概率论与数理统计概率历史的介绍
考研数学一大纲重点梳理概率论与数理统计部分

考研数学一大纲重点梳理概率论与数理统计部分概率论和数理统计是考研数学一科目中的重要部分,本文将针对概率论与数理统计这一大纲进行重点梳理。
首先,我们将介绍概率论的基本概念和理论,然后详细讨论数理统计的相关内容。
一、概率论的基本概念和理论1. 概率的基本概念概率是研究随机现象的定量描述,用来描述事件发生的可能性大小。
概率可以用数值表示,范围在0到1之间,其中0代表不可能事件,1代表必然事件。
2. 概率的运算规则概率的运算规则包括加法规则和乘法规则。
加法规则适用于互斥事件,乘法规则适用于独立事件。
3. 随机变量和概率分布随机变量是用来描述随机现象的变量,可以分为离散随机变量和连续随机变量。
概率分布描述了随机变量的取值与概率之间的关系,常见的概率分布包括二项分布、泊松分布和正态分布等。
4. 期望和方差期望是随机变量的平均值,用来描述随机变量的集中趋势;方差是随机变量与期望之间的差异程度,用来描述随机变量的离散程度。
二、数理统计的相关内容1. 抽样与抽样分布抽样是指从总体中选取一部分个体进行观察和研究的过程,抽样分布是指样本统计量的概率分布。
常见的抽样分布包括正态分布、t分布和F分布等。
2. 参数估计参数估计是利用样本数据来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。
点估计是用单个数值来估计参数的值,区间估计是用一个区间来估计参数的值。
3. 假设检验假设检验是根据样本提供的信息,对总体的某个参数是否满足某种假设进行判断。
假设检验可以分为单侧检验和双侧检验,常见的假设检验方法包括z检验和t检验等。
4. 方差分析方差分析是用来比较两个或多个总体间均值差异是否显著的统计方法。
方差分析可以分为单因素方差分析和多因素方差分析,常用的方法包括单因素方差分析和双因素方差分析等。
5. 回归分析回归分析是用来研究自变量与因变量之间的关系的方法。
简单线性回归是一种自变量和因变量之间存在线性关系的回归分析方法,多元线性回归是多个自变量和一个因变量之间的回归分析方法。
统计学、概率论和数理统计的区别和联系

统计学、概率论和数理统计的区别和联系今天我们就来说说统计学、概率论和数理统计为什么要说他们呢,因为这⼏个字眼⼤家肯定是已经⽆数次地碰到过了,但他们究竟代表了什么,以及他们之间的区别与联系,相信⼤家平时肯定是没怎么关注过,⽽是更多的混为⼀谈。
然⽽今天,随着⼤数据与数据科学的热⽕朝天,这⼏个词重新被⼤家给予了⾼度关注,特别是统计学。
原因也很⾃然:分析思维是数据科学的核⼼思维⽅式,⽽分析思维就是关于计算与统计的思维。
统计思维⽣长的⼟壤就是概率论和数理统计。
1、统计学⾸先说说统计学,关于这个词其实是个历史遗留问题。
因为从统计学的发展历史来看,最早的统计学和国家经济学有密切的关系。
统计学的英⽂是“statistic”,其实它是源于意⼤利⽂的“stato”,意思是“国家”、“情况”,也就是后来英语⾥的state(国家),在⼗七、⼗⼋世纪,统计学很多时候都是以经济学的姿态出现的。
根据维基百科:By the 18th century, the term 'statistics' designated the systematic collection of demographic and economic data by states. For at least two millennia, thesedata were mainly tabulations of human and material resources that might betaxed or put to military use.统计学最开始来源于经济学和政治学。
17世纪的经济学家William Petty和他的《政治算术》⼀书揭开了统计学的起源(维基百科):The birth of statistics is often dated to 1662, when John Graunt, along with William Petty, developed early human statistical and census methods that provided a framework for modern demography. He produced the first life table, giving probabilities of survival to each age. Hisbook Natural and Political Observations Made upon the Bills of Mortality usedanalysis of the mortality rolls to make the first statistically basedestimation of the population of London.所以从⼀开始,统计学就跟经济学、政治学密不可分的。
概率论和数理统计起源

概率论和数理统计起源(1)从随机现象谈起在自然界和现实生活中,一切事物都是相互联系和不断发展的。
在它们彼此间的联系和发展中,根据它们是否有必然的因果关系,可以分成截然不同的两大类:一类是确定性的现象。
这类现象是在一定条件下,必定会导致某种确定的结果。
举例来说,在标准大气压下,水加热到100度,就必然会沸腾。
又如,把铁加热到1530度的时候,必然会熔化成液态。
事物间这种联系是属于必然性的。
通常的自然科学各学科就是专门研究和认识这种必然性,寻求这类必然现象的因果关系,把握它们之间的数量规律,以达到认识世界和改造世界的目的。
另一类是不确定性的现象。
这类现象是在一定条件下,它的结果是不确定的。
举例来说,同一工人在同一车床上加工同一种零件若干个,它们的尺寸总会有些差异。
又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同,有强弱和早晚之别等等。
为什么在相同的一定条件下,会出现这种种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然性因素影响着结果。
而这些次要的、偶然起作用的因素又是人们无法事先一一能够掌握的。
正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先作出确定的答案。
事物间这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在着的。
比如:拿北京地区来说,测量每年七月份的天气平均气温,每年都各有差异,不完全相同,而且也不能准确地预测来年七月份的平均气温。
这样,“北京七月份平均气温”就是随机现象。
又如,同一名工人,用同一台车床在同一条件下(同材料、同一操作规程)加工一种标准长度150毫米的零件等现象,也是随机现象。
因此,我们说随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所得结果不完全一样,而且无法准确地预测下次所得结果的现象。
概率论与数理统计发展简史

概率论发展简史概率论是一门研究随机现象的数量规律学科。
它起源于对赌博问题的研究。
早在16世纪,意大利学者卡丹与塔塔里亚等人就已从数学角度研究过赌博问题。
他们的研究除了赌博外还与当时的人口、保险业等有关,但由于卡丹等人的思想未引起重视,概率概念的要旨也不明确,于是很快被人淡忘了。
概率概念的要旨只是在17世纪中叶法国数学家帕斯卡与费马的讨论中才比较明确。
他们在往来的信函中讨论"合理分配赌注问题"。
该问题可以简化为:帕斯卡与费马用各自不同的方法解决了这个问题。
虽然他们在解答中没有明确定义概念,但是,他们定义了使某赌徒取胜的机遇,也就是赢得情况数与所有可能情况数的比,这实际上就是概率,所以概率的发展被认为是从帕斯卡与费马开始的。
概率论起源于博弈问题。
15-16世纪,意大利数学家帕乔利(L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹(G.cardano,1501-1576)的著作中都曾讨论过俩人赌博的赌金分配等概率问题。
1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论著作。
这些数学家的著述中所出现的第一批概率论概念与定理,标志着概率论的诞生。
而概率论最为一门独立的数学分支,真正的奠基人是雅格布?伯努利(Jacob Bernoulli,1654-1705)。
他在遗著《猜度术》中首次提出了后来以“伯努利定理”著称的极限定理,在概率论发展史上占有重要地位。
伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给出了概率论的一些重要结果。
之后法国数学家蒲丰(C.de Buffon,1707-1788)提出了著名的“普丰问题”,引进了几何概率。
另外,拉普拉斯、高斯和泊松(S.D.Poisson,1781-1840)等对概率论做出了进一步奠基性工作。
概率论与数理统计发展史简要、主要内容概要及其主要应用

概率论与数理统计是一门研究随机现象和数据分析的学科。
以下是关于概率论与数理统计发展史、主要内容概要以及其主要应用的简要介绍:发展史概率论与数理统计是数学的重要分支之一,其发展可以追溯到17世纪。
以下是一些重要的里程碑事件:- 1654年,法国贵族帕斯卡尔引入概率论的基本概念。
- 18世纪,瑞士数学家伯努利家族对概率论做出了系统的研究,并提出伯努利试验和大数定律。
- 19世纪,法国数学家拉普拉斯在概率论方面有很多重要贡献,提出了拉普拉斯公式和拉普拉斯逼近定理。
-20世纪,俄国数学家科尔莫哥洛夫发展了现代概率论的基本框架,建立起了测度论和概率测度的数学基础。
主要内容概要概率论研究随机现象的规律性和不确定性,主要包括以下几个方面的内容:1. 概率基本概念:包括样本空间、事件、随机变量等。
2. 概率分布:研究随机变量的取值及其对应的概率。
3. 大数定律:研究随机变量序列的稳定性,指出当样本容量足够大时,随机现象的长期平均值收敛于期望值的概率趋近于1。
4. 中心极限定理:研究多个相互独立的随机变量之和的分布趋近于正态分布的概率。
数理统计是利用样本数据对总体特征进行推断和决策的学科,主要内容如下:1. 抽样方法:研究如何从总体中获取代表性样本的方法。
2. 统计描述:通过统计量对总体特征进行度量和描述。
3. 参数估计:利用样本数据对总体参数进行估计。
4. 假设检验:根据样本数据对关于总体的假设进行推断和判断。
5. 方差分析和回归分析:研究多个变量之间的关系和影响。
主要应用概率论与数理统计具有广泛的应用领域,涉及自然科学、社会科学、工程技术等众多领域,包括但不限于以下方面:1. 金融和风险管理:用于分析投资组合的风险、金融市场波动性的预测和金融产品的定价。
2. 医学和生物统计学:应用于疾病概率分析、药物疗效评估和流行病学研究等。
3. 工程和质量控制:用于产品质量分析、过程改进和可靠性评估。
4. 社会科学和市场调查:用于样本调查、舆论调查和社会现象的分析。
概率论与数理统计 课程描述

概率论与数理统计课程描述概率论与数理统计是一门应用广泛的数学学科,它研究的是随机现象的规律性和统计量的性质。
在现代科学和工程技术中,概率论与数理统计被广泛应用于风险评估、决策分析、数据处理、模型建立等领域。
本文将从概率论和数理统计两个方面进行介绍和描述。
概率论是研究随机现象的数学理论,它研究的是不确定性的量化和规律性的描述。
在概率论中,我们通过实验和观测来获取概率信息,然后将这些信息进行归纳和总结,得出概率模型和规律。
概率论具有一定的公理化基础,通过引入事件、样本空间、随机变量等概念,建立了一套完整的概率计算体系。
概率论在实际应用中可以用来描述和分析随机事件的发生概率,从而帮助人们做出合理的决策。
数理统计是研究随机现象的统计规律和统计量的性质的学科。
在数理统计中,我们通过对样本数据的收集和分析,推断和估计总体的参数,并对推断和估计的结果进行验证和检验。
数理统计主要包括描述统计和推断统计两个方面。
描述统计是通过对样本数据的整理、归纳和展示,来揭示数据的分布特征和统计规律。
推断统计是通过样本数据对总体参数进行估计和推断,并对估计结果进行统计检验。
数理统计在实际应用中可以用来对数据进行分析和研究,从而得出结论和决策。
概率论和数理统计是相互依存的学科,它们在实际应用中经常结合起来使用。
概率论提供了描述和计算随机现象的方法和工具,数理统计则提供了通过样本数据对总体进行估计和推断的方法和工具。
在实际问题中,我们常常需要根据已知的概率模型和样本数据,对未知的总体参数进行估计和推断。
这时,概率论和数理统计的知识和方法就显得尤为重要了。
概率论与数理统计在现代社会中扮演着重要的角色。
在风险评估中,我们可以通过概率论和数理统计的方法,对不确定性因素进行量化和分析,从而评估风险的大小和发生的可能性。
在决策分析中,我们可以利用概率论和数理统计的方法,对不同决策方案的风险和效益进行评估和比较,从而做出最优的决策。
在数据处理中,我们可以利用概率论和数理统计的方法,对数据进行整理、分析和建模,从而揭示数据的规律和趋势。
概率论的起源和发展

概率论的起源和发展概率论与数理统计班级:作者:概率论的起源和发展摘要:概率论的历史相当悠久,本⽂将介绍概率论产⽣的历史背景和发展情况及⼀些概率论学者在这门学科的发展中做出的贡献。
了解和研究概率论发展的历史进程。
关键词:概率论,起源,古典概率,初等概率,分析概率,数理统计,应⽤概率,正态概率分布曲线,泊松分布,中⼼极限定理,最⼩⼆乘法原理,切⽐雪夫不等式。
概率论历史的开端有很多争议。
有些学者认为,概率起源于存在了⼏千年的赌博游戏,所以概率思想开始于⽂明早期;⽽由于它在⼗⼋世纪以前发展缓慢,更多学者认为,概率论的历史只有短短的三百多年时间。
早期概率论发展⾮常缓慢,但⼗⼋世纪以后,由于社会学,天⽂学等学科的研究需要,概率理论得到迅速发展。
在当代,随着概率论⾃⾝的发展和其他学科之间的交叉融合,概率论已经成为⼀门应⽤⾮常⼴泛的学科,分成概率和统计理论两⼤部分,各门学科中都可以看到概率论的⾝影。
如今概率论已经成为⼀种重要的⼯具,在社会发展中发挥着巨⼤的作⽤。
1、机会的早期计算古希腊⼈从航海中发现了很多概率经验规律, 古犹太⼈在纪元之初就有概率加法定律和乘法定律的应⽤记录。
但是由于结果不确定,⼈们⼀直认为随机现象都由天神决定, 它的规则是世俗不可想象的。
早期刺激数学家思考概率问题的是⼀些赌博者的请求。
这时的概率⼯作者的贡献是他们将赌博从实际问题上升为理论。
公元960 年左右, 怀特尔德⼤主教计算出掷三个骰⼦时不计次序所能出现的不同组合有56 种。
卡尔扎诺在1564 年写出著名的《论机会游戏》, 揭⽰了赌博中的不确定性。
他是第⼀个深⼊讨论概率问题的⼈,提出了考虑随机问题的基本原则, 最初建⽴了胜率概念和⼀些运算法则, 他对概率理论的形成具有开创性贡献。
2、古典概率时期(⼗七世纪)⽕灾、地震等偶然现象的发⽣,给⼈们的⽣命财产带来不可估量的损失,也使⼈们认识到它的重要性,于是开始探讨偶然现象发⽣的规律性。
唯物辩证法产⽣,加深了⼈们对偶然性与必然性的认识。
概率论与数理统计概率历史的介绍.doc

一、概率定义的发展与分析1.古典定义的历史脉络古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能. 16 世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812 年,法国数学家拉普拉斯(1749 —1827 )在《概率的分析理论》中给出概率的古典定义:事件 A 的概率等于一次试验中有利于事件 A 的可能结果数与该事件中所有可能结果数之比.2.古典定义的简单分析古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:( 1)可能结果总数有限;( 2)每个结果的出现有同等可能.其中第( 2)条尤其重要,它是古典概率思想产生的前提.如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要n r 的各种排列(或总数为n r)的各种组合)看成是等可能的,求,就是将总数为 P( , ) C( ,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且有数学上的.“ 用性的狭窄性”促使雅各布 ?伯努利( 1654 — 1705 )“ 找另一条途径找到所期待的果”,就是他在研究古典概率的另一重要成果:伯努利大数定律.条定律告我“ 率具有定性”,所以可以“用率估概率”,而也以后概率的定奠定了思想基.“古典定数学上的”在特朗(1822 — 1900 )悖中表得淋漓尽致,它揭示出定存在的矛盾与含糊之,致了拉普拉斯的古典定受到猛烈批.3.定的史脉概率的古典定然直,但是适用范有限.正如雅各布?伯努利所:“⋯⋯ 种方法适用于极罕的象.”因此,他通察来确定果数目的比例,并且“即使是没受教育和的人,凭天生的直,也会清楚地知道,可利用的有关的次数越多,生的就越小”.然原理,但是其科学明并不,在古典概型下,伯努利了一点,即“当次数愈来愈大,率接近概率”.事上,不于古典概型适用,人确信“从中察的率定性”的事是一个普遍律.1919 年,德国数学家 ?米塞斯( 1883 — 1953 )在《概率基研究》一中提出了概率的定:在做大量重复,随着次数的增加,某个事件出的率是在一个固定数的附近,示出一定的定性,把个固定的数定一事件的概率.虽然统计定义不能像古典定义那样确切地算出概率,但是却给出了一个估计概率的方法.而且,它不再需要“等可能”的条件,因此,从应用的角度来讲,它的适用范围更广.但是从数学理论上讲,统计定义是有问题的.在古典概率的场合,事件概率有一个不依赖于频率的定义——它根本不用诉诸于试验,这样才有一个频率与概率是否接近的问题,其研究导致伯努利大数定律.在统计定义的场合这是一个悖论:你如不从承认大数定律出发,概率就无法定义,因而谈不上频率与概率接近的问题;但是你如承认大数定律,以便可以定义概率,那大数定律就是你的前提,而不是一再需要证明的论断了.5.公理化定义的历史脉络正因为古典定义和统计定义数学理论上的这样或那样的问题,所以到了19 世纪,无论是概率论的实际应用还是其自身发展,都要求对概率论的逻辑基础作出更加严格的考察.1900 年,38 岁的希尔伯特(1862 — 1943)在世界数学家大会上提出了建立概率公理系统的问题,这就是著名的希尔伯特23 个问题中的第 6 个问题.这引导了一批数学家投入这方面的工作.在概率公理化的研究道路上,前苏联数学家柯尔莫哥洛夫(1903 — 1987)成绩最为卓著,1933 年,他在《概率论基础》中运用集合论和测度论表示概率论的方法赋予了概率论严密性.为什么直到 20 世纪才实现了概率论的公理化,这是因为20世纪初才完成了勒贝格测度与积分理论以及抽象测度与积分理论,而这都是概率论公理化体系建立的基础.柯尔莫哥洛夫借助实变函数论和测度论来定义概率概念,形成了概率论的公理化体系,他的公理体系既概括了古典定义、统计定义的基本特性,又避免了各自的局限.例如,公理中有一条,是把事件概率的存在作为一个不要证明的事实接受下来,在这个前提下,大数定律就成为一个需要证明且可以得到证明的论断,这就避免了“4”中统计定义的数学理论上的问题;而公理中关于“概率存在”的规定又有其实际背景,这就是概率的古典定义和统计定义.所以,我们说,概率论公理体系的出现,是概率论发展史上的一个里程碑,至此,概率论才真正成为了严格的数学分支.二、关于概率定义教学的几点思考对于概率的定义,教科书是先给出古典定义,然后再给出统计定义.这与历史上概率定义的发展相吻合,从“简单到复杂”.在教学中,我们不仅要明了这种顺序的设计意图,而且还要抓住不同定义的特点和思想,以引导学生更好地理解概率.1.古典定义的教学定位在前面的分析中,我们说“等可能”是古典概率非常重要的一个特征,它是古典概率思想产生的前提.正是因为“等可能”,所以才会有了“比率”.因此,“等可能性”和“比率”是古典定义教学中的两个落脚点.“等可能”是无法确切证明的,往往是一种感觉,但是这种感觉是有其实际背景的,例如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉本身给我们的感觉就是帽重钉轻.因此,“等可能”并不要多么严密的物理上或化学上的分析,只需要通过例子感知一下“等可能”和“不等可能”即可,以便让学生明白古典定义的适用对象须具备的条件.2.统计定义的教学定位从直观上讲,统计定义是非常容易接受的,但是它的内涵是非常深刻的,涉及到大数定律.在初中阶段,我们不可能让学生接触其严格的形式和证明.因此,统计定义定位在其合理性和必要性是比较恰当的.如何让学生体会其合理性和必要性?罗老师的课堂教学比较好地实现了这两点.从教学顺序来看,罗老师将“掷硬币”作为归纳统计定义的例子,“掷硬币”可以用古典定义求概率,所以概率值是明确的,而通过试验的方法计算得到的频率就可以和这个明确的概率值相比较,如此更容易让学生体会到“频率具有稳定性”这一事实,从而感受到“用频率估计概率”的合理性;罗老师将“掷图钉”作为统计定义的应用,“掷图钉”不能用古典定义求概率,由此能让学生体会到学习统计定义计算事件概率的必要性.从教学手段来看,罗老师主要采用了“学生试验”的方法,学生的亲自试验在这节课所起的作用是无可代替的:“亲自试验”获得的结果能够给学生以真实感和确切感;“亲自试验”能够让学生感受到频率的随机性和稳定性等特点.所以,像概率与统计的学习,学生应该有更多的主动权和试验权,在动手和动脑中感受概率与统计的思想和方法.3.概率与统计教学的背后:专业素养的提升在课题研讨时,教师们表现出这样一些困惑:随着试验次数的增加,频率就越来越稳定?频率估计概率,一定要大量试验?实验次数多少合适?事实上,这些问题涉及的就是概率与统计的专业素养.对于大多数教师而言,概率与统计相对而言比较陌生,这是很自然的,因为在教师自身接受的数学专业学习中,概率与统计就是一个弱项.但是,既然要向学生教授概率与统计,那么还是需要有“一桶水”的.就像上面的问题,翻阅任何一本《概率论与数理统计》,都可以给我们知识上的答案,而翻阅一下相关的科普读物或史料,就可以给我们思想方法上的答案.举个例子:伯努利大数定律:设 m 是 n 重伯努利试验中事件 A 出现的次数,又 A 在每次试验中出现的概率为 p(),则对任意的,有.狄莫弗 -拉普拉斯极限定理:设 m 是 n 重伯努利试验中事件 A 出现的次数,又 A 在每次试验中出现的概率为p(),则.伯努利大数定律只是告诉我们,当 n 趋于无穷时,频率依概率收敛于概率p .伯努利的想法是:只要n充分大,那么频率估计概率的误差就可以如所希望的小.值得赞赏的是,他利用了“依概率收敛”而不是更直观的p ,因为频率是随着试验结果变化的,在 n 次试验中,事件 A 出现 n 次也是有可能的,此时p 就不成立了.伯努利不仅证明了上述大数定律,而且还想知道:若想要把一个概率通过频率而确定到一定的精确度,要做多少次观察才行.这时,伯努利大数定律无能为力,但是狄莫弗 -拉普拉斯极限定理给出了解答:.( *)例如研究课中掷硬币的问题,若要保证有95% 的把握使正面向上的频率与其概率0.5 之差落在 0.1 的范围内,那要抛掷多少次?根据( *)式,可以估计出.三、概率论发展简史概率论有悠久的历史,它的起源与博弈问题有关。
概率论与数理统计01-随机事件及其概率

7.观察某条交通干线中某天交通事故的次 数。
二、事件的出现(或发生)
称在一次试验中事件A出现(发生)当且仅当 此次试验出现了A中的样本点.
注意:
1.在一次试验中,某个事件可能出现也可能不出现; 2.在一次试验中,有且仅有一个基本事件出现.
集合运算的一些性质
AU , AI , AI A, AU A
AI B A
AB A
AI (B UC) (AI B) U(AI C) A(B C) AB AC
AU(AI B) A
A AB A
AUB AI B
AB AB
AI B AUB
解:设A = { 取 到 的 两 个 都 是 次 品},B={取到的两个中 正、次品各一个}, C={取到的两个中至少有一个正品}.
(1)基本事件总数为62,事件A的基本事件数为22, 所以 P(A)=4/36=1/9
(2)事件B的基本事件数为4×2+2×4=16, 所以 P(B)=16/36=4/9
随机事件及其概率
随机事件及其概率
1. 概率论的历史 2. 分析赌博实例
掷骰子
所有可能的结果(1,2,3,4,5,6) 每一次可能的结果
游戏规则
点数为6; 点数大于3; 点数为偶数
3. 应用数学工具解决问题 集合论
一、基本概念
1.随机试验(E)——对随机现象进行的实验与观察. 它具有三个特点:重复性, 明确性, 随机性.
nk nnL n
三.组合
从n个不同的元素中,每次取出k(k<n)个不同的元素,
与元素的顺序无关组成一组叫作组合,其组合数用
概率论与数理统计发展简史

概率论与数理统计发展简史在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献.17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论.早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验.促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了.不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论.荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验+++-之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括.继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础.1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.通过贝努利和棣谟佛的努力,使数学方法有效地应用于概率研究之中,这就把概率论的特殊发展同数学的一般发展联系起来,使概率论一开始就成为数学的一个分支.概率论问世不久,就在应用方面发挥了重要的作用.牛痘在欧洲大规模接种之后,曾因副作用引起争议.这时贝努利的侄子丹尼尔•贝努利(Daniel Bernoulli)根据大量的统计资料,作出了种牛痘能延长人类平均寿命三年的结论,消除了一些人的恐惧和怀疑;欧拉(Euler)将概率论应用于人口统计和保险,写出了《关于死亡率和人口增长率问题的研究》,《关于孤儿保险》等文章;泊松(Poisson)又将概率应用于射击的各种问题的研究,提出了《打靶概率研究报告》.总之,概率论在18世纪确立后,就充分地反映了其广泛的实践意义.19世纪概率论朝着建立完整的理论体系和更广泛的应用方向发展.其中为之作出较大贡献的有:法国数学家拉普拉斯(Laplace),德国数学家高斯(Gauss),英国物理学家、数学家麦克斯韦(Maxwell),美国数学家、物理学家吉布斯(Gibbs)等.概率论的广泛应用,使它于18和19两个世纪成为热门学科,几乎所有的科学领域,包括神学等社会科学都企图借助于概率论去解决问题,这在一定程度上造成了“滥用”的情况,因此到19世纪后半期时,人们不得不重新对概率进行检查,为它奠定牢固的逻辑基础,使它成为一门强有力的学科.1917年苏联科学家伯恩斯坦首先给出了概率论的公理体系.1933年柯尔莫哥洛夫又以更完整的形式提出了概率论的公理结构,从此,更现代意义上的完整的概率论臻于完成.相对于其它许多数学分支而言,数理统计是一个比较年轻的数学分支.多数人认为它的形成是在20世纪40年代克拉美(H.Carmer)的著作《统计学的数学方法》问世之时,它使得1945年以前的25年间英、美统计学家在统计学方面的工作与法、俄数学家在概率论方面的工作结合起来,从而形成数理统计这门学科.它是以对随机现象观测所取得的资料为出发点,以概率论为基础来研究随机现象的一门学科,它有很多分支,但其基本内容为采集样本和统计推断两大部分.发展到今天的现代数理统计学,又经历了各种历史变迁.统计的早期开端大约是在公元前1世纪初的人口普查计算中,这是统计性质的工作,但还不能算作是现代意义下的统计学.到了18世纪,统计才开始向一门独立的学科发展,用于描述表征一个状态的条件的一些特征,这是由于受到概率论的影响.高斯从描述天文观测的误差而引进正态分布,并使用最小二乘法作为估计方法,是近代数理统计学发展初期的重大事件,18世纪到19世纪初期的这些贡献,对社会发展有很大的影响.例如,用正态分布描述观测数据后来被广泛地用到生物学中,其应用是如此普遍,以至在19世纪相当长的时期内,包括高尔顿(Galton)在内的一些学者,认为这个分布可用于描述几乎是一切常见的数据.直到现在,有关正态分布的统计方法,仍占据着常用统计方法中很重要的一部分.最小二乘法方面的工作,在20世纪初以来,又经过了一些学者的发展,如今成了数理统计学中的主要方法.从高斯到20世纪初这一段时间,统计学理论发展不快,但仍有若干工作对后世产生了很大的影响.其中,如贝叶斯(Bayes)在1763年发表的《论有关机遇问题的求解》,提出了进行统计推断的方法论方面的一种见解,在这个时期中逐步发展成统计学中的贝叶斯学派(如今,这个学派的影响愈来愈大).现在我们所理解的统计推断程序,最早的是贝叶斯方法,高斯和拉普拉斯应用贝叶斯定理讨论了参数的估计法,那时使用的符号和术语,至今仍然沿用.再如前面提到的高尔顿在回归方面的先驱性工作,也是这个时期中的主要发展,他在遗传研究中为了弄清父子两辈特征的相关关系,揭示了统计方法在生物学研究中的应用,他引进回归直线、相关系数的概念,创始了回归分析.数理统计学发展史上极重要的一个时期是从19世纪到二次大战结束.现在,多数人倾向于把现代数理统计学的起点和达到成熟定为这个时期的始末.这确是数理统计学蓬勃发展的一个时期,许多重要的基本观点、方法,统计学中主要的分支学科,都是在这个时期建立和发展起来的.以费歇尔(R.A.Fisher)和皮尔逊(K.Pearson)为首的英国统计学派,在这个时期起了主导作用,特别是费歇尔.继高尔顿之后,皮尔逊进一步发展了回归与相关的理论,成功地创建了生物统计学,并得到了“总体”的概念,1891年之后,皮尔逊潜心研究区分物种时用的数据的分布理论,提出了“概率”和“相关”的概念.接着,又提出标准差、正态曲线、平均变差、均方根误差等一系列数理统计基本术语.皮尔逊致力于大样本理论的研究,他发现不少生物方面的数据有显著的偏态,不适合用正态分布去刻画,为此他提出了后来以他的名字命名的分布族,为估计这个分布族中的参数,他提出了“矩法”.为考察实际数据与这族分布的拟合分布优劣问题,他引进了著名“χ2检验法”,并在理论上研究了其性质.这个检验法是假设检验最早、最典型的方法,他在理论分布完全给定的情况下求出了检验统计量的极限分布.19 01年,他创办了《生物统计学》,使数理统计有了自己的阵地,这是20世纪初叶数学的重大收获之一.1908年皮尔逊的学生戈赛特(Gosset)发现了Z的精确分布,创始了“精确样本理论”.他署名“Student”在《生物统计学》上发表文章,改进了皮尔逊的方法.他的发现不仅不再依靠近似计算,而且能用所谓小样本进行统计推断,并使统计学的对象由集团现象转变为随机现象.现“Student分布”已成为数理统计学中的常用工具,“Student氏”也是一个常见的术语.英国实验遗传学家兼统计学家费歇尔,是将数理统计作为一门数学学科的奠基者,他开创的试验设计法,凭借随机化的手段成功地把概率模型带进了实验领域,并建立了方差分析法来分析这种模型.费歇尔的试验设计,既把实践带入理论的视野内,又促进了实践的进展,从而大量地节省了人力、物力,试验设计这个主题,后来为众多数学家所发展.费歇尔还引进了显著性检验的概念,成为假设检验理论的先驱.他考察了估计的精度与样本所具有的信息之间的关系而得到信息量概念,他对测量数据中的信息,压缩数据而不损失信息,以及对一个模型的参数估计等贡献了完善的理论概念,他把一致性、有效性和充分性作为参数估计量应具备的基本性质.同时还在1912年提出了极大似然法,这是应用上最广的一种估计法.他在20年代的工作,奠定了参数估计的理论基础.关于χ2检验,费歇尔1924年解决了理论分布包含有限个参数情况,基于此方法的列表检验,在应用上有重要意义.费歇尔在一般的统计思想方面也作出过重要的贡献,他提出的“信任推断法”,在统计学界引起了相当大的兴趣和争论,费歇尔给出了许多现代统计学的基础概念,思考方法十分直观,他造就了一个学派,在纯粹数学和应用数学方面都建树卓越.这个时期作出重要贡献的统计学家中,还应提到奈曼(J.Neyman)和皮尔逊(E.Pearson).他们在从1928年开始的一系列重要工作中,发展了假设检验的系列理论.奈曼-皮尔逊假设检验理论提出和精确化了一些重要概念.该理论对后世也产生了巨大影响,它是现今统计教科书中不可缺少的一个组成部分,奈曼还创立了系统的置信区间估计理论,早在奈曼工作之前,区间估计就已是一种常用形式,奈曼从1934年开始的一系列工作,把区间估计理论置于柯尔莫哥洛夫概率论公理体系的基础之上,因而奠定了严格的理论基础,而且他还把求区间估计的问题表达为一种数学上的最优解问题,这个理论与奈曼-皮尔逊假设检验理论,对于数理统计形成为一门严格的数学分支起了重大作用.以费歇尔为代表人物的英国成为数理统计研究的中心时,美国在二战中发展亦快,有三个统计研究组在投弹问题上进行了9项研究,其中最有成效的哥伦比亚大学研究小组在理论和实践上都有重大建树,而最为著名的是首先系统地研究了“序贯分析”,它被称为“30年代最有威力”的统计思想.“序贯分析”系统理论的创始人是著名统计学家沃德(Wald).他是原籍罗马尼亚的英国统计学家,他于1934年系统发展了早在20年代就受到注意的序贯分析法.沃德在统计方法中引进的“停止规则”的数学描述,是序贯分析的概念基础,并已证明是现代概率论与数理统计学中最富于成果的概念之一.从二战后到现在,是统计学发展的第三个时期,这是一个在前一段发展的基础上,随着生产和科技的普遍进步,而使这个学科得到飞速发展的一个时期,同时,也出现了不少有待解决的大问题.这一时期的发展可总结如下:一是在应用上愈来愈广泛,统计学的发展一开始就是应实际的要求,并与实际密切结合的.在二战前,已在生物、农业、医学、社会、经济等方面有不少应用,在工业和科技方面也有一些应用,而后一方面在战后得到了特别引人注目的进展.例如,归纳“统计质量管理”名目下的众多的统计方法,在大规模工业生产中的应用得到了很大的成功,目前已被认为是不可缺少的.统计学应用的广泛性,也可以从下述情况得到印证:统计学已成为高等学校中许多专业必修的内容;统计学专业的毕业生的人数,以及从事统计学的应用、教学和研究工作的人数的大幅度的增长;有关统计学的著作和期刊杂志的数量的显著增长.二是统计学理论也取得重大进展.理论上的成就,综合起来大致有两个主要方面:一个方面与沃德提出的“统计决策理论”,另一方面就是大样本理论.沃德是20世纪对统计学面貌的改观有重大影响的少数几个统计学家之一.1950年,他发表了题为《统计决策函数》的著作,正式提出了“统计决策理论”.沃德本来的想法,是要把统计学的各分支都统一在“人与大自然的博奕”这个模式下,以便作出统一处理.不过,往后的发展表明,他最初的设想并未取得很大的成功,但却有着两方面的重要影响:一是沃德把统计推断的后果与经济上的得失联系起来,这使统计方法更直接用到经济性决策的领域;二是沃德理论中所引进的许多概念和问题的新提法,丰富了以往的统计理论.贝叶斯统计学派的基本思想,源出于英国学者贝叶斯的一项工作,发表于他去世后的1763年后世的学者把它发展为一整套关于统计推断的系统理论.信奉这种理论的统计学者,就组成了贝叶斯学派.这个理论在两个方面与传统理论(即基于概率的频率解释的那个理论)有根本的区别:一是否定概率的频率的解释,这涉及到与此有关的大量统计概念,而提倡给概率以“主观上的相信程度”这样的解释;二是“先验分布”的使用,先验分布被理解为在抽样前对推断对象的知识的概括.按照贝叶斯学派的观点,样本的作用在于且仅在于对先验分布作修改,而过渡到“后验分布”――其中综合了先验分布中的信息与样本中包含的信息.近几十年来其信奉者愈来愈多,二者之间的争论,是战后时期统计学的一个重要特点.在这种争论中,提出了不少问题促使人们进行研究,其中有的是很根本性的.贝叶斯学派与沃德统计决策理论的联系在于:这二者的结合,产生“贝叶斯决策理论”,它构成了统计决策理论在实际应用上的主要内容.三是电子计算机的应用对统计学的影响.这主要在以下几个方面.首先,一些需要大量计算的统计方法,过去因计算工具不行而无法使用,有了计算机,这一切都不成问题.在战后,统计学应用愈来愈广泛,这在相当程度上要归公功于计算机,特别是对高维数据的情况.计算机的使用对统计学另一方面的影响是:按传统数理统计学理论,一个统计方法效果如何,甚至一个统计方法如何付诸实施,都有赖于决定某些统计量的分布,而这常常是极困难的.有了计算机,就提供了一个新的途径:模拟.为了把一个统计方法与其它方法比较,可以选择若干组在应用上有代表性的条件,在这些条件下,通过模拟去比较两个方法的性能如何,然后作出综合分析,这避开了理论上难以解决的难题,有极大的实用意义.。
概率论及数理统计概率历史介绍

一、概率定的展与剖析1.古典定的史脉古典定中的“古典”表示了种定发源的古老,它源于博.博弈的形式多种多,但是它的前提是“公正”,即“时机均等”,而正是古典定合用的重要条件:同样可能. 16 世意大利数学家和博家卡丹( 1501—1576)所的“ 的骰子”,即道了然一点.在卡丹此后三百年的里,帕斯卡、、伯努利等数学家都在古典概率的算、公式推和大用等方面做了重要的工作.直到1812 年,法国数学家拉普拉斯( 1749—1827)在《概率的剖析理》中出概率的古典定:事件 A 的概率等于一次中有益于事件 A 的可能果数与事件中全部可能果数之比.2.古典定的剖析古典定通了然的方式定了事件的概率,并出了可行的算法.它合用的条件有二:( 1)可能果数有限;( 2)每个果的出有同样可能.此中第( 2)条特别重要,它是古典概率思想生的前提.怎样在更多和更复的状况下,体出“同样可能”?伯努利家族成做了工作,他将摆列合的理运用到了古典概率中.用摆列(合)体同样可能的要求,就是将数 P(n,r)的各样摆列(或数 C(n,r) 的各样合)当作是等可能的,往常用“任意取”来表达个意思.即便这样,古典定的方法能用的范仍旧很窄,并且有数学上的.“ 用性的狭小性”促进雅各布 ?伯努利( 1654— 1705)“ 找另一条门路找到所期望的果”,就是他在研究古典概率的另一重要成就:伯努利大数定律.条定律告我“ 率拥有定性”,所以能够“用率估概率”,而也此后概率的定确定了思想基.“古典定数学上的”在特朗( 1822— 1900)悖中表得酣畅淋漓,它揭露出定存在的矛盾与含糊之,致了拉普拉斯的古典定遇到剧烈批.3.定的史脉概率的古典定然直,但是合用范有限.正如雅各布 ?伯努利所:“⋯⋯ 种方法合用于极罕的象.”所以,他通察来确定果数量的比率,并且“即便是没受教育和的人,凭天生的直,也会清楚地知道,可利用的有关的次数越多,生的就越小”.然原理,但是其科学明其实不,在古典概型下,伯努利了一点,即“当次数愈来愈大,率靠近概率”.事上,不于古典概型合用,人确信“从中察的率定性”的事是一个广泛律. 1919 年,德国数学家 ?米塞斯( 1883— 1953)在《概率基研究》一中提出了概率的定:在做大批重复,跟着次数的增添,某个事件出的率是在一个固定数的邻近,示出必定的定性,把个固定的数定一事件的概率.4.统计定义的简单剖析固然统计定义不可以像古典定义那样切实地算出概率,但是却给出了一个预计概率的方法.并且,它不再需要“等可能”的条件,所以,从应用的角度来讲,它的合用范围更广.但是从数学理论上讲,统计定义是有问题的.在古典概率的场合,事件概率有一个不依靠于频次的定义——它根本不用诉诸于试验,这样才有一个频次与概率能否靠近的问题,其研究致使伯努利大数定律.在统计定义的场合这是一个悖论:你如不从认可大数定律出发,概率就没法定义,因此谈不上频次与概率靠近的问题;但是你如认可大数定律,以便能够定义概率,那大数定律就是你的前提,而不是再三需要证明的论断了.5.公义化定义的历史脉络正因为古典定义和统计定义数学理论上的这样或那样的问题,所以到了 19 世纪,不论是概率论的本质应用还是其自己发展,都要求对概率论的逻辑基础作出更为严格的观察.1900 年,38 岁的希尔伯特( 1862— 1943)在世界数学家大会上提出了成立概率公义系统的问题,这就是有名的希尔伯特 23 个问题中的第 6 个问题.这指引了一批数学家投入这方面的工作.在概率公义化的研究道路上,前苏联数学家柯尔莫哥洛夫( 1903—1987)成绩最为卓著, 1933 年,他在《概率论基础》中运用会合论和测度论表示概率论的方法给予了概率论严实性.6.公义化定义的简单剖析为何直到20 世纪才实现了概率论的公义化,这是因为20 世纪初才达成了勒贝格测度与积分理论以及抽象测度与积分理论,而这都是概率论公义化系统成立的基础.柯尔莫哥洛夫借助实变函数论和测度论来定义概率看法,形成了概率论的公义化系统,他的公义系统既归纳了古典定义、统计定义的基本特征,又防止了各自的限制.比如,公义中有一条,是把事件概率的存在作为一个不要证明的事实接受下来,在这个前提下,大数定律就成为一个需要证明且能够获取证明的论断,这就防止了“ 4”中统计定义的数学理论上的问题;而公义中对于“概率存在”的规定又有其本质背景,这就是概率的古典定义和统计定义.所以,我们说,概率论公义系统的出现,是概率论发展史上的一个里程碑,至此,概率论才真切成为了严格的数学分支.二、对于概率定义教课的几点思虑对于概率的定义,教科书是先给出古典定义,而后再给出统计定义.这与历史上概率定义的发展相符合,从“简单到复杂”.在教课中,我们不单要了然这种次序的设计企图,并且还要抓住不一样定义的特色和思想,以指引学生更好地理解概率.1.古典定义的教课定位概率思想产生的前提.正是因为“等可能”,所以才会有了“比率”.所以,“等可能性”和“比率”是古典定义教课中的两个落脚点.“等可能”是没法切实证明的,常常是一种感觉,但是这种感觉是有其本质背景的,比如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉自己给我们的感觉就是帽重钉轻.所以,“等可能”其实不要多么严实的物理上或化学上的剖析,只需要经过例子感知一下“等可能”和“不等可能”即可,以便让学生理解古典定义的合用对象须具备的条件.2.统计定义的教课定位从直观上讲,统计定义是特别简单接受的,但是它的内涵是特别深刻的,波及到大数定律.在初中阶段,我们不行能让学生接触其严格的形式和证明.所以,统计定义定位在其合理性和必需性是比较适合的.怎样让学生领会其合理性和必需性?罗老师的讲堂教课比较好地实现了这两点.从教课次序来看,罗老师将“掷硬币”作为归纳统计定义的例子,“掷硬币”可以用古典定义求概率,所以概率值是明确的,而经过试验的方法计算获取的频次即可以和这个明确的概率值对比较,这样更简单让学生领会到“频次拥有稳固性”这一事实,进而感觉到“用频次预计概率”的合理性;罗老师将“掷图钉”作为统计定义的应用,“掷图钉”不可以用古典定义求概率,由此能让学生领会到学习统计定义计算事件概率的必需性.从教课手段来看,罗老师主要采纳了“学生试验”的方法,学生的亲身试验在这节课所起的作用是无可取代的:“亲身试验”获取的结果能够给学生以真切感和切实感;“亲身试验”能够让学生感觉到频次的随机性和稳固性等特色.所以,像概率与统计的学习,学生应当有更多的主动权和试验权,在着手和动脑中感觉概率与统计的思想和方法.3.概率与统计教课的背后:专业修养的提高在课题商讨时,教师们表现出这样一些疑惑:跟着试验次数的增添,频次就愈来愈稳固?频次预计概率,必定要大批试验?实验次数多少适合?事实上,这些问题波及的就是概率与统计的专业修养.对于大部分教师而言,概率与统计相对而言比较陌生,这是很自然的,因为在教师自己接受的数学专业学习中,概率与统计就是一个弱项.但是,既然要向学生教授概率与统计,那么还是需要有“一桶水”的.就像上边的问题,翻阅任何一本《概率论与数理统计》,都能够给我们知识上的答案,而翻阅一下有关的科普读物或史料,就能够给我们思想方法上的答案.举个例子:伯努利大数定律:设 m是 n 重伯努利试验中事件 A 出现的次数,又 A 在每次试验中出现的概率为 p() ,则对任意的,有.狄莫弗 - 拉普拉斯极限制理:设 m是 n 重伯努利试验中事件 A 出现的次数,又 A 在..每次试验中出现的概率为p() ,则.伯努利大数定律不过告诉我们,当 n 趋于无量时,频次依概率收敛于概率 p.伯努利的想法是:只需 n 充足大,那么频次预计概率的偏差就能够如所希望的小.值得欣赏的是,他利用了“依概率收敛”而不是更直观的p,因为频次是跟着试验结果变化的,在 n 次试验中,事件 A 出现 n 次也是有可能的,此时p 就不行立了.伯努利不单证了然上述大数定律,并且还想知道:若想要把一个概率经过频次而确定到必定的精准度,要做多少次察看才行.这时,伯努利大数定律力所不及,但是狄莫弗 - 拉普拉斯极限制理给出认识答:.(* )比如研究课中掷硬币的问题,若要保证有95%的掌握使正面向上的频次与其概率之差落在 0.1 的范围内,那要投掷多少次?依据(* )式,能够预计出.三、概率论发展简史概率论有悠长的历史,它的发源与博弈问题有关。
概率论与数理统计发展及应用1

概率论与数理统计发展及应用摘要:通过上半学期概率论与数理统计这门课的学习,我大概了解了基本的概率知识,意识到这门课对于自己以后的发展和创新有着很大的帮助。
本文将根据自己的学习心得以及在网上,图书中查找的资料,从概率论的发展历程,以及其在各重要领域中的应用两个方面来阐述我对本门课的理解。
关键词:概率论,数理统计,发展,主要应用正文一、概率论及数理统计的发展1、历史背景17、18世纪,数学获得了巨大的进步。
数学家们冲破了古希腊的演绎框架,向自然界和社会生活的多方面汲取灵感,数学领域出现了众多崭新的生长点,而后都发展成完整的数学分支。
除了分析学这一大系统之外,概率论就是这一时期"使欧几里得几何相形见绌"的若干重大成就之一。
2、概率论的起源与发展概率论是一门研究随机现象规律的数学分支。
概率论的研究始于意大利文艺复兴时期当时在误差、人口统计、人寿保险等范畴中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。
当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法。
十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。
1657年荷兰物理学家惠更斯发表了“论赌博中的计算”的重要论文,提出了数学期望的概念,伯努利把概率论的发展向前推进了一步,于1713年出版了《猜测的艺术》,指出概率是频率的稳定值,他第一次阐明了大数定律的意义。
1718年法国数学家棣莫弗发表了重要著作《机遇原理》,书中叙述了概率乘法公式和复合事件概率的计算方法,并在1733年发现了正态分布密度函数,但他没有把这一结果应用到实际数据上,直到1924年菜被英国统计学家K·皮尔森在一家图书馆中发现。
德国数学家高斯从测量同一物体所引起的误差这一随机现象独立的发现正态分布密度函数方程,并发展了误差理论,提出了最小二乘法。
对概率论与数理统计的理解

对概率论与数理统计的理解
概率论和数理统计是数学中的两个重要分支之一。
概率论研究的
是随机现象和随机事件发生的规律,包括概率的概念、随机变量及其
分布、随机过程、极限定理等内容。
而数理统计则是在已知随机现象
发生的概率分布的基础上,对数据进行收集、描述、分析、推断等一
系列有关指标的研究,包括描述统计、参数估计、假设检验、方差分
析等内容。
概率论和数理统计的应用范围非常广泛,涵盖了自然科学、社会科学、经济学、工程技术等众多领域,是科学研究和实际应用中
必不可少的工具之一。
概率论与数理统计论文

概率论与数理统计论文学院:航天学院班级:1421201姓名:郭兴达学号:1142120133经过一个学期的的概率论学习,我想将我的感想和收获写在论文中,那么我就先介绍一下概率论的发展简史吧。
一、发展简史统计学是关于数字资料收集、组织、分析与解释的科学.“资料收集"是取得数量或数据的方法.正确的结论只能来源于正确的资料,来源于有代表性的资料。
“资料组织”是以适当形式表现所收集的资料,以得出符合逻辑的结论。
“资料分析”是从给定的量或数,抽出有关问题,从而得出一个简要的综合姓的结果。
达到这个日的的最重要的量(平均数、中位数、极差、标推差,等等).“资料解释"是通过资料分析来作出结论的工作,它通常是通过类似对象的小的集合提供的信息来对有关对象的大的集合形成预测的。
因此,统计学是一门科学,它处理在某种程度上可用数量信息回答的问题,而信息是通过计数和量度得到的.不论我们在生物研究中调查昆虫数、还是在工厂中调查工人数或工时数,统计工作者的职责首先是选择所裔的那类信息,其次是指导适当的有效的收集与加工信息,最后是解释结果。
在解释结果中,特别是在资料不完全的情况下,统计工作者必须运用原理与方法以得出有效的调查结果。
他常常要求面对不肯定的情况做出明智的决策.统计一词有两个显然不同的意义。
当用作如上所指的情况时,它是.一种研究和评价数量资料的科学方法。
当用作复数时,它是“数量资料:一词的同义语。
因此,如果我们说在“世界年鉴”或“美国统计摘要"中有统计,即是说在它们中有数量资料。
这是一个古老的、有普遍意义酌词。
原先,统计着重为政府首脑管理国家政务提供资料.用数字资料表现的这种信息可以上溯到亚里斯多德及他的“国家政务论”。
事实上,“statistics与“state”源于同一词根,就是一个明证.早期大多数文明国家,由于军事的与财政的原因,曾经编制大规模的统计资料,以确定国家的入力与物力.我们在基督教圣经中曾看到诸如此类的户口调查,以及罗马帝国各地普遍编制的税册。
概率论与数理统计发展简史

概率论学科历史三四百年前在欧洲许多国家,贵族之间盛行赌博之风。
掷骰子是他们常用的一种赌博方式。
因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。
有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大?17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。
这是什么原因呢?后人称此为著名的德·梅耳问题。
又有人提出了“分赌注问题”: 两个人决定赌若干局,事先约定谁先赢得6局便算赢家。
如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。
数学家们“参与”赌博。
参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。
他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。
这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。
帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。
而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。
1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。
这本书迄今为止被认为是概率论中最早的论著。
因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。
这一时期被称为组合概率时期,计算各种古典概率。
在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。
概率论与数理统计的发展阶段

概率论与数理统计的发展阶段概率论的初创阶段可以追溯到17世纪。
当时,法国数学家帕斯卡开始研究赌博中的概率问题,他提出了著名的帕斯卡三角形,并初步建立了概率论的基本概念。
后来,拉普拉斯进一步推动了概率论的发展,他提出了古典概率的概念,并建立了概率计算的公式。
此外,拉普拉斯还在概率论中引入了极限论的思想,这为概率论的进一步发展奠定了基础。
1888年,概率论进入了发展阶段。
法国数学家勒贝格独立地发展了测度论,为概率论提供了数学基础。
勒贝格提出了概率空间的概念,并基于此进行了更深入的研究,推广了拉普拉斯概率论。
此外,勒贝格还提出了测度的可数可加性,这为随机变量的引入提供了理论支持。
概率论进一步发展的另一个重大事件是俄国数学家切比雪夫的工作。
他提出了切比雪夫不等式,将概率论与数学分析结合起来,为概率论的应用提供了强大的工具。
20世纪初,概率论进入了现代阶段。
此时,概率论不再是独立于其他数学领域的分支,而是与统计学、信息论等其他学科相互关联,形成了现代概率论。
在这一阶段,概率论和数理统计的研究逐渐走向应用,并取得了众多重要的成果。
其中,最著名的是由克拉美尔和拉斯金提出的极大似然估计方法,该方法被广泛应用于统计推断中。
此外,还出现了贝叶斯统计方法和马尔可夫链蒙特卡洛方法等新的统计学方法,为概率论和统计学的进一步发展提供了新的思路。
总之,概率论与数理统计的发展经历了初创阶段、发展阶段和现代阶段。
从最初的概念建立到数学基础的发展,再到与其他学科的交叉融合,概率论与数理统计在数学和应用领域中发挥了重要的作用。
随着科学技术不断进步和应用需求的不断增加,概率论和数理统计将继续发展,并为我们解决更多的实际问题提供理论和方法。
概率论与数理统计的起源与发展

概率论与数理统计的起源与发展概率论产生于十七世纪,本来是有保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,意大利医生兼数学家卡当,据说曾大量地进行过赌博。
他在赌博时研究不输的方法,实际是概率论的萌芽。
在那个时代,虽然概率论的萌芽有些进展,但还没有出现真正的概率论。
十七世纪中叶,法国贵族德·美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教。
正是这封信使概率论向前迈出了第一步。
帕斯卡和当时第一流的数学家费尔玛一起,研究了德·美黑提出的关于骰子赌博的问题。
于是,一个新的数学分支--概率论登上了历史舞台。
三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
在概率问题早期的研究中,逐步建立了事件、概率和随机变量等重要概念以及它们的基本性质。
后来由于许多社会问题和工程技术问题,如:人口统计、保险理论、天文观测、误差理论、产品检验和质量控制等。
这些问题的提法,均促进了概率论的发展,从17世纪到19世纪,贝努利、隶莫弗、拉普拉斯、高斯、普阿松、切贝谢夫、马尔可夫等著名数学家都对概率论的发展做出了杰出的贡献。
在这段时间里,概率论的发展简直到了使人着迷的程度。
但是,随着概率论中各个领域获得大量成果,以及概率论在其他基础学科和工程技术上的应用,由拉普拉斯给出的概率定义的局限性很快便暴露了出来,甚至无法适用于一般的随机现象。
因此可以说,到20世纪初,概率论的一些基本概念,诸如概率等尚没有确切的定义,概率论作为一个数学分支,缺乏严格的理论基础。
概率论的第一本专著是1713年问世的雅各·贝努利的《推测术》。
经过二十多年的艰难研究,贝努利在该树种,表述并证明了著名的"大数定律"。
概率论与数理统计课程简介

概率论与数理统计课程简介
概率论与数理统计课程是一门介绍基础概率论和数理统计知识的数学课程,主要涵盖以下内容:概率论基础知识,如概率空间、随机变量、分布函数等;常见离散型随机变量和连续型随机变量的概率分布、概率密度函数及其性质;随机变量的数字特征,如均值、方差、协方差等;大数定律和中心极限定理;统计推断,包括参数估计和假设检验;简单线性回归和相关分析等。
该课程对于学习概率论、数理统计、数据分析等领域有着重要的作用,也是许多专业的入门课程。
通过学习本课程,学生将掌握基本的概率论和数理统计知识,能够对随机现象进行分析,并且能够应用所学知识解决实际问题。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概率定义的发展与分析1.古典定义的历史脉络古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比.2.古典定义的简单分析古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提.如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题.“应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评.3.统计定义的历史脉络概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布•伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”.事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯•米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.虽然统计定义不能像古典定义那样确切地算出概率,但是却给出了一个估计概率的方法.而且,它不再需要“等可能”的条件,因此,从应用的角度来讲,它的适用范围更广.但是从数学理论上讲,统计定义是有问题的.在古典概率的场合,事件概率有一个不依赖于频率的定义——它根本不用诉诸于试验,这样才有一个频率与概率是否接近的问题,其研究导致伯努利大数定律.在统计定义的场合这是一个悖论:你如不从承认大数定律出发,概率就无法定义,因而谈不上频率与概率接近的问题;但是你如承认大数定律,以便可以定义概率,那大数定律就是你的前提,而不是一再需要证明的论断了.5.公理化定义的历史脉络正因为古典定义和统计定义数学理论上的这样或那样的问题,所以到了19世纪,无论是概率论的实际应用还是其自身发展,都要求对概率论的逻辑基础作出更加严格的考察.1900年,38岁的希尔伯特(1862—1943)在世界数学家大会上提出了建立概率公理系统的问题,这就是著名的希尔伯特23个问题中的第6个问题.这引导了一批数学家投入这方面的工作.在概率公理化的研究道路上,前苏联数学家柯尔莫哥洛夫(1903—1987)成绩最为卓著,1933年,他在《概率论基础》中运用集合论和测度论表示概率论的方法赋予了概率论严密性.为什么直到20世纪才实现了概率论的公理化,这是因为20世纪初才完成了勒贝格测度与积分理论以及抽象测度与积分理论,而这都是概率论公理化体系建立的基础.柯尔莫哥洛夫借助实变函数论和测度论来定义概率概念,形成了概率论的公理化体系,他的公理体系既概括了古典定义、统计定义的基本特性,又避免了各自的局限.例如,公理中有一条,是把事件概率的存在作为一个不要证明的事实接受下来,在这个前提下,大数定律就成为一个需要证明且可以得到证明的论断,这就避免了“4”中统计定义的数学理论上的问题;而公理中关于“概率存在”的规定又有其实际背景,这就是概率的古典定义和统计定义.所以,我们说,概率论公理体系的出现,是概率论发展史上的一个里程碑,至此,概率论才真正成为了严格的数学分支.二、关于概率定义教学的几点思考对于概率的定义,教科书是先给出古典定义,然后再给出统计定义.这与历史上概率定义的发展相吻合,从“简单到复杂”.在教学中,我们不仅要明了这种顺序的设计意图,而且还要抓住不同定义的特点和思想,以引导学生更好地理解概率.1.古典定义的教学定位在前面的分析中,我们说“等可能”是古典概率非常重要的一个特征,它是古典概率思想产生的前提.正是因为“等可能”,所以才会有了“比率”.因此,“等可能性”和“比率”是古典定义教学中的两个落脚点.“等可能”是无法确切证明的,往往是一种感觉,但是这种感觉是有其实际背景的,例如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉本身给我们的感觉就是帽重钉轻.因此,“等可能”并不要多么严密的物理上或化学上的分析,只需要通过例子感知一下“等可能”和“不等可能”即可,以便让学生明白古典定义的适用对象须具备的条件.2.统计定义的教学定位从直观上讲,统计定义是非常容易接受的,但是它的内涵是非常深刻的,涉及到大数定律.在初中阶段,我们不可能让学生接触其严格的形式和证明.因此,统计定义定位在其合理性和必要性是比较恰当的.如何让学生体会其合理性和必要性?罗老师的课堂教学比较好地实现了这两点.从教学顺序来看,罗老师将“掷硬币”作为归纳统计定义的例子,“掷硬币”可以用古典定义求概率,所以概率值是明确的,而通过试验的方法计算得到的频率就可以和这个明确的概率值相比较,如此更容易让学生体会到“频率具有稳定性”这一事实,从而感受到“用频率估计概率”的合理性;罗老师将“掷图钉”作为统计定义的应用,“掷图钉”不能用古典定义求概率,由此能让学生体会到学习统计定义计算事件概率的必要性.从教学手段来看,罗老师主要采用了“学生试验”的方法,学生的亲自试验在这节课所起的作用是无可代替的:“亲自试验”获得的结果能够给学生以真实感和确切感;“亲自试验”能够让学生感受到频率的随机性和稳定性等特点.所以,像概率与统计的学习,学生应该有更多的主动权和试验权,在动手和动脑中感受概率与统计的思想和方法.3. 概率与统计教学的背后:专业素养的提升在课题研讨时,教师们表现出这样一些困惑:随着试验次数的增加,频率就越来越稳定?频率估计概率,一定要大量试验?实验次数多少合适?事实上,这些问题涉及的就是概率与统计的专业素养.对于大多数教师而言,概率与统计相对而言比较陌生,这是很自然的,因为在教师自身接受的数学专业学习中,概率与统计就是一个弱项.但是,既然要向学生教授概率与统计,那么还是需要有“一桶水”的.就像上面的问题,翻阅任何一本《概率论与数理统计》,都可以给我们知识上的答案,而翻阅一下相关的科普读物或史料,就可以给我们思想方法上的答案.举个例子:伯努利大数定律:设m是n重伯努利试验中事件A出现的次数,又A在每次试验中出现的概率为p(),则对任意的,有.狄莫弗-拉普拉斯极限定理:设m是n重伯努利试验中事件A出现的次数,又A 在每次试验中出现的概率为p(),则.伯努利大数定律只是告诉我们,当n趋于无穷时,频率依概率收敛于概率p.伯努利的想法是:只要n充分大,那么频率估计概率的误差就可以如所希望的小.值得赞赏的是,他利用了“依概率收敛”而不是更直观的p,因为频率是随着试验结果变化的,在n次试验中,事件A出现n次也是有可能的,此时p就不成立了.伯努利不仅证明了上述大数定律,而且还想知道:若想要把一个概率通过频率而确定到一定的精确度,要做多少次观察才行.这时,伯努利大数定律无能为力,但是狄莫弗-拉普拉斯极限定理给出了解答:.(*)例如研究课中掷硬币的问题,若要保证有95%的把握使正面向上的频率与其概率0.5之差落在0.1的范围内,那要抛掷多少次?根据(*)式,可以估计出.三、概率论发展简史概率论有悠久的历史,它的起源与博弈问题有关。
可追溯到15世纪末至16世纪中期,意大利的一些学者开始研究掷骰子等赌博中的一些简单问题,例如比较掷两个骰子出现总点数为9或10的可能性大小。
1494年,意大利数学家巴乔利(L.Pacioli,1445-1517),在其著作《算术、几何及比例性质摘要》中记载:A,B两人进行一场公平赌博,约定先赢得s=6局者获胜。
而在A胜局且B胜局时中断。
巴乔利认为该赌博最多需要进行2(s-1)+1=11局,因而赌金分配方案应为与之比,即的比例来分配赌本.1539年,卡尔达诺(G.Cardano,1501-1576),通过实例指出巴乔利的分配方案是错误的,指出这样不考虑赌徒可能再赢得局数的算法是错误的。
他认为,对于A有利的情形是:若再赌1场则A胜;若再赌2场,则B先胜A后胜;若再赌3场,则B 先胜2场而A胜最后1场;若再赌4场,则B先胜3场而A胜最后1场。
只有在赌4场B全胜时才对B有利。
于是得出应按(1+2+3+4)/1来分赌本。
他也没有找到正确的解法。
1556年,塔塔利亚(Niccolo Fontana,1499-1557,绰号Tartaglia)也批评了巴乔利的解法,并甚至怀疑能找到数学解答的可能性。
“类似问题应属于法律而非数学,故无论如何分配都有理由上诉。
”不过,他也提出一种解法(略)17世纪中叶,法国数学家帕斯卡、费马及荷兰数学家惠更斯基于排列组合的方法研究了一些较复杂的赌博问题,他们解决了“合理分配赌注问题”(即“得分问题”,)、“输光问题”等等。
1654年,法国一位名叫梅累的狂热赌徒向帕斯卡提出一个困扰他很久的问题:“两个赌徒相约赌若干局,谁先赢s局就算是谁赢。
可是当一个赌徒A赢a局(a<s),而另一个赌徒B赢b局(b<s)时,赌博因故终止了,问赌本应如何分配?”帕斯卡将这个问题和他的解法寄给费尔马,这是1654年7月29日电事情。
帕斯卡在信中先以特例说明了其对问题的解法。