x﹣1≥0}={x|x≥1},所以A∩B={1,2},故A∩B的真子集个数为22﹣1=3.故选:C.2.若,则复数z=()A.1﹣i B.2﹣i C.3﹣2i D.3﹣i解:∵,∴z=(1﹣i)(2+i)=2﹣i﹣i2=3﹣i.故选:D.3.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中都做出了相当好的成绩.若将8拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A.B.C.D.解:将8拆成两个正整数的和,基本事件有:1+7=8,2+6=8,3+5=8,4+4=8,5+3=8,6+2=8,1+7=8,共7个,拆成的和式中,加数全部为质数包含的基本事件有:3+5=8,5+3=8,共2个,则拆成的和式中,加数全部为质数的概率p=.故选:A.4.已知sin x﹣cos x=,则sin2x=()A.B.C.D.解:∵sin x﹣cos x=,∴两边平方可得:1﹣sin2x=,解得:sin2x=.故选:A.5.一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的高为()A.B.C.D.2解:由三视图还原原几何体如图,该几何体为正三棱柱,底面正三角形一边上的高为2,设底面等边三角形的边长为a,可得,得a=4,再设正三棱柱的高为h,可得,解得h=.。
云南省昆明市第一中学2022届高三上学期第三次双基检测理科数学试题 扫描版含答案
昆明一中2022届高三第三期联考参考答案(理数)一、选择题A C{=0,2,4A B2. 解析:由于234i i i i0+++=,则2320212021i i i i i i++++==,选A.3. 解析:设球的半径为R ,由球的体积公式334ππR 36d V ==,所以d ≈由于21 1.90911≈,16 1.7789≈,所以2111与2最为接近,选B . 3. 解析:由三视图得几何体为四棱锥(如图),选C.4.()sin 75cos152sin 1530︒+︒=︒+︒=︒+︒= B .5. 解析:6(1)x +的通项公式为16r r r T C x +=,当2r =时,2x 的系数为2615C =;当3r =时,3x 的系数为3620C =;综上2x 的系数为15205-=-,选A .6. 解析:由题意,=90AOB ∠,由于圆半径为2,则圆心(0,0)到直线l的距离d ==得=2m ,2m =±,选C .7. 解析:因为()()f x f x -=-,所以()f x 是奇函数,排除C 、D ,又当π(0,)2x ∈时,()0f x >,且(π)πf =-,排除B ,选A.8. 解析:123312344P =-⨯⨯=,选D .9. 解析:由解得222a c b ac +-=,所以1cos 2B =,π3B =,又因为sin 2sin cos B A C =,即22222a b c b a ab+-=⋅,解得a c =,所以三角形是等边三角形,选A .10. 解析:由等边三角形面积为解得边AB =,△外接圆1O 直径22sin 60AB r ==︒,又因为△OAD 是等腰三角形,所以1112OO AD ==,球O 半径R 24πR 8πS ==,选D .11. 解析:设()()2x h x f x =,则()()()()()22ln 22ln 2x x x h x f x f x f x f x '''=+=+⎡⎤⎣⎦,又 ()()ln 20f x f x '+<,20x >,所以()0h x '<,所以()h x 在(),-∞+∞上单调递减,因为2log 31>,所以()()2log 31h h <,得()()23log 321f f <,选D .12. 解析:设AOF θ∠=()090θ<<,则1cos e θ=,设1BF =,则2AF =,3AB OA ==,根据对称性,在ABO ∆中,OF 为AOB ∠的平分线,所以ABO ∆内切圆的圆心一定在OF 上,ABC ABC ABC①错;又2AOF BOF S S ∆=,所以32OB =,所以12OB OA =成立,②正确;由余弦定理得22221cos22cos 142OA OB ABOA OBθθ+-===-,所以25cos 8θ=,得离心率1cos e θ==,所以③错误,④正确,选C .二、填空题13. 解析:因为52a b +=,所以250a b += ,即22250a b a b ++⋅=, 所以252050b ++= 所以5b =.14. 解析:1()f x m x'=+,因为(0)1f '=,所以1m =,()ln(1)f x x =+,因此(1)ln f x x -=,所以 0ln 1x <<的解集是(1,e).15. 解析:由()()sin 2cos cos 2sin 10f x x x x x =-=-=及[]0,πx ∈,解得π2x =,π6,5π6,所以函数()f x 在[]0,π上的所有零点的和为3π2. 16. 解析:因为AB 所在的直线与直线y x m =+垂直,所以设AB :y x t =-+,AB 的中点()00,P x y ,联立221,34,x y y x t ⎧+=⎪⎨⎪=-+⎩得22763120x tx t -+-=,设()11,A x y ,()22,B x y ,则有 1267t x x +=,所以037t x =,0047t y x t =-+=,得34,77t t P ⎛⎫ ⎪⎝⎭,将34,77t t P ⎛⎫⎪⎝⎭代入抛物线方程中得2163497t t =,所以0t =或2116t =,所以93,164P ⎛⎫⎪⎝⎭或()0,0P ,因为点P 在直线y x m =+上,所以得316m =或0m =,所以实数316m =或0m =. 三、解答题 (一)必考题17.解:(1)当2n ≥时,由已知1121n n n a a a +-+=+,得11()()1n n n n a a a a +----=,所以{}1n n a a +-是以213a a -=为首项,1为公差的等差数列.所以12n n a a n +-=+(n *∈N ),所以112211()()()n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+, 所以2(31)(1)32322n n n n n a ++-++=+=. ………6分 (2)令232()2n n f n ++=,()2n g n =,因为(3)10(3)8f g =>=,(4)15(4)16f g =<=,由二次函数与指数函数的不同增长模型可得:4n ≥时,2n n a <, 所以正整数m 的最小值为4. ………12分 18.解:(1)设中位数为m ,则0.24(20)0.0320.5m +-⨯=,28.125m =50.08150.16250.32350.24450.15550.0528.7x =⨯+⨯+⨯+⨯+⨯+⨯= ………6分(2)根据题意可得,在[0,10),[10,20),[20,30),[30,40)上抽取的人数分别为1,2,4 ,3,则ξ=0,1,2,337310357(0)12024C P C ξ====, 12373106321(1)12040C C P C ξ⨯==== 2137310217(2)12040C C P C ξ⨯====, 333101(3)120C P C ξ=== ,ξ 0 1 23 P7242140 740 1120()01230.9244040120E ξ=⨯+⨯+⨯+⨯= ………12分 19.(1)证明:因为PA ⊥圆O 所在的平面,所以PA ⊥平面ABC ,而BC ⊂平面ABC ,所以PA BC ⊥,又因为AB 是圆O 的直径,C 为圆周上一点,所以AC BC ⊥, 所以BC ⊥平面PAC ,又AD ⊂平面PAC ,所以BC AD ⊥, 又因为AD DB ⊥,所以AD ⊥平面PBC ,又PC ⊂平面PBC , 所以AD PC ⊥,又在直角三角形ABC 中,60CAB ∠=︒,所以=2AB AC , 又=2AB PA ,所以=AP AC ,所以D 为BC 的中点,所以PD DC =.………6分(2)依题意,建立空间直角坐标系如图所示,不妨设2AB =,则1,0,0A (),3,0B (),0,0,0C (),1,0,1P (), 11,0,22D (),21,0,33G (), 由(1)知平面PBC 的一个法向量11,0,22DA ⎛⎫=- ⎪⎝⎭,设(),,m x y z =是平面GBC 的一个法向量,则因为()0,CB =,21,0,33CG =⎛⎫⎪⎝⎭,所以200x z y ⎧⎨⎩+==,令1x = 102x y z ⎧⎪⎨⎪⎩=⇒==-,所以()1,0,2m =-,所以310cos ,10m DA =,所以二面角G BC P --的正切值为13.………12分20. 解:(1)设()11,A x y ,()22,B x y ,则()1212,D x x y y ++,因为A ,B 在椭圆C 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差:22221212220x x y y a b --+=, 整理得:21212122121212y y y y b k k x x x x a -+⋅=⋅=-=--+,故222a b =,又因为221a b -=, 所以22a =,21b =,故椭圆C 的方程为2212x y +=; ………4分(2)设直线l 的方程为()1y k x =-,与椭圆C :2212x y +=联立得:2222(1)2x k x +-=,整理得:()2222214220k x k x k +-+-=,28(1)0k ∆=+>,故2122421k x x k +=+,则()121222221k y y k x x k -+=+-=+,因为点O 恰为△PAB 的重心,故点P 坐标为()1212,x x y y ----,即22242,2121k k P k k ⎛⎫- ⎪++⎝⎭因为点P 在椭圆C 上,所以2222242()222121k k k k -⎛⎫+= ⎪++⎝⎭,解得212k =,则PF === 而21224121k x x k +==+,2122221212k x x k -⋅==-+,故AB PF ===; 故AB PF =. ………12分21. 解:(1)由2211ln 20e e f m m ⎛⎫=+=-= ⎪⎝⎭,得2m =,()2ln f x x =+,()2ln 12x f =+=,所以()1f x x'=,()11f '=, 切线方程为1y x =+,所以()1h x x =+, 所以()1exx g x +=,则()e x xg x -'=,当()0,x ∈+∞时,()0g x '<,()g x 单调递减, 当(),0x ∈-∞时,()0g x '>,()g x 单调递增,所以函数()g x 在0x =处取得极大值,极大值为()01g =,无极小值. ………6分(2)令()2e 1x a x t x x =---,()e 21xt x ax =--',0x ≥,e 10x -≥,1.当0a ≤时,()0t x '≥,所以()t x 在[)0,+∞上单调递增,所以()()00t x t ≥=,即0a ≤符合题意;2.当0a>时,设()()u x t x '=,()e 2xu x a '=-,①当102a <≤,21a ≤,()0u x '≥, 所以()t x '在[)0,+∞上单调递增,()()00t x t ''≥=,所以()t x 在[)0,+∞上单调递增,则()()00t x t ≥=,所以102a <≤符合题意; ②当12a >时,()'e 20x u x a =-=,ln 20x a =>,所以()t x '在()ln 2,a +∞上递增, 在()0,ln 2a 上递减,()00t '=,所以当()0,ln 2x a ∈,()0t x '<,所以()t x 在[)0,ln 2a 上单调递减,()00t =,所以()0,ln 2x a ∈,()0t x <,舍去. 综上:12a ≤. ………12分 (二)选考题:第22、23题中任选一题做答。
云南省昆明市2025届高三上学期摸底测试数学试题(含解析)
数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合,,则( )A .B .C .D .2.已知命题,,则的否定是( )A .,B .,C .,D .,3.正项等差数列的公差为,已知,且,,三项成等比数列,则( )A .7B .5C .3D .14.若,则( )A .B .C .D .5.已知向量,,若,则( )A .B .CD6.函数是奇函数且在上单调递增,则的取值集合为( )A.B .C .D .7.函数,,若对恒成立,且在上有3条对称轴,则( )A .B .C .D .或8.设椭圆的右焦点为,过坐标原点的直径与交于,两点,点满{}|13A x x =≤≤()(){}|240B x x x =--<A B = (]2,3[)1,2(),4-∞[)1,4:p z ∃∈C 210z +<p z ∀∈C 210z +<z ∀∈C 210z +≥z ∃∈C 210z +<z ∃∈C 210z +≥{}n a d 14a =1a 32a -5a d =sin160m ︒=sin 40︒=2m-2-()221m m -+2()1,2a = a b += ()2b b a ⊥- cos ,a b =())ln f x kx =R k {}1-{}0{}1{}1,1-()3sin 6f x x πω⎛⎫=+ ⎪⎝⎭0ω>()()2f x f π≤x ∈R ()f x 13,66ππ⎡⎤⎢⎥⎣⎦ω=16761361676()2222:10x y E a b a b+=>>F O E A B C足,若,,则的离心率为( )ABCD二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.数列的前项和为,已知,则下列结论正确的是()A .为等差数列B .不可能为常数列C .若为递增数列,则D .若为递增数列,则10.甲、乙两班各有50位同学参加某科目考试(满分100分),考后分别以、的方式赋分,其中,分别表示甲、乙两班原始考分,,分别表示甲、乙两班考后赋分.已知赋分后两班的平均分均为60分,标准差分别为16分和15分,则( )A .甲班原始分数的平均数比乙班原始分数的平均数高B .甲班原始分数的标准差比乙班原始分数的标准差高C .甲班每位同学赋分后的分数不低于原始分数D .若甲班王同学赋分后的分数比乙班李同学赋分后的分数高,则王同学的原始分数比李同学的原始分数高11.已知函数及其导函数的定义域为,若与均为偶函数,且,则下列结论正确的是( )A .B .4是的一个周期C .D .的图象关于点对称三、填空题(本大题共3小题,每小题5分,共15分)12.函数在处的切线方程为____________.13.若复数在复平面内对应的点位于直线上,则的最大值为____________.14.过抛物线的焦点作直线交于,两点,过,分别作的垂线与轴交于,23AF FC =0AB OC ⋅= 0AC BF ⋅= E {}n a n n S ()22n S kn n k =-∈R {}n a {}n a {}n a 0k >{}n S 1k >110.820y x =+20.7525y x =+1x 2x 1y 2y ()f x ()f x 'R ()1f x +()f x '()()112f f -+=()10f '=()f x '()20240f =()f x ()2,1()xf x e x =-0x =()cos 21sin sin 02z i θλθθθπ⎛⎫=+-+<< ⎪⎝⎭y x =λ2:3C y x =l C A B A B l x M N两点,若,则____________.四、解答题(本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)记的内角,,的对边分别为,,,已知.(1)求角;(2)若边上的高为1,,求的周长.16.(本小题满分15分)如图,是圆台的一条母线,是圆的内接三角形,为圆的直径,,(1)证明:;(2)若圆台的高为3,体积为,求直线与平面夹角的正弦值.17.(本小题满分15分)已知函数.(1)若在恒成立,求的取值范围;(2)若,,证明:存在唯一极小值点,且.18.(本小题满分17分)动点到直线与直线的距离之积等于,且的轨迹方程为.(1)求的方程;(2)过上的点作圆的切线,为切点,求的最小值;(3)已知点,直线交于点,,上是否存在点满足若存在,求出点的坐标;若不存在,请说明理由.12AB =MN =ABC △A B C a b c 22cos 0a b c A -+=C AB ABC △ABC △PC 12O O ABC △2O AB 2O 4AB =AC =AB PC ⊥12O O 7πAB PBC ()ln f x x ax =+()0f x ≤()0,x ∈+∞a 1a =()()()x g x f e f x =-()g x 01,12x ⎛⎫∈ ⎪⎝⎭()02g x >(),M x y 1:l y =2:l y =34y <M ΓΓΓP ()22:41Q x y +-=PT T PT 40,3G ⎛⎫⎪⎝⎭():20l y kx k =+>ΓA B ΓC 0GA GB GC ++=C19.(本小题满分17分)设,数对按如下方式生成:,抛掷一枚均匀的硬币,当硬币的正面朝上时,若,则,否则;当硬币的反面朝上时,若,则,否则.抛掷次硬币后,记的概率为.(1)写出的所有可能情况,并求,;(2)证明:是等比数列,并求;(3)设抛掷次硬币后的期望为,求.n ∈N (),n n a b ()()00,0,0a b =n n a b >()()11,1,1n n n n a b a b ++=++()()11,1,n n n n a b a b ++=+n n b a >()()11,1,1n n n n a b a b ++=++()()11,,1n n n n a b a b ++=+n n n a b =n P ()22,a b 1P 2P 13n P ⎧⎫-⎨⎬⎩⎭n P n n a n E n E数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)题号12345678答案ABCDCCBD【解析】1.,故,故选A.2.的否定是“,”,故选B.3.由题得,,即,解得或(舍去),故选C.4.因为,所以,故D.5.由题得,即,且,解得,,故,故选C.6.由为奇函数得,即,亦即恒成立,故.当时,在上为增函数,符合题意:当时,在上为减函数,不符合题意,故选C.7.由对恒成立,可得,又因为在上有3条对称轴,所以,故,故选B.8.设的左焦点为,由,可设,则,由,结合椭圆的性质知,由,可得,又,所以,解得,在中,由勾股定理得,即,所以,故选D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)题号91011答案ACACDABD{}|24B x x =<<(]2,3A B = p z ∀∈C210z +≥()23152a a a -=()()2422444d d +-=+3d =1-sin160m ︒=sin 20m ︒=sin 402sin 20cos 202︒=︒︒=2227a b a b ++⋅= 2527b a b ++⋅= ()2220b b a b a b ⋅-=-⋅= 21b = 12a b ⋅= cos ,a b = ()f x ()()()0f x f x x +-=∈R ))lnln 0kx kx ++-=()2210k x -=1k =±1k =())ln f x x =+R 1k =-()))ln ln f x x x ==-+R ()()2f x f π≤x ∈R 122626k k ππωππω+=+⇒=+()f x 13,66ππ⎡⎤⎢⎥⎣⎦2212T T πω≤<⇒≤<76ω=E F '23AF FC =3FC t =2AF t =0AB OC ⋅= 5BC AC AF FC t ==+=0AC BF ⋅=4BF t =2BF t '=62BF BF t a '+==13t a =Rt BFF '△()()()222242t t c +=222204209c t a ==c e a ==【解析】9.由(为常数)可得,当时,,时,,该式对于也成立,所以,,选项A 正确;当时,,所以选项B 错误;若为递增数列,则,即,选项C 正确;若为递增数列,则,可得,选项D 错误,故选AC.10.对于选项A ,甲、乙两班原始分数的平均数分别为,,故A 对;对于选项B ,甲、乙两班原始分数的标准差分别为,,故B 错;对于选项C ,由得,故C 对;对于选项D ,由得,此时必有,否则,矛盾,故D 对,故选ACD.11.由为偶函数得,,两边求导得:,所以的图象关于对称,可得,又因为为偶函数,所以4是的一个周期,故选项A ,B 正确;由是偶函数可知,所以(为常数),又因为,所以,可得,故的图象关于对称,,又因为为偶函数,所以的图象关于对称,所以4是的一个周期,,同时可知的图象关于也对称,选项C 错,D 对,故选ABD.三、填空题(本大题共3小题,每小题5分,共15分)【解析】12.由题,,,,所以切线方程为.13.由题可得,,所以22n S kn n =-k 1n =12a k =-2n ≥22n a kn k =--12a k =-()*22n a kn k n =--∈N 12n n a a k +-=0k =2n a =-{}n a 20k >0k >{}n S ()02n a n >≥2023k k a >⎧⇒>⎨>⎩()160200.850x =-÷=()2260250.75463x =-÷=1160.820s =÷=2150.7520s =÷=1100x ≤111200.20y x x -=-≥12y y >()()1212120.8200.75250.80.7550y y x x x x -=+-+=-->12x x >122220.80.7550.80.7550.0550x x x x x --≤--=-≤()1f x +()()11f x f x +=-+()()()()11110f x f x f x f x ''''+=--+⇒++-+=()f x '()1,0()10f '=()f x '()f x '()f x '()()f x f x ''=-()()f x f x c =--+c ()()112f f +-=2c =()()2f x f x +-=()f x ()0,1()01f =()1f x +()f x 1x =()f x ()()202401f f ==()f x ()2,1()1x f x e '=-()001f e ==()0010f e '=-=1y =cos 21sin sin 2θλθθ⎛⎫+-= ⎪⎝⎭2sin sin cos 212sin 1sin 1sin 22θθλθθθθ==-+-+-,又,故,由基本不等式知,当且仅当.14.设,,,联立与得,所以,故,解得,不妨取,则直线的倾斜角.过作的垂线,垂足为,则,又,所以,于是四、解答题(本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分13分)解:(1)由正弦定理得,,(2分)又,所以,因为,所以.又,故(6分)(2)由题,即,, (9分)由余弦定理得,即,所以,即.故的周长为. (13分)16.(本小题满分15分)(1)证明:连接,,,则平面,故.因为是圆的直径,所以,2sin 111sin sin sin 122sin θθθθθ==++++0θπ<<0sin 1θ<≤sin θ=λ1-()11,A x y ()22,B x y 3:4l y k x ⎛⎫=-⎪⎝⎭l C 22223930216k x k x k ⎛⎫-++= ⎪⎝⎭2122332k x x k ++=2122333321222k AB x x k +=++=+=k =k =l 30θ=︒N AM H 12NH AB ==NH AB P 30MNH ∠=︒cos30NHMN ==︒sin 2sin 2sin cos 0A B C A -+=A B C π++=sin 2sin cos 2cos sin 2sin cos 0A A C A C C A --+=sin 0A ≠1cos 2C =()0,C π∈3C π=111sin 6022ABC S c ab =⨯⨯=︒=△c =43ab =2222cos 3a b ab π+-=2283a b +=()22288162333a b a b ab +=++=+=a b +=ABC △1PO 12O O 2O C 12O O ⊥ABC 12O O AB ⊥AB 2O 90ACB ∠=︒由勾股定理得,所以.又是的中点,故. (3分)又,所以平面.因为平面,所以.(6分)(2)解:圆台的体积,其中,解得或(舍去).(9分)由(1)知,,两两垂直,分别以,,为轴、轴、轴建立空间直角坐标系,则,,,,所以,,. (11分)设平面的一个法向量为,则解得于是可取. (13分)设直线与平面的夹角为,则,. (15分)17.(本小题满分15分)(1)解:由题可得,,①当时,则,此时在上为增函数,BC ==AC BC =2O AB 2AB CO ⊥1222O O O C O = AB ⊥12PO O C PC ⊂12PO O C AB PC ⊥12O O (22112373V r πππ=⋅+⋅⨯=11r PO =11r =13r =-12O O AB 2O C 2O B 2O C 21O O x y z ()2,0,0A -()2,0,0B ()0,2,0C ()0,1,3P ()4,0,0AB = ()2,1,3BP =- ()2,2,0BC =-PBC (),,n x y z =230,220,n BP x y z n BC x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩ ,3,x y x z =⎧⎨=⎩()3,3,1n =AB PBC θsin cos ,AB n θ===()()10f x a x x'=+>0a ≥()0f x '>()f x ()0,+∞则时,,与题意不符,故不成立;②当时,令,则,此时在上成立,在上成立;所以在上为增函数,在上为减函数; (5分)所以,即,综上,.(7分)(2)证明:理由,,,,所以在上单调递增, (10分)又因为,,所以存在唯一,使得,即,当时,,当时,,因此在上单调递减,在上单调递增.所以,即,又,故.18.(本小题满分17分)答案略19.(本小题满分17分)答案略1x >()()10f x f a >=≥0a ≥0a <()0f x '=1x a=-()0f x '>10,a ⎛⎫-⎪⎝⎭()0f x '<1,a ⎛⎫-+∞ ⎪⎝⎭()f x 10,a ⎛⎫-⎪⎝⎭1,a ⎛⎫-+∞ ⎪⎝⎭()max 10f x f a ⎛⎫=-≤ ⎪⎝⎭11ln 10a a e ⎛⎫--≤⇒≤- ⎪⎝⎭1a e≤-()ln xg x e x =-0x >()1x g x e x '=-()210x g x e x''=+>()g x '()0,+∞1202g ⎛⎫'=-<⎪⎝⎭()110g e '=->01,12x ⎛⎫∈⎪⎝⎭()00g x '=001x e x =()00,x x ∈()0g x '<()0,x x ∈+∞()0g x '>()g x ()00,x ()0,x +∞()012g x g ⎛⎫> ⎪⎝⎭12012x e x e +>+1232e >()02g x >。
昆明市第一中学 2021 届高中新课标高三第三次双基检测理科数学答案
根据球的特征,过点 E 作直四棱柱 ABCD A1B1C1D1 外接球的截面, 当截面过球心时,截面圆面积最大,此时截面面积为 S πR2 ; 当 OE 截面时,此时截面圆半径为 R2 OE2 ,
2
所以此时截面圆面积为 S1 π R2 OE 2 π R2 OE 2 ; 又截面面积的最大值与最小值之差为19π ,
1 4
x1
x2
2
4
,
所以△ QDG
的面积:
SQDG
1 2
FQ
DG
1 2
1 4
x1
x2 2
4 3
,
当 x1 x2 =0 时,△ QDG 面积取得最小值 4 .
……… 12 分
21.解:(1)函数 f (x) 的定义域为 0, , f (x) ln x ax ,
考虑函数 y = ln x 的图象与直线 y = ax 的位置关系: 当 a 0 时,直线 y = ax 与函数 y = ln x 的图象有唯一交点,设为 (n, ln n) .
G
,则
OG
1 2
AA1
,
连接 BD ,因为底面 ABCD 是边长为 6 的正方形,所以点 G 为 BD 的中点,
取 AD 中点为 F ,连接 OF , OE , OB ,
设 AA1 2a ,则 OG a ,所以外接球的半径为 R OB
OG 2
1 2
BD
2
a2 18 ,
因为点 E 在线段 AD 上,且满足 AE 2ED ,则 EF DF DE 1 AB 1 , 6
第 3 页 (共 8 页)
从 A 班和 B 班的样本数据中各随机抽取一个,共有 C31 C31 9 种不同情况,
云南省昆明一中2021届高三数学诊断性考试试题理含解析
故选:C.
【点睛】此题考查概率的求法,考查古典概型,属于基础题.
8.已知单位向量 , 满足 ,则 与 的夹角是()
A. B. C. D.
【答案】D
【解析】
【分析】
由已知条件进行向量数量积的运算得 ,进而得 ,从而得答案.
【详解】已知单位向量 , ,则 ,满足 ,平方得 ,即 ,
【详解】由题可得 , , .所以 .
故选:C
【点睛】本题主要考查利用指对数函数的单调性比较大小,属于基础题.
4.在 的展开式中,二次项的系数为()
A. B. C.4D.6
【答案】B
【解析】
【分析】
根据二项展开式的通项公式可得结果.
【详解】因为 的展开式中的通项公式为 , ,
令 ,得 ,
所以二次项为 ,
所以二次项的系数为 .
故选:B.
【点睛】本题考查了二项展开式的通项公式,属于基础题.
5.已知正项等比数列 中, ,若 ,则 ()
A.511B.512C.1023D.1024
【答案】C
【解析】
【分析】
由 求得 ,再由 求得公比 ,然后由等比数列前 项和公式求得结论.
【详解】由 得 ,所以 ,
又因为 ,得 ,
云南省昆明一中2021届高三数学诊断性考试试题 理(含解析)
本试卷共4页,22题.全卷满分150分.考试用时120分钟.
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡的非答题区域均无效.
云南省昆明市2021届高三”三诊一模“摸底诊断测试理科综合试题 含答案
秘密★启用前【考试时间∶1月26日9 ∶00—11∶30】云南省昆明市2021届高三“三诊一模”摸底诊断测试理科综合能力测试可能用到的相对原子质量; H—1 C—12 O—16 Na—23一、选择题∶本大题共13 小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于绿藻和颤藻的叙述,错误的是A. 细胞膜上均有载体蛋白B.葡萄糖均在细胞质基质中分解成丙酮酸C.翻译过程均在核糖体上进行D.细胞核内均含有DNA 和RNA2. 下列与教材实验相关的叙述,错误的是A.紫色洋葱鳞片叶内表皮和黑藻叶均可用于观察线粒体B.观察植物细胞有丝分裂和低温诱导植物细胞染色体数目变化的实验均需使用酒精C.人鼠细胞融合和现代分子生物学将基因定位在染色体上的实验,均使用荧光标记法D. 艾弗里证明DNA 是遗传物质和噬菌体侵染细菌实验的设计思路相同3.脑内的神经元和胶质细胞都由神经干细胞增殖、分化而来,其中胶质细胞无树突和轴突之分,不参与神经冲动的传导。
下列叙述正确的是A. 神经干细胞中不存在与细胞凋亡有关的基因B. 神经干细胞的端粒DNA 会随细胞分裂次数的增加而变长1C.神经元分裂期的持续时间小于分裂间期的持续时间D.神经元和胶质细胞在形态、生理功能上发生了稳定性差异4.下列有关细胞呼吸及其原理应用的叙述,错误的是A.与无氧条件相比,有氧条件有利于根系对土壤溶液中水分的吸收B.有二氧化碳生成的呼吸方式是有氧呼吸C.有氧呼吸的三个阶段都有能量的释放、转移和散失D.无氧条件下破伤风芽孢杆菌容易大量繁殖5.某单基因遗传病受一对等位基因A/a 控制。
某患者家系的系谱图如图甲。
已知某种方法能够使基因A和a显示为不同位置的条带,用该方法对图甲家系中的个体进行基因检测,结果如图乙。
据图分析错误的是A.该病不可能为常染色体隐性遗传病B.4号个体的致病基因可能来自1号,也可能来自2 号C.若4号个体只呈现条带1,则该病为伴X 染色体显性遗传病D.若4 号个体呈现条带1和条带2,则该病为常染色体显性遗传病6.从80年代至今,中国南极科考队已完成36 次考察。
云南省昆明市第一中学2021届高三数学上学期第一次摸底测试试题 理(含解析)
云南省昆明市第一中学2021届高三数学上学期第一次摸底测试试题理(含解析)一、选择题(本大题共12小题)1.已知集合0,,,则A. 0,B.C.D.2.若,则A. B. C. D.3.“二万五千里长征”是1934年10月到1936年10月中国工农红军进行的一次战略转移,是人类历史上的伟大奇迹,向世界展示了中国工农红军的坚强意志,在期间发生了许多可歌可泣的英雄故事.在中国共产党建党98周年之际某中学组织了“长征英雄事迹我来讲”活动,已知该中学共有高中生2700名,用分层抽样的方法从该校高中学生中抽取一个容量为45的样本参加活动,其中高三年级抽了12人,高二年级抽了16人,则该校高一年级学生人数为A. 720B. 960C. 1020D. 16804.的展开式中含项的系数为A. B. C. 6 D. 75.函数的图象大致为A.B.C.D.6.已知等差数列的前n项和为,若,则A. B. 3 C. D. 67.在正方体中,E为的中点,F为BD的中点,则A. B.C. 平面D. 平面8.已知函数,若是的一个极小值点,且,则A. B. 0 C. 1 D.9.执行如图所示的程序框图输出的S的值为A. 25B. 24C. 21D. 910.偶函数在上为减函数,若不等式对任意的恒成立,则实数a的取值范围是A. B. C. D.11.设抛物线C:的焦点为F,准线为l,点A为C上一点,以F为圆心,FA为半径的圆交l于B,D两点,若,的面积为,则A. 1B.C.D. 212.若存在,满足,则实数a的取值范围是A. B. C. D.二、填空题(本大题共4小题)13.已知,为单位向量,且,的夹角为,则______.14.公比为3的等比数列的各项都是正数,且,则______.15.已知,分别为双曲线C:的左、右焦点,以为圆心,为半径的圆交双曲线C的右支于A,B两点,若,则双曲线C的离心率为______.16.在三棱锥中,平面平面ABC,和均为边长为的等边三角形,若三棱锥的四个顶点都在同一个球面上,则该球的表面积为______.三、解答题(本大题共7小题)17.某学校为了解本校文理科学生的学业水平模拟测试数学成绩情况,分别从理科班学生中随机抽取60人的成绩得到样本甲,从文科班学生中随机抽取n人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在的有10个.求n和乙样本直方图中a的值;试估计该校理科班学生本次模拟测试数学成绩的平均值和文科班学生本次模拟测试数学成绩的中位数同组中的数据用该组区间中点值为代表.18.已知在中,,.求tan A的值;若,的平分线CD交AB于点D,求CD的长.19.图1是由正方形ABCG,直角梯形ABED,三角形BCF组成的一个平面图形,其中,,将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.证明:图2中的D,E,C,G四点共面,且平面平面DEC;求图2中的二面角的大小.20.过的直线l与抛物线C:交于A,B两点,以A,B两点为切点分别作抛物线C的切线,设与交于点求;过Q,F的直线交抛物线C于M,N两点,求四边形AMBN面积的最小值.21.已知函数,.讨论的单调性;是否存在a,b,使得函数在区间的最小值为且最大值为1?若存在,求出a,b的所有值;若不存在,请说明理由.参考数据:.22.如在直角坐标系xOy中,直线l的参数方程为为参数,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,点P的极坐标为,曲线C的极坐标方程为.写出直线l的普通方程和曲线C的直角坐标方程;若点Q为曲线C上的动点,求PQ中点M到直线l的距离的最小值.23.已知正数a,b,c满足等式证明:;.答案和解析1.【答案】B【解析】解:0,,,.故选:B.可以求出集合B,然后进行交集的运算即可.考查列举法、描述法的定义,指数函数的单调性,以及交集的运算.2.【答案】B【解析】解:由,得.故选:B.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.3.【答案】C【解析】解:设该校高一年级学生人数为x人,由题意得:,解得.故选:C.设该校高一年级学生人数为x人,由此利用列举法得,由此能求出该校高一年级学生人数.本题考查高一年级学生人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.4.【答案】A【解析】解:的展开式中含项的系数为,故选:A.把按照二项式定理展开,可得结论.本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.5.【答案】B【解析】解:函数定义域为;且,函数为偶函数,排除选项D;将表达式的分子分母均乘以,可得且当时,,故选项A,C不成立.故选:B.首先利用函数的奇偶性排除选项D,再将原函数的分子分母同乘进行化简,最后利用特殊值法即可判断.本题考查函数的奇偶性及图象对称性的综合应用,属于中档题6.【答案】A【解析】解:等差数列的前n项和为,,,解得,.故选:A.利用等差数列的前n项和公式推导出,再由,能求出结果.本题考查等差数列的前n项和公式、通项公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.7.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,为z轴,建立空间直角坐标系,设正方体中棱长为2,则0,,1,,2,,0,,0,,在A中,1,,,与不平行,故A错误;在B中,0,,,与不垂直,故B错误;在C中,平面的法向量1,,,与平面不平行,故C错误;在D中,0,,2,,,,,,,平面D.故选:D.以D为原点,DA为x轴,DC为y轴,为z轴,建立空间直角坐标系,利用向量法能求出结果.本题考查线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.8.【答案】C【解析】解:,,又,或,当,时,,在区间上,在区间上,是极大值点,不符合题意.当,时,,在区间上,在区间上,是极小值点,符合题意.,故选:C.先写出导函数,得,又因为,所以或,分别代入解析式,检验哪个符合题意.本题考查导数的应用,极值,属于中档题.9.【答案】A【解析】解:初始值,;第一步,,,此时,故;第二步:,,此时,故;第三步:,,此时,故;第四步:,,此时,故;第五步:,,此时,故输出;故选:A.根据程序框图依次写出每次循环的结果,再根据判断框内的条件,确定输出的S的值即可.本题考查程序框图,难度较小,属于基础题.10.【答案】D【解析】解:是偶函数,图象关于y轴对称.在的单调性与的单调性相反,可得在上是增函数.不等式恒成立,等价于恒成立.即不等式恒成立,的解集为R,结合一元二次方程根的判别式,得:且解之得.故选:D.根据偶函数图象关于y轴对称,得在上是单调减函数,且在上单调增,由此结合是正数,将原不等式转化为恒成立,去绝对值再用一元二次不等式恒成立的方法进行处理,即得实数a的取值范围.本题给出偶函数的单调性,叫我们讨论关于x的不等式恒成立的问题,着重考查了函数的单调性与奇偶性、一元二次不等式解法等知识,属于基础题.11.【答案】D【解析】解:如图所示,设l与x轴交于H,且,l:,因为,在直角三角形FBH中,可得,所以圆的半径为,,由抛物线的定义知,点A到准线l的距离为,所以的面积为,解得.故选:D.根据题意画出图形,结合图形求出,,由抛物线的定义可得点A到准线l的距离,运用三角形的面积公式可得的面积,从而求出p的值.本题考查了抛物线的定义与性质的应用问题,也考查了数形结合思想应用,是中档题.12.【答案】A【解析】解:设,,则是单调增函数,且的值域为;设,则恒过定点,又,,且,存在,不等式时,即,不等式不成立,由此得,解得,所以a的取值范围是.故选:A.设,,,对求导数,利用导数的几何意义列不等式求出a的取值范围.本题主要考查对数函数与不等式的应用问题,也考查了利用导数研究函数的单调性问题,是中档题.13.【答案】【解析】解:已知,为单位向量,且,的夹角为,,则,故答案为:.由题意利用两个向量的数量积的定义求出,再根据求向量的模的方法,求出本题主要考查两个向量的数量积的定义,求向量的模,属于基础题.14.【答案】3【解析】解:公比为3的等比数列的各项都是正数,且,,且,解得,,.故答案为:3.由公比为3的等比数列的各项都是正数,且,求出,从而,由此能求出的值.本题考查等比数列的第9项的对数值的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.15.【答案】【解析】解:设,由,且圆和双曲线关于x轴对称,可得A的纵坐标为,在等腰三角形中,,,可得,则A的横坐标为,即,代入双曲线的方程可得,由,,可得,化为,由,可得,解得.故答案为:.设,圆和双曲线关于x轴对称,可得A的纵坐标为,再由等腰三角形的性质和勾股定理,求得A的横坐标,将A的坐标代入双曲线方程,结合离心率公式,解方程即可得到所求值.本题考查双曲线的方程和性质,主要是离心率的求法,考查圆和双曲线的对称性,等腰三角形的性质,考查方程思想和运算能力,属于中档题.16.【答案】【解析】解:由题意,如图所示,取AB中点E,连结PE,DE,延长CE,交外接圆于点D,连结PD,是边长为的等边三角形,外接圆半径为,且,,平面平面ABC,和均为边长为的等边三角形,在直角中,平面ABC,且,在直角中,,且,在直角中,,在直角中,由正弦定理得,该球的半径,该球的表面积.故答案为:.取AB中点E,连结PE,DE,延长CE,交外接圆于点D,连结PD,外接圆半径为2,且,,求出,,,在直角中,由正弦定理得,该球的半径,由此能求出该球的表面积.本题考查球的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:由频率分布直方图得:乙样本中数据在的频率为,这个组学生有10人,则,解得,由乙样本数据直方图得:,解得.甲样本数据的平均值估计值为:,乙样本数据直方图中前三组的频率之和为:,前四组的频率之和为:,乙样本数据的中位数在第4组,设中位数为,由,解得,中位数为.根据样本估计总体思想,可以估计该校理科学生本次模拟测试数学成绩的平均值约为,文科班学生本次模拟测试数学成绩的中位数约为82.【解析】由频率分布直方图得乙样本中数据在的频率为,这个组学生有10人,由此能求出n,由乙样本数据直方图能求出a.利用甲、乙样本数据频率分布直方图能估计估计该校理科学生本次模拟测试数学成绩的平均值和文科班学生本次模拟测试数学成绩的中位数.本题考查实数值、平均数、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.18.【答案】解:,由正弦定理,可得,,可得,是角平分线,,由,可得,,,由,可得.【解析】由已知利用正弦定理,三角形内角和定理可得,利用两角差的正弦函数公式,同角三角函数基本关系式可求tan A的值.由已知可求,利用同角三角函数基本关系式可求sin A,cos A的值,利用两角和的正弦函数公式可求的值,根据正弦定理即可解得CD的值.本题主要考查了正弦定理,三角形内角和定理,两角差的正弦函数公式,同角三角函数基本关系式,两角和的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.19.【答案】解:证明:由正方形ABCG中,直角梯形ABED中,.,E,C,G四点共面.,,,,平面ADG.平面ADG,.在直角梯形ABED中,,可得,同理直角梯形GCED中,可得,.,.,,平面DEG,平面ADB,平面平面DEG.平面平面DEC;解:过点D作的垂线,垂足为O,过点O作BC的垂线,垂足为H,则,,故以O为原点,如图建立空间直角坐标系,则0,,0,,2,,2,,0,,1,.所以,.设平面ACE的法向量为y,,由.设平面BCE的法向量为b,,由.,二面角的大小为.【解析】根据面面垂直的判定定理即可证明平面平面DEC;建立空间坐标系,利用向量法即可求二面角的大小.本题主要考查空间平面和平面垂直的判定,以及二面角的求解,综合考查学生的计算能力.20.【答案】解:设,,直线l的方程为,联立抛物线方程,可得,即有,,由的导数为,可得的方程为,化为,同理可得的方程为,联立两直线方程解得,,故;由,,,可得,即,,,则四边形AMBN的面积,当且仅当时,四边形AMBN的面积取得最小值32.【解析】设,,直线l的方程为,联立抛物线方程,运用韦达定理,以及导数的几何意义,求得两条切线的方程,联立求得交点,可得所求值;求得,的坐标和数量积,可得,即,运用抛物线的弦长公式可得,,由四边形的面积公式,结合基本不等式可得所求最小值.本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,运用韦达定理,以及导数的几何意义,考查切线方程的求法,以及向量垂直的性质,考查基本不等式的运用:求最值,属于中档题.21.【答案】解:,令,,,在上单调递增,,,若时,恒成立,即在区间上单调递增,若时,则,则,则在区间上单调递减,若,则,,又在上单调递增,结合零点存在性定理知,存在唯一的实数,使得,当时,,则,则在上单调递减,当时,,则,则在上单调递增,综上所述:若时,在区间上单调递增,若时,在区间上单调递减,若时,存在唯一的实数,,在上单调递减,在上单调递增.由可得:若,则,则,而,解得满足题意,若时,则,则时,而,解得满足题意,若时,令,,则,在上单调递减,,令,,由可知,令,,由可知,,,,,综上:当且,或当且时,使得在区间的最小值为且最大值为1.【解析】先求导,再分类讨论,根据导数和函数单调性的关系即可求出,对a分类讨论,利用的结论即可得出.本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.22.【答案】解:由为参数,消去参数t,可得直线l的普通方程为,由,且,,,得曲线C的直角坐标方程为;点P的极坐标为,则点P的直角坐标为,点Q为曲线C上的动点,设,则PQ中点M为,则点M到直线l的距离:,点M到直线l的最小距离为.【解析】直接把直线参数方程中的参数t消去,可得直线的普通方程,由已知结合极坐标与直角坐标的互化公式可得曲线C的直角坐标方程;化P为直角坐标,设出Q的坐标,由中点坐标公式求得M的坐标,再由点到直线的距离公式写出距离,利用三角函数求最值.本题考查点的直角坐标、曲线的直角坐标方程的求法,考查点到直线的距离的中小值的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,是中档题.23.【答案】解:要证不等式等价于,因为,,当且仅当时取等号.,,又,,当且仅当时取等号.【解析】利用基本不等式即可证明结论;利用基本不等式即可证明结论.本题考查用分析法证明不等式,关键是寻找不等式成立的充分条件,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明市第一中学2021届摸底考试参考答案(理科数学)一、选择题1.解析:因为112+=,所以1i i z ==-,所以复数z 在复平面内对应的点的坐标为()0,1-,选B .2. 解析:因为集合{}[]2211,1A x x y =+==-,集合{[)0,B y y ===+∞,所以[]0,1AB =,选A .3. 解析:因为抛物线的焦点为(,0)2p,双曲线的渐近线为0x y ±=,所以抛物线的焦点到双曲线的渐近线的距离为d ==0p >,所以2p =,选C . 4. 解析:由等高堆积条形图1可知,不管是文科还是理科,女生占比均高于男生,故样本中的女生数量多于男生数量,A 错误;从图2可以看出男生和女生中选择理科的人数均高于选择文科的人数,选C .5. 解析:由题意,若三位数的回文数是偶数,则末(首)位可能为2,4,6,8,另外中间一位数有10种可能,所以有41040⨯=个,选A .6. 解析:函数的定义域是(0,)+∞,2243(1)(4)()1x x f x x x x +-=--=',令()0f x <',解得04x <<,故函数4()3ln f x x x x=+-在(0,4)上单调递减,选D . 7. 解析:由三视图可知,该几何体是圆锥的一部分,观察到正视图中1和2的分界线可知俯视图是圆心角为120︒的扇形,故该几何体的体积为π91642π31312=⨯⨯⨯=V ,选C . 8. 解析:令0y =,4x =;0x =,2y =.所以(4,0)A ,(0,2)B ,所以AB ==,选C . 9. 解析:由题意,()()()()255221441x x x x x -+=-++,52232551a x x C x =⋅⋅14541x C x -⋅⋅055546C x x +⨯=-,所以56a =-,选C .10. 解析:由题意,△SAB 是以AB 斜边的直角三角形,以三角形SAB 所在平面截球所得的小圆面圆心在AB 中点,又因为平面⊥SAB 平面ABC ,所以平面ABC 截球所得平面即为大圆.因为△ABC 是边长为3的正三角形,其外接圆半径3333=⨯=R ,故该三棱锥外接球的半径3=R ,其表面积π12π42==R S ,选D .11. 解析:解析:因为)(x f 的最小正周期为π,故2=ω,将其向右平移3π后所得图像对应的解析式为)32π2sin()(-+=ϕx x g ,又)(x g 为奇函数,所以π32πk =-ϕ,2π<ϕ,解得3π-=ϕ,故)3π2sin()(-=x x f .令π2π3π2k x +=-(Z ∈k ),解得2π125πk x +=(Z ∈k ),取1-=k ,12π-=x ,故①正确;令π3π2k x =-(Z ∈k ),解得2π6πk x +=(Z ∈k ),)(x f 的对称中心为⎪⎭⎫ ⎝⎛+0,2π6πk (Z ∈k ),②正确;又由π22π3π2π22π3k x k +-≤-≤+-(Z ∈k ),取0=k 知⎥⎦⎤⎢⎣⎡--12π,12π7是原函数的一个单调递减区间,又⎥⎦⎤⎢⎣⎡--⊆⎥⎦⎤⎢⎣⎡--12π,2π712π,2π,故③正确;对于④,函数在此区间上的零点只有3π2,6π7两个,故错误,综上所述正确结论的编号为①②③,选A .12. 解析:依题意函数()f x 的图象关于y 轴及直线2x =对称,所以()f x 的周期为4,作出[]2,0x ∈-时()f x 的图象,由()f x 的奇偶性和周期性作出()f x 的图象,关于x 的方程()log (2)0a f x x -+=恰有三个不同的实数根,可转化为函数()f x 与log (2)a y x =+的图象有三个不同的交点,由数形结合可知log (22)3log (62)3a a +<⎧⎨+>⎩,解得2322a <<,选B .二、填空题13. 解析:如图所示y x z +=2在()2,2A 处取得最大值,且2226z =⨯+=.14. 解析:由b a b a 2-=+平方可得:21122a b b ⋅==,所以a 在b 方向上的投影是12a b b ⋅=. 15. 解析:由题意可得,直线:210l x --=过抛物线2:4C y x =的焦点(1,0)F ,设P 、Q 在l 上的射影分别是1P 、1Q ,过Q 作1QM PP ⊥于M .由抛物线的定义可得出Rt PQM △中,得45BAE ∠=︒,1112cos451PP QQ PM PF QF PQ PF QF PF QF λλ---︒=====+++323λ=+ 16. 解析:因为BD ⊥平面1ACC ,所以BD CE ⊥,故①对;因为点C 到直线EF 的距离是定值,点B 到平面CEF 的距离也是定值,所以三棱锥B CEF -的体积为定值,故②对;线段EF 在底面ABCD 上的正投影是线段GH ,所以△BEF 在底面ABCD 内的正投影是△BGH .又因为线段EF 的长是定值,所以线段GH 是定值,从而△BGH 的面积是定值,故③对;设平面ABCD 与平面1DEA 的交线为l ,则在平面ABCD 内与直线l 平行的直线有无数条,故④对.所以正确结论是①②③④.HGA 1EB 1CD F AD 1C 1三、解答题 (一)必考题17. 解:(1)由1121S a =-得:11a =,因为11(2)(2(1))n n n n S S a n a n ---=---- (2)n ≥,所以121n n a a -=+ (2)n ≥,所以2121=3a a =+,3221=7a a =+; 由此猜想数列{}n a 的通项公式21n n a =-;证明:因为121n n a a -=+ (2)n ≥,所以112(1)n n a a -+=+, 所以1121n n a a -+=+(2)n ≥,所以{}1n a +是以2为首项,2为公比的等比数列,所以12n n a +=,即:21n n a =-.(用数学归纳法证明也可) ………6分 (2)由(1)得21n n a =-,所以()32313523222(2)n n a a a a n +++++⋅⋅⋅+=++⋅⋅⋅+-+22(14)(2)14n n +-=-+-252383n n +--=. ………12分18. 解:(1)证明:因为//AB CD ,AB AD ⊥,且121===CD AD AB ,可得2BD BC ==,2=CD ,所以BD BC ⊥又平面⊥ADEF 平面ABCD ,平面 ADEF 平面AD ABCD =,四边形ADEF 是矩形,AD ED ⊥,⊂ED 平面ABCD ,可得⊥ED 平面ABCD ,⊂BC 平面ABCD ,则ED BC ⊥,BD ,ED ⊂平面BDE ,D ED BD = ,故⊥BC 平面BDE , BC ⊂平面BCE ,所以,平面BCE ⊥平面BDE . ………6分(2)由(1)知△BCE ,△BDE ,△CDE 都是直角三角形,030BEC ∠=.设a ED =,则42+=a CE ,2=BC ,BC CE 2=, 2442⨯=+a ,解得2=a ,如图以点D 为坐标原点,DA 为x 轴,DC 为y 轴,DE 为z 轴建立空间直角坐标系.可得)0,1,1(B ,)0,2,0(C ,)2,0,0(E ,)2,0,1(F , 故),,(211-=EB ,),,(001=EF , ),,(220-=EC , 设),,(z y x m =为平面BEF 的一个法向量,则 ⎪⎩⎪⎨⎧=⋅=⋅0EF m EB m ,得),,(120--=m ,同理可得平面BCE 的一个法向量为),,(111=n , 设二面角C BE F --的平面角为α, nm n m n m ⋅>=<,cos 35120⋅-+-+=)()(551-=, =αcos ><n m ,cos 515-=, 所以,二面角M CN A --的余弦值为515-. ………12分19. 解:(1)设“甲获得合格证书”为事件A ,“乙获得合格证书”为事件B ,“丙获得合格证书”为事件C ,则412()525P A =⨯=,321()432P B =⨯=,255()369P C =⨯=.因为()()()P C P B P A >>,所以丙获得合格证书的可能性最大. ………6分 (2)设“三人考试后恰有两人获得合格证书”为事件D ,则21421531511()()()()52952952930P D P ABC P ABC P ABC =++=⨯⨯+⨯⨯+⨯⨯=.所以三人考试后恰有两人获得合格证书的概率是1130. ………12分20. 解:(1)因为线段QN 的中垂线交线段QM 于点C ,则CQ CN =,所以42CM CN CM CQ QM MN +=+==>=, 由椭圆定义知:动点C 的轨迹为以原点为中心的椭圆,其中:24a =,22c =,又222=3b a c =-,所以曲线E 的轨迹方程为22143x y +=. ………5分 (2)设()11,D x y ,()22,A x y ,则()11,B x y -,由题意知直线AD 的斜率必存在, 设直线AD 的方程为:y kx m =+,由22+143y kx m x y =⎧⎪⎨+=⎪⎩,,消y 得:()()222438430k mk m x x +++-=,故()()()2221222122222438434343641630340k k k mk x x k m x x k m m m ⎧+⎪⎪⎪+=-⎨+⎪-⎪⋅=⎪∆=-->⇒+⎩->+ 因为A ,B ,P 共线,其中()224,PA x y =-,()114,PB x y =-- 所以()()()212144x y y x --=-,整理得()()12122480kx x m k x x m +-+-=, 则()()22224388044343k m mk m k m k k ⋅--⋅+-=++-,解得m k =-,此时2330k∆=+>则直线AD 的方程为:()1y k x =-,所以直线AD 恒过定点()1,0 ………12分21. 解:(1)函数()f x 的定义域为(),-∞+∞,()e x f x a ,当0a 时,()0f x ,()f x 在(),-∞+∞上单调递增; 当0a 时,令()0f x ,得ln()x a . 所以()f x 在,ln()a 上单调递减;在ln(),a 上单调递增.综上所述,当0a 时,()f x 在(),-∞+∞上单调递增; 当0a 时,()f x 在,ln()a 上单调递减;在ln(),a 上单调递增.………6分(2)当0,x时,11x ,所以()ln(1)0g x x .设()ln(1)h x x x (0)x , 则1()111xh x x x '=-=++,当0x 时,()0h x '>,()h x 在0,上单调递增,所以()(0)0h x h >=,所以ln(1)x x , 故0()g x x .由(1)可知,当0a 时,()f x 在(),-∞+∞上单调递增. 所以(())()f g x f x <成立;当10a 时,ln()0a -≤,且()f x 在ln(),a 上单调递增,所以(())()f g x f x <成立; 当1a时,()f x 在0,ln()a 上单调递减;则有(())()f g x f x >,不合题意.综上所述,实数a 的取值范围为[)1,-+∞. ………12分(二)选考题:第22、23题中任选一题做答。